1
|
Mrozewski L, Tharmalingam S, Michael P, Kumar A, Tai TC. C5a Induces Inflammatory Signaling and Apoptosis in PC12 Cells through C5aR-Dependent Signaling: A Potential Mechanism for Adrenal Damage in Sepsis. Int J Mol Sci 2024; 25:10673. [PMID: 39409001 PMCID: PMC11477224 DOI: 10.3390/ijms251910673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The complement system is critically involved in the pathogenesis of sepsis. In particular, complement anaphylatoxin C5a is generated in excess during sepsis, leading to cellular dysfunction. Recent studies have shown that excessive C5a impairs adrenomedullary catecholamine production release and induces apoptosis in adrenomedullary cells. Currently, the mechanisms by which C5a impacts adrenal cell function are poorly understood. The PC12 cell model was used to examine the cellular effects following treatment with recombinant rat C5a. The levels of caspase activation and cell death, protein kinase signaling pathway activation, and changes in inflammatory protein expression were examined following treatment with C5a. There was an increase in apoptosis of PC12 cells following treatment with high-dose C5a. Ten inflammatory proteins, primarily involved in apoptosis, cell survival, and cell proliferation, were upregulated following treatment with high-dose C5a. Five inflammatory proteins, involved primarily in chemotaxis and anti-inflammatory functions, were downregulated. The ERK/MAPK, p38/MAPK, JNK/MAPK, and AKT protein kinase signaling pathways were upregulated in a C5aR-dependent manner. These results demonstrate an apoptotic effect and cellular signaling effect of high-dose C5a. Taken together, the overall data suggest that high levels of C5a may play a role in C5aR-dependent apoptosis of adrenal medullary cells in sepsis.
Collapse
Affiliation(s)
- Lucas Mrozewski
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - Paul Michael
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Aseem Kumar
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - T. C. Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
2
|
Genetic analysis of activin/inhibin β subunits in zebrafish development and reproduction. PLoS Genet 2022; 18:e1010523. [DOI: 10.1371/journal.pgen.1010523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/15/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Activin and inhibin are both dimeric proteins sharing the same β subunits that belong to the TGF-β superfamily. They are well known for stimulating and inhibiting pituitary FSH secretion, respectively, in mammals. In addition, activin also acts as a mesoderm-inducing factor in frogs. However, their functions in development and reproduction of other species are poorly defined. In this study, we disrupted all three activin/inhibin β subunits (βAa, inhbaa; βAb, inhbab; and βB, inhbb) in zebrafish using CRISPR/Cas9. The loss of βAa/b but not βB led to a high mortality rate in the post-hatching stage. Surprisingly, the expression of fshb but not lhb in the pituitary increased in the female βA mutant together with aromatase (cyp19a1a) in the ovary. The single mutant of βAa/b showed normal folliculogenesis in young females; however, their double mutant (inhbaa-/-;inhbab-/-) showed delayed follicle activation, granulosa cell hypertrophy, stromal cell accumulation and tissue fibrosis. The ovary of inhbaa-/- deteriorated progressively after 180 dpf with reduced fecundity and the folliculogenesis ceased completely around 540 dpf. In addition, tumor- or cyst-like tissues started to appear in the inhbaa-/- ovary after about one year. In contrast to females, activin βAa/b mutant males showed normal spermatogenesis and fertility. As for activin βB subunit, the inhbb-/- mutant exhibited normal folliculogenesis, spermatogenesis and fertility in both sexes; however, the fecundity of mutant females decreased dramatically at 270 dpf with accumulation of early follicles. In summary, the activin-inhibin system plays an indispensable role in fish reproduction, in particular folliculogenesis and ovarian homeostasis.
Collapse
|
3
|
Wang R, Wang W, Wang L, Yuan L, Cheng F, Guan X, Zheng N, Yang X. FTO protects human granulosa cells from chemotherapy-induced cytotoxicity. Reprod Biol Endocrinol 2022; 20:39. [PMID: 35219326 PMCID: PMC8881882 DOI: 10.1186/s12958-022-00911-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a serious problem for young women who receive chemotherapy, and its pathophysiological basis is the dysfunction of granulosa cells. According to previous reports, menstrual-derived stem cells (MenSCs) can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF. Fat mass- and obesity-associated (FTO) was reported to be associated with oocyte development and maturation. FTO was decreased in POF and may be a biomarker for the occurrence of POF. Knockdown of FTO in granulosa cells promoted cell apoptosis and inhibited proliferation. But the relationship between FTO and ovarian repair was still unclear. This study was aimed at investigating the FTO expression level and the role of FTO in the MenSCs recovering the function of injured granulosa cells. METHOD First, cisplatin was used to establish a granulosa cell injury model. Then, the MenSCs and injured granulosa cell coculture model and POF mouse model were established in this study to explore the role of FTO. Furthermore, gain- and loss-of-function studies, small interfering RNA transfection, and meclofenamic acid (MA), a highly selective inhibitor of FTO, studies were also conducted to clarify the regulatory mechanism of FTO in granulosa cells. RESULTS MenSCs coculture could improve the function of injured granulosa cells by increasing the expression of FTO. MenSCs transplantation restored the expression of FTO in the ovaries of POF mice. Overexpression of FTO restored the injured cell proliferation and decreased apoptosis by regulating the expression of BNIP3. Down-regulation of FTO got the opposite results. CONCLUSIONS In the treatment of MenSCs, FTO has a protective effect, which could improve the viability of granulosa cells after cisplatin treatment by decreasing the expression of BNIP3. Meanwhile, FTO may provide new insight into therapeutic targets for the chemotherapy-induced POF.
Collapse
Affiliation(s)
- Rongli Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Linnan Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Xin Guan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Nini Zheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| |
Collapse
|
4
|
Xu H, Xia Y, Qin J, Xu J, Li C, Wang Y. Effects of low intensity pulsed ultrasound on expression of B-cell lymphoma-2 and BCL2-Associated X in premature ovarian failure mice induced by 4-vinylcyclohexene diepoxide. Reprod Biol Endocrinol 2021; 19:113. [PMID: 34284777 PMCID: PMC8290625 DOI: 10.1186/s12958-021-00799-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a common disease in the field of Gynecology. Low intensity pulsed ultrasound (LIPUS) can promote tissue repair and improve function. This study was performed to determine the effects of LIPUS on granulosa cells (GCs) apoptosis and protein expression of B-cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) in 4-vinylcyclohexene diepoxide (VCD)-induced POF mice and investigate the mechanisms of LIPUS on ovarian function and reserve capacity. METHODS The current POF mice model was administrated with VCD (160 mg/kg) by intraperitoneal injection for 15 consecutive days. The mice were divided into the POF group, LIPUS group and control group. In the LIPUS group, the right ovary of mice was treated by LIPUS (acoustic intensity was 200 mW/cm2, frequency was 0.3 MHz, and duty cycle was 20%) for 20 min, 15 consecutive days from day 16. The mice of the POF group and control group were treated without ultrasonic output. The basic observation and body weight were recorded. Hematoxylin and eosin staining (H&E staining) and enzyme-linked immunosorbent assay (ELISA) were applied to detect ovarian follicle development, ovarian morphology and sex hormone secretion. Ovarian GCs apoptosis was detected by TUNEL assay and immunohistochemistry. RESULTS The results showed that VCD can induce estrus cycle disorder, follicular atresia, sex hormone secretion decreased and GCs apoptosis in mice to establish POF model successfully. LIPUS significantly promoted follicular development, increased sex hormone secretion, inhibited excessive follicular atresia and GCs apoptosis. The mechanism might be achieved by increasing the protein expression of Bcl-2 and decreasing the expression of Bax in ovaries. CONCLUSIONS LIPUS can improve the POF induced by VCD. These findings have the potential to provide novel methodological foundation for the future research, which help treat POF patients in the clinic.
Collapse
Affiliation(s)
- Haopeng Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yi Xia
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Juan Qin
- Department of Gynaecology, Guiyang Maternal and Child Health Hospital, Guizhou, 550003, China
| | - Jie Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Chongyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
5
|
Liu Z, Li F, Xue J, Wang M, Lai S, Bao H, He S. Esculentoside A rescues granulosa cell apoptosis and folliculogenesis in mice with premature ovarian failure. Aging (Albany NY) 2020; 12:16951-16962. [PMID: 32759462 PMCID: PMC7521512 DOI: 10.18632/aging.103609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Follicular atresia is one of the main processes for the loss of granulosa cells and oocytes from the mammalian ovary and any impairment to premature ovarian failure. Large numbers of studies have demonstrated that granulosa cell apoptosis causes follicular atresia, yet the rescue of these cells remains elusive. We aimed to use Esculentoside A (3-O-b-D-glucopyranosyl-1, 4-b-D-xylopyranosyl) phytolaccagenin, a saponin extracted from Phytolacca esculenta roots, as a potential rescue agent for the apoptosis of granulosa cells. Our results revealed the rescue of normal body and ovary weights, normal ovarian histo-architecture of ovaries, and hormones levels with regular estrus cycle. Consistently, the expression of proliferating and anti-apoptotic markers, i.e. KI67 and BCL-2 in granulosa cells, was enhanced. Meanwhile, the expressions of pro-apoptotic markers, which were BAX and CASPASEs (CASPASE-9 and CASPASE-3), were prominently reduced in Esculentoside A-induced premature ovarian failure mice. Additionally, PPARγ, a potential therapeutic target, has also rescued its expression by treating the premature ovarian failure mice with Esculentoside A. Our results advocated that Esculentoside A could restore folliculogenesis in premature ovarian failure mice. Furthermore, it has the potential to be investigated as a therapeutic agent for premature ovarian failure.
