1
|
Salati NA, Sharma M, Rao NN, Shetty SS, Radhakrishnan RA. Role of osteopontin in oral epithelial dysplasia, oral submucous fibrosis and oral squamous cell carcinoma. J Oral Maxillofac Pathol 2023; 27:706-714. [PMID: 38304518 PMCID: PMC10829450 DOI: 10.4103/jomfp.jomfp_492_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 02/03/2024] Open
Abstract
Background Inflammatory cells and cytokines in the chronically injured mucosa promote fibrosis in the oral submucous fibrosis (OSF) fibrotic milieu. Osteopontin (OPN) is a wound-healing mediator that upregulates the inflammatory response and is involved in the malignancy and fibrosis of multiple organ systems. Objectives We investigated the expression of OPN in oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs) to determine its role in the malignant transformation and fibrosis of oral tissues. The expression of OPN in OPMDs and OSCCs was compared and correlated, and the role of OPN as a fibrotic mediator in OSF was explained. Study Design A total of 30 cases of normal mucosa and OPMDs (mild dysplasia, severe dysplasia, OSF and OSCCs) were studied by purposive sampling. In these groups, OPN immunoreactivity was examined and correlated with clinical findings. Results In mild dysplasia, OPN expression was restricted to the basal cell layer with moderate staining intensity. In severe dysplasia, it was extremely intense and extended throughout the epithelium. In the OSF, OPN expression was moderate in the perinuclear areas of the basal cell layer. The expression of OPN was very strong in OSCC. A flow diagram explaining the profibrotic role of OPN in OSF has been provided. Conclusion A positive role of OPN in both pathogenesis and malignant transformation of OPMDs and OSCC has been demonstrated.
Collapse
Affiliation(s)
- Nasir A. Salati
- Department of Oral and Maxillofacial Pathology, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital and Research Institute, Gurugram, Haryana, India
| | - Nirmala N. Rao
- Former Dean, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Smitha S. Shetty
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu A. Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Junka R, Zhou X, Wang W, Yu X. Albumin-Coated Polycaprolactone (PCL)-Decellularized Extracellular Matrix (dECM) Scaffold for Bone Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:5634-5644. [PMID: 36374246 DOI: 10.1021/acsabm.2c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the emphasis on collagen and hydroxyapatite, the main structural components of bone tissue, synthetic grafts fall short of matching the clinical efficacy of autologous bone grafts. Excluded non-collagenous protein (NCPs) and carbohydrates also participate in critical cell signaling cascades and guide mineral deposition during intermediate stages of bone healing. By mimicking the native fracture repair process, polymeric scaffolds that incorporate calcium-binding moieties present in fibrocartilage can potentially enhance their bioactivity, mineralization, and bone growth. Likewise, coating polymeric fibers with serum albumin is an additional strategy that can impart collagen-like biofunctionality and further increase mineral deposition on the fibrous surface. Here, a combination of electrospun polycaprolactone (PCL) fibers with chondrocyte-derived decellularized extracellular matrix (dECM) and albumin coating were investigated as a fibrocartilage-mimetic scaffold that can serve as a woven bone precursor for bone regeneration. PCL fibrous constructs coated with dECM and albumin are shown to synergistically increase calcium concentration and calcium phosphate (CaP) deposition in a simulated body fluid biomineralization assay. Albumin/dECM coating increased osteoblast proliferation and mineral deposition in culture. In contrast, CaP coating transformed osteoblast bone lining morphology into cuboidal phenotype and arrested their proliferation. Cell sheets of osteoblasts cultured on dECM/albumin/CaP-coated constructs exhibited an increase in calcium deposition and secretion of collagen, osteopontin, osteocalcin, and bone morphogenetic protein. These results highlight the potential of biomolecular coatings to enhance bone-mimetic properties of synthetic nanofibrous scaffolds, stimulate critical protein and mineral deposition, and augment the bone's capacity to heal. Thus, mimicking the intermediate stages of bone regeneration by incorporating calcium-binding moieties may prove to be a useful strategy for improving the clinical outcomes of synthetic bone grafts.
Collapse
Affiliation(s)
- Radoslaw Junka
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Xiaqing Zhou
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Weiwei Wang
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Xiaojun Yu
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| |
Collapse
|
3
|
Kuroshima S, Al‐Omari FA, Sasaki M, Sawase T. Medication‐related osteonecrosis of the jaw: A literature review and update. Genesis 2022; 60:e23500. [DOI: 10.1002/dvg.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Farah A. Al‐Omari
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| |
Collapse
|
4
|
Omidvar MH, Soltani-Zangbar MS, Zamani M, Motavalli R, Jafarpoor M, Dolati S, Ahmadi M, Mehdizadeh A, Khabbazi A, Hajialilo M, Yousefi M. The effect of osteoporotic and non-osteoporotic individuals' T cell-derived exosomes on osteoblast cells' bone remodeling related genes expression and alkaline phosphatase activity. BMC Res Notes 2022; 15:272. [PMID: 35941659 PMCID: PMC9358836 DOI: 10.1186/s13104-022-06139-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Osteoporosis is a common skeletal disorder attributed to age and is defined as a systematic degradation of bone mass and the microarchitecture leading to bone fractures. Exosomes have been reported in almost all biological fluids and during the failure of bone remodeling. 20 ml of blood samples were obtained from osteoporotic and non-osteoporotic postmenopausal women. After the isolation of peripheral blood mononuclear cells (PBMCs), T cells were separated via the magnetic-activated cell sorting (MACS) technique. Exosomes were driven from T cells of non-osteoporotic and osteoporotic volunteers. Subsequently, normal osteoblasts were treated with obtained T cell exosomes to assess osteoblastic function and gene expression. Results Runx2, type I collagen, osteopontin, and osteocalcin expression decreased in osteoblasts treated by osteoporotic T cell exosomes. In contrast, an increased expression of the mentioned genes was observed following non-osteoporotic T cell exosome treatment. Additionally, osteoblast alkaline phosphatase (ALP) activity treated with non-osteoporotic T cell exosomes increased. However, this activity decreased in another group. Our data demonstrated that T cell exosomes obtained from osteoporotic and non-osteoporotic individuals could alter the osteoblastic function and gene expression by affecting the genes essential for bone remodeling. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06139-4.
Collapse
Affiliation(s)
- Mohammad Hasan Omidvar
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jafarpoor
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrzad Hajialilo
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Bispo DC, Jesus CSH, Correia M, Ferreira F, Bonifazio G, Goodfellow BJ, Oliveira MB, Mano JF, Gil AM. NMR Metabolomics Assessment of Osteogenic Differentiation of Adipose-Tissue-Derived Mesenchymal Stem Cells. J Proteome Res 2022; 21:654-670. [PMID: 35061379 PMCID: PMC9776527 DOI: 10.1021/acs.jproteome.1c00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This Article presents, for the first time to our knowledge, an untargeted nuclear magnetic resonance (NMR) metabolomic characterization of the polar intracellular metabolic adaptations of human adipose-derived mesenchymal stem cells during osteogenic differentiation. The use of mesenchymal stem cells (MSCs) for bone regeneration is a promising alternative to conventional bone grafts, and untargeted metabolomics may unveil novel metabolic information on the osteogenic differentiation of MSCs, allowing their behavior to be understood and monitored/guided toward effective therapies. Our results unveiled statistically relevant changes in the levels of just over 30 identified metabolites, illustrating a highly dynamic process with significant variations throughout the whole 21-day period of osteogenic differentiation, mainly involving amino acid metabolism and protein synthesis; energy metabolism and the roles of glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation; cell membrane metabolism; nucleotide metabolism (including the specific involvement of O-glycosylation intermediates and NAD+); and metabolic players in protective antioxidative mechanisms (such as glutathione and specific amino acids). Different metabolic stages are proposed and are supported by putative biochemical explanations for the metabolite changes observed. This work lays the groundwork for the use of untargeted NMR metabolomics to find potential metabolic markers of osteogenic differentiation efficacy.
Collapse
Affiliation(s)
- Daniela
S. C. Bispo
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Catarina S. H. Jesus
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Marlene Correia
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa Ferreira
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Giulia Bonifazio
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal,Department
of Biotechnology Lazzaro Spallanzani, University
of Pavia, Corso Str.
Nuova, 65, 27100 Pavia PV, Italy
| | - Brian J. Goodfellow
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Mariana B. Oliveira
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - João F. Mano
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M. Gil
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal,
| |
Collapse
|
6
|
Bai RJ, Li YS, Zhang FJ. Osteopontin, a bridge links osteoarthritis and osteoporosis. Front Endocrinol (Lausanne) 2022; 13:1012508. [PMID: 36387862 PMCID: PMC9649917 DOI: 10.3389/fendo.2022.1012508] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease characterized by degradation of articular cartilage, inflammation, and changes in periarticular and subchondral bone of joints. Osteoporosis (OP) is another systemic skeletal disease characterized by low bone mass and bone mineral density (BMD) accompanied by microarchitectural deterioration in bone tissue and increased bone fragility and fracture risk. Both OA and OP are mainly affected on the elderly people. Recent studies have shown that osteopontin (OPN) plays a vital role in bone metabolism and homeostasis. OPN involves these biological activities through participating in the proliferation, migration, differentiation, and adhesion of several bone-related cells, including chondrocytes, synoviocytes, osteoclasts, osteoblasts, and marrow mesenchymal stem cells (MSCs). OPN has been demonstrated to be closely related to the occurrence and development of many bone-related diseases, such as OA and OP. This review summarizes the role of OPN in regulating inflammation activity and bone metabolism in OA and OP. Furthermore, some drugs that targeted OPN to treat OA and OP are also summarized in the review. However, the complex mechanism of OPN in regulating OA and OP is not fully elucidated, which drives us to explore the depth effect of OPN on these two bone diseases.
