1
|
Munro R, de Vlugt J, Ladizhansky V, Brown LS. Improved Protocol for the Production of the Low-Expression Eukaryotic Membrane Protein Human Aquaporin 2 in Pichia pastoris for Solid-State NMR. Biomolecules 2020; 10:biom10030434. [PMID: 32168846 PMCID: PMC7175339 DOI: 10.3390/biom10030434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Solid-state nuclear magnetic resonance (SSNMR) is a powerful biophysical technique for studies of membrane proteins; it requires the incorporation of isotopic labels into the sample. This is usually accomplished through over-expression of the protein of interest in a prokaryotic or eukaryotic host in minimal media, wherein all (or some) carbon and nitrogen sources are isotopically labeled. In order to obtain multi-dimensional NMR spectra with adequate signal-to-noise ratios suitable for in-depth analysis, one requires high yields of homogeneously structured protein. Some membrane proteins, such as human aquaporin 2 (hAQP2), exhibit poor expression, which can make producing a sample for SSNMR in an economic fashion extremely difficult, as growth in minimal media adds additional strain on expression hosts. We have developed an optimized growth protocol for eukaryotic membrane proteins in the methylotrophic yeast Pichia pastoris. Our new growth protocol uses the combination of sorbitol supplementation, higher cell density, and low temperature induction (LT-SEVIN), which increases the yield of full-length, isotopically labeled hAQP2 ten-fold. Combining mass spectrometry and SSNMR, we were able to determine the nature and the extent of post-translational modifications of the protein. The resultant protein can be functionally reconstituted into lipids and yields excellent resolution and spectral coverage when analyzed by two-dimensional SSNMR spectroscopy.
Collapse
|
2
|
Zhang M, Wu G. Mechanisms of the anterograde trafficking of GPCRs: Regulation of AT1R transport by interacting proteins and motifs. Traffic 2018; 20:110-120. [PMID: 30426616 DOI: 10.1111/tra.12624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Anterograde cell surface transport of nascent G protein-coupled receptors (GPCRs) en route from the endoplasmic reticulum (ER) through the Golgi apparatus represents a crucial checkpoint to control the amount of the receptors at the functional destination and the strength of receptor activation-elicited cellular responses. However, as compared with extensively studied internalization and recycling processes, the molecular mechanisms of cell surface trafficking of GPCRs are relatively less defined. Here, we will review the current advances in understanding the ER-Golgi-cell surface transport of GPCRs and use angiotensin II type 1 receptor as a representative GPCR to discuss emerging roles of receptor-interacting proteins and specific motifs embedded within the receptors in controlling the forward traffic of GPCRs along the biosynthetic pathway.
Collapse
Affiliation(s)
- Maoxiang Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
3
|
Oaks M, Michel K, Downey FX, Thohan V. Xenoreactive antibodies and latent fibrin formation in VAD and cardiac transplant recipients can confound the detection and measurement of anti-AT1R antibodies. Am J Transplant 2018; 18:2763-2771. [PMID: 29603642 DOI: 10.1111/ajt.14753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/09/2018] [Accepted: 03/24/2018] [Indexed: 01/25/2023]
Abstract
Autoantibodies to the angiotensin II type 1 receptor (AT1R) are thought to be important in antibody-mediated rejection (AMR), especially in the absence of anti-HLA antibodies. We used a variety of methods to examine the specificity of a commercially available kit designed to quantitate anti-AT1R antibodies. We found that fibrin formation in serum samples from patients awaiting cardiac transplantation with ventricular assist devices (VADs) can produce falsely elevated anti-AT1R values. In addition, absorption studies with a variety of cell lines with or without expression of human AT1R, and those that express xenoantigens, suggest that many of the antibodies detected in the AT1R test system are heterophilic and have reactivity to xenoantigens. Furthermore, we provide data that show that reactivity to the sialic acid Neu5Gc is a common finding among samples that are highest in anti-AT1R levels. We conclude that a common laboratory method for quantitation of anti-AT1R antibodies is nonspecific and overestimates the frequency of true positives. A reevaluation of the role that anti-AT1R antibodies play in allograft function and patient outcomes is warranted.
