1
|
Abstract
Peptide hormones represent a major class of hormones that are made from amino acids by specialized endocrine glands. The maturation of bioactive hormones take place in the rough endoplasmic reticulum and Golgi apparatus, where preprohormones are proteolytically cleaved into prohormones, and subsequently into mature peptide hormones. Once the bioactive hormones are released into the circulation, they interact with receptors located on the plasma membrane of target cells, and initiate intracellular signaling pathways to regulate physiological processes including energy metabolism, growth, stress, and reproduction. However, excessive amount of circulating peptide hormones often associates with the presence of tumors. Section 2 discusses 10 peptide hormones as tumor markers and their clinical application in aiding the diagnosis of tumors as well as monitoring the disease process.
Collapse
Affiliation(s)
- Qian Sun
- National Institutes of Health, Bethesda, MD, United States
| | - Zhen Zhao
- National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
2
|
Liu Y, Wang C, Wang HY, Wu HL, Chen WH, He DQ. Molecular cloning, characterisation and tissues expression analysis of the goose (Anser cygnoides) vasoactive intestinal peptide (VIP) gene. Br Poult Sci 2014; 55:720-7. [PMID: 25347433 DOI: 10.1080/00071668.2014.974505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Vasoactive intestinal peptide (VIP) is involved in the control of prolactin (PRL) release and plays a pivotal role as a regulator of reproductive behaviour and neuroendocrine secretion in birds. 2. In this study, a 941-bp cDNA fragment covering the complete coding region (CDS) of goose VIP gene was identified. The cDNA contains a 32-bp 5'-untranslated region (UTR), a 603-bp CDS and a 306-bp 3'-UTR containing two ATTTA sequence elements, two polyadenylation signals (AATAAA) and a 25-bp poly (A) tail. 3. Seven exons and 6 introns were identified, and both the cDNA and genomic DNA sequences showed high identity with those of other species. 4. The sequence analysis indicated that there were two alternatively spliced transcripts the long transcript (VIP-1) encoded both VIP and peptide histidine isoleucine exons and the short one (VIP-2) only encoded VIP. 5. RT-PCR analysis indicates that the expression level of the VIP-1 is much lower than that of VIP-2, and that VIP-1 is negligible or absent in muscle, abdominal fat, ovary and spleen, whereas VIP-2 is widely distributed in all the examined tissues. 6. A total of 12 single nucleotide polymorphisms (SNPs), including 2 SNPs located in the coding region and 10 variations in intron regions, were identified in goose VIP gene.
Collapse
Affiliation(s)
- Y Liu
- a Institute of Animal Husbandry and Veterinary Science Research , Shanghai Academy of Agricultural Sciences , Shanghai 201106 , China
| | | | | | | | | | | |
Collapse
|
3
|
Malafoglia V, Colasanti M, Raffaeli W, Balciunas D, Giordano A, Bellipanni G. Extreme thermal noxious stimuli induce pain responses in zebrafish larvae. J Cell Physiol 2014; 229:300-8. [PMID: 23929528 DOI: 10.1002/jcp.24447] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/06/2022]
Abstract
Exposing tissues to extreme high or low temperature leads to burns. Burned animals sustain several types of damage, from the disruption of the tissue to degeneration of axons projecting through muscle and skin. Such damage causes pain due to both inflammation and axonal degeneration (neuropathic-like pain). Thus, the approach to cure and alleviate the symptoms of burns must be twofold: rebuilding the tissue that has been destroyed and alleviating the pain derived from the burns. While tissue regeneration techniques have been developed, less is known on the treatment of the induced pain. Thus, appropriate animal models are necessary for the development of the best treatment for pain induced in burned tissues. We have developed a methodology in the zebrafish aimed to produce a new animal model for the study of pain induced by burns. Here, we show that two events linked to the onset of burn-induced inflammation and neuropathic-like pain in mammals, degeneration of axons innervating the affected tissues and over-expression of specific genes in sensory tissues, are conserved from zebrafish to mammals.