Collapse
Affiliation(s)
- Rui-Jun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| |
Collapse
|
7
|
Carvalho MS, Cabral JMS, da Silva CL, Vashishth D. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers (Basel) 2021; 13:polym13071095. [PMID: 33808184 PMCID: PMC8036283 DOI: 10.3390/polym13071095] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Engineering biomaterials that mimic the extracellular matrix (ECM) of bone is of significant importance since most of the outstanding properties of the bone are due to matrix constitution. Bone ECM is composed of a mineral part comprising hydroxyapatite and of an organic part of primarily collagen with the rest consisting on non-collagenous proteins. Collagen has already been described as critical for bone tissue regeneration; however, little is known about the potential effect of non-collagenous proteins on osteogenic differentiation, even though these proteins were identified some decades ago. Aiming to engineer new bone tissue, peptide-incorporated biomimetic materials have been developed, presenting improved biomaterial performance. These promising results led to ongoing research focused on incorporating non-collagenous proteins from bone matrix to enhance the properties of the scaffolds namely in what concerns cell migration, proliferation, and differentiation, with the ultimate goal of designing novel strategies that mimic the native bone ECM for bone tissue engineering applications. Overall, this review will provide an overview of the several non-collagenous proteins present in bone ECM, their functionality and their recent applications in the bone tissue (including dental) engineering field.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence: (M.S.C.); (D.V.)
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence: (M.S.C.); (D.V.)
| |
Collapse
|
8
|
Isoform-specific promotion of breast cancer tumorigenicity by TBX3 involves induction of angiogenesis. J Transl Med 2020; 100:400-413. [PMID: 31570773 PMCID: PMC7044113 DOI: 10.1038/s41374-019-0326-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
TBX3 is a member of the highly conserved family of T-box transcription factors involved in embryogenesis, organogenesis and tumor progression. While the functional role of TBX3 in tumorigenesis has been widely studied, less is known about the specific functions of the different isoforms (TBX3iso1 and TBX3iso2) which differ in their DNA-binding domain. We therefore sought to investigate the functional consequence of this highly conserved splice event as it relates to TBX3-induced tumorigenesis. By utilizing a nude mouse xenograft model, we have identified differential tumorigenic potential between TBX3 isoforms, with TBX3iso1 overexpression more commonly associated with invasive carcinoma and high tumor vascularity. Transcriptional analysis of signaling pathways altered by TBX3iso1 and TBX3iso2 overexpression revealed significant differences in angiogenesis-related genes. Importantly, osteopontin (OPN), a cancer-associated secreted phosphoprotein, was significantly up-regulated with TBX3iso1 (but not TBX3iso2) overexpression. This pattern was observed across three non/weakly-tumorigenic breast cancer cell lines (21PT, 21NT, and MCF7). Up-regulation of OPN in TBX3iso1 overexpressing cells was associated with induction of hyaluronan synthase 2 (HAS2) expression and increased retention of hyaluronan in pericellular matrices. These transcriptional changes were accompanied by the ability to induce endothelial cell vascular channel formation by conditioned media in vitro, which could be inhibited through addition of an OPN neutralizing antibody. Within the TCGA breast cancer cohort, we identified an 8.1-fold higher TBX3iso1 to TBX3iso2 transcript ratio in tumors relative to control, and this ratio was positively associated with high-tumor grade and an aggressive molecular subtype. Collectively, the described changes involving TBX3iso1-dependent promotion of angiogenesis may thus serve as an adaptive mechanism within breast cancer cells, potentially explaining differences in tumor formation rates between TBX3 isoforms in vivo. This study is the first of its kind to report significant functional differences between the two TBX3 isoforms, both in vitro and in vivo.
Collapse
|
9
|
Osteopontin is An Important Regulative Component of the Fetal Bone Marrow Hematopoietic Stem Cell Niche. Cells 2019; 8:cells8090985. [PMID: 31461896 PMCID: PMC6770910 DOI: 10.3390/cells8090985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN) is an important component in both bone and blood regulation, functioning as a bridge between the two. Previously, thrombin-cleaved osteopontin (trOPN), the dominant form of OPN in adult bone marrow (BM), was demonstrated to be a critical negative regulator of adult hematopoietic stem cells (HSC) via interactions with α4β1 and α9β1 integrins. We now demonstrate OPN is also required for fetal hematopoiesis in maintaining the HSC and progenitor pool in fetal BM. Specifically, we showed that trOPN is highly expressed in fetal BM and its receptors, α4β1 and α9β1 integrins, are both highly expressed and endogenously activated on fetal BM HSC and progenitors. Notably, the endogenous activation of integrins expressed by HSC was attributed to high concentrations of three divalent metal cations, Ca2+, Mg2+ and Mn2+, which were highly prevalent in developing fetal BM. In contrast, minimal levels of OPN were detected in fetal liver, and α4β1 and α9β1 integrins expressed by fetal liver HSC were not in the activated state, thereby permitting the massive expansion of HSC and progenitors required during early fetal hematopoiesis. Consistent with these results, no differences in the number or composition of hematopoietic cells in the liver of fetal OPN-/- mice were detected, but significant increases in the hematopoietic progenitor pool in fetal BM as well as an increase in the BM HSC pool following birth and into adulthood were observed. Together, the data demonstrates OPN is a necessary negative regulator of fetal and neonatal BM progenitors and HSC, and it exhibits preserved regulatory roles during early development, adulthood and ageing.
Collapse
|
10
|
Kusuyama J, Amir MS, Albertson BG, Bandow K, Ohnishi T, Nakamura T, Noguchi K, Shima K, Semba I, Matsuguchi T. JNK inactivation suppresses osteogenic differentiation, but robustly induces osteopontin expression in osteoblasts through the induction of inhibitor of DNA binding 4 (Id4). FASEB J 2019; 33:7331-7347. [PMID: 30884976 DOI: 10.1096/fj.201802465r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoblasts are versatile cells involved in multiple whole-body processes, including bone formation and immune response. Secretory amounts and patterns of osteoblast-derived proteins such as osteopontin (OPN) and osteocalcin (OCN) modulate osteoblast function. However, the regulatory mechanism of OPN and OCN expression remains unknown. Here, we demonstrate that p54/p46 c-jun N-terminal kinase (JNK) inhibition suppresses matrix mineralization and OCN expression but increases OPN expression in MC3T3-E1 cells and primary osteoblasts treated with differentiation inducers, including ascorbic acid, bone morphogenic protein-2, or fibroblast growth factor 2. Preinhibition of JNK before the onset of differentiation increased the number of osteoblasts that highly express OPN but not OCN (OPN-OBs), indicating that JNK affects OPN secretory phenotype at the early stage of osteogenic differentiation. Additionally, we identified JNK2 isoform as being critically involved in OPN-OB differentiation. Microarray analysis revealed that OPN-OBs express characteristic transcription factors, cell surface markers, and cytokines, including glycoprotein hormone α2 and endothelial cell-specific molecule 1. Moreover, we found that inhibitor of DNA binding 4 is an important regulator of OPN-OB differentiation and that dual-specificity phosphatase 16, a JNK-specific phosphatase, functions as an endogenous regulator of OPN-OB induction. OPN-OB phenotype was also observed following LPS from Porphyromonas gingivalis stimulation during osteogenic differentiation. Collectively, these results suggest that the JNK-Id4 signaling axis is crucial in the control of OPN and OCN expression during osteoblastic differentiation.-Kusuyama, J., Amir, M. S., Albertson, B. G., Bandow, K., Ohnishi, T., Nakamura, T., Noguchi, K., Shima, K., Semba, I., Matsuguchi, T. JNK inactivation suppresses osteogenic differentiation, but robustly induces osteopontin expression in osteoblasts through the induction of inhibitor of DNA binding 4 (Id4).
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammad Subhan Amir
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya, Indonesia
| | - Brent G Albertson
- Department of Medicine, Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Saitama, Japan; and
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kaori Shima
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ichiro Semba
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
11
|
Ngai D, Lino M, Bendeck MP. Cell-Matrix Interactions and Matricrine Signaling in the Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2018; 5:174. [PMID: 30581820 PMCID: PMC6292870 DOI: 10.3389/fcvm.2018.00174] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is a complex pathological process occurring in patients with atherosclerosis, type 2 diabetes, and chronic kidney disease. The extracellular matrix, via matricrine-receptor signaling plays important roles in the pathogenesis of calcification. Calcification is mediated by osteochondrocytic-like cells that arise from transdifferentiating vascular smooth muscle cells. Recent advances in our understanding of the plasticity of vascular smooth muscle cell and other cells of mesenchymal origin have furthered our understanding of how these cells transdifferentiate into osteochondrocytic-like cells in response to environmental cues. In the present review, we examine the role of the extracellular matrix in the regulation of cell behavior and differentiation in the context of vascular calcification. In pathological calcification, the extracellular matrix not only provides a scaffold for mineral deposition, but also acts as an active signaling entity. In recent years, extracellular matrix components have been shown to influence cellular signaling through matrix receptors such as the discoidin domain receptor family, integrins, and elastin receptors, all of which can modulate osteochondrocytic differentiation and calcification. Changes in extracellular matrix stiffness and composition are detected by these receptors which in turn modulate downstream signaling pathways and cytoskeletal dynamics, which are critical to osteogenic differentiation. This review will focus on recent literature that highlights the role of cell-matrix interactions and how they influence cellular behavior, and osteochondrocytic transdifferentiation in the pathogenesis of cardiovascular calcification.
Collapse
Affiliation(s)
- David Ngai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Marsel Lino
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Osteonecrosis of the jaw (ONJ) is a rare and severe necrotic bone disease reflecting a compromise in the body's osseous healing mechanisms and unique to the craniofacial region. Antiresorptive and antiangiogenic medications have been suggested to be associated with the occurrence of ONJ; yet, the pathophysiology of this disease has not been fully elucidated. This article raises the current theories underlying the pathophysiology of ONJ. RECENT FINDINGS The proposed mechanisms highlight the unique localization of ONJ. The evidence-based mechanisms of ONJ pathogenesis include disturbed bone remodeling, inflammation or infection, altered immunity, soft tissue toxicity, and angiogenesis inhibition. The role of dental infections and the oral microbiome is central to ONJ, and systemic conditions such as rheumatoid arthritis and diabetes mellitus contribute through their impact on immune resiliency. Current experimental studies on mechanisms of ONJ are summarized. The definitive pathophysiology is as yet unclear. Recent studies are beginning to clarify the relative importance of the proposed mechanisms. A better understanding of osteoimmunology and the relationship of angiogenesis to the development of ONJ is needed along with detailed studies of the impact of drug holidays on the clinical condition of ONJ.