Collapse
Affiliation(s)
- Martin Oaks
- Transplant Research Lab, Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| | - Karen Michel
- Transplant Research Lab, Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| | - Francis X Downey
- Aurora Cardiovascular Services, Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| | - Vinay Thohan
- Aurora Cardiovascular Services, Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| |
Collapse
|
4
|
N -glycan-dependent cell-surface expression of the P2Y 2 receptor and N -glycan-independent distribution to lipid rafts. Biochem Biophys Res Commun 2017; 485:427-431. [DOI: 10.1016/j.bbrc.2017.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 01/23/2023]
|
5
|
Corin K, Baaske P, Geissler S, Wienken CJ, Duhr S, Braun D, Zhang S. Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Sci Rep 2011; 1:172. [PMID: 22355687 PMCID: PMC3240957 DOI: 10.1038/srep00172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022] Open
Abstract
The vomeronasal system is one of several fine-tuned scent-detecting signaling systems in mammals. However, despite significant efforts, how these receptors detect scent remains an enigma. One reason is the lack of sufficient purified receptors to perform detailed biochemical, biophysical and structural analyses. Here we report the ability to express and purify milligrams of purified, functional human vomeronasal receptor hVN1R1. Circular dichroism showed that purified hVN1R1 had an alpha-helical structure, similar to that of other GPCRs. Microscale thermophoresis showed that hVN1R1 bound its known ligand myrtenal with an EC(50) approximately 1 µM. This expression system can enable structural and functional analyses towards understanding how mammalian scent detection works.
Collapse
Affiliation(s)
- Karolina Corin
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge,
MA 02139-4307, USA
| | - Philipp Baaske
- NanoTemper Technologies GmbH, Amalienstrasse
54, 80799 München, Germany
| | - Sandra Geissler
- NanoTemper Technologies GmbH, Amalienstrasse
54, 80799 München, Germany
| | - Christoph J. Wienken
- Systems Biophysics, Functional Nanosystems, Department of Physics,
Ludwig-Maximilians University München, Amalienstrasse 54,
80799 München, Germany
| | - Stefan Duhr
- NanoTemper Technologies GmbH, Amalienstrasse
54, 80799 München, Germany
| | - Dieter Braun
- Systems Biophysics, Functional Nanosystems, Department of Physics,
Ludwig-Maximilians University München, Amalienstrasse 54,
80799 München, Germany
| | - Shuguang Zhang
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge,
MA 02139-4307, USA
| |
Collapse
|
6
|
Dahoun T, Grasso L, Vogel H, Pick H. Recombinant Expression and Functional Characterization of Mouse Olfactory Receptor mOR256-17 in Mammalian Cells. Biochemistry 2011; 50:7228-35. [DOI: 10.1021/bi2008596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thamani Dahoun
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Luigino Grasso
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Horst Pick
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Roy S, Perron B, Gallo-Payet N. Role of asparagine-linked glycosylation in cell surface expression and function of the human adrenocorticotropin receptor (melanocortin 2 receptor) in 293/FRT cells. Endocrinology 2010; 151:660-70. [PMID: 20022931 DOI: 10.1210/en.2009-0826] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Asparagine-linked glycosylation (N-glycosylation) of G protein-coupled receptors may be necessary for functions ranging from agonist binding, folding, maturation, stability, and internalization. Human melanocortin 2 receptor (MC2R) possesses putative N-glycosylation sites in its N-terminal extracellular domain; however, to date, the role of MC2R N-glycosylation has yet to be investigated. The objective of the present study is to examine whether N-glycosylation is essential or not for cell surface expression and cAMP production in native and MC2R accessory protein (MRAP alpha, -beta, or -dCT)-expressing cells using 293/FRT transfected with Myc-MC2R. Western blot analyses performed with or without endoglycosidase H, peptide:N-glycosidase F or tunicamycin treatments and site-directed mutagenesis revealed that MC2R was glycosylated in the N-terminal domain at its two putative N-glycosylation sites (Asn(12)-Asn(13)-Thr(14) and Asn(17)-Asn(18)-Ser(19)). In the absence of human MRAP coexpression, N-glycosylation of at least one of the two sites was necessary for MC2R cell surface expression. However, when MRAP was present, cell surface expression of MC2R mutants was either rescued entirely with the N17-18Q (QQNN) and N12-13Q (NNQQ) mutants or partially with the unglycosylated N12-13, 17-18Q (QQQQ) mutant. Functional and expression analyses revealed a discrepancy between wild-type (WT) and QQQQ cell surface receptor levels and maximal cAMP production with a 4-fold increase in EC(50) values. Taken together, these results indicate that the absence of MC2R N-glycosylation abrogates to a large extent MC2R cell surface expression in the absence of MRAPs, whereas when MC2R is N-glycosylated, it can be expressed at the plasma membrane without MRAP assistance.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
8
|
Nagami GT, Chang JA, Plato ME, Santamaria R. Acid loading in vivo and low pH in culture increase angiotensin receptor expression: enhanced ammoniagenic response to angiotensin II. Am J Physiol Renal Physiol 2008; 295:F1864-70. [DOI: 10.1152/ajprenal.90410.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proximal tubule defends the body against acid challenges by enhancing its production and secretion of ammonia. Our previous studies demonstrated an enhanced ammoniagenic response of the proximal tubule to ANG II added to the lumen in vitro after an in vivo acid challenge. The present study examined the effect of NH4Cl acid loading in vivo on renal cortical type 1 ANG II (AT1) receptor expression, the effect of low pH on AT1receptor expression in a proximal tubule cells in culture, and their response to ANG II. A short-term (18 h) NH4Cl load in vivo resulted in increased renal cortical AT1receptor mRNA expression and increased brush-border membrane AT1receptor protein expression levels. Changing the cell culture pH from 7.4 to 7.0 for at least 2 h increased cell surface expression of AT1receptors and enhanced the stimulatory effect of ANG II on ammonia production rates. This increased ammoniagenic response to ANG II and the early enhancement of cell surface expression induced by exposure of the cultured proximal tubule cells to pH 7.0 were prevented by treatment with colchicine. These results suggest that, after acid challenges, the enhanced ammoniagenic response of the proximal tubule to ANG II is, in part, mediated by increased AT1receptor cell surface expression and that the enhancement of receptor expression plays an important role in the early response of the proximal tubule to acid challenges.