Collapse
Affiliation(s)
- Zhenteng Liu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Fenghua Li
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Jingwen Xue
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Meimei Wang
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Shoucui Lai
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Hongchu Bao
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Shunzhi He
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| |
Collapse
|
6
|
Mehta N, Gava AL, Zhang D, Gao B, Krepinsky JC. Follistatin Protects Against Glomerular Mesangial Cell Apoptosis and Oxidative Stress to Ameliorate Chronic Kidney Disease. Antioxid Redox Signal 2019; 31:551-571. [PMID: 31184201 DOI: 10.1089/ars.2018.7684] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Interventions to inhibit oxidative stress and apoptosis, important pathogenic contributors toward the progression of chronic kidney disease (CKD), are not well established. Here, we investigated the role of a transforming growth factor beta (TGFβ) superfamily neutralizing protein, follistatin (FST), in the regulation of apoptosis and oxidative stress in glomerular mesangial cells (MCs) and in the progression of CKD. Results: The endoplasmic reticulum (ER) stress inducer thapsigargin (Tg), known to cause MC apoptosis, led to a post-translational increase in the expression of FST. Recombinant FST protected, whereas FST downregulation augmented, Tg-induced apoptosis without affecting Ca2+ release or ER stress induction. Although activins are the primary ligands neutralized by FST, their inhibition with neutralizing antibodies did not affect Tg-induced apoptosis. Instead, FST protected against Tg-induced apoptosis through neutralization of reactive oxygen species (ROS) independently of its ability to neutralize activins. Importantly, administration of FST to mice with CKD protected against renal cell apoptosis and oxidative stress. This was associated with improved kidney function, reduced albuminuria, and attenuation of fibrosis. Innovation and Conclusion: Independent of its activin neutralizing ability, FST protected against Tg-induced apoptosis through neutralization of ROS and consequent suppression of oxidative stress, seen both in vitro and in vivo. Importantly, FST also ameliorated fibrosis and improved kidney function in CKD. FST is, thus, a novel potential therapeutic agent for delaying the progression of CKD. Antioxid. Redox Signal. 31, 551-571.
Collapse
Affiliation(s)
- Neel Mehta
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Agata L Gava
- 2Physiological Sciences Graduate Program, Health Sciences Centre, Federal University of Espirito Santo, Vitoria, Brazil
| | - Dan Zhang
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Bo Gao
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
7
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
8
|
Gao X, Zhao P, Hu J, Zhu H, Zhang J, Zhou Z, Zhao J, Tang F. MicroRNA-194 protects against chronic hepatitis B-related liver damage by promoting hepatocyte growth via ACVR2B. J Cell Mol Med 2018; 22:4534-4544. [PMID: 30044042 PMCID: PMC6111826 DOI: 10.1111/jcmm.13714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/03/2018] [Indexed: 12/13/2022] Open
Abstract
Persistent infection with the hepatitis B virus leads to liver cirrhosis and hepatocellular carcinoma. MicroRNAs (miRNAs) play an important role in a variety of biological processes; however, the role of miRNAs in chronic hepatitis B (CHB)‐induced liver damage remains poorly understood. Here, we investigated the role of miRNAs in CHB‐related liver damage. Microarray analysis of the expression of miRNAs in 22 CHB patients and 33 healthy individuals identified miR‐194 as one of six differentially expressed miRNAs. miR‐194 was up‐regulated in correlation with increased liver damage in the plasma or liver tissues of CHB patients. In mice subjected to 2/3 partial hepatectomy, miR‐194 was up‐regulated in liver tissues in correlation with hepatocyte growth and in parallel with the down‐regulation of the activin receptor ACVR2B. Overexpression of miR‐194 in human liver HL7702 cells down‐regulated ACVR2B mRNA and protein expression, promoted cell proliferation, acceleratedG1 to S cell cycle transition, and inhibited apoptosis, whereas knockdown of miR‐194 had the opposite effects. Luciferase reporter assays confirmed that ACVR2B is a direct target of miR‐194, and overexpression of ACVR2B significantly repressed cell proliferation and G1 to S phase transition and induced cell apoptosis. ACVR2B overexpression abolished the effect of miR‐194, indicating that miR‐194 promotes hepatocyte proliferation and inhibits apoptosis by down‐regulating ACVR2B. Taken together, these results indicate that miR‐194 plays a crucial role in hepatocyte proliferation and liver regeneration by targeting ACVR2B and may represent a novel therapeutic target for the treatment of CHB‐related liver damage.
Collapse
Affiliation(s)
- Xue Gao
- Department of Pathology, 302 Hospital, Beijing, China
| | - Pan Zhao
- Clinical Trial Center, Beijing 302 Hospital, Beijing, China
| | - Jie Hu
- Liver Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China.,Liver Cancer Institute, Fudan University, Shanghai, China
| | - Hongguang Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongwen Zhou
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingmin Zhao
- Department of Pathology, 302 Hospital, Beijing, China
| | - Feng Tang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Liu H, Xu G, Yuan Z, Dong Y, Wang J, Lu W. Effect of kisspeptin on the proliferation and apoptosis of bovine granulosa cells. Anim Reprod Sci 2017; 185:1-7. [PMID: 28830628 DOI: 10.1016/j.anireprosci.2017.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022]
Abstract
Previous studies have shown that kisspeptin (Kp-10) is expressed in mammalian ovaries; however, the expression and role of Kp-10 in bovine ovarian granulosa cells are still unclear. In this study, we assessed the expression of Kp-10 and its effects on the proliferation and apoptosis of bovine granulosa cells. Immunohistochemical analysis showed that Kp-10 was expressed in the cytoplasm of bovine ovarian granulosa cells. Moreover, MTT assays showed that 100nM Kp-10 significantly inhibited the viability of granulosa cells (P<0.05). Flow cytometry analysis showed that Kp-10 could significantly increase accumulation of cells in the G1 phase, decrease accumulation of cells in the S phase, and promote apoptosis in bovine granulosa cells (P<0.05). Additionally, Kp-10 decreased the mRNA levels of Bcl-2, an anti-apoptotic gene; increased the mRNA levels of caspase-3, a pro-apoptotic gene; and increased the mRNA levels of Fas and Fasl (P< 0.05). Thus, our findings demonstrated for the first time that Kp-10 inhibited proliferation and promoted apoptosis in bovine ovarian granulosa cells. These findings provide insights into our understanding of the role of Kp-10 in mediating the proliferation of bovine granulosa cells.
Collapse
Affiliation(s)
- Hongyu Liu
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Gaoqing Xu
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhiyu Yuan
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yangyunyi Dong
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun Wang
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
10
|
Kuo YC, Liu YC, Rajesh R. Pancreatic differentiation of induced pluripotent stem cells in activin A-grafted gelatin-poly(lactide-co-glycolide) nanoparticle scaffolds with induction of LY294002 and retinoic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:384-393. [PMID: 28532044 DOI: 10.1016/j.msec.2017.03.265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/28/2017] [Indexed: 01/09/2023]
Abstract
The differentiation of induced pluripotent stem cells (iPSCs) in biomaterial scaffolds is an emerging area for biomedical applications. This study proposes, for the first time, the production of pancreatic cells from iPSCs in gelatin-poly(lactide-co-glycolide) nanoparticle (PLGA NP) scaffolds. The porosity and swelling ratio of the scaffolds decreased with increases in gelatin and PLGA NP concentrations. The adhesion efficiency of iPSCs in gelatin-PLGA NP scaffolds was found to be higher at 6.7% (w/w) PLGA NP. A 3-step induction of iPSCs was used to differentiate into pancreatic islet cells using activin A, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), and retinoic acid (RA). The ability of iPSCs to differentiate into pancreatic islet cells in a scaffold was demonstrated by immunofluorescence staining and flow-cytometry analysis. The results indicate that the concentration of activin A, LY294002, and RA plays a decisive role in the differentiation of iPSCs into pancreatic cells. Activin A and LY294002 induce the iPSCs into endoderm and RA induces endoderm into islet cells. A maximum insulin secretion by glucose stimulation was obtained with a higher concentration (2μM) of RA. The use of activin A-grafted gelatin-PLGA NP scaffolds induced by LY294002 and RA can be a promising approach to developing pancreatic islet cells from iPSCs.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China.
| | - Yu-Chuan Liu
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China
| |
Collapse
|
11
|
Activin A stimulates migration of the fallopian tube epithelium, an origin of high-grade serous ovarian cancer, through non-canonical signaling. Cancer Lett 2017; 391:114-124. [PMID: 28115208 DOI: 10.1016/j.canlet.2017.01.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 12/28/2022]
Abstract
Factors that stimulate the migration of fallopian tube epithelial (FTE)-derived high-grade serous ovarian cancer (HGSOC) to the ovary are poorly elucidated. This study characterized the effect of the ovarian hormone, activin A, on normal FTE and HGSOC. Activin A and TGFβ1 induced an epithelial-to-mesenchymal transition in murine oviductal epithelial (MOE) cells, but only activin A increased migration. The migratory effect of activin A was independent of Smad2/3 and required phospho-AKT, phospho-ERK, and Rac1. Exogenous activin A stimulated migration of the HGSOC cell line OVCAR3 through a similar mechanism. Activin A signaling inhibitors, SB431542 and follistatin, reduced migration in OVCAR4 cells, which expressed activin A subunits (encoded by INHBA). Murine superovulation increased phospho-Smad2/3 immunostaining in the FTE. In Oncomine, transcripts for the activin A receptors (ACVR1B and ACVR2A) were higher in serous tumors relative to the normal ovary, while inhibitors of activin A signaling (INHA and TGFB3) were lower. High expression of both INHBA and ACVR2A, but not TGFβ receptors or co-receptors, was associated with shorter disease-free survival in serous cancer patients. These results suggest activin A stimulates migration of FTE-derived tumors to the ovary.
