1
|
Swalsingh G, Pani P, Senapati U, Sahu B, Pani S, Pati B, Rout S, Bal NC. Intramuscular administration of fractalkine modulates mitochondrial properties and promotes fast glycolytic phenotype. Biofactors 2025; 51:e2092. [PMID: 39052304 DOI: 10.1002/biof.2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
A newly categorized myokine called fractalkine (CX3CL1) has been associated with divergent conditions such as obesity, tissue inflammation, and exercise. CX3CL1 works through specific membrane-bound receptors (CX3CR1) found in various tissues including skeletal muscles. Studies indicate CX3CL1 induces muscles to uptake energy substrates thereby improving glucose utilization and countering diabetes. Here, we tested if the administration of purified CX3CL1 directly into mice skeletal muscles affects its histoarchitecture, mitochondrial activity, and expression of metabolic proteins. We analyzed four muscles: two upper-limb (quadriceps, hamstrings) and two lower-limb (tibialis anterior, gastrocnemius), contralateral leg muscles were taken as controls. The effects of CX3CL1 treatment on histoarchitecture, mitochondrial activity, and expression of metabolic proteins in muscles were characterized. We used histochemical staining succinate dehydrogenase (SDH)/cytochrome c oxidase (COX), myosin ATPase, alkaline phosphatase (ALP) to evaluate the mitochondrial activity, fiber types, and vascularization in the muscles, respectively. Western blotting was used to evaluate the expression of proteins associated with mitochondrial metabolism (OXPHOS), glycolysis, and vascularization. Overall, this study indicates CX3CL1 primarily modulates mitochondrial metabolism and shifts substrate preference toward glucose in the skeletal muscle. Evidence also supports that CX3CL1 stimulates the relative composition of fast fiber types, influencing selection of energy substrates in the skeletal muscle.
Collapse
Affiliation(s)
| | - Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Unmod Senapati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Sunil Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Benudhara Pati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Subhasmita Rout
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Luo H, Chen Y, Li J, Yang Y, Wang X, Yang P, Guo C, Liu F. Inflammatory proteins and hidradenitis suppurativa: Insights from genetic correlation and Mendelian randomization. J Dermatol 2024. [PMID: 39704160 DOI: 10.1111/1346-8138.17590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Previous research has highlighted a significant association between inflammatory proteins and the development and progression of hidradenitis suppurativa (HS). Nevertheless, the potential causative link between these factors remains to be definitively established. To investigate the genetic correlation between inflammatory proteins and HS, linkage disequilibrium score regression (LDSC) was employed. Mendelian randomization (MR) analysis, incorporating inverse variance weighted, MR-Egger, and weighted median methodologies, was utilized to evaluate the possible causal relationship between circulating inflammatory proteins (CIPs) and HS. Additionally, reverse MR analysis was carried out to explore reverse causality. The data set for 91 CIPs was derived from a genome-wide protein quantitative trait loci study, while HS-related data were acquired from the FinnGen study. Moreover, the stability of the causal relationships was assessed via sensitivity analyses, encompassing tests for pleiotropy, heterogeneity, and leave-one-out analysis. The LDSC analysis suggested the existence of genetic correlations between the levels of Fibroblast growth factor 21 (FGF-21), stem cell factor, and HS. The MR analysis identified a suggestive association of T-cell surface glycoprotein CD5 and C-X-C motif chemokine 11 with an elevated risk of HS. Conversely, C-C motif chemokine 4, Protein S100-A12, Interleukin-10 receptor subunit beta, and Programmed cell death 1 ligand 1 were associated with a diminished risk of HS. Moreover, HS was demonstrated to increase the levels of four CIPs: Interleukin-20, Leukemia inhibitory factor (LIF), LIF receptor, and Thymic stromal lymphopoietin. The findings of this investigation offer suggestive evidence for possible genetic correlations and causal links between various genetically predicted inflammatory proteins and HS. There exists a pressing requirement for additional studies to elucidate the fundamental processes driving these associations.