Collapse
|
9
|
Study of a synthetic human olfactory receptor 17-4: expression and purification from an inducible mammalian cell line. PLoS One 2008; 3:e2920. [PMID: 18682799 PMCID: PMC2488374 DOI: 10.1371/journal.pone.0002920] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/01/2008] [Indexed: 11/19/2022] Open
Abstract
In order to begin to study the structural and functional mechanisms of olfactory receptors, methods for milligram-scale purification are required. Here we demonstrate the production and expression of a synthetically engineered human olfactory receptor hOR17-4 gene in a stable tetracycline-inducible mammalian cell line (HEK293S). The olfactory receptor gene was fabricated from scratch using PCR-based gene-assembly, which facilitated codon optimization and attachment of a 9-residue bovine rhodopsin affinity tag for detection and purification. Induction of adherent cultures with tetracycline together with sodium butyrate led to hOR17-4 expression levels of ∼30 µg per 150 mm tissue culture plate. Fos-choline-based detergents proved highly capable of extracting the receptors, and fos-choline-14 (N-tetradecylphosphocholine) was selected for optimal solubilization and subsequent purification. Analysis by SDS-PAGE revealed both monomeric and dimeric receptor forms, as well as higher MW oligomeric species. A two-step purification method of immunoaffinity and size exclusion chromatography was optimized which enabled 0.13 milligrams of hOR17-4 monomer to be obtained at >90% purity. This high purity of hOR17-4 is not only suitable for secondary structural and functional analyses but also for subsequent crystallization trials. Thus, this system demonstrates the feasibility of purifying milligram quantities of the GPCR membrane protein hOR17-4 for fabrication of olfactory receptor-based bionic sensing device.
Collapse
|
10
|
Li H, Armando I, Yu P, Escano C, Mueller SC, Asico L, Pascua A, Lu Q, Wang X, Villar VAM, Jones JE, Wang Z, Periasamy A, Lau YS, Soares-da-Silva P, Creswell K, Guillemette G, Sibley DR, Eisner G, Gildea JJ, Felder RA, Jose PA. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. J Clin Invest 2008; 118:2180-9. [PMID: 18464932 DOI: 10.1172/jci33637] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 03/19/2008] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a multigenic disorder in which abnormal counterregulation between dopamine and Ang II plays a role. Recent studies suggest that this counterregulation results, at least in part, from regulation of the expression of both the antihypertensive dopamine 5 receptor (D5R) and the prohypertensive Ang II type 1 receptor (AT1R). In this report, we investigated the in vivo and in vitro interaction between these GPCRs. Disruption of the gene encoding D5R in mice increased both blood pressure and AT1R protein expression, and the increase in blood pressure was reversed by AT1R blockade. Activation of D5R increased the degradation of glycosylated AT1R in proteasomes in HEK cells and human renal proximal tubule cells heterologously and endogenously expressing human AT1R and D5R. Confocal microscopy, Förster/fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy revealed that activation of D5R initiated ubiquitination of the glycosylated AT1R at the plasma membrane. The regulated degradation of AT1R via a ubiquitin/proteasome pathway by activation of D5R provides what we believe to be a novel mechanism whereby blood pressure can be regulated by the interaction of 2 counterregulatory GPCRs. Our results therefore suggest that treatments for hypertension might be optimized by designing compounds that can target the AT1R and the D5R.