Collapse
Affiliation(s)
- J Chang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - A E Hakam
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - L K McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ave, Ann Arbor, MI, 48109, USA.
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Mirzaei A, Ghaffari SH, Nikbakht M, Kamranzadeh Foumani H, Vaezi M, Mohammadi S, Alimoghaddam K, Ghavamzadeh A. OPN b and c Isoforms Doubtless Veto Anti-angiogenesis Effects of Curcumin in Combination with Conventional AML Regiment. Asian Pac J Cancer Prev 2017; 18:2591-2599. [PMID: 28952709 PMCID: PMC5720671 DOI: 10.22034/apjcp.2017.18.9.2591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteopontin (OPN) is an extracellular structural protein that is secreted by osteoblasts and hematopoietic cells. It suppresses the proliferation of hematopoietic stem and also plays an important role in promoting survival and drug resistance in leukemic stem cells (LSCs). Since the role of OPN isoforms in AML angiogenesis are remaining controversial, in the present study, we aimed to evaluate whether curcumin (CUR), as a known natural component with anti-angiogenesis effects, in a combination of AML conventional regiment has the potency to preclude induced anti-angiogenesis effects of OPN isoforms or not? Leukemia cells were treated with different concentration of CUR and AML conventional drugs alone and/or in combination with together to find effective doses and IC50 values. Percentages of apoptotic cells were evaluated by Annexin/PI staining and mRNA levels of OPN isoforms and AKT/ VEGF-A and VEGF-C/ STAT3/ β-catenin/ CXCR4/ IL-6/ KDR gene expression were investigated by Real Time-PCR method. Moreover, to confirm OPN gene expression data, we investigated the effect of simvastatin and OPN siRNA as an OPN inhibitor on the cell proliferation and induction of apoptosis in the indicated cell lines. Our data display that Ara-c (2μM and 1μM in KG-1 and U937 cell lines respectively), CUR (40μM in both cell lines), and also their combination significantly increased the percentage of apoptotic cells. Moreover, the mRNA level of OPN isoforms were down regulated in the KG-1and U937 cell lines treated with Ara-c while, upregulated in KG-1and U937 cell lines treated with CUR and its combination. Our results suggest that despite anti-angiogenesis effects of CUR, AML cells probably evade from anti-angiogenesis effects of CUR via induction of OPN b and c isoform and related molecular pathways.
Collapse
Affiliation(s)
- Akram Mirzaei
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Sci Rep 2017; 7:44059. [PMID: 28281577 PMCID: PMC5345027 DOI: 10.1038/srep44059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/01/2017] [Indexed: 01/21/2023] Open
Abstract
A large number of human diseases are caused by chronic tissue injury with fibrosis potentially leading to organ failure. There is a need for more effective anti-fibrotic therapies. Congenital muscular dystrophy type 1A (MDC1A) is a devastating form of muscular dystrophy caused by laminin α2 chain-deficiency. It is characterized with early inflammation and build-up of fibrotic lesions, both in patients and MDC1A mouse models (e.g. dy3K/dy3K). Despite the enormous impact of inflammation on tissue remodelling in disease, the inflammatory response in MDC1A has been poorly described. Consequently, a comprehensive understanding of secondary mechanisms (impaired regeneration, enhanced fibrosis) leading to deterioration of muscle phenotype in MDC1A is missing. We have monitored inflammatory processes in dy3K/dy3K muscle and created mice deficient in laminin α2 chain and osteopontin or galectin-3, two pro-inflammatory and pro-fibrotic molecules drastically increased in dystrophic muscle. Surprisingly, deletion of osteopontin worsened the phenotype of dy3K/dy3K mice and loss of galectin-3 did not reduce muscle pathology. Our results indicate that osteopontin could even be a beneficial immunomodulator in MDC1A. This knowledge is essential for the design of future therapeutic interventions for muscular dystrophies that aim at targeting inflammation, especially that osteopontin inhibition has been suggested for Duchenne muscular dystrophy therapy.
Collapse
|
15
|
Erndt-Marino JD, Hahn MS. Probing the response of human osteoblasts following exposure to sympathetic neuron-like PC-12 cells in a 3D coculture model. J Biomed Mater Res A 2017; 105:984-990. [PMID: 27860234 DOI: 10.1002/jbm.a.35964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/15/2016] [Indexed: 01/03/2023]
Abstract
Understanding the capacity of the sympathetic nervous system (SNS) to regulate bone homeostasis has implications for a number of metabolic diseases and may help establish connections between certain neurological conditions and bone quality. The goal of the present work was to gain a deeper understanding of the influence of the SNS on the phenotype of osteoblasts, a major cell type in bone. An in vitro coculture model with human osteoblasts and sympathetic-like, neuroendocrine pheochromocytoma-12 (PC-12) cells encapsulated within separate 3D poly(ethylene glycol) diacrylate (PEGDA) hydrogels was utilized to assess markers involved with bone ECM formation and osteoclast formation. In terms of bone ECM proteins, only osteopontin (OPN) was significantly increased in osteoblasts exposed to PC-12 cells relative to osteoblast mono-culture controls. In contrast, all bone resorption markers investigated (IL-6, TNF, IL-1β, VEGF-A) were enhanced at the gene level and the ratio of osteoprotegerin (OPG) to RANKL was significantly decreased in osteoblasts exposed to PC-12 cells. Cumulatively, these data indicate that the SNS may substantially influence bone resorption. Because of the context-dependent nature of the SNS, future studies will characterize the secretion profile of neurotransmitters and neuropeptides from the PC-12 cells in our model. Additionally, various SNS modulating pharmacologic agents will be examined for their capacity to reduce expression of bone resorption/inflammatory markers. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 984-990, 2017.
Collapse
Affiliation(s)
- Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
16
|
Awolaran O, Brooks SA, Lavender V. Breast cancer osteomimicry and its role in bone specific metastasis; an integrative, systematic review of preclinical evidence. Breast 2016; 30:156-171. [DOI: 10.1016/j.breast.2016.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 01/05/2023] Open
|
17
|
Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Control Release 2016; 244:122-135. [PMID: 27794492 DOI: 10.1016/j.jconrel.2016.10.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/07/2023]
Abstract
Molecular signals in the form of growth factors are the main modulators of cell behavior. However, the use of growth factors in tissue engineering has several drawbacks, including their costs, difficult production, immunogenicity and short half-life. Furthermore, many of them are pleiotropic and, since a single growth factor can have different active domains, their effect is not always fully controllable. A very interesting alternative that has recently emerged is the use of biomimetic peptides. Sequences derived from the active domains of soluble or extracellular matrix proteins can be used to functionalize the biomaterials used as scaffolds for new tissue growth to either direct the attachment of cells or to be released as soluble ligands. Since these short peptides can be easily designed and cost-effectively synthesized in vitro, their use has opened up a world of new opportunities to obtain cheaper and more effective implants for regenerative medicine strategies. In this extensive review we will go through many of the most important peptides with potential interest for bone tissue engineering, not limiting to those that only mediate cell adhesion or induce the osteogenic differentiation of progenitor cells, but also focusing on those that direct angiogenesis because of its close relation with bone formation.
Collapse
Affiliation(s)
- Rick Visser
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain.
| | - Gustavo A Rico-Llanos
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| | - Hertta Pulkkinen
- BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jose Becerra
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| |
Collapse
|
18
|
Bouleftour W, Juignet L, Bouet G, Granito RN, Vanden-Bossche A, Laroche N, Aubin JE, Lafage-Proust MH, Vico L, Malaval L. The role of the SIBLING, Bone Sialoprotein in skeletal biology - Contribution of mouse experimental genetics. Matrix Biol 2016; 52-54:60-77. [PMID: 26763578 DOI: 10.1016/j.matbio.2015.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Laura Juignet
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Guenaelle Bouet
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, UK
| | | | - Arnaud Vanden-Bossche
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Norbert Laroche
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marie-Hélène Lafage-Proust
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Laurence Vico
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Luc Malaval
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France.
| |
Collapse
|
19
|
Wein M, Fretwurst T, Nahles S, Duttenhoefer F, Tomakidi P, Steinberg T, Nelson K. Pilot investigation of the molecular discrimination of human osteoblasts from different bone entities. J Craniomaxillofac Surg 2015; 43:1487-93. [PMID: 26315276 DOI: 10.1016/j.jcms.2015.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 12/24/2022] Open
Abstract
In oral and maxillofacial surgery, autologous grafts from the iliac crest remain the 'gold standard' for alveolar ridge reconstruction, whereas intraoral bone grafts are considered in smaller defects. To date, a comparison of the osteogenic potential of osteoblasts with regard to their tissue origin is missing. Primary osteoblasts have proven useful for the investigation of the tissue-specific osteogenic properties. The present study compares primary human alveolar (aHOBs) and iliac osteoblasts (iHOBs) derived from three female patients undergoing routine intraoral bone grafting. Proliferation potential of the osteoblasts was evaluated using real-time impedance monitoring. Relative gene expression of bone specific biomarkers was analyzed and quantified using quantitative polymerase chain reactions (qPCR). Immunohistochemistry and phase contrast microscopy were performed, as well as alkaline phosphatase assay and alizarin red staining to visualize morphology and mineralization capacity. A twofold faster proliferation rate of aHOBs compared with iHOBs (130 h vs. 80 h) was observed. Alkaline phosphatase activity and alizarin red staining in both HOBs indicated similar mineralization capacity. Gene expression of seven genes (BMP1, CSF-1, TGFBR1, ICAM1, VCAM1, SPP1 and DLX5) was significantly higher in iHOB than in aHOB samples. These data suggest a higher osteogenic potential of osteoblasts derived from the iliac crest compared with primary osteoblasts from the alveolar bone and may lead to a better understanding of the molecular impact of bone cells from different bone entities on bone regeneration in alveolar ridge reconstructions.