Collapse
Affiliation(s)
- Hui Luo
- Department of Traditional Chinese Medicine, People's Hospital of Xiangyun County, Dali, China
| | - Yang Chen
- Department of Traditional Chinese Medicine, People's Hospital of Xiangyun County, Dali, China
| | - Jianrong Li
- Department of Traditional Chinese Medicine, People's Hospital of Xiangyun County, Dali, China
| | - Yanmei Yang
- Department of Traditional Chinese Medicine, People's Hospital of Xiangyun County, Dali, China
| | - Xiujun Wang
- Department of Traditional Chinese Medicine, People's Hospital of Xiangyun County, Dali, China
| | - Ping Yang
- Department of Traditional Chinese Medicine, People's Hospital of Xiangyun County, Dali, China
| | - Chuang Guo
- Department of Traditional Chinese Medicine, People's Hospital of Xiangyun County, Dali, China
| | - Fei Liu
- Department of Traditional Chinese Medicine, People's Hospital of Xiangyun County, Dali, China
| |
Collapse
|
3
|
Mohammadi F, Beauparlant CJ, Bianco S, Droit A, Bertrand N, Rudkowska I. Ruminant Trans Fatty Acid Intake Modulates Inflammation Pathways in the Adipose Tissue Transcriptome of C57BL/6 Mice. Mol Nutr Food Res 2024; 68:e2400290. [PMID: 39396377 DOI: 10.1002/mnfr.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/05/2024] [Indexed: 10/15/2024]
Abstract
SCOPE The study aims to analyze transcriptomic profiles in adipose tissues postconsumption of elaidic acid (EA; trans-18:1n-9) and trans-palmitoleic acid (TPA; trans-16:1n-7), elucidating their different effects on inflammation and glucose metabolism. METHODS AND RESULTS Twenty C57BL/6 mice are divided into four groups. Each group receives one of the following formulations in drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 w/w), or water (control) for 28 days with a regular fat diet (18% calories from fat). Total RNA is extracted, and paired-end sequencing is performed. TPA intake alters the expression of 351 genes compared to EA intake, including 11 downregulated and 340 upregulated genes (fold change [FC] >1.5, p < 0.05). TPA compares to EA upregulated: Slc5a8, Lcn2, Csf3, Scube1, Mapk13, Bdkrb2, Ctla2a, Slc2a1, Oas3, Cx3cl1, Oas2, Nlrp6, Pycard, Cyba, Ddr1, and Prkab1 and downregulated Fas gene. These genes are related to the NOD-like receptor, lipid and atherosclerosis, IL-17 signaling, TNF, nonalcoholic fatty liver disease, cytokine-cytokine receptor interaction, adipocytokine, glucagon, insulin resistance, and inflammatory mediator regulation of TRP channels signaling. CONCLUSION TPA intake has a distinct impact on the regulation of inflammation and diabetes-related pathways in adipose tissue compared to EA.
Collapse
Affiliation(s)
- Farzad Mohammadi
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
- Département de Kinésiologie, Université Laval, Québec, Canada
| | - Charles Joly Beauparlant
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphanie Bianco
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Arnaud Droit
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Nicolas Bertrand
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, G1V0A6, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
- Département de Kinésiologie, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Apaza CJ, Cerezo JF, García-Tejedor A, Giménez-Bastida JA, Laparra-Llopis JM. Revisiting the Immunometabolic Basis for the Metabolic Syndrome from an Immunonutritional View. Biomedicines 2024; 12:1825. [PMID: 39200288 PMCID: PMC11352112 DOI: 10.3390/biomedicines12081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic syndrome (MetS) implies different conditions where insulin resistance constitutes a major hallmark of the disease. The disease incurs a high risk for the development of cardiovascular complications, and takes its toll in regard to the gut-liver axis (pancreas, primary liver and colorectal)-associated immunity. The modulation of immunometabolic responses by immunonutritional factors (IFs) has emerged as a key determinant of the gut-liver axis' metabolic and immune health. IFs from plant seeds have shown in vitro and pre-clinical effectiveness primarily in dealing with various immunometabolic and inflammatory diseases. Only recently have immunonutritional studies established the engagement of innate intestinal immunity to effectively control immune alterations in inflamed livers preceding the major features of the MetS. However, integrative analyses and the demonstration of causality between IFs and specific gut-liver axis-associated immunometabolic imbalances for the MetS remain ill-defined in the field. Herein, a better understanding of the IFs with a significant role in the MetS, as well as within the dynamic interplay in the functional differentiation of innate immune key effectors (i.e., monocytes/macrophages), worsening or improving the disease, could be of crucial relevance. The development of an adequate intermediary phenotype of these cells can significantly contribute to maintaining the function of Tregs and innate lymphoid cells for the prevention and treatment of MetS and associated comorbidities.