Collapse
Affiliation(s)
- Hewang Li
- Department of Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
McCusker EC, Bane SE, O'Malley MA, Robinson AS. Heterologous GPCR expression: a bottleneck to obtaining crystal structures. Biotechnol Prog 2007; 23:540-7. [PMID: 17397185 DOI: 10.1021/bp060349b] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are an important, medically relevant class of integral membrane proteins. Laboratories throughout all disciplines of science devote time and energy into developing practical methods for the discovery, isolation, and characterization of these proteins. Since the crystal structure of rhodopsin was solved 6 years ago, the race to determine high-resolution structures of more GPCRs has gained momentum. Since certain GPCRs are currently produced at sufficient levels for X-ray crystallography trials, it is speculated that heterologous expression of GPCRs may no longer be a bottleneck in obtaining crystal structures. This Review focuses on the current approaches in heterologous expression of GPCRs and explores the problems associated with obtaining crystal structures from GPCRs expressed in different systems. Although milligram amounts of certain GPCRs are attainable, the majority of GPCRs are still either produced at very low levels or not at all. Developing reliable expression techniques for GPCRs is still a major priority for the structural characterization of GPCRs.
Collapse
Affiliation(s)
- Emily C McCusker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | |
Collapse
|
12
|
Leclerc PC, Lanctot PM, Auger-Messier M, Escher E, Leduc R, Guillemette G. S-nitrosylation of cysteine 289 of the AT1 receptor decreases its binding affinity for angiotensin II. Br J Pharmacol 2006; 148:306-13. [PMID: 16565729 PMCID: PMC1751562 DOI: 10.1038/sj.bjp.0706725] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Nitric oxide (NO) is known to affect the properties of various proteins via the S-nitrosylation of cysteine residues. This study evaluated the direct effects of the NO donor sodium nitroprusside (SNP) on the pharmacological properties of the AT1 receptor for angiotensin II expressed in HEK-293 cells. 2. SNP dose-dependently decreased the binding affinity of the AT1 receptor without affecting its total binding capacity. This modulatory effect was reversed within 5 min of removing SNP. 3. The effect of SNP was not modified in the presence of the G protein uncoupling agent GTPgammaS or the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. 4. The binding properties of a mutant AT1 receptor in which all five cysteine residues within the transmembrane domains had been replaced by serine was not affected by SNP. Systematic analysis of mutant AT1 receptors revealed that cysteine 289 conferred the sensitivity to SNP. 5. These results suggest that NO decreased the binding affinity of the AT1 receptor by S-nitrosylation of cysteine 289. This modulatory mechanism may be particularly relevant in pathophysiological situations where the beneficial effects of NO oppose the deleterious effects of angiotensin II.
Collapse
Affiliation(s)
- Patrice C Leclerc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Pascal M Lanctot
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Mannix Auger-Messier
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Emanuel Escher
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Gaetan Guillemette
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
- Author for correspondence:
| |
Collapse
|
13
|
Oro C, Qian H, Thomas WG. Type 1 angiotensin receptor pharmacology: signaling beyond G proteins. Pharmacol Ther 2006; 113:210-26. [PMID: 17125841 PMCID: PMC7112676 DOI: 10.1016/j.pharmthera.2006.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 10/03/2006] [Indexed: 02/07/2023]
Abstract
Drugs that inhibit the production of angiotensin II (AngII) or its access to the type 1 angiotensin receptor (AT1R) are prescribed to alleviate high blood pressure and its cardiovascular complications. Accordingly, much research has focused on the molecular pharmacology of AT1R activation and signaling. An emerging theme is that the AT1R generates G protein dependent as well as independent signals and that these transduction systems separately contribute to AT1R biology in health and disease. Regulatory molecules termed arrestins are central to this process as is the capacity of AT1R to crosstalk with other receptor systems, such as the widely studied transactivation of growth factor receptors. AT1R function can also be modulated by polymorphisms in the AGTR gene, which may significantly alter receptor expression and function; a capacity of the receptor to dimerize/oligomerize with altered pharmacology; and by the cellular environment in which the receptor resides. Together, these aspects of the AT1R “flavour” the response to angiotensin; they may also contribute to disease, determine the efficacy of current drugs and offer a unique opportunity to develop new therapeutics that antagonize only selective facets of AT1R function.
Collapse
Affiliation(s)
- Cristina Oro
- Baker Heart Research Institute, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Hongwei Qian
- Baker Heart Research Institute, Melbourne, Australia
| | - Walter G. Thomas
- Baker Heart Research Institute, Melbourne, Australia
- Corresponding author. Molecular Endocrinology Laboratory, Baker Heart Research Institute, P.O. Box 6492, St. Kilda Road Central, Melbourne 8008, Australia. Tel.: +61 3 8532 1224; fax: +61 3 8532 1100.
| |
Collapse
|
14
|
Dong C, Filipeanu CM, Duvernay MT, Wu G. Regulation of G protein-coupled receptor export trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:853-70. [PMID: 17074298 PMCID: PMC1885203 DOI: 10.1016/j.bbamem.2006.09.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.