Collapse
Affiliation(s)
- Martin Wein
- Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestraße 1, 79104 Freiburg, Germany.
| | - Tobias Fretwurst
- Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Susanne Nahles
- Department of Oral- and Maxillofacial Surgery, Charité Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Fabian Duttenhoefer
- Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Katja Nelson
- Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| |
Collapse
|
20
|
Winczura P, Sosińska-Mielcarek K, Duchnowska R, Badzio A, Lakomy J, Majewska H, Pęksa R, Pieczyńska B, Radecka B, Dębska-Szmich S, Adamowicz K, Biernat W, Jassem J. Immunohistochemical Predictors of Bone Metastases in Breast Cancer Patients. Pathol Oncol Res 2015; 21:1229-36. [PMID: 26062800 PMCID: PMC4550640 DOI: 10.1007/s12253-015-9957-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/26/2015] [Indexed: 11/22/2022]
Abstract
Bones are the most common metastatic site of relapse in breast cancer patients and the prediction of bone metastases (BM) risk might prompt developing preventive and therapeutic strategies. The aim of the study was to correlate imumohistochemical (IHC) expression of selected proteins in primary breast cancer with the occurrence of BM. We analyzed expression of proteins potentially associated with BM in primary tumors of 184 patients with metastatic breast cancer (113 with- and 71 without BM). Expression of estrogen receptor (ER) in primary tumor was more common in patients with- compared to those without BM (74 vs. 45 % respectively, p = 0.0001), whereas in this subset less common was expression of parathyroid hormone related protein receptor type 1 (16 vs. 34 %, respectively, p = 0.007) and cytoplasmic expression of osteopontin (OPNcyt; 1.9 vs. 14 %, respectively, p = 0.002). The relationship between expression of ER and OPNcyt and the occurrence of BM was confirmed in the multivariate analysis. The ER-positive/OPNcyt negative phenotype was significantly more common in patients with- compared to those without BM (75 and 25 %, p < 0.0001, respectively; HR 1.79, p = 0.013). Luminal A (43 vs. 23 % respectively, p = 0.009) and luminal B/HER2-positive (16 vs. 4.9 % respectively, p = 0.032) subtypes were more common in patients with- compared to those without BM, whereas triple negative breast cancer subtype was less common (16 vs. 38 %, p = 0.002).
Collapse
|
21
|
Chan KK, Matchett KB, McEnhill PM, Dakir EH, McMullin MF, El-Tanani Y, Patterson L, Faheem A, Rudland PS, McCarron PA, El-Tanani M. Protein deregulation associated with breast cancer metastasis. Cytokine Growth Factor Rev 2015; 26:415-23. [PMID: 26088937 DOI: 10.1016/j.cytogfr.2015.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022]
Abstract
Breast cancer is one of the most prevalent malignancies worldwide. It consists of a group of tumor cells that have the ability to grow uncontrollably, overcome replicative senescence (tumor progression) and metastasize within the body. Metastases are processes that consist of an array of complex gene dysregulation events. Although these processes are still not fully understood, the dysregulation of a number of key proteins must take place if the tumor cells are to disseminate and metastasize. It is now widely accepted that future effective and innovative treatments of cancer metastasis will have to encompass all the major components of malignant transformation. For this reason, much research is now being carried out into the mechanisms that govern the malignant transformation processes. Recent research has identified key genes involved in the development of metastases, as well as their mechanisms of action. A detailed understanding of the encoded proteins and their interrelationship generates the possibility of developing novel therapeutic approaches. This review will focus on a select group of proteins, often deregulated in breast cancer metastasis, which have shown therapeutic promise, notably, EMT, E-cadherin, Osteopontin, PEA3, Transforming Growth Factor Beta (TGF-β) and Ran.
Collapse
Affiliation(s)
- Ka Kui Chan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Department of Pathology, The University of Hong Kong , Hong Kong Special Administrative Region
| | - Kyle B Matchett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Paul M McEnhill
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - El Habib Dakir
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mary Frances McMullin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yahia El-Tanani
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Laurence Patterson
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Ahmed Faheem
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, United Kingdom
| | - Philip S Rudland
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, United Kingdom
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom.
| |
Collapse
|
22
|
Abstract
In patients with multiple myeloma (MM), the bone marrow (BM) contains hematopoietic stem cells (HSCs) and non-hematopoietic cells. HSCs are able to give rise to all types of mature blood cells, while the non hematopoietic component includes mesenchymal stem cells (MSCs), fibroblasts, osteoblasts, osteoclasts, chondroclasts, endothelial cells, endothelial progenitor cells (EPCs), B and T lymphocytes, NK cells, erythrocytes, megakaryocytes, platelets, macrophages and mast cells. All of these cells form specialized "niches" in the BM microenvironment which are close to the vasculature ("vascular niche") or to the endosteum ("osteoblast niche"). The "vascular niche" is rich in blood vessels where endothelial cells and mural cells (pericytes and smooth muscle cells) create a microenvironment that affects the behavior of several stem and progenitor cells. The vessel wall serves as an independent niche for the recruitment of endothelial progenitor cells, MSCs and HSCs. The activation by angiogenic factors and inflammatory cytokines switch the "vascular niche" to promote MM tumor growth and spread. This review will focus on the mechanisms involved in the generation of signals released by endothelial cells in the "vascular niche" that promote tumor growth and spread in MM.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy, National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| | - Michele Moschetta
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
23
|
BRONJ-related jaw bone is associated with increased Dlx-5 and suppressed osteopontin-implication in the site-specific alteration of angiogenesis and bone turnover by bisphosphonates. Clin Oral Investig 2014; 19:1289-98. [PMID: 25467232 DOI: 10.1007/s00784-014-1354-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Site-specific suppression of bone remodelling has been implicated in bisphosphonate-(BP)-related osteonecrosis of the jaws (BRONJ). Due to the origin of jaw bone from cranial neural crest, osseous differentiation is regulated specifically by the antagonizing BMP-2-downstream-transcription factors Msx-1 and Dlx-5. Osteopontin has been implicated in bone remodelling and angiogenesis. The osteoblast and osteoclast progenitor proliferation mediating Msx-1 has been demonstrated to be suppressed in BRONJ. In vitro BPs were shown to increase Dlx-5 and to suppress osteopontin expression. This study targeted Dlx-5 and osteopontin in BRONJ-related and BP-exposed jaw bone compared with healthy jaw bone samples at protein- and messenger RNA (mRNA) level, since increased Dlx-5 and suppressed osteopontin might account for impaired bone turnover in BRONJ. MATERIALS AND METHODS Fifteen BRONJ-exposed, 15 BP-exposed and 20 healthy jaw bone samples were processed for real-time reverse transcription polymerase chain reaction (RT-PCR) and for immunohistochemistry. Targeting Dlx-5, osteopontin and glyceraldehyde 3-phosphate dehydrogenase mRNA was extracted, quantified by the LabChip-method, followed by quantitative RT-PCR. For immunohistochemistry, an autostaining-based alkaline phosphatase antialkaline phosphatase (APAPP) staining kit was used. Semiquantitative assessment was performed measuring the ratio of stained cells/total number of cells (labelling index, Bonferroni adjustment). RESULTS The labelling index was significant decreased for osteopontin (p < 0.017) and significantly increased for Dlx-5 (p < 0.021) in BRONJ samples. In BRONJ specimens, a significant fivefold decrease in gene expression for osteopontin (p < 0.015) and a significant eightfold increase in Dlx-5 expression (p < 0.012) were found. CONCLUSIONS BRONJ-related suppression of bone turnover is consistent with increased Dlx-5 expression and with suppression of osteopontin. The BP-related impaired BMP-2-Msx-1-Dlx-5 axis might explain the jaw bone specific alteration by BP. CLINICAL RELEVANCE The findings of this study help to explain the restriction of RONJ to craniofacial bones. BRONJ might serve as a model of disease elucidating the specific signal transduction of neural crest cell-derived bone structures in health and disease.
Collapse
|
24
|
Ribatti D, Nico B, Vacca A. Multiple myeloma as a model for the role of bone marrow niches in the control of angiogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:259-82. [PMID: 25619720 DOI: 10.1016/bs.ircmb.2014.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone marrow (BM) contains hematopoietic stem cells (HSCs) and nonhematopoietic cells. HSCs give rise to all types of mature blood cells, while the nonhematopoietic component includes osteoblasts/osteoclasts, endothelial cells (ECs), endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). These cells form specialized "niches" which are close to the vasculature ("vascular niche") or to the endosteum ("osteoblast niche"). The "vascular niche", rich in blood vessels where ECs and mural cells (pericytes and smooth muscle cells), create a microenvironment affecting the behavior of several stem and progenitor cells. The vessel wall acts as an independent niche for the recruitment of EPCs and MSCs. This chapter will focus on the description of the role of BM niches in the control of angiogenesis occurring during multiple myeloma progression.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Internal Medicine and Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
25
|
Ito T, Otsuka M. Application of calcium phosphate as a controlled-release device. Biol Pharm Bull 2014; 36:1676-82. [PMID: 24189411 DOI: 10.1248/bpb.b13-00383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium phosphate (CaP)-based compounds are biocompatible and have been accepted as promising candidates for novel drug-releasing devices. CaP is biodegradable and can be utilized as a durable drug release reservoir. We developed an injectable self-setting apatite cement. When a plasmid DNA complex containing CaP was injected into tumor-bearing mice, it solidified in the body and slowly released the DNA complex, inducing durable gene expression and high therapeutic effect on solid tumors. Encapsulation of a drug by CaP acts as a protective capsule for the unstable contents and improves biocompatibility. CaP nanocapsules encapsulating a plasmid DNA complex or drug-involved micelle were prepared, and they showed high stability against enzyme and protein degradation. CaP also showed high potential as a durable acid pH buffer. Aqueous alginate solution was found to form a soft gel in the body and was investigated as a drug-releasing device. However, degradation of the alginate gel is sometimes too rapid in an acidic environment such as the area around osteoporotic bones. We found that amorphous CaP powder added to the alginate gel could control the dissociation rate, buffering the pH inside the gel. Alginate gel including CaP powder and a drug for osteoporosis allowed sustained release of the drug under acidic conditions, and a good therapeutic effect was achieved in osteoporosis model rats. CaP could thus be a valuable material for drug-delivery systems as a slow-releasing drug reservoir, a protective coating, or a pH buffer.