Collapse
Affiliation(s)
- Valentina Malafoglia
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania; ISAL-Foundation, Institute for Research on Pain, Torre Pedrera (RN), Italy
| | | | | | | | | | | |
Collapse
|
4
|
Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus. PLoS One 2013; 8:e53482. [PMID: 23308232 PMCID: PMC3537680 DOI: 10.1371/journal.pone.0053482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
Abstract
The evolutionary trajectories of growth hormone-releasing hormone (GHRH) receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR) in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2) in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP) receptor (PRPR). In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi) and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2) in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2) was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2) had the highest expression in brain, and interestingly, X. laevis(GHRHR2) also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2), which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.
Collapse
|
5
|
Ng SYL, Chow BKC, Kasamatsu J, Kasahara M, Lee LTO. Agnathan VIP, PACAP and their receptors: ancestral origins of today's highly diversified forms. PLoS One 2012; 7:e44691. [PMID: 22957100 PMCID: PMC3434177 DOI: 10.1371/journal.pone.0044691] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/06/2012] [Indexed: 01/04/2023] Open
Abstract
VIP and PACAP are pleiotropic peptides belonging to the secretin superfamily of brain-gut peptides and interact specifically with three receptors (VPAC1, PAC1 and VPAC2) from the class II B G protein-coupled receptor family. There is immense interest regarding their molecular evolution which is often described closely alongside gene and/or genome duplications. Despite the wide array of information available in various vertebrates and one invertebrate the tunicate, their evolutionary origins remain unresolved. Through searches of genome databases and molecular cloning techniques, the first lamprey VIP/PACAP ligands and VPAC receptors are identified from the Japanese lamprey. In addition, two VPAC receptors (VPACa/b) are identified from inshore hagfish and ligands predicted for sea lamprey. Phylogenetic analyses group these molecules into their respective PHI/VIP, PRP/PACAP and VPAC receptor families and show they resemble ancestral forms. Japanese lamprey VIP/PACAP peptides synthesized were tested with the hagfish VPAC receptors. hfVPACa transduces signal via both adenylyl cylase and phospholipase C pathways, whilst hfVPACb was only able to transduce through the calcium pathway. In contrast to the widespread distribution of VIP/PACAP ligands and receptors in many species, the agnathan PACAP and VPAC receptors were found almost exclusively in the brain. In situ hybridisation further showed their abundance throughout the brain. The range of VIP/PACAP ligands and receptors found are highly useful, providing a glimpse into the evolutionary events both at the structural and functional levels. Though representative of ancestral forms, the VIP/PACAP ligands in particular have retained high sequence conservation indicating the importance of their functions even early in vertebrate evolution. During these nascent stages, only two VPAC receptors are likely responsible for eliciting functions before evolving later into specific subtypes post-Agnatha. We also propose VIP and PACAP's first functions to predominate in the brain, evolving alongside the central nervous system, subsequently establishing peripheral functions.
Collapse
Affiliation(s)
- Stephanie Y. L. Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Jun Kasamatsu
- Department of Pathology, Graduate School of Medicine, Hokkaido University, Kita-ku, Japan
| | - Masanori Kasahara
- Department of Pathology, Graduate School of Medicine, Hokkaido University, Kita-ku, Japan
| | - Leo T. O. Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- * E-mail:
| |
Collapse
|
6
|
Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 2012; 166:4-17. [PMID: 22289055 DOI: 10.1111/j.1476-5381.2012.01871.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, gastric inhibitory peptide (GIP) and growth hormone-releasing hormone (GHRH). VIP and PACAP exert their actions through three GPCRs - PAC(1) , VPAC(1) and VPAC(2) - belonging to class B (also referred to as class II, or secretin receptor-like GPCRs). This family comprises receptors for all peptides structurally related to VIP and PACAP, and also receptors for parathyroid hormone, corticotropin-releasing factor, calcitonin and related peptides. PAC(1) receptors are selective for PACAP, whereas VPAC(1) and VPAC(2) respond to both VIP and PACAP with high affinity. VIP and PACAP play diverse and important roles in the CNS, with functions in the control of circadian rhythms, learning and memory, anxiety and responses to stress and brain injury. Recent genetic studies also implicate the VPAC(2) receptor in susceptibility to schizophrenia and the PAC(1) receptor in post-traumatic stress disorder. In the periphery, VIP and PACAP play important roles in the control of immunity and inflammation, the control of pancreatic insulin secretion, the release of catecholamines from the adrenal medulla and as co-transmitters in autonomic and sensory neurons. This article, written by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) subcommittee on receptors for VIP and PACAP, confirms the existing nomenclature for these receptors and reviews our current understanding of their structure, pharmacology and functions and their likely physiological roles in health and disease. More detailed information has been incorporated into newly revised pages in the IUPHAR database (http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=67).