Collapse
Affiliation(s)
- César Jeri Apaza
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Carretera Cantoblanco 8, 28049 Madrid, Spain
- Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, 46002 Valencia, Spain
| | - Juan Francisco Cerezo
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Carretera Cantoblanco 8, 28049 Madrid, Spain
| | - Aurora García-Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, 46002 Valencia, Spain
| | - Juan Antonio Giménez-Bastida
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Campus de Espinardo, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain;
| | - José Moisés Laparra-Llopis
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Carretera Cantoblanco 8, 28049 Madrid, Spain
- Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, 46002 Valencia, Spain
| |
Collapse
|
5
|
Cutugno G, Kyriakidou E, Nadjar A. Rethinking the role of microglia in obesity. Neuropharmacology 2024; 253:109951. [PMID: 38615749 DOI: 10.1016/j.neuropharm.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Microglia are the macrophages of the central nervous system (CNS), implying their role in maintaining brain homeostasis. To achieve this, these cells are sensitive to a plethora of endogenous and exogenous signals, such as neuronal activity, cellular debris, hormones, and pathological patterns, among many others. More recent research suggests that microglia are highly responsive to nutrients and dietary variations. In this context, numerous studies have demonstrated their significant role in the development of obesity under calorie surfeit. Because many reviews already exist on this topic, we have chosen to present the state of our reflections on various concepts put forth in the literature, bringing a new perspective whenever possible. Our literature review focuses on studies conducted in the arcuate nucleus of the hypothalamus, a key structure in the control of food intake. Specifically, we present the recent data available on the modifications of microglial energy metabolism following the consumption of an obesogenic diet and their consequences on hypothalamic neuron activity. We also highlight the studies unraveling the mechanisms underlying obesity-related sexual dimorphism. The review concludes with a list of questions that remain to be addressed in the field to achieve a comprehensive understanding of the role of microglia in the regulation of body energy metabolism. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- G Cutugno
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - E Kyriakidou
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - A Nadjar
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
6
|
Yu W, Zhang Y, Sun L, Huang W, Li X, Xia N, Chen X, Wikana LP, Xiao Y, Chen M, Han S, Wang Z, Pu L. Myeloid Trem2 ameliorates the progression of metabolic dysfunction-associated steatotic liver disease by regulating macrophage pyroptosis and inflammation resolution. Metabolism 2024; 155:155911. [PMID: 38609037 DOI: 10.1016/j.metabol.2024.155911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing year by year and has become one of the leading causes of end-stage liver disease worldwide. Triggering Receptor Expressed on Myeloid Cells 2 (Trem2) has been confirmed to play an essential role in the progression of MASLD, but its specific mechanism still needs to be clarified. This study aims to explore the role and mechanism of Trem2 in MASLD. METHODS Human liver tissues were obtained from patients with MASLD and controls. Myeloid-specific knockout mice (Trem2mKO) and myeloid-specific overexpression mice (Trem2TdT) were fed a high-fat diet, either AMLN or CDAHFD, to establish the MASLD model. Relevant signaling molecules were assessed through lipidomics and RNA-seq analyses after that. RESULTS Trem2 is upregulated in human MASLD/MASH-associated macrophages and is associated with hepatic steatosis and inflammation progression. Hepatic steatosis and inflammatory responses are exacerbated with the knockout of myeloid Trem2 in MASLD mice, while mice overexpressing Trem2 exhibit the opposite phenomenon. Mechanistically, Trem2mKO can aggravate macrophage pyroptosis through the PI3K/AKT signaling pathway and amplify the resulting inflammatory response. At the same time, Trem2 promotes the inflammation resolution phenotype transformation of macrophages through TGFβ1, thereby promoting tissue repair. CONCLUSIONS Myeloid Trem2 ameliorates the progression of Metabolic dysfunction-associated steatotic liver disease by regulating macrophage pyroptosis and inflammation resolution. We believe targeting myeloid Trem2 could represent a potential avenue for treating MASLD.