Collapse
Affiliation(s)
- Tomoko Ito
- Research Institute of Pharmaceutical Sciences, Musashino University
| | | |
Collapse
|
26
|
Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab 2014; 3:384-93. [PMID: 24944898 PMCID: PMC4060362 DOI: 10.1016/j.molmet.2014.03.004] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Since its first description more than 20 years ago osteopontin has emerged as an active player in many physiological and pathological processes, including biomineralization, tissue remodeling and inflammation. As an extracellular matrix protein and proinflammatory cytokine osteopontin is thought to facilitate the recruitment of monocytes/macrophages and to mediate cytokine secretion in leukocytes. Modulation of immune cell response by osteopontin has been associated with various inflammatory diseases and may play a pivotal role in the development of adipose tissue inflammation and insulin resistance. Here we summarize recent findings on the role of osteopontin in metabolic disorders, particularly focusing on diabetes and obesity.
Collapse
|
27
|
Remus EW, Lyle AN, Weiss D, Landàzuri N, Weber M, Searles C, Taylor WR. miR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells. Atherosclerosis 2013; 228:168-74. [PMID: 23466073 PMCID: PMC3641899 DOI: 10.1016/j.atherosclerosis.2013.01.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/02/2013] [Accepted: 01/21/2013] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Osteopontin (OPN) is a multifunctional protein found in abundance in atherosclerotic plaques. Angiotensin II (Ang II) promotes atherosclerosis by inducing adhesion and migration of vascular smooth muscle cells (VSMCs). MicroRNAs (miRNAs) are critical regulators of protein expression. However, the relationship between Ang II, miRNAs and OPN has yet to be fully explored. METHODS AND RESULTS Using cultured VSMCs, we found that Ang II increased cellular OPN protein expression 4 h after treatment by 420 ± 54% (p < 0.03) in a translation dependent manner. Sequence analysis revealed a putative binding site for mir181a and raised the possibility that miR181a is a potential regulatory mechanism for OPN expression. We demonstrated that Ang II decreased miR181a expression by 52 ± 7% (p < 0 .0001) and overexpressing miR181a inhibited Ang II induced increases in OPN protein expression by 69 ± 9% (p < 0.05). Furthermore, we demonstrated that miR181a is functionally important in that overexpression of miR181a inhibited VSMCs adhesion to collagen in response to Ang II as compared to controls by 36 ± 4%. (p < 0.05) CONCLUSIONS: These results demonstrate that miR181a regulates OPN expression and that altering miR181a expression may be a novel therapeutic approach to modulate OPN protein expression.
Collapse
Affiliation(s)
- Ebony Washington Remus
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alicia N. Lyle
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Daiana Weiss
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Natalia Landàzuri
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Martina Weber
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Atlanta VA Medical Center, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Charles Searles
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Atlanta VA Medical Center, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - W. Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Atlanta VA Medical Center, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Mediators of inflammation-induced bone damage in arthritis and their control by herbal products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:518094. [PMID: 23476694 PMCID: PMC3582100 DOI: 10.1155/2013/518094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the synovial joints leading to bone and cartilage damage. Untreated inflammatory arthritis can result in severe deformities and disability. The use of anti-inflammatory agents and biologics has been the mainstay of treatment of RA. However, the prolonged use of such agents may lead to severe adverse reactions. In addition, many of these drugs are quite expensive. These limitations have necessitated the search for newer therapeutic agents for RA. Natural plant products offer a promising resource for potential antiarthritic agents. We describe here the cellular and soluble mediators of inflammation-induced bone damage (osteoimmunology) in arthritis. We also elaborate upon various herbal products that possess antiarthritic activity, particularly mentioning the specific target molecules. As the use of natural product supplements by RA patients is increasing, this paper presents timely and useful information about the mechanism of action of promising herbal products that can inhibit the progression of inflammation and bone damage in the course of arthritis.
Collapse
|
29
|
Preclinical evaluation of sunitinib as a single agent in the prophylactic setting in a mouse model of bone metastases. BMC Cancer 2013; 13:32. [PMID: 23347638 PMCID: PMC3562143 DOI: 10.1186/1471-2407-13-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/15/2013] [Indexed: 11/23/2022] Open
Abstract
Background A substantial number of breast cancer patients are identified as being at high risk of developing metastatic disease. With increasing number of targeted therapeutics entering clinical trials, chronic administration of these agents may be a feasible approach for the prevention of metastases within this subgroup of patients. In this preclinical study we examined whether Sunitinib, a multi-tyrosine kinase inhibitor which has anti-angiogenic and anti-resorptive activity, is effective in the prevention of bone metastases. Method Sunitinib was administered daily with the first dose commencing prior to tumor cell inoculation. Intracardiac injection was performed with MDA-MB23 bone-seeking cells, which were stably transfected with DsRed2. In vivo plain radiography and fluorescent imaging (Berthold NightOwl) was used in the analysis of bone metastases. Histomorphometry was used for the quantification of TRAP+ cells from bone sections and immunohistochemistry was performed using an antibody reactive to CD34 for quantification of microvessel density. Results Preventive dosing administration of Sunitinib does not inhibit colonization of tumor cells to bone or reduce the size of osteolytic lesions. There was a decrease in the number of TRAP+ cells with Sunitinib treatment but this did not reach significance. Sunitinib inhibited tumor growth as determined by imaging of fluorescent tumor area. Immunohistochemical analyses of microvessel density revealed a concomitant decrease in the number of tumor blood vessels. Conclusions The findings suggest that Sunitinib can be used as a therapeutic agent for the treatment of bone metastases but as a single agent it is not effective in terms of prevention. Therefore a combination approach with other cytostatic drugs should be pursued.
Collapse
|
30
|
Chen X, Li Y, Aparicio C. Biofunctional Coatings for Dental Implants. THIN FILMS AND COATINGS IN BIOLOGY 2013. [DOI: 10.1007/978-94-007-2592-8_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Noll JE, Williams SA, Purton LE, Zannettino ACW. Tug of war in the haematopoietic stem cell niche: do myeloma plasma cells compete for the HSC niche? Blood Cancer J 2012; 2:e91. [PMID: 22983434 PMCID: PMC3461708 DOI: 10.1038/bcj.2012.38] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the adult mammal, normal haematopoiesis occurs predominantly in the bone marrow, where primitive haematopoietic stem cells (HSC) and their progeny reside in specialised microenvironments. The bone marrow microenvironment contains specific anatomical areas (termed niches) that are highly specialised for the development of certain blood cell types, for example HSCs. The HSC niche provides important cell–cell interactions and signalling molecules that regulate HSC self-renewal and differentiation processes. These same signals and interactions are also important in the progression of haematological malignancies, such as multiple myeloma (MM). This review provides an overview of the bone marrow microenvironment and its involvement in normal, physiological HSC maintenance and plasma cell growth throughout MM disease progression.
Collapse
Affiliation(s)
- J E Noll
- Myeloma Research Laboratory, Bone and Cancer Research Laboratories, Department of Haematology, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
32
|
Mosig RA, Martignetti JA. Loss of MMP-2 in murine osteoblasts upregulates osteopontin and bone sialoprotein expression in a circuit regulating bone homeostasis. Dis Model Mech 2012; 6:397-403. [PMID: 22917927 PMCID: PMC3597021 DOI: 10.1242/dmm.007914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multicentric osteolysis with arthropathy (MOA; MIM 605156) is an inherited osteolyses and arthritis syndrome resulting from loss of matrix metalloproteinase 2 (MMP-2). We recently demonstrated that Mmp2–/– mice represent a unique model for the study of the human disease, sharing many features of the human syndrome including skeletal dysplasia and defects in osteoblast behavior. We therefore sought to explore the secondary molecular effects of MMP-2 loss, which coexist with the underlying skeletal and osteoblast phenotypes. We used quantitative real-time RT-PCR (qRT-PCR) to measure osteoblast-related gene expression through ex vivo osteoblast differentiation of bone marrow stromal cells (BMSC) from Mmp2−/− and Mmp2+/+ mice. We used western blot to measure osteopontin (OPN) serum levels and immunohistochemical staining to examine bone expression. MMP-2 expression was inhibited in SaOS2 cells using siRNA, and decreased MMP-2 expression at both RNA and protein levels was confirmed by qRT-PCR and western blot, respectively. Mmp2−/− BMSC induced to differentiate into osteoblasts were shown to significantly upregulate OPN and bone sialoprotein (BSP) expression levels compared with controls. Transcriptional upregulation was maintained in vivo, as demonstrated by increased levels of OPN in serum and bone in Mmp2−/− mice. These effects are generalizable because siRNA-mediated inhibition in cultured cells also upregulated OPN and BSP. OPN and BSP are known to affect MMP-2 expression and activity but have not previously been shown to be regulated by MMP-2. Identification of this newly defined circuitry provides insight into the potential molecular landscape underlying the MOA phenotype and highlights a pathway that might play a role in normal bone homeostasis.
Collapse
Affiliation(s)
- Rebecca A Mosig
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
33
|
Lampropoulos CE, Papaioannou I, D'Cruz DP. Osteoporosis--a risk factor for cardiovascular disease? Nat Rev Rheumatol 2012; 8:587-98. [PMID: 22890244 DOI: 10.1038/nrrheum.2012.120] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a serious health problem worldwide that is associated with an increased risk of fractures and mortality. Vascular calcification is a well-defined independent risk factor for cardiovascular disease (CVD) and mortality. Major advances in our understanding of the pathophysiology of osteoporosis and vascular calcification indicate that these two processes share common pathogenetic mechanisms. Multiple factors including proteins (such as bone morphogenetic proteins, receptor activator of nuclear factor κB ligand, osteoprotegerin, matrix Gla protein and cathepsins), parathyroid hormone, phosphate, oxidized lipids and vitamins D and K are implicated in both bone and vascular metabolism, illustrating the interaction of these two, seemingly unrelated, conditions. Many clinical studies have now confirmed the correlation between osteoporosis and vascular calcification as well as the increased risk of CVD in patients with osteoporosis. Here, we explore the proposed mechanistic similarities between osteoporosis and vascular calcification and present an overview of the clinical data that support the interaction between these conditions.