Collapse
|
7
|
Tam JKV, Lau KW, Lee LTO, Chu JYS, Ng KM, Fournier A, Vaudry H, Chow BKC. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin. PLoS One 2011; 6:e19384. [PMID: 21559418 PMCID: PMC3084839 DOI: 10.1371/journal.pone.0019384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa) secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.
Collapse
Affiliation(s)
- Janice K. V. Tam
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwan-Wa Lau
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leo T. O. Lee
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jessica Y. S. Chu
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwong-Man Ng
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alain Fournier
- INRS – Institut Armand-Frappier, Université du Quebec, Laval, Québec, Canada
| | - Hubert Vaudry
- INSERM U982, European Institute for Peptide Research, University of Rouen, Mont-Saint-Aignan, France
| | - Billy K. C. Chow
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
8
|
Cardoso JCR, Vieira FA, Gomes AS, Power DM. The serendipitous origin of chordate secretin peptide family members. BMC Evol Biol 2010; 10:135. [PMID: 20459630 PMCID: PMC2880984 DOI: 10.1186/1471-2148-10-135] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 05/06/2010] [Indexed: 01/15/2023] Open
Abstract
Background The secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and their evolution remains enigmatic. Results In silico sequence comparisons failed to retrieve a non-vertebrate (porifera, cnidaria, protostome and early deuterostome) secretin family homologue. In contrast, secretin family members were identified in lamprey, several teleosts and tetrapods and comparative studies revealed that sequence and structure is in general maintained. Sequence comparisons and phylogenetic analysis revealed that PACAP, VIP and GCG are the most highly conserved members and two major peptide subfamilies exist; i) PACAP-like which includes PACAP, PRP, VIP, PH, GHRH, SCT and ii) GCG-like which includes GCG, GLP1, GLP2 and GIP. Conserved regions flanking secretin family members were established by comparative analysis of the Takifugu, Xenopus, chicken and human genomes and gene homologues were identified in nematode, Drosophila and Ciona genomes but no gene linkage occurred. However, in Drosophila and nematode genes which flank vertebrate secretin family members were identified in the same chromosome. Conclusions Receptors of the secretin-like family GPCRs are present in protostomes but no sequence homologues of the vertebrate cognate ligands have been identified. It has not been possible to determine when the ligands evolved but it seems likely that it was after the protostome-deuterostome divergence from an exon that was part of an existing gene or gene fragment by rounds of gene/genome duplication. The duplicate exon under different evolutionary pressures originated the chordate PACAP-like and GCG-like subfamily groups. This event occurred after the emergence of the metazoan secretin GPCRs and led to the establishment of novel peptide-receptor interactions that contributed to the generation of novel physiological functions in the chordate lineage.