Collapse
Affiliation(s)
- Wenjie Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Yu Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Linfeng Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Wei Huang
- Department of General Surgery, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Xiangdong Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Nan Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Xuejiao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Likalamu Pascalia Wikana
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Yuhao Xiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Minhao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
7
|
Šimon M, Mikec Š, Atanur SS, Konc J, Morton NM, Horvat S, Kunej T. Whole genome sequencing of mouse lines divergently selected for fatness (FLI) and leanness (FHI) revealed several genetic variants as candidates for novel obesity genes. Genes Genomics 2024; 46:557-575. [PMID: 38483771 PMCID: PMC11024027 DOI: 10.1007/s13258-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/25/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Analysing genomes of animal model organisms is widely used for understanding the genetic basis of complex traits and diseases, such as obesity, for which only a few mouse models exist, however, without their lean counterparts. OBJECTIVE To analyse genetic differences in the unique mouse models of polygenic obesity (Fat line) and leanness (Lean line) originating from the same base population and established by divergent selection over more than 60 generations. METHODS Genetic variability was analysed using WGS. Variants were identified with GATK and annotated with Ensembl VEP. g.Profiler, WebGestalt, and KEGG were used for GO and pathway enrichment analysis. miRNA seed regions were obtained with miRPathDB 2.0, LncRRIsearch was used to predict targets of identified lncRNAs, and genes influencing adipose tissue amount were searched using the IMPC database. RESULTS WGS analysis revealed 6.3 million SNPs, 1.3 million were new. Thousands of potentially impactful SNPs were identified, including within 24 genes related to adipose tissue amount. SNP density was highest in pseudogenes and regulatory RNAs. The Lean line carries SNP rs248726381 in the seed region of mmu-miR-3086-3p, which may affect fatty acid metabolism. KEGG analysis showed deleterious missense variants in immune response and diabetes genes, with food perception pathways being most enriched. Gene prioritisation considering SNP GERP scores, variant consequences, and allele comparison with other mouse lines identified seven novel obesity candidate genes: 4930441H08Rik, Aff3, Fam237b, Gm36633, Pced1a, Tecrl, and Zfp536. CONCLUSION WGS revealed many genetic differences between the lines that accumulated over the selection period, including variants with potential negative impacts on gene function. Given the increasing availability of mouse strains and genetic polymorphism catalogues, the study is a valuable resource for researchers to study obesity.
Collapse
Affiliation(s)
- Martin Šimon
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia.
| | - Špela Mikec
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| | - Santosh S Atanur
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Janez Konc
- Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, 1000, Slovenia
| | - Nicholas M Morton
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Horvat
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| | - Tanja Kunej
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia.
| |
Collapse
|
8
|
Liang YC, Jia MJ, Li L, Liu DL, Chu SF, Li HL. Association of circulating inflammatory proteins with type 2 diabetes mellitus and its complications: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1358311. [PMID: 38606083 PMCID: PMC11007105 DOI: 10.3389/fendo.2024.1358311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Background Increasing evidence indicates that immune response underlies the pathology of type 2 diabetes (T2D). Nevertheless, the specific inflammatory regulators involved in this pathogenesis remain unclear. Methods We systematically explored circulating inflammatory proteins that are causally associated with T2D via a bidirectional Mendelian randomization (MR) study and further investigated them in prevalent complications of T2D. Genetic instruments for 91 circulating inflammatory proteins were derived from a genome-wide association study (GWAS) that enrolled 14,824 predominantly European participants. Regarding the summary-level GWASs of type 2 diabetes, we adopted the largest meta-analysis of European population (74,124 cases vs. 824,006 controls) and a prospective nested case-cohort study in Europe (9,978 cases vs. 12,348 controls). Summary statistics for five complications of T2D were acquired from the FinnGen R9 repository. The inverse variance-weighted method was applied as the primary method for causal inference. MR-Egger, weighted median and maximum likelihood methods were employed as supplementary analyses. Results from the two T2D studies were combined in a meta-analysis. Sensitivity analyses and phenotype-wide association studies (PheWAS) were performed to detect heterogeneity and potential horizontal pleiotropy in the study. Results Genetic evidence indicated that elevated levels of TGF-α (OR = 1.16, 95% CI = 1.15-1.17) and CX3CL1 (OR = 1.30, 95% CI = 1.04-1.63) promoted the occurrence of T2D, and increased concentrations of FGF-21 (OR = 0.87, 95% CI = 0.81-0.93) and hGDNF (OR = 0.96, 95% CI = 0.95-0.98) mitigated the risk of developing T2D, while type 2 diabetes did not exert a significant influence on said proteins. Elevated levels of TGF-α were associated with an increased risk of ketoacidosis, neurological complications, and ocular complications in patients with T2D, and increased concentrations of FGF-21 were potentially correlated with a diminished risk of T2D with neurological complications. Higher levels of hGDNF were associated with an increased risk of T2D with peripheral vascular complications, while CX3CL1 did not demonstrate a significant association with T2D complications. Sensitivity analyses and PheWAS further ensure the robustness of our findings. Conclusion This study determined four circulating inflammatory proteins that affected the occurrence of T2D, providing opportunities for the early prevention and innovative therapy of type 2 diabetes and its complications.