Collapse
Affiliation(s)
| | | | | | - Guangyu Wu
- * Corresponding author. Tel: +1 504 568 2236; Fax: +1 504 568 2361. E-mail address: (G. Wu)
| |
Collapse
|
15
|
Allen AM, Dosanjh JK, Erac M, Dassanayake S, Hannan RD, Thomas WG. Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure. Hypertension 2006; 47:1054-61. [PMID: 16618838 DOI: 10.1161/01.hyp.0000218576.36574.54] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin type 1A (AT(1A)) receptors are expressed within the rostral ventrolateral medulla, and microinjections of angiotensin II into this region increase sympathetic vasomotor tone. To determine the effect of sustained increases in AT(1A) receptor density or activity in rostral ventrolateral medulla, we used radiotelemetry to monitor blood pressure in conscious rats before and after bilateral microinjection into the rostral ventrolateral medulla of adenoviruses encoding the wild-type AT(1A) receptor or a constitutively active version of the receptor (Asn111Gly, [N111G]AT(1A)). The constitutively active receptor signals in the absence of angiotensin II. Adenovirus-directed receptor expression was extensively characterized both in vitro and in vivo. We established that adenoviral infection was limited to the rostral ventrolateral medulla and that receptor expression was sustained for > or =10 days; we also observed that adenoviral transgene expression occurs in glia, with no transgene expression observed in neurons of the rostral ventrolateral medulla. Rats receiving the wild-type AT(1A) receptor showed no change in blood pressure, whereas animals receiving the [N111G]AT(1A) receptor displayed an increase in blood pressure that persisted for 3 to 4 days before returning to basal levels. These data indicate that increased AT(1A) receptor activity (not just overexpression) is a primary determinant of efferent drive from rostral ventrolateral medulla and reveal counterregulatory processes that moderate AT(1A) receptor actions at this crucial relay point. More importantly, they imply that constitutive receptor signaling in glia of the rostral ventrolateral medulla can modulate the activity of adjacent neurons to change blood pressure.
Collapse
Affiliation(s)
- Andrew M Allen
- Department of Physiology, University of Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Turu G, Szidonya L, Gáborik Z, Buday L, Spät A, Clark AJL, Hunyady L. Differential β-arrestin binding of AT1and AT2angiotensin receptors. FEBS Lett 2005; 580:41-5. [PMID: 16359671 DOI: 10.1016/j.febslet.2005.11.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 11/18/2022]
Abstract
Agonist stimulation of G protein-coupled receptors causes receptor activation, phosphorylation, beta-arrestin binding and receptor internalization. Angiotensin II (AngII) causes rapid internalization of the AT1 receptors, whereas AngII-bound AT2 receptors do not internalize. Although the activation of the rat AT1A receptor with AngII causes translocation of beta-arrestin2 to the receptor, no association of this molecule with the AT2 receptor can be detected after AngII treatment with confocal microscopy or bioluminescence resonance energy transfer. These data demonstrate that the two subtypes of angiotensin receptors have different mechanisms of regulation.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1444 Budapest, P.O. Box 259, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
17
|
Lanctot P, Leclerc P, Clément M, Auger-Messier M, Escher E, Leduc R, Guillemette G. Importance of N-glycosylation positioning for cell-surface expression, targeting, affinity and quality control of the human AT1 receptor. Biochem J 2005; 390:367-76. [PMID: 15869468 PMCID: PMC1188272 DOI: 10.1042/bj20050189] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/14/2005] [Accepted: 05/04/2005] [Indexed: 12/23/2022]
Abstract
GPCRs (G-protein-coupled receptors) are preferentially N-glycosylated on ECL2 (extracellular loop 2). We previously showed that N-glycosylation of ECL2 was crucial for cell-surface expression of the hAT1 receptor (human angiotensin II receptor subtype 1). Here, we ask whether positioning of the N-glycosylation sites within the various ECLs of the receptor is a vital determinant in the functional expression of hAT(1) receptor at the cell surface. Artificial N-glycosylation sequons (Asn-Xaa-Ser/Thr) were engineered into ECL1, ECL2 and ECL3. N-glycosylation of ECL1 caused a very significant decrease in affinity and cell surface expression of the resulting receptor. Shifting the position of the ECL2 glycosylation site by two residues led to the synthesis of a misfolded receptor which, nevertheless, was trafficked to the cell surface. The misfolded nature of this receptor is supported by an increased interaction with the chaperone HSP70 (heat-shock protein 70). Introduction of N-glycosylation motifs into ECL3 yielded mutant receptors with normal affinity, but low levels of cell surface expression caused by proteasomal degradation. This behaviour differed from that observed for the aglycosylated receptor, which accumulated in the endoplasmic reticulum. These results show how positioning of the N-glycosylation sites altered many properties of the AT1 receptor, such as targeting, folding, affinity, cell surface expression and quality control.