Collapse
Affiliation(s)
- Christos E Lampropoulos
- Department of Internal Medicine, General Hospital of Nafplio, Kolokotroni and Asklipiou Streets, 21100 Nafplio, Greece
| | | | | |
Collapse
|
34
|
Zhang X, Urbieta-Caceres VH, Eirin A, Bell CC, Crane JA, Tang H, Jordan KL, Oh YK, Zhu XY, Korsmo MJ, Bachar AR, Cohen P, Lerman A, Lerman LO. Humanin prevents intra-renal microvascular remodeling and inflammation in hypercholesterolemic ApoE deficient mice. Life Sci 2012; 91:199-206. [PMID: 22820173 DOI: 10.1016/j.lfs.2012.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/11/2012] [Accepted: 07/06/2012] [Indexed: 11/17/2022]
Abstract
AIMS Humanin (HN) is an endogenous mitochondrial-derived cytoprotective peptide that has shown protective effects against atherosclerosis and is expressed in human vessels. However, its effects on the progression of kidney disease are unknown. We hypothesized that HN would protect the kidney in the early phase of atherogenesis. MAIN METHODS Forty-eight mice were studied in four groups (n=12 each). Twenty-four ApoE deficient mice were fed a 16-week high-cholesterol diet supplemented with saline or HN (4mg/kg/day, intraperitoneal). C57BL/6 mice were fed a normal diet supplemented with saline or HN. Microvascular architecture was assessed with micro-CT and vascular wall remodeling by alpha-SMA staining. The effects of HN on angiogenesis, inflammation, apoptosis and fibrosis were evaluated in the kidney tissue by Western blotting and histology. KEY FINDINGS Cortical microvascular spatial density and media/lumen area ratio were significantly increased in high-cholesterol diet fed ApoE deficient mice, but restored by HN. HN up-regulated the renal expressions of anti-angiogenic proteins angiostatin and TSP-1, and inhibited angiopoietin-1. HN attenuated inflammation by down-regulating MCP-1, TNF-alpha and osteopontin. HN also tended to restore pSTAT3 and attenuated Bax expression, suggesting blunted apoptosis. Kidney collagen IV expression was alleviated by HN treatment. SIGNIFICANCE HN attenuates renal microvascular remodeling, inflammation and apoptosis in the early stage of kidney disease in hypercholesterolemic ApoE(-/-) mice. HN may serve as a novel therapeutic target to mitigate kidney damage in early atherosclerosis.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yumoto K, Nifuji A, Rittling S, Tsuchiya Y, Kon S, Uede T, Denhardt D, Hemmi H, Notomi T, Hayata T, Ezura Y, Nakamoto T, Noda M. Osteopontin Deficiency Suppresses Tumor Necrosis Factor-α-Induced Apoptosis in Chondrocytes. Cartilage 2012; 3:79-85. [PMID: 26069621 PMCID: PMC4297182 DOI: 10.1177/1947603511421502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Apoptosis of chondrocytes in articular cartilage has been observed in rheumatoid arthritis patients. However, molecules involved in such chondrocyte apoptosis in arthritic joints have not been fully understood. We previously observed that apoptosis of chondrocytes is enhanced in a murine arthritis model induced by injection with anti-type II collagen antibodies and lipopolysaccharide (mAbs/LPS), and osteopontin (OPN) deficiency suppresses chondrocyte apoptosis in this arthritis model in vivo. To understand how OPN deficiency renders resistance against chondrocyte apoptosis, we examined the cellular basis for this protection. DESIGN Chondrocytes were prepared from wild-type and OPN-deficient mouse ribs, and tumor necrosis factor (TNF)-α-induced cell death was examined based on lactate dehydrogenase (LDH) release assay and TUNEL assay. RESULTS TNF-α treatment induced LDH release in wild-type chondrocytes, while OPN deficiency suppressed such LDH release in the cultures of these cells. TNF-α-induced increase in the number of TUNEL-positive cells was observed in wild-type chondrocytes, while OPN deficiency in chondrocytes suppressed the TNF-α induction of TUNEL-positive cells. OPN deficiency suppressed TNF-α-induced increase in caspase-3 activity in chondrocytes in culture. Furthermore, OPN overexpression in chondrocytes enhanced TNF-α-induced apoptosis. CONCLUSION These results indicated that the presence of OPN in chondrocytes is involved in the susceptibility of these cells to TNF-α-induced apoptosis.
Collapse
Affiliation(s)
- K. Yumoto
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - A. Nifuji
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Y. Tsuchiya
- Immuno Biological Laboratory (IBL), Maebashi Gumma, Japan
| | - S. Kon
- Hokkaido University, Sapporo, Japan
| | - T. Uede
- Hokkaido University, Sapporo, Japan
| | | | - H. Hemmi
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Medical Top Track (MTT) Program, Tokyo Medical and Dental University, Tokyo, Japan
| | - T. Notomi
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - T. Hayata
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan,Core to Core Program, Tokyo Medical and Dental University, Tokyo, Japan,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Y. Ezura
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan,Core to Core Program, Tokyo Medical and Dental University, Tokyo, Japan,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - T. Nakamoto
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan,Core to Core Program, Tokyo Medical and Dental University, Tokyo, Japan,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - M. Noda
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Medical Top Track (MTT) Program, Tokyo Medical and Dental University, Tokyo, Japan,Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan,Core to Core Program, Tokyo Medical and Dental University, Tokyo, Japan,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
36
|
Tanabe N, Wheal BD, Kwon J, Chen HH, Shugg RPP, Sims SM, Goldberg HA, Dixon SJ. Osteopontin signals through calcium and nuclear factor of activated T cells (NFAT) in osteoclasts: a novel RGD-dependent pathway promoting cell survival. J Biol Chem 2011; 286:39871-81. [PMID: 21940634 DOI: 10.1074/jbc.m111.295048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteopontin (OPN), an integrin-binding extracellular matrix glycoprotein, enhances osteoclast activity; however, its mechanisms of action are elusive. The Ca(2+)-dependent transcription factor NFATc1 is essential for osteoclast differentiation. We assessed the effects of OPN on NFATc1, which translocates to nuclei upon activation. Osteoclasts from neonatal rabbits and rats were plated on coverslips, uncoated or coated with OPN or bovine albumin. OPN enhanced the proportion of osteoclasts exhibiting nuclear NFATc1. An RGD-containing, integrin-blocking peptide prevented the translocation of NFATc1 induced by OPN. Moreover, mutant OPN lacking RGD failed to induce translocation of NFATc1. Thus, activation of NFATc1 is dependent on integrin binding through RGD. Using fluorescence imaging, OPN was found to increase the proportion of osteoclasts exhibiting transient elevations in cytosolic Ca(2+) (oscillations). OPN also enhanced osteoclast survival. The intracellular Ca(2+) chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) suppressed Ca(2+) oscillations and inhibited increases in NFATc1 translocation and survival induced by OPN. Furthermore, a specific, cell-permeable peptide inhibitor of NFAT activation blocked the effects of OPN on NFATc1 translocation and osteoclast survival. This is the first demonstration that OPN activates NFATc1 and enhances osteoclast survival through a Ca(2+)-NFAT-dependent pathway. Increased NFATc1 activity and enhanced osteoclast survival may account for the stimulatory effects of OPN on osteoclast function in vivo.
Collapse
Affiliation(s)
- Natsuko Tanabe
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London N6A5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jensen T, Baas J, Dolathshahi-Pirouz A, Jacobsen T, Singh G, Nygaard JV, Foss M, Bechtold J, Bünger C, Besenbacher F, Søballe K. Osteopontin functionalization of hydroxyapatite nanoparticles in a PDLLA matrix promotes bone formation. J Biomed Mater Res A 2011; 99:94-101. [PMID: 21800419 DOI: 10.1002/jbm.a.33166] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/13/2011] [Accepted: 04/08/2011] [Indexed: 01/04/2023]
Abstract
We studied the osteoconductive tissue response of hydroxyapatite (HA) nanoparticles functionalized with osteopontin (OPN) in a matrix of poly-D,L-lactic-acid (PDLLA). In a canine endosseus 0.75-mm gap implant model, we tested the osteointegrative impact of the OPN functionalized composite as an implant coating, and a non-functionalized composite was used as reference control. During the four weeks of observation, the OPN functionalized composite coating significantly increased the formation of new bone in the porosities of the implant, but no differences were observed in the gap. The study provides evidence of its potential use either alone or in combination with other osteoconductive compounds.
Collapse
Affiliation(s)
- T Jensen
- Orthopaedic Research Laboratory, University Hospital of Aarhus, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Multi-composite bioactive osteogenic sponges featuring mesenchymal stem cells, platelet-rich plasma, nanoporous silicon enclosures, and Peptide amphiphiles for rapid bone regeneration. J Funct Biomater 2011; 2:39-66. [PMID: 24956163 PMCID: PMC4030897 DOI: 10.3390/jfb2020039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 05/25/2011] [Accepted: 06/17/2011] [Indexed: 12/20/2022] Open
Abstract
A novel bioactive sponge was created with a composite of type I collagen sponges or porous poly(ε-caprolactone) (PCL) scaffolds, platelet-rich plasma (PRP), BMP2-loaded nanoporous silicon enclosure (NSE) microparticles, mineralizing peptide amphiphiles (PA), and mesenchymal stem cells (MSC). Primary MSC from cortical bone (CB) tissue proved to form more and larger colony units, as well as produce more mineral matrix under osteogenic differentiation, than MSC from bone marrow (BM). Coating pre-treatments were optimized for maximum cell adhesion and mineralization, while a PRP-based gel carrier was created to efficiently deliver and retain MSC and microparticles within a porous scaffold while simultaneously promoting cell recruitment, proliferation, and angiogenesis. Components and composite sponges were evaluated for osteogenic differentiation in vitro. Osteogenic sponges were loaded with MSC, PRP, PA, and NSE and implanted subcutaneously in rats to evaluate the formation of bone tissue and angiogenesis in vivo. It was found that the combination of a collagen sponge with CB MSC, PRP, PA, and the BMP2-releasing NSE formed the most bone and was most vascularized by four weeks compared to analogous composites featuring BM MSC or PCL or lacking PRP, PA, and NSE. This study indicates that CB MSC should be considered as an alternative to marrow as a source of stem cells, while the PRP-PA cell and microparticle delivery system may be utilized for diverse tissue engineering applications.