Collapse
|
12
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
13
|
Shi Y, Zhang H, Han Z, Mi X, Zhang W, Lv M. HBx interacted with Smad4 to deprive activin a growth inhibition function in hepatocyte HL7702 on CRM1 manner. Tumour Biol 2016; 37:3405-15. [PMID: 26449823 DOI: 10.1007/s13277-015-4076-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/13/2015] [Indexed: 01/16/2023] Open
Abstract
Hepatitis B virus (HBV) is implicated in the pathogenesis of hepatocellular carcinoma, which has been found to be associated with TGF-beta signaling. Activin A is a TGF-β family cytokine that exhibits cell proliferation inhibition on normal hepatocyte. How HBV-encoded X oncoprotein play in activin's activity on hepatocyte has not been developed. In this study, a nontumor hepatic cell line HL7702 with HBX ectogenic expression has been established. MTT and BrdU assays showed that HBx promoted growth of HL7702 cells in vitro and downregulated activin signaling. Deregulated activin signaling pathway by HBX failed to activate target gene p21/waf1 and p15 transcription. In addition, mammalian two-hybrid and coimmunoprecipitation assays revealed that HBX could directly interact with activin signaling transduction protein Smad4, making activated Smad2/3/4 nucleus translocation suppressed. Furthermore, we detected that leptomycin B, the inhibitor of CRM1 protein, could recover nuclear translocation of endogenous Smads complex in HL7702 with HBX expression, indicating that HBX antagonized Smads nucleus translocation, at least partially, on CRM1-dependent manner. Leptomycin B was found to have antigrowth activity on HBX-expressed HL7702, according to its antitumor function in previous study. Above all, HBX antagonized activin signaling in normal human liver cells by interacting with Smad4 might one of the considerable causes of HBX-induced hepatocyte transformation, which deprived activin's cell growth inhibition function at an early stage of tumorigenesis.
Collapse
Affiliation(s)
- Ying Shi
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Haipeng Zhang
- The First Clinical Medical College of Jilin University, Changchun, People's Republic of China
| | - Zhu Han
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuguang Mi
- Tumor Biological Treatment Center of Jilin Province People's Hospital, Changchun, People's Republic of China
| | - Wenyan Zhang
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China.
| | - Mingyu Lv
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
14
|
Luo M, Li L, Xiao C, Sun Y, Wang GL. Heat stress impairs mice granulosa cell function by diminishing steroids production and inducing apoptosis. Mol Cell Biochem 2015; 412:81-90. [PMID: 26602771 DOI: 10.1007/s11010-015-2610-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
Ovarian injury can be induced by heat stress. Mice granulosa cells (GCs) are critical for normal ovarian function and they synthesize a variety of growth factors and steroids for the follicle. Furthermore, the growth, differentiation, and maturate of theca cells and oocyte are dependent upon the synthesis of GCs. Due to the critical biological functions of GCs, we hypothesized that the apoptosis and dysfunction of GCs could also be induced by heat stress. We analyzed GCs apoptosis and evaluated the expression of apoptosis-related genes (caspase-3, Bax, Bcl-2) after heat treatment. Radio immunity assay was used to measure the secretion of 17β-estradiol (E2) and progesterone (P4). RT-PCR was used to evaluate the expression of steroids-related genes (Star, CYP11A1, CYP19A1). Our data suggested that heat stress inhibited GCs proliferation, induced GCs apoptosis, decreased E2 and P4 secretion, reduced the steroids-related genes mRNA expression. Besides, our results indicated that heat treatment-induced apoptosis of GCs through the mitochondrial pathway, which involved caspase-3 and Bax. The reduction in steroids secretion and mRNA expression of Star, CYP11A1, and CYP19A1 might also play a role in heat-induced GCs apoptosis and ovarian injury.
Collapse
Affiliation(s)
- Man Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Cheng Xiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yu Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Gen-Lin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
15
|
Zhu J, Mishra RK, Schiltz GE, Makanji Y, Scheidt KA, Mazar AP, Woodruff TK. Virtual High-Throughput Screening To Identify Novel Activin Antagonists. J Med Chem 2015; 58:5637-48. [PMID: 26098096 DOI: 10.1021/acs.jmedchem.5b00753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activin belongs to the TGFβ superfamily, which is associated with several disease conditions, including cancer-related cachexia, preterm labor with delivery, and osteoporosis. Targeting activin and its related signaling pathways holds promise as a therapeutic approach to these diseases. A small-molecule ligand-binding groove was identified in the interface between the two activin βA subunits and was used for a virtual high-throughput in silico screening of the ZINC database to identify hits. Thirty-nine compounds without significant toxicity were tested in two well-established activin assays: FSHβ transcription and HepG2 cell apoptosis. This screening workflow resulted in two lead compounds: NUCC-474 and NUCC-555. These potential activin antagonists were then shown to inhibit activin A-mediated cell proliferation in ex vivo ovary cultures. In vivo testing showed that our most potent compound (NUCC-555) caused a dose-dependent decrease in FSH levels in ovariectomized mice. The Blitz competition binding assay confirmed target binding of NUCC-555 to the activin A:ActRII that disrupts the activin A:ActRII complex's binding with ALK4-ECD-Fc in a dose-dependent manner. The NUCC-555 also specifically binds to activin A compared with other TGFβ superfamily member myostatin (GDF8). These data demonstrate a new in silico-based strategy for identifying small-molecule activin antagonists. Our approach is the first to identify a first-in-class small-molecule antagonist of activin binding to ALK4, which opens a completely new approach to inhibiting the activity of TGFβ receptor superfamily members. in addition, the lead compound can serve as a starting point for lead optimization toward the goal of a compound that may be effective in activin-mediated diseases.
Collapse
Affiliation(s)
- Jie Zhu
- †Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 10-250, Chicago, Illinois 60611, United States.,‡Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Rama K Mishra
- §Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Gary E Schiltz
- §Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yogeshwar Makanji
- †Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 10-250, Chicago, Illinois 60611, United States
| | - Karl A Scheidt
- §Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,⊥Department of Chemistry, Northwestern University, Evanston, 60208, Illinois, United States.,∥Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| | - Andrew P Mazar
- ∥Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States.,□Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Teresa K Woodruff
- †Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 10-250, Chicago, Illinois 60611, United States.,‡Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208, United States.,□Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Chong Z, Dong P, Riaz H, Shi L, Yu X, Cheng Y, Yang L. Disruption of follistatin by RNAi increases apoptosis, arrests S-phase of cell cycle and decreases estradiol production in bovine granulosa cells. Anim Reprod Sci 2015; 155:80-8. [PMID: 25728901 DOI: 10.1016/j.anireprosci.2015.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 01/24/2023]
Abstract
Follistatin (FST), a local regulator of gonadal functions is a powerful inhibitor of follicle stimulating hormone (FSH) secretion. In the present study, the expression of FST was partially silenced at both transcriptional and translational levels by RNAi-Ready pSIREN-RetroQ-ZsGreen Vector mediated recombinant pshRNA vectors in bovine granulosa cells (bGCs). The results showed that transfection with FST-1 and FST-2 vectors significantly down-regulated mRNA and protein expressions of follistatin by 51% (P = 0.0093) and 72% (P = 0.0078) respectively. After down-regulation of FST in bGCs, cell cycle was arrested at S-phase (9.2 ± 0.6 vs 12.5 ± 0.2, P = 0.0055), and apoptosis was significantly (21.3 ± 2.7 vs 13.9 ± 2.5, P = 0.0051) increased. These findings were further verified by down-regulation of protein level of B-cell leukemia/lymphoma 2 (Bcl2, P = 0.0423), and up-regulation of caspase-3 (P = 0.0362), p21 (P = 0.0067) and mRNA levels of Bcl2-associated X protein (Bax, P = 0.041). Knockdown of FST in bGCs significantly increased activin A concentration in culture medium, while level of estradiol (E2) was suppressed without affecting progesterone production. In addition, mRNA levels of all activin receptor subtypes [activin receptor types I (ACRI) and II (ACRIIA and ACRIIB)] and inhibin α-subunit were augmented (P < 0.05) without altering both inhibin β-subunits. These findings suggest that follistatin may participate in caspase3-dependent apoptosis through Bcl2/Bax gene family in bovine GCs, whereas, activin and its receptors are associated with its regulation. Activin-induced up-regulation of inhibin-α subunit in bGCs seems to be involved in the regulation of steroidogenesis.
Collapse
Affiliation(s)
- Zhenlu Chong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ping Dong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Hasan Riaz
- Department of Bio sciences, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
| | - Lei Shi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xue Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ying Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
17
|
Effects of physical activity upon the liver. Eur J Appl Physiol 2014; 115:1-46. [DOI: 10.1007/s00421-014-3031-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
|
18
|
Xu G, He J, Guo H, Mei C, Wang J, Li Z, Chen H, Mang J, Yang H, Xu Z. Activin A prevents neuron-like PC12 cell apoptosis after oxygen-glucose deprivation. Neural Regen Res 2014; 8:1016-24. [PMID: 25206395 PMCID: PMC4145885 DOI: 10.3969/j.issn.1673-5374.2013.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/14/2013] [Indexed: 12/22/2022] Open
Abstract
In this study, PC12 cells were induced to differentiate into neuron-like cells using nerve growth factor, and were subjected to oxygen-glucose deprivation. Cells were treated with 0, 10, 20, 30, 50, 100 ng/mL exogenous Activin A. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and Hoechst 33324 staining showed that the survival percentage of PC12 cells significantly decreased and the rate of apoptosis significantly increased after oxygen-glucose deprivation. Exogenous Activin A significantly increased the survival percentage of PC12 cells in a dose-dependent manner. Reverse transcription-PCR results revealed a significant increase in Activin receptor IIA, Smad3 and Smad4 mRNA levels, which are key sites in the Activin A/Smads signaling pathway, in neuron-like cells subjected to oxygen-glucose deprivation, while mRNA expression of the apoptosis-regulation gene caspase-3 decreased. Our experimental findings indicate that exogenous Activin A plays an anti-apoptotic role and protects neurons by means of activating the Activin A/Smads signaling pathway.