Collapse
Key Words
- angiotensin ii receptor subtype 1 (at1 receptor)
- degradation
- g-protein-coupled receptor (gpcr)
- n-glycosylation
- protein folding
- quality control
- afu, arbitrary fluorescence units
- angii, angiotensin ii
- (h)at1 receptor, (human) angiotensin ii receptor subtype 1
- at1-ag, aglycosylated at1 receptor
- at1-wt, wild-type at1 receptor
- [ca2+]i, intracellular [ca2+]
- dmem, dulbecco's modified eagle's medium
- ecl, extracellular loop
- er, endoplasmic reticulum
- erad, er-associated degradation
- fura 2/am, fura 2 acetoxymethyl ester
- gpcr, g-protein-coupled receptor
- grp78/bip, 78 kda glucose-regulated protein/heavy-chain binding protein
- hbss, hepes-buffered saline solution
- hsp70, heat-shock protein 70
- icl1, intracellular loop 1
- ip/ib, immunoprecipitation and immunoblotting
- upr, unfolded protein response
- wt, wild-type
Collapse
Affiliation(s)
- Pascal M. Lanctot
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Patrice C. Leclerc
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Martin Clément
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Mannix Auger-Messier
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Emanuel Escher
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Gaétan Guillemette
- Department of Pharmacology, Faculty of Medicine, UniversitÉ de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| |
Collapse
|
18
|
Shivakumar BR, Wang Z, Hammond TG, Harris RC. EP24.15 interacts with the angiotensin II type I receptor and bradykinin B2 receptor. Cell Biochem Funct 2005; 23:195-204. [PMID: 15376229 DOI: 10.1002/cbf.1176] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The carboxyl-terminal cytoplasmic domain of the angiotensin II type 1 receptor (AT1) is known to interact with several classes of intracellular proteins that may modulate receptor function. Employing yeast two-hybrid screening of a human embryonic kidney cDNA library with the carboxyl-terminal cytoplasmic domain of the AT1 receptor as a bait, we have isolated EP24.15 (EC 3.4.24.15, thimet oligopeptidase) as a potentially interacting protein. EP24.15 is widely distributed and is known to degrade bioactive peptides such as angiotensin I and II and bradykinin. In addition, EP24.15 was previously identified as a putative soluble angiotensin II binding protein. Two-hybrid screening also determined that EP24.15 can interact with the B2 bradykinin receptor. Transient expression of EP24.15 in a porcine kidney epithelial cell line stably expressing full length AT1 and full length B2 followed by affinity chromatography and co-immunoprecipitation confirmed EP24.15 association with both AT1 and B2 receptors. EP24.15 was also co-immunoprecipitated with AT1 and B2 in rat kidney brush border membranes (BBM) and basolateral membranes (BLM). Both AT1 and B2 undergo ligand-induced endocytosis. Analysis of endosomal fractions following immunoprecipitation with AT1 or B2 antibodies detected strong association of EP24.15 with the receptors in both light and heavy endosomal populations. Therefore, the present study indicates that EP24.15 associates with AT1 and B2 receptors both at the plasma membrane and after receptor internalization and suggests a possible mechanism for endosomal disposition of ligand that may facilitate receptor recycling.
Collapse
MESH Headings
- Animals
- Cell Membrane/enzymology
- Cytoplasm/enzymology
- Endosomes/enzymology
- Gene Library
- Glutathione Transferase/genetics
- Humans
- Kidney Cortex/cytology
- Kidney Cortex/enzymology
- LLC-PK1 Cells
- Metalloendopeptidases/metabolism
- Mice
- Protein Structure, Tertiary
- Rats
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Bradykinin B2/chemistry
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Recombinant Fusion Proteins/genetics
- Swine
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Bangalore R Shivakumar
- Department of Medicine, Vanderbilt University and Veterans Affairs Medical Center Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
19
|
Volpe M, Trimarco B. A Novel Molecule of the Angiotensin II Receptor Blocker Class. High Blood Press Cardiovasc Prev 2005. [DOI: 10.2165/00151642-200512020-00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
20
|
Duvernay MT, Zhou F, Wu G. A conserved motif for the transport of G protein-coupled receptors from the endoplasmic reticulum to the cell surface. J Biol Chem 2004; 279:30741-50. [PMID: 15123661 DOI: 10.1074/jbc.m313881200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural determinants for the export trafficking of G protein-coupled receptors are poorly defined. In this report, we determined the role of carboxyl termini (CTs) of alpha2B-adrenergic receptor (AR) and angiotensin II type 1A receptor (AT1R) in their transport from the endoplasmic reticulum (ER) to the cell surface. The alpha2B-AR and AT1R mutants lacking the CTs were completely unable to transport to the cell surface and were trapped in the ER. Alanine-scanning mutagenesis revealed that residues Phe436 and Ile433-Leu444 in the CT were required for alpha2B-AR export. Insertion or deletion between Phe436 and Ile443-Leu444 as well as Ile443-Leu444 mutation to FF severely disrupted alpha2B-AR transport, indicating there is a defined spatial requirement, which is essential for their function as a single motif regulating receptor transport from the ER. Furthermore, the carboxyl-terminally truncated as well as Phe436 and Ile443-Leu444 mutants were unable to bind ligand and the alpha2B-AR CT conferred its transport properties to the AT1R mutant without the CT in a Phe436-Ile443-Leu444-dependent manner. These data suggest that the Phe436 and Ile443-Leu444 may be involved in both proper folding and export from the ER of the receptor. Similarly, residues Phe309 and Leu316-Leu317 in the CT were identified as essential for AT1R export. The sequence F(X)6LL (where X can be any residue, and L is leucine or isoleucine) is highly conserved in the membrane-proximal CTs of many G protein-coupled receptors and may function as a common motif mediating receptor transport from the ER to the cell surface.