Collapse
|
39
|
Gorski JP. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed) 2011; 16:2598-621. [PMID: 21622198 DOI: 10.2741/3875] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of genetics has dramatically affected our understanding of the functions of non-collagenous proteins. Specifically, mutations and knockouts have defined their cellular spectrum of actions. However, the biochemical mechanisms mediated by non-collagenous proteins in biomineralization remain elusive. It is likely that this understanding will require more focused functional testing at the protein, cell, and tissue level. Although initially viewed as rather redundant and static acidic calcium binding proteins, it is now clear that non-collagenous proteins in mineralizing tissues represent diverse entities capable of forming multiple protein-protein interactions which act in positive and negative ways to regulate the process of bone mineralization. Several new examples from the author's laboratory are provided which illustrate this theme including an apparent activating effect of hydroxyapatite crystals on metalloproteinases. This review emphasizes the view that secreted non-collagenous proteins in mineralizing bone actively participate in the mineralization process and ultimately control where and how much mineral crystal is deposited, as well as determining the quality and biomechanical properties of the mineralized matrix produced.
Collapse
Affiliation(s)
- Jeffrey Paul Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Dept. of Oral Biology, Sch. Of Dentistry, Univ. of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
40
|
Matziolis D, Tuischer J, Matziolis G, Kasper G, Duda G, Perka C. Osteogenic predifferentiation of human bone marrow-derived stem cells by short-term mechanical stimulation. Open Orthop J 2011; 5:1-6. [PMID: 21270950 PMCID: PMC3027083 DOI: 10.2174/1874325001105010001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/08/2010] [Accepted: 07/19/2010] [Indexed: 11/22/2022] Open
Abstract
It is commonly accepted that bone marrow-derived stem cells (BMSCs) have to be expanded in vitro, but a prolonged time in culture decreases their multilineage potential. Mechanical and biological stimuli have been used to improve their osteogenic potential. While long-term stimulation has been shown to improve osteogenic differentiation, it remains to be seen whether short-term stimulation is also sufficient. We investigated the influence of 24 hours' cyclic loading (0.05Hz, 4kPa) on gene expression of human BMSCs in three-dimensional fibrin-DMEM constructs (n=7) in a compression bioreactor using DNA-array technology. Expression of the following genes showed a significant increase after mechanical stimulation: 2.6-fold osteopontin (OPN) and integrin-β1 (ITGB1), 2.2-fold transforming growth factor-β-receptor 1 (TGF-β-R1) and 2.4-fold SMAD5 expression, compared to controls without mechanical stimulation (p<0.05 each). Platelet-derived growth factor-α (PDGF-α ) and annexin-V were also significantly overexpressed, the mechanical stimulation resulting in a 1.8-fold and 1.6-fold expression (p<0.05). Cells were identified as osteoblast precursors with a high proliferative capacity. Given the identical in-vitro environment for both groups, the increase in gene expression has been interpreted as a direct influence of cyclic mechanical stimulation on osteogenic differentiation. It may be postulated that short-term mechanical stimulation results in an improved osseous integration of tissue engineered grafts in bone defect healing.
Collapse
|
41
|
Seo D, Goldschmidt-Clermont P, Goldschidt-Clermont P, Velazquez O, Beecham G. Genomics of premature atherosclerotic vascular disease. Curr Atheroscler Rep 2010; 12:187-93. [PMID: 20425258 DOI: 10.1007/s11883-010-0104-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atherosclerotic vascular disease is a systemic process with a common pathophysiology but with different disease manifestations depending on the vascular site. Over the past two decades, significant efforts have gone toward determining the genomic factors contributing to atherosclerotic vascular disease. Substantial information has been generated regarding the genomics of atherosclerotic coronary heart disease, and recently, several genomic analyses have looked at the cerebrovascular and peripheral vascular beds. This article reviews genomic investigations of atherosclerotic vascular disease in the coronary, cerebrovascular, and peripheral arteries. In this review, we have tried to restrict the discussion to studies of premature atherosclerosis, particularly those using non-biased genomic techniques.
Collapse
Affiliation(s)
- David Seo
- University of Miami Miller School of Medicine, 1501 NW 10th Ave, 809 Biomedical Research Building, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
42
|
Chang IC, Chiang TI, Yeh KT, Lee H, Cheng YW. Increased serum osteopontin is a risk factor for osteoporosis in menopausal women. Osteoporos Int 2010; 21:1401-9. [PMID: 20238102 DOI: 10.1007/s00198-009-1107-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 09/09/2009] [Indexed: 10/19/2022]
Abstract
SUMMARY Osteopontin (OPN)-deficient mice are resistant to ovariectomy-induced osteoporosis. Therefore, we hypothesized that women with OPN overexpression may show less resistance to postmenopausal osteoporosis. In this study, we first demonstrated that serum OPN levels could be used as a biomarker for the early diagnosis of osteoporosis in postmenopausal women. INTRODUCTION Animal studies indicate that OPN-deficient mice are resistant to ovariectomy-induced osteoporosis. METHODS From 2004 to 2006, 124 women over the age of 45 were enrolled in a menopausal group, while another 95 women, from 25 to 45 years of age with regular menstruation, were enrolled into a childbearing age group. The serum concentrations of OPN were calculated using the enzyme-link immunosorbent assay method, and bone mineral densities were determined with dual energy X-ray absorptiometry. RESULTS Serum OPN levels had a significant positive correlation with age (menopausal group, p < 0.0001) and a negative correlation with body weight, height, hip bone mineral density, and T-scores in the menopausal group. In contrast, there was a positive correlation with the E2 concentration and height, but there was no significant association with the above variables in the childbearing age group. Additionally, high serum OPN levels (>14.7 ng/ml) was a significant risk factor causing menopausal osteoporosis (odds ratio = 2.96, 95% confidence interval, 1.055-8.345). CONCLUSION Serum OPN levels could be used as a biomarker for the early diagnosis of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- I-C Chang
- Institute of Medicine, Chung Shan Medical University, Chien-Kuo N. Rd, Taichung, 402, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
43
|
Vogt MHJ, ten Kate J, Drent RJM, Polman CH, Hupperts R. Increased osteopontin plasma levels in multiple sclerosis patients correlate with bone-specific markers. Mult Scler 2010; 16:443-9. [DOI: 10.1177/1352458509359723] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pro-inflammatory cytokine osteopontin has been found to be highly expressed in multiple sclerosis lesions and plasma levels are increased during relapses in relapse-onset multiple sclerosis patients. The objective was to determine the relationship between osteopontin plasma and cerebrospinal fluid levels in relation to the immunoglobulin G index. In addition, osteopontin plasma levels were compared with osteopontin mRNA levels in peripheral blood mononuclear cells and bone-specific markers to analyse whether osteopontin may be peripherally produced. Osteopontin and bone-specific markers were determined in paired plasma—cerebrospinal fluid samples and serum samples of relapse-onset multiple sclerosis patients ( n = 36), respectively. Osteopontin mRNA levels were determined by quantitative polymerase chain reaction analysis. Compared to healthy controls ( n = 20), plasma osteopontin levels were significantly increased in relapsing-remitting multiple sclerosis patients and correlated ( r = 0.43, p = 0.013) with the immunoglobulin G index. In contrast, cerebrospinal fluid osteopontin levels correlated neither with plasma osteopontin in paired samples nor with the immunoglobulin G index. Since osteopontin mRNA levels in peripheral blood mononuclear cells of relapsing-remitting multiple sclerosis patients did not correlate with osteopontin plasma levels, peripheral blood mononuclear cells might not be the major source for the increased osteopontin plasma levels. Osteopontin plasma levels correlated ( r = 0.42, p = 0.035) with the bone-specific degradation product C-telopeptide of type-1 collagen. In addition, another immunomodulatory molecule involved in bone metabolism, 25-OH vitamin D, correlated negatively ( r = —0.359, p = 0.048) with the immunoglobulin G index. This study suggests that bone-related molecules like osteopontin and vitamin D with important immunomodulatory functions are related to the immunoglobulin G index in relapsing-remitting multiple sclerosis patients.
Collapse
Affiliation(s)
- Mario HJ Vogt
- Department of Clinical Chemistry and Hematology, Orbis Medical Center, Sittard-Geleen, The Netherlands,
| | - Joop ten Kate
- Department of Clinical Chemistry and Hematology, Orbis Medical Center, Sittard-Geleen, The Netherlands
| | - Roosmarie JM Drent
- Department of Clinical Chemistry and Hematology, Orbis Medical Center, Sittard-Geleen, The Netherlands
| | - Chris H Polman
- Department of Neurology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Raymond Hupperts
- Department of Neurology, Orbis Medical Center, Sittard-Geleen, The Netherlands
| |
Collapse
|
44
|
Pedrosa WF, Okamoto R, Faria PEP, Arnez MFM, Xavier SP, Salata LA. Immunohistochemical, tomographic and histological study on onlay bone graft remodeling. Part II: calvarial bone. Clin Oral Implants Res 2009; 20:1254-64. [DOI: 10.1111/j.1600-0501.2009.01747.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Vetrone SA, Montecino-Rodriguez E, Kudryashova E, Kramerova I, Hoffman EP, Liu SD, Miceli MC, Spencer MJ. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest 2009; 119:1583-94. [PMID: 19451692 DOI: 10.1172/jci37662] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 04/01/2009] [Indexed: 01/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked, degenerative muscle disease that is exacerbated by secondary inflammation. Here, we characterized the immunological milieu of dystrophic muscle in mdx mice, a model of DMD, to identify potential therapeutic targets. We identified a specific subpopulation of cells expressing the Vbeta8.1/8.2 TCR that is predominant among TCR-beta+ T cells. These cells expressed high levels of osteopontin (OPN), a cytokine that promotes immune cell migration and survival. Elevated OPN levels correlated with the dystrophic process, since OPN was substantially elevated in the serum of mdx mice and muscle biopsies after disease onset. Muscle biopsies from individuals with DMD also had elevated OPN levels. To test the role of OPN in mdx muscle, mice lacking both OPN and dystrophin were generated and termed double-mutant mice (DMM mice). Reduced infiltration of NKT-like cells and neutrophils was observed in the muscle of DMM mice, supporting an immunomodulatory role for OPN in mdx muscle. Concomitantly, an increase in CD4+ and FoxP3+ Tregs was also observed in DMM muscle, which also showed reduced levels of TGF-beta, a known fibrosis mediator. These inflammatory changes correlated with increased strength and reduced diaphragm and cardiac fibrosis. These studies suggest that OPN may be a promising therapeutic target for reducing inflammation and fibrosis in individuals with DMD.