Collapse
Affiliation(s)
- Guihua Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China ; Department of Neurology, Changchun Central Hospital, Changchun 130051, Jilin Province, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Hongliang Guo
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chunli Mei
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Zhongshu Li
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Han Chen
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Hong Yang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
19
|
Watts R, Ghozlan M, Hughey CC, Johnsen VL, Shearer J, Hittel DS. Myostatin inhibits proliferation and insulin-stimulated glucose uptake in mouse liver cells. Biochem Cell Biol 2014; 92:226-34. [PMID: 24882465 DOI: 10.1139/bcb-2014-0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although myostatin functions primarily as a negative regulator of skeletal muscle growth and development, accumulating biological and epidemiological evidence indicates an important contributing role in liver disease. In this study, we demonstrate that myostatin suppresses the proliferation of mouse Hepa-1c1c7 murine-derived liver cells (50%; p < 0.001) in part by reducing the expression of the cyclins and cyclin-dependent kinases that elicit G1-S phase transition of the cell cycle (p < 0.001). Furthermore, real-time PCR-based quantification of the long noncoding RNA metastasis associated lung adenocarcinoma transcript 1 (Malat1), recently identified as a myostatin-responsive transcript in skeletal muscle, revealed a significant downregulation (25% and 50%, respectively; p < 0.05) in the livers of myostatin-treated mice and liver cells. The importance of Malat1 in liver cell proliferation was confirmed via arrested liver cell proliferation (p < 0.05) in response to partial Malat1 siRNA-mediated knockdown. Myostatin also significantly blunted insulin-stimulated glucose uptake and Akt phosphorylation in liver cells while increasing the phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS), a protein that is essential for cancer cell proliferation and insulin-stimulated glucose transport. Together, these findings reveal a plausible mechanism by which circulating myostatin contributes to the diminished regenerative capacity of the liver and diseases characterized by liver insulin resistance.
Collapse
Affiliation(s)
- Rani Watts
- a Faculty of Kinesiology, University of Calgary, 2500 University Dr. Calgary, AB T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Chen L, Zhang W, Liang HF, Zhou QF, Ding ZY, Yang HQ, Liu WB, Wu YH, Man Q, Zhang BX, Chen XP. Activin A induces growth arrest through a SMAD- dependent pathway in hepatic progenitor cells. Cell Commun Signal 2014; 12:18. [PMID: 24628936 PMCID: PMC3995548 DOI: 10.1186/1478-811x-12-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/08/2014] [Indexed: 02/07/2023] Open
Abstract
Background Activin A, an important member of transforming growth factor-β superfamily, is reported to inhibit proliferation of mature hepatocyte. However, the effect of activin A on growth of hepatic progenitor cells is not fully understood. To that end, we attempted to evaluate the potential role of activin A in the regulation of hepatic progenitor cell proliferation. Results Using the 2-acetaminofluorene/partial hepatectomy model, activin A expression decreased immediately after partial hepatectomy and then increased from the 9th to 15th day post surgery, which is associated with the attenuation of oval cell proliferation. Activin A inhibited oval cell line LE6 growth via activating the SMAD signaling pathway, which manifested as the phosphorylation of SMAD2/3, the inhibition of Rb phosphorylation, the suppression of cyclinD1 and cyclinE, and the promotion of p21WAF1/Cip1 and p15INK4B expression. Treatment with activin A antagonist follistatin or blocking SMAD signaling could diminish the anti-proliferative effect of activin A. By contrast, inhibition of the MAPK pathway did not contribute to this effect. Antagonizing activin A activity by follistatin administration enhanced oval cell proliferation in the 2-acetylaminofluorene/partial hepatectomy model. Conclusion Activin A, acting through the SMAD pathway, negatively regulates the proliferation of hepatic progenitor cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiao-ping Chen
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Guo H, Shen X, Xu Y, He Y, Hu W. The effect of activin A on signal transduction pathways in PC12 cells subjected to oxygen and glucose deprivation. Int J Mol Med 2013; 33:135-41. [PMID: 24173551 DOI: 10.3892/ijmm.2013.1539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/02/2013] [Indexed: 11/05/2022] Open
Abstract
The processes and mechanisms underlying brain injuries due to ischemia and anoxia have yet to be determined. Additionally, few clinical treatements are currently available. Activins have a protective role in the restoration, differentiation, and survival of injured cells, including Activin A (ActA), which acts as a neuroprotectant. However, its exact mechanism of action remains to be determined. ActA has been shown to protect neurons following ischemic brain injury. In this study, PC12 cells were differentiated into neuron-like cells after stimulation with nerve growth factor to prepare an oxygen/glucose deprivation (OGD) model in neurons. The differentiated PC12 cells, subjected to the OGD model, were exposed to ActA. Results showed that the PC12 survival rate decreased after OGD, leading to an increase in caspase-3 expression in these cells. Pretreatment with ActA was able to partially prevent OGD-induced apoptosis, likely through the downregulation of caspase-3. Futhermore, ActA pretreatment increased the expression of key proteins in the ActA/Smads signal transduction pathway, which may promote neuroprotection after OGD. Therefore, exogenous ActA may function as a neuroprotectant and provide a novel therapeutic treatment for ischemic brain injury.
Collapse
Affiliation(s)
- Hongliang Guo
- Department of Neurology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | | | | | | | | |
Collapse
|
22
|
Guo W, Wong S, Bhasin S. AAV-mediated administration of myostatin pro-peptide mutant in adult Ldlr null mice reduces diet-induced hepatosteatosis and arteriosclerosis. PLoS One 2013; 8:e71017. [PMID: 23936482 PMCID: PMC3731267 DOI: 10.1371/journal.pone.0071017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/01/2013] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. CONCLUSIONS AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes.
Collapse
Affiliation(s)
- Wen Guo
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
23
|
Abstract
BACKGROUND Activins control the growth of several tumour types including thoracic malignancies. In the present study, we investigated their expression and function in malignant pleural mesothelioma (MPM). METHODS The expression of activins and activin receptors was analysed by quantitative PCR in a panel of MPM cell lines. Activin A expression was further analysed by immunohistochemistry in MPM tissue specimens (N=53). Subsequently, MPM cells were treated with activin A, activin receptor inhibitors or activin-targeting siRNA and the impact on cell viability, proliferation, migration and signalling was assessed. RESULTS Concomitant expression of activin subunits and receptors was found in all cell lines, and activin A was overexpressed in most cell lines compared with non-malignant mesothelial cells. Similarly, immunohistochemistry demonstrated intense staining of tumour cells for activin A in a subset of patients. Treatment with activin A induced SMAD2 phosphorylation and stimulated clonogenic growth of mesothelioma cells. In contrast, treatment with kinase inhibitors of activin receptors (SB-431542, A-8301) inhibited MPM cell viability, clonogenicity and migration. Silencing of activin A expression by siRNA oligonucleotides further confirmed these results and led to reduced cyclin D1/3 expression. CONCLUSION Our study suggests that activin A contributes to the malignant phenotype of MPM cells via regulation of cyclin D and may represent a valuable candidate for therapeutic interference.
Collapse
|
24
|
Allen DL, Hittel DS, McPherron AC. Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med Sci Sports Exerc 2012; 43:1828-35. [PMID: 21364474 DOI: 10.1249/mss.0b013e3182178bb4] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Myostatin is a member of the transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) superfamily of secreted factors that functions as a potent inhibitor of skeletal muscle growth. Moreover, considerable evidence has accumulated that myostatin also regulates metabolism and that its inhibition can significantly attenuate the progression of obesity and diabetes. Although at least part of these effects on metabolism can be attributable to myostatin's influence over skeletal muscle growth and therefore on the total volume of metabolically active lean body mass, there is mounting evidence that myostatin affects the growth and metabolic state of other tissues, including the adipose and the liver. In addition, recent work has explored the role of myostatin in substrate mobilization, uptake, and/or utilization of muscle independent of its effects on body composition. Finally, the effects of both endurance and resistance exercise on myostatin expression, as well as the potential role of myostatin in the beneficial metabolic adaptations occurring in response to exercise, have also begun to be delineated in greater detail. The purpose of this review was to summarize the work to date on the expression and function of myostatin in obesity, diabetes, and exercise adaptation.