Collapse
Affiliation(s)
- Ying-Chao Liang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ming-Jie Jia
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ling Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - De-Liang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Shu-Fang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Hui-Lin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Liu S, Song S, Wang S, Cai T, Qin L, Wang X, Zhu G, Wang H, Yang W, Fang C, Wei Y, Zhou F, Yu Y, Lin S, Peng S, Li L. Hypothalamic FTO promotes high-fat diet-induced leptin resistance in mice through increasing CX3CL1 expression. J Nutr Biochem 2024; 123:109512. [PMID: 37907171 DOI: 10.1016/j.jnutbio.2023.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Long-term consumption of a high-fat diet (HFD) disrupts energy homeostasis and leads to weight gain. The fat mass and obesity-associated (FTO) gene has been consistently identified to be associated with HFD-induced obesity. The hypothalamus is crucial for regulating energy balance, and HFD-induced hypothalamic leptin resistance contributes to obesity. FTO, an N6-methyladenosine (m6A) RNA methylation regulator, may be a key mediator of leptin resistance. However, the exact mechanisms remain unclear. Therefore, the present study aims to investigate the association between FTO and leptin resistance. After HFD or standard diet (SD) feeding in male mice for 22 weeks, m6A-sequencing and western blotting assays were used to identify target genes and assess protein level, and molecular interaction changes. CRISPR/Cas9 gene knockout system was employed to investigate the potential function of FTO in leptin resistance and obesity. Our data showed that chemokine (C-X3-C motif) ligand 1 (CX3CL1) was a direct downstream target of FTO-mediated m6A modification. Furthermore, upregulation of FTO/CX3CL1 and suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus impaired leptin-signal transducer and activator of transcription 3 signaling, resulting in leptin resistance and obesity. Compared to wild-type (WT) mice, FTO deficiency in leptin receptor-expressing neurons of the hypothalamus significantly inhibited the upregulation of CX3CL1 and SOCS3, and partially ameliorating leptin resistance under HFD conditions. Our findings reveal that FTO involved in the hypothalamic leptin resistance and provides novel insight into the function of FTO in the contribution to hypothalamic leptin resistance and obesity.
Collapse
Affiliation(s)
- Shujing Liu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Shiyu Song
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Shuan Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Tonghui Cai
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China
| | - Lian Qin
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Xinzhuang Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Guangming Zhu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Haibo Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Wenqi Yang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Chunlu Fang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Yuan Wei
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Fu Zhou
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Yang Yu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China
| | - Shaozhang Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China.
| | - Shuang Peng
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China.
| | - Liangming Li
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China.