Collapse
Affiliation(s)
- João C R Cardoso
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal.
| | | | | | | |
Collapse
|
9
|
Kellogg DL, Zhao JL, Wu Y, Johnson JM. VIP/PACAP receptor mediation of cutaneous active vasodilation during heat stress in humans. J Appl Physiol (1985) 2010; 109:95-100. [PMID: 20395540 DOI: 10.1152/japplphysiol.01187.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is implicated in cutaneous active vasodilation in humans. VIP and the closely related pituitary adenylate cyclase activating peptide (PACAP) act through several receptor types: VIP through VPAC1 and VPAC2 receptors and PACAP through VPAC1, VPAC2, and PAC1 receptors. We examined participation of VPAC2 and/or PAC1 receptors in cutaneous vasodilation during heat stress by testing the effects of their specific blockade with PACAP6-38. PACAP6-38 dissolved in Ringer's was administered by intradermal microdialysis at one forearm site while a control site received Ringer's solution. Skin blood flow was monitored by laser-Doppler flowmetry (LDF). Blood pressure was monitored noninvasively and cutaneous vascular conductance (CVC) calculated. A 5- to 10-min baseline period was followed by approximately 70 min of PACAP6-38 (100 microM) perfusion at one site in normothermia and a 3-min period of body cooling. Whole body heating was then performed to engage cutaneous active vasodilation and was maintained until CVC had plateaued at an elevated level at all sites for 5-10 min. Finally, 58 mM sodium nitroprusside was perfused through both microdialysis sites to effect maximal vasodilation. No CVC differences were found between control and PACAP6-38-treated sites during normothermia (19 +/- 3%max untreated vs. 20 +/- 3%max, PACAP6-38 treated; P > 0.05 between sites) or cold stress (11 +/- 2%max untreated vs. 10 +/- 2%max, PACAP6-38 treated, P > 0.05 between sites). PACAP6-38 attenuated the increase in CVC during whole body heating when compared with untreated sites (59 +/- 3%max untreated vs. 46 +/- 3%max, PACAP6-38 treated, P < 0.05). We conclude that VPAC2 and/or PAC1 receptor activation is involved in cutaneous active vasodilation in humans.
Collapse
Affiliation(s)
- Dean L Kellogg
- Division of Geriatrics and Gerontology, Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| | | | | | | |
Collapse
|
10
|
Lee SH, Cox CL. Excitatory actions of peptide histidine isoleucine on thalamic relay neurons. Neuropharmacology 2008; 55:1329-39. [PMID: 18804119 DOI: 10.1016/j.neuropharm.2008.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 11/30/2022]
Abstract
Peptide histidine isoleucine (PHI) and vasoactive intestinal peptide (VIP) are neuropeptides synthesized from a common precursor, prepro-VIP, and share structural similarity and biological functions in many systems. Within the central nervous system and peripheral tissues, PHI and VIP have overlapping distribution. PHI-mediated functions are generally via activation of VIP receptors; however, the potency and affinity of PHI for VIP receptors are significantly lower than VIP. In addition, several studies suggest distinct PHI receptors that are independent of VIP receptors. PHI receptors have been cloned and characterized in fish, but their existence in mammals is still unknown. This study focuses on the functional role of PHI in the thalamus because of the localization of both PHI and VIP receptors in this brain region. Using extracellular multiple-unit recording techniques, we found that PHI strongly attenuated the slow intrathalamic rhythmic activity. Using intracellular recording techniques, we found that PHI selectively depolarized thalamic relay neurons via an enhancement of the hyperpolarization-activated mixed cation current, Ih. Further, the actions of PHI were occluded by VIP and dopamine, indicating these modulators converge onto a common mechanism. In contrast to previous work, we found that PHI was more potent than VIP in producing excitatory actions on thalamic neurons. We next used the transgenic mice lacking a specific VIP receptor, VPAC2, to identify its possible role in PHI-mediated actions in the thalamus. PHI depolarized all relay neurons tested from wild-type mice (VPAC2(+/+)); however, in knockout mice (VPAC2(-/-)), PHI produced no change in membrane potential in all neurons tested. Our findings indicate that excitatory actions of PHI are mediated by VPAC2 receptors, not by its own PHI receptors and the excitatory actions of PHI clearly attenuate intrathalamic rhythmic activities, and likely influence information transfer through thalamocortical circuits.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Molecular and Integrative Physiology, 2357 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, MC-251, Urbana, IL 61801, United States