Collapse
Affiliation(s)
- David L Allen
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | |
Collapse
|
25
|
Kipp JL, Golebiowski A, Rodriguez G, Demczuk M, Kilen SM, Mayo KE. Gene expression profiling reveals Cyp26b1 to be an activin regulated gene involved in ovarian granulosa cell proliferation. Endocrinology 2011; 152:303-12. [PMID: 21084447 PMCID: PMC3033060 DOI: 10.1210/en.2010-0749] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activin, a member of the TGF-β superfamily, is an important modulator of FSH synthesis and secretion and is involved in reproductive dysfunctions and cancers. It also regulates ovarian follicle development. To understand the mechanisms and pathways by which activin regulates follicle function, we performed a microarray study and identified 240 activin regulated genes in mouse granulosa cells. The gene most strongly inhibited by activin was Cyp26b1, which encodes a P450 cytochrome enzyme that degrades retinoic acid (RA). Cyp26b1 has been shown to play an important role in male germ cell meiosis, but its expression is largely lost in the ovary around embryonic d 12.5. This study demonstrated that Cyp26b1 mRNA was expressed in granulosa cells of follicles at all postnatal developmental stages. A striking inverse spatial and temporal correlation between Cyp26b1 and activin-βA mRNA expression was observed. Cyp26b1 expression was also elevated in a transgenic mouse model that has decreased activin expression. The Cyp26 inhibitor R115866 stimulated the proliferation of primary cultured mouse granulosa cells, and a similar effect was observed with RA and activin. A pan-RA receptor inhibitor, AGN194310, abolished the stimulatory effect of either RA or activin on granulosa cell proliferation, indicating an involvement of RA receptor-mediated signaling. Overall, this study provides new insights into the mechanisms of activin action in the ovary. We conclude that Cyp26b1 is expressed in the postnatal mouse ovary, regulated by activin, and involved in the control of granulosa cell proliferation.
Collapse
Affiliation(s)
- Jingjing L Kipp
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Suzuki K, Kobayashi T, Funatsu O, Morita A, Ikekita M. Activin A induces neuronal differentiation and survival via ALK4 in a SMAD-independent manner in a subpopulation of human neuroblastomas. Biochem Biophys Res Commun 2010; 394:639-45. [DOI: 10.1016/j.bbrc.2010.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
27
|
TGF-beta superfamily members, ActivinA and TGF-beta1, induce apoptosis in oligodendrocytes by different pathways. Cell Tissue Res 2008; 334:327-38. [PMID: 19002501 DOI: 10.1007/s00441-008-0714-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 09/25/2008] [Indexed: 12/12/2022]
Abstract
Activins and transforming growth factor (TGF)-betas, members of the TGF-beta superfamily, affect numerous physiological processes, including apoptosis, in a variety of organs and tissues. Apoptotic functions of TGF-betas, in contrast to those of the activins, are well documented in the developing and adult nervous system. TGF-betas operate in a context-dependent manner and cooperate with other cytokines in the regulation of apoptosis. In this study, we show, for the first time, an apoptotic function of ActivinA in the nervous system, i.e. in oligodendroglial progenitor cells. Using the oligodendroglial cell line OLI-neu, we show that ActivinA acts autonomously, without cooperating with TGF-beta. In contrast to the mechanism of TGF-beta-mediated apoptosis involving Bcl-xl down-regulation, Bcl-xl in ActivinA-induced apoptosis is classically sequestered by the BH3-only protein Puma. Puma expression is controlled by the transcription factor p53 as demonstrated by experiments with the p53 inhibitor Pifithrin-alpha. Furthermore, in the apoptotic TGF-beta pathway, caspase-3 is activated, whereas in the apoptotic ActivinA pathway, apoptosis-inducing factor is released to trigger DNA fragmentation. These data suggest that TGF-beta and ActivinA induce apoptosis in oligodendrocytes by different apoptotic pathways.
Collapse
|
28
|
Wang YD, Yang F, Chen WD, Huang X, Lai L, Forman BM, Huang W. Farnesoid X receptor protects liver cells from apoptosis induced by serum deprivation in vitro and fasting in vivo. Mol Endocrinol 2008; 22:1622-32. [PMID: 18436567 DOI: 10.1210/me.2007-0527] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The farnesoid X receptor (FXR) is a key metabolic regulator in the liver by maintaining the homeostasis of liver metabolites. Recent findings suggest that FXR may have a much broader function in liver physiology and pathology. In the present work, we identify a novel role of FXR in protecting liver cell from apoptosis induced by nutritional withdrawal including serum deprivation in vitro or starvation in vivo. Two FXR ligands, chenodeoxycholic acid (CDCA) and GW4064, rescued HepG2 cells from serum deprivation-induced apoptosis in a dose-dependent manner. This effect of FXR on apoptotic suppression was compromised when FXR was knocked down by short interfering RNA. Similarly, the effects of both CDCA and GW4064 were abolished after inhibition of the MAPK pathway by a specific inhibitor of MAPK kinase 1/2. Immunoblotting results indicated that FXR activation by CDCA and GW4064 induced ERK1/2 phosphorylation, which was attenuated by serum deprivation. In vivo, FXR(-/-) mice exhibited an exacerbated liver apoptosis and lower levels of phosphorylated-ERK1/2 compared to wild-type mice after starvation. In conclusion, our results suggest a novel role of FXR in modulating liver cell apoptosis.
Collapse
Affiliation(s)
- Yan-Dong Wang
- Department of Gene Regulation and Drug Discovery, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Deli A, Kreidl E, Santifaller S, Trotter B, Seir K, Berger W, Schulte-Hermann R, Rodgarkia-Dara C, Grusch M. Activins and activin antagonists in hepatocellular carcinoma. World J Gastroenterol 2008; 14:1699-709. [PMID: 18350601 PMCID: PMC2695910 DOI: 10.3748/wjg.14.1699] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In many parts of the world hepatocellular carcinoma (HCC) is among the leading causes of cancer-related mortality but the underlying molecular pathology is still insufficiently understood. There is increasing evidence that activins, which are members of the transforming growth factor β (TGFβ) superfamily of growth and differentiation factors, could play important roles in liver carcinogenesis. Activins are disulphide-linked homo- or heterodimers formed from four different β subunits termed βA, βB, βC, and βE, respectively. Activin A, the dimer of two βA subunits, is critically involved in the regulation of cell growth, apoptosis, and tissue architecture in the liver, while the hepatic function of other activins is largely unexplored so far. Negative regulators of activin signals include antagonists in the extracellular space like the binding proteins follistatin and FLRG, and at the cell membrane antagonistic co-receptors like Cripto or BAMBI. Additionally, in the intracellular space inhibitory Smads can modulate and control activin activity. Accumulating data suggest that deregulation of activin signals contributes to pathologic conditions such as chronic inflammation, fibrosis and development of cancer. The current article reviews the alterations in components of the activin signaling pathway that have been observed in HCC and discusses their potential significance for liver tumorigenesis.
Collapse
|
30
|
Zhang HJ, Tai GX, Zhou J, Ma D, Liu ZH. Regulation of activin receptor-interacting protein 2 expression in mouse hepatoma Hepa1-6 cells and its relationship with collagen type IV. World J Gastroenterol 2007; 13:5501-5. [PMID: 17907296 PMCID: PMC4171287 DOI: 10.3748/wjg.v13.i41.5501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the regulation of activin receptor-interacting protein 2 (ARIP2) expression and its possible relationships with collagen type IV (collagen IV) in mouse hepatoma cell line Hepal-6 cells.
METHODS: The ARIP2 mRNA expression kinetics in Hepal-6 cells was detected by RT-PCR, and its regulation factors were analyzed by treatment with signal transduction activators such as phorbol 12-myristate 13-acetate (PMA), forskolin and A23187. After pcDNA3-ARIP2 was transfected into Hepal-6 cells, the effects of ARIP2 overexpression on activin type II receptor (ActRII) and collagen IV expression were evaluated.
RESULTS: The expression levels of ARIP2 mRNA in Hapel-6 cells were elevated in time-dependent manner 12 h after treatment with activin A and endotoxin LPS, but not changed evidently in the early stage of stimulation (2 or 4 h). The ARIP2 mRNA expression was increased after stimulated with signal transduction activators such as PMA and forskolin in Hepal-6 cells, whereas decreased after treatment with A23187 (25.3% ± 5.7% vs 48.1% ± 3.6%, P < 0.01). ARIP2 overexpression could remarkably suppress the expression of ActRIIA mRNA in dose-dependent manner, but has no effect on ActRIIB in Hepal-6 cells induced by activin A. Furthermore, we have found that overexpression of ARIP2 could inhibit collagen IV mRNA and protein expressions induced by activin A in Hapel-6 cells.
CONCLUSION: These findings suggest that ARIP2 expression can be influenced by various factors. ARIP2 may participate in the negative feedback regulation of signal transduction in the late stage by affecting the expression of ActRIIA and play an important role in regulation of development of liver fibrosis induced by activin.