Collapse
Affiliation(s)
- Sylvia A Vetrone
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7334, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cho HJ, Cho HJ, Kim HS. Osteopontin: A multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 2009; 11:206-13. [DOI: 10.1007/s11883-009-0032-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Maintenance of donor-specific chimerism despite osteopontin-associated bone fibrosis in a vascularized bone marrow transplantation model. Plast Reconstr Surg 2009; 123:34S-44S. [PMID: 19182662 DOI: 10.1097/prs.0b013e318191be13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The role of vascularized bone allografting is not established in plastic and reconstructive surgery. The authors evaluated the contribution by osteopontin to fibrosis of allografted bone in a vascularized bone marrow transplantation model across a major histocompatibility complex barrier. METHODS Thirty-six transplantations were performed between Brown Norway (RT1 n) donors and Lewis (RT1 l) recipients divided into three groups: group 1, isografts between Lewis rats (n = 12); group 2, allografts without treatment (n = 8); and group 3, allografts under a 7-day alphabeta-T-cell receptor/cyclosporine protocol (n = 16). Flow cytometry assessed the presence of chimerism for donor major histocompatibility complex class I (RT1 n) antigens. Immunostaining was used to determine osteopontin expression in grafted and recipient bone, and histologic examination was used to assess bone architecture. RESULTS Early engraftment of donor bone marrow cells (RT1 n) into the recipient bone marrow compartment was achieved at posttransplantation day 7. This corresponded with osteopontin expression restricted to the endosteum of trabecular bone and was associated with the preservation of hematopoietic cells within donor bone. Cell migration between donor and recipient bone marrow compartments was confirmed by the presence of recipient cells (RT1 l) within the allografted bone and donor-origin cells (RT1 n) within the recipient bone. At posttransplantation day 63, osteopontin expression within allografted bone was associated with allograft bone fibrosis and lack of hematopoietic properties. In contrast, the recipient's contralateral bone demonstrated a highly localized osteopontin expression pattern within the endosteum and active hematopoiesis with the presence of donor-specific (RT1 n) cells and correlated with chimerism maintenance. CONCLUSIONS These results confirm that despite up-regulation of osteopontin expression and fibrosis of allografted bone, vascularized bone marrow transplantation resulted in efficient engraftment of donor cells into the recipient's bone marrow compartment, leading to chimerism maintenance.
Collapse
|
48
|
Götz W, Gerber T, Michel B, Lossdörfer S, Henkel KO, Heinemann F. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws. Clin Oral Implants Res 2009; 19:1016-26. [PMID: 18828818 DOI: 10.1111/j.1600-0501.2008.01569.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Bone substitute biomaterials may be osteogenic, osteoconductive or osteoinductive. To test for these probable characteristics in a new nanoporous grafting material consisting of nanocrystalline hydroxyapatite embedded in a porous silica gel matrix (NanoBone(s)), applied in humans, we studied biopsies from 12 patients before dental implantation following various orofacial augmentation techniques with healing times of between 3.5 and 12 months. MATERIAL AND METHODS Sections from decalcified specimens were investigated using histology, histochemistry [periodic acid Schiff, alcian blue staining and tartrate-resistant acid phosphatase (TRAP)] and immunohistochemistry, with markers for osteogenesis, bone remodelling, resorption and vessel walls (alkaline phosphatase, bone morphogenetic protein-2, collagen type I, ED1, osteocalcin, osteopontin, runx2 and Von-Willebrand factor). RESULTS Histologically, four specific stages of graft transformation into lamellar bone could be characterized. During early stages of healing, bone matrix proteins were absorbed by NanoBone(s) granules, forming a proteinaceous matrix, which was invaded by small vessels and cells. We assume that the deposition of these molecules promotes early osteogenesis in and around NanoBone(s) and supports the concomitant degradation probably by osteoclast-like cells. TRAP-positive osteoclast-like cells were localized directly on the granular surfaces. Runx2-immunoreactive pre-osteoblasts, which are probably involved in direct osteogenesis forming woven bone that is later transformed into lamellar bone, were attracted. Graft resorption and bone apposition around the graft granules appear concomitantly. CONCLUSIONS We postulate that NanoBone(s) has osteoconductive and biomimetic properties and is integrated into the host's physiological bone turnover at a very early stage.
Collapse
Affiliation(s)
- Werner Götz
- Department of Orthodontics, Oral Biology Laboratory, University of Bonn, Dental Hospital, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Leen LLS, Filipe C, Billon A, Garmy-Susini B, Jalvy S, Robbesyn F, Daret D, Allières C, Rittling SR, Werner N, Nickenig G, Deutsch U, Duplàa C, Dufourcq P, Lenfant F, Desgranges C, Arnal JF, Gadeau AP. Estrogen-stimulated endothelial repair requires osteopontin. Arterioscler Thromb Vasc Biol 2008; 28:2131-6. [PMID: 18772499 DOI: 10.1161/atvbaha.108.167965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Estradiol (E(2)) is known to accelerate reendothelialization and thus prevent intimal thickening and in-stent restenosis after angioplasty. Transplantation experiments with ERalpha(-/-) mice have previously shown that E(2) acts through local and bone marrow cell compartments to enhance endothelial healing. However, the downstream mechanisms induced by E(2) to mediate endothelial repair are still poorly understood. METHODS AND RESULTS We show here that after endovascular carotid artery injury, E(2)-enhanced endothelial repair is lost in osteopontin-deficient mice (OPN(-/-)). Transplantation of OPN(-/-) bone marrow into wild-type lethally irradiated mice, and vice versa, suggested that osteopontin plays a crucial role in both the local and the bone marrow actions of E(2). In the vascular compartment, using transgenic mice expressing doxycyclin regulatable-osteopontin, we show that endothelial cell specific osteopontin overexpression mimics E(2)-enhanced endothelial cell migration and proliferation in the regenerating endothelium. In the bone marrow cell compartment, we demonstrate that E(2) enhances bone marrow-derived mononuclear cell adhesion to regenerating endothelium in vivo, and that this effect is dependent on osteopontin. CONCLUSIONS We demonstrate here that E(2) acceleration of the endothelial repair requires osteopontin, both for bone marrow-derived cell recruitment and for endothelial cell migration and proliferation.
Collapse
|
50
|
Kolanczyk M, Kühnisch J, Kossler N, Osswald M, Stumpp S, Thurisch B, Kornak U, Mundlos S. Modelling neurofibromatosis type 1 tibial dysplasia and its treatment with lovastatin. BMC Med 2008; 6:21. [PMID: 18671844 PMCID: PMC2516519 DOI: 10.1186/1741-7015-6-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 07/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bowing and/or pseudarthrosis of the tibia is a known severe complication of neurofibromatosis type 1 (NF1). Mice with conditionally inactivated neurofibromin (Nf1) in the developing limbs and cranium (Nf1Prx1) show bowing of the tibia caused by decreased bone mineralisation and increased bone vascularisation. However, in contrast to NF1 patients, spontaneous fractures do not occur in Nf1Prx1 mice probably due to the relatively low mechanical load. We studied bone healing in a cortical bone injury model in Nf1Prx1 mice as a model for NF1-associated bone disease. Taking advantage of this experimental model we explore effects of systemically applied lovastatin, a cholesterol-lowering drug, on the Nf1 deficient bone repair. METHODS Cortical injury was induced bilaterally in the tuberositas tibiae in Nf1Prx1 mutant mice and littermate controls according to a method described previously. Paraffin as well as methacrylate sections were analysed from each animal. We divided 24 sex-matched mutant mice into a lovastatin-treated and an untreated group. The lovastatin-treated mice received 0.15 mg activated lovastatin by daily gavage. The bone repair process was analysed at three consecutive time points post injury, using histological methods, micro computed tomography measurements and in situ hybridisation. At each experimental time point, three lovastatin-treated mutant mice, three untreated mutant mice and three untreated control mice were analysed. The animal group humanely killed on day 14 post injury was expanded to six treated and six untreated mutant mice as well as six control mice. RESULTS Bone injury repair is a complex process, which requires the concerted effort of numerous cell types. It is initiated by an inflammatory response, which stimulates fibroblasts from the surrounding connective tissue to proliferate and fill in the injury site with a provisional extracellular matrix. In parallel, mesenchymal progenitor cells from the periost are recruited into the injury site to become osteoblasts. In Nf1Prx1 mice bone repair is delayed and characterised by the excessive formation and the persistence of fibro-cartilaginous tissue and impaired extracellular matrix mineralisation. Correspondingly, expression of Runx2 is downregulated. High-dose systemic lovastatin treatment restores Runx2 expression and accelerates new bone formation, thus improving cortical bone repair in Nf1Prx1 tibia. The bone anabolic effects correlate with a reduction of the mitogen activated protein kinase pathway hyper-activation in Nf1-deficient cells. CONCLUSION Our data suggest the potential usefulness of lovastatin, a drug approved by the US Food and Drug Administration in 1987 for the treatment of hypercholesteraemia, in the treatment of Nf1-related fracture healing abnormalities. The experimental model presented here constitutes a valuable tool for the pre-clinical stage testing of candidate drugs, targeting Nf1-associated bone dysplasia.
Collapse
Affiliation(s)
- Mateusz Kolanczyk
- Max Planck Institute for Molecular Genetics, FG Development & Disease, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|