| | | |
Collapse
|
11
|
Ma JN, Currier EA, Essex A, Feddock M, Spalding TA, Nash NR, Brann MR, Burstein ES. Discovery of novel peptide/receptor interactions: identification of PHM-27 as a potent agonist of the human calcitonin receptor. Biochem Pharmacol 2004; 67:1279-84. [PMID: 15013843 DOI: 10.1016/j.bcp.2003.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 11/13/2003] [Indexed: 10/26/2022]
Abstract
Many naturally occurring peptides exhibit a high degree of promiscuity across G-protein coupled receptor subtypes. The degree to which this phenomenon occurs, and its physiological significance is not well characterized. In addition, many 'orphan' peptides exist for which there are no known receptors. Therefore, to identify novel interactions between biologically active peptides and G-protein coupled receptors, a library of nearly 200 peptides was screened against the human calcitonin (hCTr), human Parathyroid Hormone (PTH1R), human Corticotropin Releasing Factor (CRF1), and the human Glucagon-like peptide (GLP1) receptors using a cell-based functional assay (Receptor Selection and Amplification Technology). Functional profiling revealed that the 'orphan peptide' PHM-27 selectively activated the hCTr; no activity was observed at the PTH1, CRF1, or GLP1 receptors. PHM-27 was a potent agonist at the hCTr, with similar efficacy as human calcitonin, and a potency of 11 nM. These results were confirmed in cyclic AMP assays. Responses to calcitonin and PHM-27 could be suppressed by the antagonist salmon calcitonin (8-32). In competition binding studies, salmon calcitonin (8-32), calcitonin, and PHM-27 were each able to inhibit (125)I-calcitonin from cell membranes containing transiently expressed hCTr. These results indicate that the orphan peptide PHM-27 is a potent agonist at the hCTr.
Collapse
Affiliation(s)
- Jian-Nong Ma
- ACADIA Pharmaceuticals, 3911 Sorrento Valley Blvd., San Diego, CA 92130, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Itri J, Colwell CS. Regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus. J Neurophysiol 2003; 90:1589-97. [PMID: 12966176 DOI: 10.1152/jn.00332.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circadian rhythmicity in mammals is generated by a pair of nuclei in the anterior hypothalamus known as the suprachiasmatic nuclei (SCN), whose neurons express a variety of neuropeptides that are thought to play an important role in the circadian timing system. To evaluate the influence of VIP on inhibitory synaptic transmission between SCN neurons, we used whole cell patch-clamp recording in an acute brain slice preparation of mouse SCN. Baseline spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) varied significantly between regions and across phases, with a greater frequency of IPSCs observed in the dorsomedial region during the early night. Bath-applied VIP caused a significant increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) in a reversible and dose-dependent manner with no effect on the mean amplitude or kinetic parameters. The effect of VIP was widespread throughout the SCN and observed in both ventrolateral (VL) and dorsomedial (DM) regions. In the presence of tetrodotoxin, VIP increased the frequency of miniature IPSCs without affecting the mean magnitude or kinetic parameters. The magnitude of the enhancement by VIP was significantly larger during the day than during the night. Pretreatment with the VIP-PACAP receptor antagonist [Ac-Tyr1, D-Phe2]-GHRF 1-29 or the selective VPAC2 receptor antagonist PG 99-465 completely blocked the VIP-induced enhancement. The effect of VIP appears to be mediated by a cAMP/PKA-dependent mechanism as forskolin mimics, while the PKA antagonist H-89 blocks the observed enhancement of GABA currents. Our data suggest that VIP activates presynaptic VPAC2 receptors to regulate inhibitory synaptic transmission within the SCN and that this effect varies from day to night.