Collapse
MESH Headings
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Activins/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenylyl Cyclases/metabolism
- Animals
- Calcimycin/pharmacology
- Calcium/metabolism
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Colforsin/pharmacology
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Enzyme Activators/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Ionophores/pharmacology
- Kinetics
- Lipopolysaccharides/pharmacology
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Protein Kinase C/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tetradecanoylphorbol Acetate/pharmacology
- Transfection
Collapse
Affiliation(s)
- Hong-Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | | | | | | | | |
Collapse
|
31
|
Pellagatti A, Jädersten M, Forsblom AM, Cattan H, Christensson B, Emanuelsson EK, Merup M, Nilsson L, Samuelsson J, Sander B, Wainscoat JS, Boultwood J, Hellström-Lindberg E. Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci U S A 2007; 104:11406-11. [PMID: 17576924 PMCID: PMC1892786 DOI: 10.1073/pnas.0610477104] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are a group of hematopoietic stem cell disorders characterized by ineffective hematopoiesis and peripheral blood cytopenias. Lenalidomide has dramatic therapeutic effects in patients with low-risk MDS and a chromosome 5q31 deletion, resulting in complete cytogenetic remission in >60% of patients. The molecular basis of this remarkable drug response is unknown. To gain insight into the molecular targets of lenalidomide we investigated its in vitro effects on growth, maturation, and global gene expression in isolated erythroblast cultures from MDS patients with del(5)(q31). Lenalidomide inhibited growth of differentiating del(5q) erythroblasts but did not affect cytogenetically normal cells. Moreover, lenalidomide significantly influenced the pattern of gene expression in del(5q) intermediate erythroblasts, with the VSIG4, PPIC, TPBG, activin A, and SPARC genes up-regulated by >2-fold in all samples and many genes involved in erythropoiesis, including HBA2, GYPA, and KLF1, down-regulated in most samples. Activin A, one of the most significant differentially expressed genes between lenalidomide-treated cells from MDS patients and healthy controls, has pleiotropic functions, including apoptosis of hematopoietic cells. Up-regulation and increased protein expression of the tumor suppressor gene SPARC is of particular interest because it is antiproliferative, antiadhesive, and antiangiogenic and is located at 5q31-q32, within the commonly deleted region in MDS 5q- syndrome. We conclude that lenalidomide inhibits growth of del(5q) erythroid progenitors and that the up-regulation of SPARC and activin A may underlie the potent effects of lenalidomide in MDS with del(5)(q31). SPARC may play a role in the pathogenesis of the 5q- syndrome.
Collapse
Affiliation(s)
- Andrea Pellagatti
- *Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Martin Jädersten
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Ann-Mari Forsblom
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Helen Cattan
- *Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Birger Christensson
- Department of Pathology, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Emma K. Emanuelsson
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Mats Merup
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Lars Nilsson
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, SE-221 84 Lund, Sweden
- Department of Hematology, Lund University Hospital, SE-221 00 Lund, Sweden; and
| | - Jan Samuelsson
- Department of Medicine, South Hospital, SE-118 83 Stockholm, Sweden
| | - Birgitta Sander
- Department of Pathology, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - James S. Wainscoat
- *Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Jacqueline Boultwood
- *Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Eva Hellström-Lindberg
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
- **To whom correspondence should be addressed: E-mail:
| |
Collapse
|
32
|
Funaba M, Murakami M, Ikeda T, Ogawa K, Tsuchida K, Sugino H. Identification of tocopherol-associated protein as an activin/TGF-beta-inducible gene in mast cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:900-6. [PMID: 16872693 DOI: 10.1016/j.bbamcr.2006.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/06/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Previous studies have demonstrated that treatment with activin A and TGF-beta(1), members of the TGF-beta family, stimulated maturation of mouse bone marrow-derived cultured mast cells (BMMC), which was characterized by morphology and gene expression of mouse mast cell proteases (mmcps). In order to gain a better understanding of activin A- and TGF-beta(1)-induced maturation in mast cells, we investigated the genes that were up-regulated in response to treatment with these two members of the TGF-beta family. The cDNA microarray analyses indicated that in BMMC, five genes were induced by treatment with 4 nM activin A for 2 h. Tocopherol-associated protein (Tap) was one of the induced genes, and the Tap induction in response to activin A treatment was confirmed by real-time RT-PCR analyses. Treatment with TGF-beta(1) at 200 pM but not BMP-2 at 4 nM also increased Tap gene transcript in BMMC. Activin A-induced Tap expression was detected in BMMC but not in RAW264 macrophage-like cells, B16 melanoma cells or P19 embryonic carcinoma cells. Treatment with >1 muM SB431542, an inhibitor of activin and TGF-beta type I receptors ALK4/5, reduced responsiveness of Tap expression to TGF-beta(1), whereas <0.5 microM SB431542 effectively reduced TGF-beta(1)-induced expression of mmcp-1 and mmcp-7. These results suggest that inhibitory effects of SB431542 are different between TGF-beta-induced genes. Reporter assays indicated that Tap expression enhances transcription mediated by the activin/TGF-beta pathway. Thus, the present results suggest that Tap induction in response to activin/TGF-beta occurs predominantly in mast cells and serves as a positive regulator in activin/TGF-beta signaling.
Collapse
Affiliation(s)
- Masayuki Funaba
- Laboratory of Nutrition, Azabu University School of Veterinary Medicine, 1-17-71 Fuchinobe, Sagamihara 229-8501, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
AIM: To investigate whether activin regulates the cell proliferation of human gastric cancer cell line SNU-16 through the mRNA changes in activin receptors, Smads and p21CIP1/WAF1.
METHODS: The human gastric cancer cell lines were cultured, RNAs were purified, and RT-PCRs were carried out with specifically designed primer for each gene. Among them, the two cell lines SNU-5 and SNU-16 were cultured with activin A for 24, 48 and 72 h. The cell proliferation was measured by MTT assay. For SNU-16, changes in ActRIA, ActRIB, ActRIIA, ActRIIB, Smad2, Smad4, Smad7, and p21CIP1/WAF1 mRNAs were detected with RT-PCR after the cells were cultured with activin A for 24, 48 and 72 h.
RESULTS: The proliferation of SNU-16 cells was down regulated by activin A whereas other cells showed no change. Basal level of inhibin/activin subunits, activin receptors, Smads, and p21CIP1/WAF1 except for activin βB mRNAs was observed to have differential expression patterns in the human gastric cancer cell lines, AGS, KATO III, SNU-1, SNU-5, SNU-16, SNU-484, SNU-601, SNU-638, SNU-668, and SNU-719. Interestingly, significantly higher expressions of ActR IIA and IIB mRNAs were observed in SNU-16 cells when compared to other cells. After activin treatment, ActR IA, IB, and IIA mRNA levels were decreased whereas ActR IIB mRNA level increased in SNU-16 cells. Smad4 mRNA increased for up to 48 h whereas Smad7 mRNA increased sharply at 24 h and returned to the initial level at 48 h in SNU-16 cells. In addition, expression of the p21CIP1/WAF1, the mitotic inhibitor, peaked at 72 h after activin treatment in SNU-16 cells.
CONCLUSION: Our results suggest that inhibition of cell growth by activin is regulated by the negative feedback effect of Smad7 on the activin signaling pathway, and is mediated through p21CIP1/WAF1 activation in SNU-16 cells.
Collapse
Affiliation(s)
- Young-Il Kim
- East-West Medical Research Institute, Kyung Hee University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
34
|
Bristol-Gould SK, Hutten CG, Sturgis C, Kilen SM, Mayo KE, Woodruff TK. The development of a mouse model of ovarian endosalpingiosis. Endocrinology 2005; 146:5228-36. [PMID: 16141389 DOI: 10.1210/en.2005-0697] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pelvic pain is a common presenting ailment in women often linked to ovulation, endometriosis, early pregnancy, ovarian cancer, and cysts. Clear differential diagnosis for each condition caused by these varied etiologies is difficult and may slow the delivery of therapy that, in the case of ovarian cancer, could be fatal. Ovarian endosalpingiosis, a pelvic condition typified by the presence of cystic glandular structures lined by benign tubal/salpingeal epithelium, is also associated with pelvic pain in women. The exact cellular antecedents of these epithelial lined cystic structures are not known, nor is there a known link to ovarian cancer. A mouse model of ovarian endosalpingiosis has been developed by directing a dominant-negative version of the TGF-beta transcription factor, Smad2, to the ovary using the Müllerian-inhibiting substance promoter (MIS-Smad2-dn). Female mice develop an ovarian endosalpingeal phenotype as early as 3 months of age. Importantly, cysts continuous with the ovarian surface epithelial have been identified, indicating that these cyst cells may be derived from the highly plastic ovarian surface epithelial cell layer. A second transgenic mouse model that causes loss of activin action (inhibin alpha-subunit transgenic mice) develops similar cystic structures, supporting a TGF-beta/activin/Smad2 dependence in the onset of this disease.
Collapse
Affiliation(s)
- Sarah K Bristol-Gould
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
35
|
Debiève F, Hinck L, Biard JM, Bernard P, Hubinont C. Activin receptor expression and induction of apoptosis in rat blastocysts in vitro. Hum Reprod 2005; 21:618-23. [PMID: 16311291 DOI: 10.1093/humrep/dei404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Apoptosis, a process of normal embryonic development, is enhanced in blastocyst from diabetic rats. Nevertheless, glucose seems not to be the only factor involved. Activin A, a TGF-beta family member, is also increased in maternal serum from diabetic pregnancy. METHODS Flushing medium, blastocysts and uterine cells were obtained from 5 day old pregnant rats. The presence of activin A in flushing medium was investigated by western blotting. RT-PCR was used to test for the presence of activin betaA subunit mRNA in cultured uterine cells. Blastocysts were stained by immunohistochemistry for activin receptor types IIA and IIB, and chromatin degradation (apoptosis) was investigated by terminal transferase-mediated dUTP nick end labelling in blastocysts exposed in vitro to activin. RESULTS In this study, we demonstrate the presence of activin A protein in fluid from rat uterine horns at day 5 of pregnancy, as well as the presence of activin A receptors type IIB in the trophectoderm and inner cell mass and activin A receptor type IIA in trophectoderm cells only. Activin A increases the chromatin degradation level in vitro. CONCLUSIONS Activin A protein was found in fluid from uterine horns, and mRNA expression of betaA activin subunit in cultured uterine cells suggests probable secretion from decidual cells. Moreover, activin A increases specifically the apoptosis level in rat blastocyst in vitro.