Collapse
MESH Headings
- Alanine/chemistry
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Cell Line
- Cell Membrane/metabolism
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/metabolism
- Flow Cytometry
- Humans
- Immunoblotting
- Isoleucine/chemistry
- Leucine/chemistry
- Ligands
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phenylalanine/chemistry
- Plasmids/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Protein Transport
- Rats
- Receptor, Angiotensin, Type 1/chemistry
- Receptors, Adrenergic, alpha-2/chemistry
- Receptors, G-Protein-Coupled/chemistry
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Matthew T Duvernay
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
21
|
Wu G, Zhao G, He Y. Distinct pathways for the trafficking of angiotensin II and adrenergic receptors from the endoplasmic reticulum to the cell surface: Rab1-independent transport of a G protein-coupled receptor. J Biol Chem 2003; 278:47062-9. [PMID: 12970354 DOI: 10.1074/jbc.m305707200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism underlying the transport of G protein-coupled receptors from the endoplasmic reticulum (ER) to the cell surface is poorly understood. This issue was addressed by determining the role of Rab1, a Ras-related small GTPase that coordinates vesicular protein transport in the early secretory pathway, in the subcellular distribution and function of the angiotensin II type 1A receptor (AT1R), beta2-adrenergic receptor (AR), and alpha2B-AR in HEK293T cells. Inhibition of endogenous Rab1 function by transient expression of dominant-negative Rab1 mutants or Rab1 small interfering RNA (siRNA) induced a marked perinuclear accumulation and a significant reduction in cell-surface expression of AT1R and beta2-AR. The accumulated receptors were colocalized with calregulin (an ER marker) and GM130 (a Golgi marker), consistent with Rab1 function in regulating protein transport from the ER to the Golgi. In contrast, dominant-negative Rab1 mutants and siRNA had no effect on the subcellular distribution of alpha2B-AR. Similarly, expression of dominant-negative Rab1 mutants and siRNA depletion of Rab1 significantly attenuated AT1R-mediated inositol phosphate accumulation and ERK1/2 activation and beta2-AR-mediated ERK1/2 activation, but not alpha2B-AR-stimulated ERK1/2 activation. These data indicate that Rab1 GTPase selectively regulates intracellular trafficking and signaling of G protein-coupled receptors and suggest a novel, as yet undefined pathway for movement of G protein-coupled receptors from the ER to the cell surface.
Collapse
Affiliation(s)
- Guangyu Wu
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
22
|
Nori A, Valle G, Massimino ML, Volpe P. Targeting of calsequestrin to the sarcoplasmic reticulum of skeletal muscle upon deletion of its glycosylation site. Exp Cell Res 2001; 265:104-13. [PMID: 11281648 DOI: 10.1006/excr.2001.5172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glycoprotein calsequestrin (CS) is segregated to the junctional sarcoplasmic reticulum (jSR) and is responsible for intraluminal Ca(2+) binding. A chimeric CS-hemoagglutinin 1 (HA1), obtained by adding the nine amino acid viral epitope hemoagglutinin to the carboxy terminal of CS and shown to be correctly segregated to skeletal muscle jSR [A. Nori, K. A. Nadalini, A. Martini, R. Rizzuto, A. Villa, and P. Volpe (1997). Chimeric calsequestrin and its targeting to the junctional sarcoplasmic reticulum of skeletal muscle. Am. J. Physiol. 272, C1420-C1428] lends itself as a molecular tool to investigate the targeting domains of CS. A putative targeting mechanism of CS to jSR implies glycosylation-dependent steps in the endoplasmic reticulum (ER) and Golgi complex. To test this hypothesis, CS-HA1DeltaGly, a mutant in which the unique N-glycosylation site Asn316 was changed to Ile, was engineered by site-directed mutagenesis. The mutant cDNA was transiently transfected in either HeLa cells, myoblasts of rat skeletal muscle primary cultures, or regenerating soleus muscle fibers of adult rats. The expression and intracellular localization of CS-HA1DeltaGly was studied by double-labeling epifluorescence by means of antibodies against either CS, HA1, or the ryanodine receptor calcium release channel. CS-HA1DeltaGly was expressed and retained to ER and ER/sarcoplasmic reticulum of HeLa cells and myotubes, respectively, and expressed, sorted, and correctly segregated to jSR of regenerating soleus muscle fibers. Thus, the targeting mechanism of CS in vivo appears not to be affected by glycosylation-that is, the sorting, docking, and segregation of CS are independent of cotranslational and posttranslational glycosylation or glycosylations.