Collapse
Affiliation(s)
- Jason Itri
- Mental Retardation Research Center, Department of Psychiatry, University of California, Los Angeles, California 90024-1759, USA
| | | |
Collapse
|
13
|
Olszewski PK, Wirth MM, Shaw TJ, Grace MK, Levine AS. Peptides that regulate food intake: effect of peptide histidine isoleucine on consummatory behavior in rats. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1445-53. [PMID: 12595279 DOI: 10.1152/ajpregu.00554.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide histidine isoleucine (PHI) and VIP are derived from the same precursor. While central VIP decreases food intake, potential effects of PHI on feeding have not been studied. In the current study, we found that PHI administered intracerebroventricularly (ICV) or into the hypothalamic paraventricular nucleus (PVN) or central nucleus of the amygdala (CeA) decreased food consumption in overnight-deprived rats. The magnitude of an anorexigenic response to PHI differed depending on the injection route: ICV-infused peptide evoked the most potent effect. We determined that that only PVN- and CeA-injected PHI did not have aversive consequences. In addition, we infused anorexigenic doses of PHI via the same routes and assessed Fos immunoreactivity of PVN oxytocin (OT) and vasopressin (VP) neurons using double immunohistochemistry. OT and VP are thought to promote feeding termination. PHI increased the percentage of Fos-positive OT neurons regardless of the injection route. PVN- and ICV-infused PHI induced activation of VP cells. We conclude that central PHI has an inhibitory influence on food intake in rats. The PVN, with OT and VP neurons, and CeA may be involved in the mediation of anorexigenic effects of PHI.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Veterans Affairs Medical Center, Research Service, Minneapolis 55417, USA.
| | | | | | | | | |
Collapse
|
14
|
Yeung CM, Mojsov S, Mok PY, Chow BKC. Isolation and structure-function studies of a glucagon-like peptide 1 receptor from goldfish Carassius auratus: identification of three charged residues in extracellular domains critical for receptor function. Endocrinology 2002; 143:4646-54. [PMID: 12446592 DOI: 10.1210/en.2002-220694] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A better understanding of the molecular mechanism of ligand-receptor interaction of glucagon-like peptide 1 (GLP-1) receptors (GLP-1Rs) is useful for the design of potent GLP-1 analogs that could potentially be used as a treatment for diabetic patients. Changes in the ligand and receptor sequences during evolution provide invaluable clues to evaluate the functional motifs of the receptor that are responsible for ligand interaction. For these reasons, in the present study, we have isolated and functionally characterized a GLP-1R from goldfish. Its amino acid sequence shows 50.8% and 52.3% identity with the human glucagon (hGLU) and GLP-1Rs, respectively, and 84.1% with the zebrafish GLP-1R (the only other GLP-1R isolated from teleost fish). Peptides that are structurally different from goldfish (gf)GLP-1, such as gfGLU and hGLU and human GLP-1 (7-36)amide, are also capable of stimulating this receptor, albeit with lower potencies than gfGLP-1. gfGLP-1 stimulates the formation of cAMP through the recombinant gfGLP-1R with EC(50) = 0.18 nM, whereas EC(50) values for gfGLU, human GLP-1 (7-36)amide, and hGLU are 0.53 nM, 0.9 nM, and 1.2 nM, respectively. These results indicate that the gfGLP-1R is structurally more flexible than its mammalian counterpart and that its binding pocket can accommodate a wider spectrum of peptide ligands. Previous studies demonstrated that the charged residues in the extracellular domains of mammalian GLP-1R, particularly those found in the N-terminal domain and the first exoloop, are important for ligand binding. We investigated the roles of the conserved charged residues in the function of the gfGLP-1R. Eleven mutant receptors were constructed, and the effects of mutations were determined by functional assays. Our results demonstrated that three charged residues (D(113), R(197), and D(205)) present in the extracellular domains are critical for receptor function.
Collapse
Affiliation(s)
- Chung-Man Yeung
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | |
Collapse
|