Collapse
Affiliation(s)
- F Debiève
- OBST Research Unit, Université catholique de Louvain, 1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
36
|
Ho J, de Guise C, Kim C, Lemay S, Wang XF, Lebrun JJ. Activin induces hepatocyte cell growth arrest through induction of the cyclin-dependent kinase inhibitor p15INK4B and Sp1. Cell Signal 2005; 16:693-701. [PMID: 15093610 DOI: 10.1016/j.cellsig.2003.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 11/12/2003] [Accepted: 11/14/2003] [Indexed: 01/07/2023]
Abstract
In this report, we examined the role of activin in the regulation of cell growth inhibition of human hepatocarcinoma cells. Using RNase protection assay for various cell cycle regulators and Western blotting experiments, we show that activin treatment of HepG2 cells leads to increased gene expression of the cyclin-dependent kinase inhibitor (CDKI) p15INK4B. Furthermore, transient co-transfection studies of the p15INK4B promoter/luciferase construct performed in HepG2 cells demonstrates that activin induction of the p15INK4B promoter is mediated through the Smad pathway. p15INK4B gene promoter mapping analysis revealed a 66-bp region within the proximal domain of the promoter, which contains a consensus site for the transcription factor Sp1, as critical for mediating the activin effect on p15INK4B gene expression. Finally, gel mobility shift experiments, using the Sp1 consensus site, revealed increased DNA binding of Sp1 in response to activin treatment of HepG2 cells, further confirming the involvement of Sp1 in activin-mediated p15INK4B gene promoter activation. Together, our data indicates an important role for the cyclin-dependent kinase inhibitor p15INK4B in activin-induced cell cycle arrest in liver cells.
Collapse
Affiliation(s)
- Joanne Ho
- Hormones and Cancer Research Unit, Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
37
|
Carey JL, Sasur LM, Kawakubo H, Gupta V, Christian B, Bailey PM, Maheswaran S. Mutually antagonistic effects of androgen and activin in the regulation of prostate cancer cell growth. Mol Endocrinol 2003; 18:696-707. [PMID: 14684851 DOI: 10.1210/me.2003-0360] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activin, a member of the TGFbeta superfamily, is expressed in the prostate and inhibits growth. We demonstrate that the effects of activin and androgen on regulation of prostate cancer cell growth are mutually antagonistic. In the absence of androgen, activin induced apoptosis in the androgen-dependent human prostate cancer cell line LNCaP, an effect suppressed by androgen administration. Although activin by itself did not alter the cell cycle distribution, it potently suppressed androgen- induced progression of cells into S-phase of the cell cycle and thus inhibited androgen-stimulated growth of LNCaP cells. Expression changes in cell cycle regulatory proteins such as Rb, E2F-1, and p27 demonstrated a strong correlation with the mutually antagonistic growth regulatory effects of activin and androgen. The inhibitory effect of activin on growth was independent of serine, serine, valine, serine motif phosphorylation of Smad3. Despite their antagonistic effect on growth, activin and androgen costimulated the expression of prostate-specific antigen through a Smad3-mediated mechanism. These observations indicate the existence of a complex cross talk between activin and androgen signaling in regulation of gene expression and growth of the prostate.
Collapse
Affiliation(s)
- Jennifer L Carey
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Brown CW, Li L, Houston-Hawkins DE, Matzuk MM. Activins are critical modulators of growth and survival. Mol Endocrinol 2003; 17:2404-17. [PMID: 14551263 DOI: 10.1210/me.2003-0051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activins betaA and betaB (encoded by Inhba and Inhbb genes, respectively) are related members of the TGF-beta superfamily. Previously, we generated mice with an Inhba knock-in allele (InhbaBK) that directs the expression of activin betaB protein in the spatiotemporal pattern of activin betaA. These mice were small and had shortened life spans, both influenced by the dose of the hypomorphic InhbaBK allele. To understand the mechanism(s) underlying these abnormalities, we now examine growth plates, liver, and kidney and analyze IGF-I, GH, and major urinary proteins. Our studies show that activins modulate the biological effects of IGF-I without substantial effects on GH, and that activin signaling deficiency also has modest effects on hepatic and renal function. To assess the relative influences of activin betaA and activin betaB, we produced mice that express activin betaB from the InhbaBK allele, and not from its endogenous Inhbb locus. InhbaBK/BK, Inhbb-/- mice have failure of eyelid fusion at birth and demonstrate more severe effects on somatic growth and survival than either of the corresponding single homozygous mutants, showing that somatic growth and life span are supported by both activins betaA and betaB, although activin betaA plays a more substantial role.
Collapse
Affiliation(s)
- Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
39
|
Hayashi K, Carpenter KD, Gray CA, Spencer TE. The activin-follistatin system in the neonatal ovine uterus. Biol Reprod 2003; 69:843-50. [PMID: 12748120 DOI: 10.1095/biolreprod.103.016287] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Uterine gland development or adenogenesis in the neonatal ovine uterus involves budding and tubulogenesis followed by coiling and branching morphogenesis of the glandular epithelium (GE) from the luminal epithelium (LE) between birth (Postnatal Day [PND] 0) and PND 56. Activins, which are members of the transforming growth factor beta superfamily, and follistatin, an inhibitor of activins, regulate epithelial branching morphogenesis in other organs. The objective of the present study was to determine effects of postnatal age on expression of follistatin, inhibin alpha subunit, betaA subunit, betaB subunit, activin receptor (ActR) type IA, ActRIB, and ActRII in the developing ovine uterus. Ewes were ovariohysterectomized on PND 0, 7, 14, 21, 28, 35, 42, 49, or 56. The uterus was analyzed by in situ hybridization and immunohistochemistry. Neither inhibin alpha subunit mRNA or protein was detected in the neonatal uterus. Expression of betaA and betaB subunits was detected predominantly in the endometrial LE and GE and myometrium between PND 0 and PND 56. In all uterine cell types, ActRIA, ActRIB, and ActRII were expressed, with the highest levels observed in the endometrial LE and GE and myometrium. Between PND 0 and PND 14, follistatin was detected in all uterine cell types. However, between PND 21 and PND 56, follistatin was only detected in the stroma and myometrium and not in the developing GE. Collectively, the present results indicate that components of the activin-follistatin system are expressed in the developing neonatal ovine uterus and are potential regulators of endometrial gland morphogenesis.
Collapse
Affiliation(s)
- Kanako Hayashi
- Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | |
Collapse
|
40
|
Chen L, Goryachev A, Sun J, Kim P, Zhang H, Phillips MJ, Macgregor P, Lebel S, Edwards AM, Cao Q, Furuya KN. Altered expression of genes involved in hepatic morphogenesis and fibrogenesis are identified by cDNA microarray analysis in biliary atresia. Hepatology 2003; 38:567-76. [PMID: 12939583 DOI: 10.1053/jhep.2003.50363] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Biliary atresia (BA) is characterized by a progressive, sclerosing, inflammatory process that leads to cirrhosis in infancy. Although it is the most common indication for liver transplantation in early childhood, little is known about its etiopathogenesis. To elucidate factors involved in this process, we performed comprehensive genome-wide gene expression analysis using complementary DNA (cDNA) microarrays. We compared messenger RNA expression levels of approximately 18,000 human genes from normal, diseased control, and end-stage BA livers. Reverse-transcription polymerase chain reaction (RT-PCR) and Northern blot analysis were performed to confirm changes in gene expression. Cluster and principal component analysis showed that all BA samples clustered together, forming a distinct group well separated from normal and diseased controls. We further identified 35 genes and ESTs whose expression differentiated BA from normal and diseased controls. Most of these genes are known to be associated with cell signaling, transcription regulation, hepatic development, morphogenesis, and fibrogenesis. In conclusion, this study serves to delineate processes that are involved in the pathogenesis of BA.
Collapse
Affiliation(s)
- Limin Chen
- Banting and Best Department of Medical Research, Faculty of Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu QH, Li DG, Huang X, You HN, Pan Q, Xu LM, Xu QF, Lu HM. Effect of Activin on extracelluar matrix secretion in isolated rat hepatic stellate cell. Shijie Huaren Xiaohua Zazhi 2003; 11:745-748. [DOI: 10.11569/wcjd.v11.i6.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of activin A on the extracelluar matrix secretion of rat hepatic stellate cell.
METHODS Hepatic stellate cells were isolated and purified from normal male Sprague-Dawley rat liver by a combination of pronase-collagenase perfusion and density gradient centrifugation. Passaged hepatic stellate cells were divided randomly into eight groups: control group(A group), ACTA 1 μg/L group (B group), ACTA 10 μg/L group(C group), ACTA 100 μg/L group (D group), TGF β1 10 μg/L group(E group), TGF β1 10 μg/L plus ACTA 1 μg/L group(F group), TGF β1 10 μg/L plus ACTA 10 μg/L group(G group), TGF β1 10 μg/L plus ACTA 100 μg/L group(H group). 24 h after incubation secretion of procollagen Ⅲ, collagen Ⅳ and mRNA of collagen Ⅲ in hepatic stellate cells were detected by radioimmunoassays and semi-quantitative RT-PCR method respectively.
RESULTS Extracellular matrix secretion in passaged hepatic stellate cells was enhanced by activin A according to its concentration, the capacity of extracellular matrix secretion by 100 μg/L activin A was equal to that of 10 μg/L TGF β1, extracellular matrix secretion and type Ⅲ collagen mRNA expression in passaged hepatic stellate cells was enhanced by activin A and TGFβ1 in a synergistic manner.
CONCLUSION Activin A may contribute to hepatic fibrogenesis.