Collapse
Affiliation(s)
- A Nori
- Centro di Studio per la Biologia e la Fisiopatologia Muscolare del CNR, Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, viale G. Colombo 3, Padova, 35121, Italy
| | | | | | | |
Collapse
|
23
|
Hunyady L, Catt KJ, Clark AJ, Gáborik Z. Mechanisms and functions of AT(1) angiotensin receptor internalization. REGULATORY PEPTIDES 2000; 91:29-44. [PMID: 10967200 DOI: 10.1016/s0167-0115(00)00137-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The type 1 (AT(1)) angiotensin receptor, which mediates the known physiological and pharmacological actions of angiotensin II, activates numerous intracellular signaling pathways and undergoes rapid internalization upon agonist binding. Morphological and biochemical studies have shown that agonist-induced endocytosis of the AT(1) receptor occurs via clathrin-coated pits, and is dependent on two regions in the cytoplasmic tail of the receptor. However, it is independent of G protein activation and signaling, and does not require the conserved NPXXY motif in the seventh transmembrane helix. The dependence of internalization of the AT(1) receptor on a cytoplasmic serine-threonine-rich region that is phosphorylated during agonist stimulation suggests that endocytosis is regulated by phosphorylation of the AT(1) receptor tail. beta-Arrestins have been implicated in the desensitization and endocytosis of several G protein-coupled receptors, but the exact nature of the adaptor protein required for association of the AT(1) receptor with clathrin-coated pits, and the role of dynamin in the internalization process, are still controversial. There is increasing evidence for a role of internalization in sustained signal generation from the AT(1) receptor. Several aspects of the mechanisms and specific function of AT(1) receptor internalization, including its precise mode and route of endocytosis, and the potential roles of cytoplasmic and nuclear receptors, remain to be elucidated.
Collapse
MESH Headings
- Animals
- Arrestins/metabolism
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Dynamins
- Endocytosis
- GTP Phosphohydrolases/metabolism
- Humans
- Kinetics
- Ligands
- Microscopy, Confocal
- Models, Biological
- Mutation
- Phosphorylation
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- beta-Arrestins
Collapse
Affiliation(s)
- L Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, P.O. Box 259, H-1444 Budapest, Hungary.
| | | | | | | |
Collapse
|
24
|
Hauger RL, Smith RD, Braun S, Dautzenberg FM, Catt KJ. Rapid agonist-induced phosphorylation of the human CRF receptor, type 1: a potential mechanism for homologous desensitization. Biochem Biophys Res Commun 2000; 268:572-6. [PMID: 10679245 DOI: 10.1006/bbrc.2000.2183] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Agonist-induced phosphorylation of the human corticotropin-releasing factor type 1 receptor (hCRF(1)-R) was investigated using an influenza hemagglutinin (HA) epitope-tagged receptor transiently expressed in COS-7 cells. The HA-hCRF(1)-R migrated as a broad band (M(r) 60,000-70,000) in SDS-PAGE and showed increased mobility (M(r) approximately 48,000) after enzymatic deglycosylation with peptide-N-glycosidase F, consistent with the predicted size (47 kDa) of the nonglycosylated HA-hCRF(1)-R protein. A marked increase in HA-hCRF(1)-R phosphorylation was observed in HA-hCRF(1)-R-expressing COS-7 cells exposed to 1 microM ovine CRF for 5 min, whereas activation of protein kinase A (PKA) by 50 microM forskolin, or of Ca(2+)/calmodulin (CaM)-dependent kinases by 10 microM ionomycin, had little effect. These findings are consistent with preliminary data suggesting that CRF(1)-R phosphorylation mediated by G protein receptor kinase 3 (GRK3), but not by PKA or CaM-dependent kinases, has an important role in the homologous desensitization of brain CRF(1)-Rs.
Collapse
Affiliation(s)
- R L Hauger
- VA Medical Center and Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0603, USA.
| | | | | | | | | |
Collapse
|