Collapse
Affiliation(s)
- Qing-Hua Liu
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Ding-Guo Li
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Xin Huang
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Han-Ning You
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Qin Pan
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Qin-Fang Xu
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Han-Ming Lu
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| |
Collapse
|
42
|
Tessier C, Prigent-Tessier A, Bao L, Telleria CM, Ferguson-Gottschall S, Gibori GB, Gu Y, Bowen-Shauver JM, Horseman ND, Gibori G. Decidual activin: its role in the apoptotic process and its regulation by prolactin. Biol Reprod 2003; 68:1687-94. [PMID: 12606360 DOI: 10.1095/biolreprod.102.011684] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Successful pregnancy requires profound differentiation and reorganization of the uterine tissues including, as pregnancy progresses, extensive apoptosis of decidual tissue to accommodate the developing conceptus. We have previously shown a positive correlation between expression of activin A and apoptosis in the decidua and have also shown that expression of activin A occurs at the time when prolactin (PRL) receptors disappear from decidual cells. The goals of this study were to examine whether activin A plays a role in decidual apoptosis and whether expression of activin A in the decidua is regulated by PRL and placental lactogens. Studies were carried out using primary rat decidual cells, a decidual cell line (GG-AD), and PRL null mice. Treatment of decidual cells with activin A significantly increased DNA degradation, caspase 3 activity, and caspase 3 mRNA expression. However, this effect was observed only in the absence of endogenous activin production by these cells. Addition of follistatin to decidual cells that were producing activin A decreased both caspase 3 activity and mRNA expression. Similarly, addition of activin-blocking antibodies to cultures of GG-AD cells, which also produce activin A, caused a reduction in both DNA degradation and caspase 3 activity. PRL and placental lactogens caused an inhibition of activin A mRNA expression in primary decidual cells. Even more convincingly, decidua of PRL null mice expressed abundant activin A at a time when no expression of this hormone is detected in wild-type mice and treatment of PRL null mice with PRL caused a profound inhibition of activin A mRNA expression. In summary, our investigations into the role and regulation of decidual activin have revealed that activin A can induce cell death in the decidua and that its expression is under tight regulation by PRL and placental lactogens.
Collapse
Affiliation(s)
- Christian Tessier
- Department of Physiology and Biophysics, University of Illinois, Chicago 60612-7432, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Danila DC, Zhang X, Zhou Y, Haidar JNS, Klibanski A. Overexpression of wild-type activin receptor alk4-1 restores activin antiproliferative effects in human pituitary tumor cells. J Clin Endocrinol Metab 2002; 87:4741-6. [PMID: 12364468 DOI: 10.1210/jc.2002-020527] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Activin is a member of the TGF beta family of cytokines involved in the control of cell proliferation. We have previously shown that the majority of clinically nonfunctioning pituitary tumors do not respond to activin-induced growth suppression. Human pituitary tumors specifically express alternatively spliced activin type I receptor Alk4 mRNAs, producing C-terminus truncated isoforms designated Alk4-2, 4-3, and 4-4. However, it is not known whether these truncated activin receptors suppress activin effects on cell proliferation in human pituitary cells. Therefore, we investigated activin signaling in a human pituitary tumor cell line, HP75, derived from a clinically nonfunctioning pituitary tumor. HP75 cells express activin A mRNA and secrete activin A, as measured by ELISA and a functional bioassay. TGF beta administration decreases the proliferation of HP75 cells, suggesting that the signaling pathway shared by TGF beta and activin is functional in this cell line. However, activin neither inhibits cell proliferation nor stimulates reporter gene expression in HP75 cells, indicating that activin signaling is specifically blocked at the receptor level. HP75 cells express all truncated activin type I receptor Alk4 isoforms, as determined by RT-PCR. Because truncated Alk4 receptor isoforms inhibit activin signaling by competing with the wild-type receptor for binding to activin type II receptors, we hypothesized that overexpression of wild-type activin type I receptor will restore activin signaling. In HP75 cells, cotransfection of the wild-type activin type I receptor Alk4-1 expression vector increases activin-responsive reporter activity. Furthermore, transfection with wild-type activin receptor type I results in activin-mediated suppression of cell proliferation. These data indicate that truncated Alk4 isoforms interfere with activin signaling pathways and thereby may contribute to uncontrolled cell growth. Overexpression of the wild-type Alk4-1 receptor restores responsiveness to activin in human pituitary tumor-derived cells.
Collapse
Affiliation(s)
- Daniel C Danila
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
44
|
Chen YG, Lui HM, Lin SL, Lee JM, Ying SY. Regulation of cell proliferation, apoptosis, and carcinogenesis by activin. Exp Biol Med (Maywood) 2002; 227:75-87. [PMID: 11815670 DOI: 10.1177/153537020222700201] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this review is to provide insight into the molecular mechanisms by which activin A modulates cell proliferation, apoptosis, and carcinogenesis in vitro and in vivo. Activin A, a member of the TGFbeta superfamily, has various effects on diverse biological systems, including cell growth inhibition in many cell types. However, the mechanism(s) by which activin exerts its inhibitory effects are not yet understood. This review highlights activin's effects on activin receptors and signaling pathway, modulation of activin signaling, and regulation of cell proliferation and apoptosis by activin. Based on the experiences of all the authors, we emphasized cell cycle inhibitors such as p16 and p21 and regulators of apoptosis such as p53 and members of the bcl-2 family. Aside from activin's inhibition of cell proliferation and enhancement of apoptosis, other newly developed methods for molecular studies of apoptosis by activin were briefly presented that support the role of activin as an inhibitor of carcinogenesis and cancer progression. These methods include subtractive hybridization based on covalent bonding, a simple and accurate means to determine molecular profile of as few as 20 cells based on an RNA-PCR approach, and a messenger RNA-antisense DNA interference phenomenon (D-RNAi), resulting in a long-term gene knockout effects.
Collapse
Affiliation(s)
- Ye-Guang Chen
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
45
|
Bradham CA, Hatano E, Brenner DA. Dominant-negative TAK1 induces c-Myc and G(0) exit in liver. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1279-89. [PMID: 11668037 DOI: 10.1152/ajpgi.2001.281.5.g1279] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transforming growth factor-beta (TGF-beta)-activated kinase 1 (TAK1), a serine/threonine kinase, is reported to function in the signaling pathways of TGF-beta, interleukin 1, and ceramide. However, the physiological role of TAK1 in vivo is largely unknown. To assess the function of TAK1 in vivo, dominant-negative TAK1 (dnTAK1) was expressed in the rat liver by adenoviral gene transfer. dnTAK1 expression abrogated c-Jun NH(2)-terminal kinase and c-Jun but not nuclear factor (NF)-kappaB or SMAD activation after partial hepatectomy (PH). Expression of dnTAK1 or TAM-67, a dominant-negative c-Jun, induced G(0) exit in quiescent liver and accelerated cell cycle progression after PH. Finally, dnTAK1 and TAM-67 induced c-myc expression in the liver before and after PH, suggesting that G(0) exit induced by dnTAK1 and TAM-67 is mediated by c-myc induction.
Collapse
Affiliation(s)
- C A Bradham
- Department of Medicine, University of North Carolina at Chapel Hill, 27707, USA
| | | | | |
Collapse
|
46
|
Su GH, Bansal R, Murphy KM, Montgomery E, Yeo CJ, Hruban RH, Kern SE. ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma. Proc Natl Acad Sci U S A 2001; 98:3254-7. [PMID: 11248065 PMCID: PMC30640 DOI: 10.1073/pnas.051484398] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DPC4 is known to mediate signals initiated by type beta transforming growth factor (TGFbeta) as well as by other TGFbeta superfamily ligands such as activin and BMP (bone morphogenic proteins), but mutational surveys of such non-TGFbeta receptors have been negative to date. Here we describe the gene structure and novel somatic mutations of the activin type I receptor, ACVR1B, in pancreatic cancer. ACVR1B has not been described previously as a mutated tumor-suppressor gene.
Collapse
Affiliation(s)
- G H Su
- Department of Oncology, Pathology, and Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Lau AL, Kumar TR, Nishimori K, Bonadio J, Matzuk MM. Activin betaC and betaE genes are not essential for mouse liver growth, differentiation, and regeneration. Mol Cell Biol 2000; 20:6127-37. [PMID: 10913194 PMCID: PMC86088 DOI: 10.1128/mcb.20.16.6127-6137.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2000] [Accepted: 05/16/2000] [Indexed: 11/20/2022] Open
Abstract
The liver is an essential organ that produces several serum proteins, stores vital nutrients, and detoxifies many carcinogenic and xenobiotic compounds. Various growth factors positively regulate liver growth, but only a few negative regulators are known. Among the latter are the transforming growth factor beta (TGF-beta) superfamily members TGF-beta1 and activin A. To study the function of novel activin family members, we have cloned and generated mice deficient in the activin betaC and betaE genes. Expression analyses demonstrated that these novel genes are liver specific in adult mice. Here, we show by RNase protection that activin betaC transcripts are present in the liver beginning at embryonic day 11.5 (E11.5) whereas activin betaE expression is detected starting from E17.5. Gene targeting in embryonic stem cells was used to generate mice with null mutations in either the individual activin betaC and betaE genes or both genes. In contrast to the structurally related activin betaA and betaB subunits, which are necessary for embryonic development and pituitary follicle-stimulating hormone homeostasis, mice deficient in activin betaC and betaE were viable, survived to adulthood, and demonstrated no reproductive abnormalities. Although activin betaC and betaE mRNAs are abundantly expressed in the liver of wild-type mice, the single and double mutants did not show any defects in liver development and function. Furthermore, in the homozygous mutant mice, liver regeneration after >70% partial hepatectomy was comparable to that in wild-type mice. Our results suggest that activin betaC and betaE are not essential for either embryonic development or liver function.
Collapse
Affiliation(s)
- A L Lau
- Departments of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
48
|
|