| |
Collapse
|
10
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
11
|
Brain fractalkine-CX3CR1 signalling is anti-obesity system as anorexigenic and anti-inflammatory actions in diet-induced obese mice. Sci Rep 2022; 12:12604. [PMID: 35871167 PMCID: PMC9308795 DOI: 10.1038/s41598-022-16944-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Fractalkine is one of the CX3C chemokine family, and it is widely expressed in the brain including the hypothalamus. In the brain, fractalkine is expressed in neurons and binds to a CX3C chemokine receptor 1 (CX3CR1) in microglia. The hypothalamus regulates energy homeostasis of which dysregulation is associated with obesity. Therefore, we examined whether fractalkine-CX3CR1 signalling involved in regulating food intake and hypothalamic inflammation associated with obesity pathogenesis. In the present study, fractalkine significantly reduced food intake induced by several experimental stimuli and significantly increased brain-derived neurotrophic factor (BDNF) mRNA expression in the hypothalamus. Moreover, tyrosine receptor kinase B (TrkB) antagonist impaired fractalkine-induced anorexigenic actions. In addition, compared with wild-type mice, CX3CR1-deficient mice showed a significant increase in food intake and a significant decrease in BDNF mRNA expression in the hypothalamus. Mice fed a high-fat diet (HFD) for 16 weeks showed hypothalamic inflammation and reduced fractalkine mRNA expression in the hypothalamus. Intracerebroventricular administration of fractalkine significantly suppressed HFD-induced hypothalamic inflammation in mice. HFD intake for 4 weeks caused hypothalamic inflammation in CX3CR1-deficient mice, but not in wild-type mice. These findings suggest that fractalkine-CX3CR1 signalling induces anorexigenic actions via activation of the BDNF-TrkB pathway and suppresses HFD-induced hypothalamic inflammation in mice.
Collapse
|
12
|
Ni Y, Zhuge F, Ni L, Nagata N, Yamashita T, Mukaida N, Kaneko S, Ota T, Nagashimada M. CX3CL1/CX3CR1 interaction protects against lipotoxicity-induced nonalcoholic steatohepatitis by regulating macrophage migration and M1/M2 status. Metabolism 2022; 136:155272. [PMID: 35914622 DOI: 10.1016/j.metabol.2022.155272] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Chemokine (C-X3-C motif) ligand 1 (CX3CL1) and its receptor CX3CR1 regulate the migration and activation of immune cells and are involved in the pathogenesis of nonalcoholic steatohepatitis (NASH), but the mechanism remains elusive. Here, the roles of CX3CL1/CX3CR1 in the macrophage migration and polarization in the livers of NASH mice were investigated. METHODS AND RESULTS The expression of Cx3cl1 and Cx3cr1 was markedly upregulated in the livers of lipotoxicity-induced NASH mice. CX3CR1 was predominantly expressed by F4/80+ macrophages and to a lesser degree by hepatic stellate cells or endothelial cells in the livers of NASH mice. Flow cytometry analysis revealed that, compared with chow-fed mice, NASH mice exhibited a significant increase in CX3CR1+ expression by liver macrophages (LMs), particularly M1 LMs. CX3CR1 deficiency caused a significant increase in inflammatory monocyte/macrophage infiltration and a shift toward M1 dominant macrophages in the liver, thereby exacerbating the progression of NASH. Moreover, transplantation of Cx3cr1-/- bone marrow was sufficient to cause glucose intolerance, inflammation, and fibrosis in the liver. In addition, deletion of CCL2 in Cx3cr1-/- mice alleviated NASH progression by decreasing macrophage infiltration and inducing a shift toward M2 dominant LMs. Importantly, overexpression of CX3CL1 in vivo protected against hepatic fibrosis in NASH. CONCLUSION Pharmacological therapy targeting liver CX3CL1/CX3CR1 signaling might be a candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Fen Zhuge
- Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Liyang Ni
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Tatsuya Yamashita
- Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Shuichi Kaneko
- Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mayumi Nagashimada
- Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-8640, Japan.
| |
Collapse
|
13
|
Xia Y, Zhai X, Qiu Y, Lu X, Jiao Y. The Nrf2 in Obesity: A Friend or Foe? Antioxidants (Basel) 2022; 11:antiox11102067. [PMID: 36290791 PMCID: PMC9598341 DOI: 10.3390/antiox11102067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and its complications have become serious global health concerns recently and increasing work has been carried out to explicate the underlying mechanism of the disease development. The recognized correlations suggest oxidative stress and inflammation in expanding adipose tissue with excessive fat accumulation play important roles in the pathogenesis of obesity, as well as its associated metabolic syndromes. In adipose tissue, obesity-mediated insulin resistance strongly correlates with increased oxidative stress and inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been described as a key modulator of antioxidant signaling, which regulates the transcription of various genes coding antioxidant enzymes and cytoprotective proteins. Furthermore, an increasing number of studies have demonstrated that Nrf2 is a pivotal target of obesity and its related metabolic disorders. However, its effects are controversial and even contradictory. This review aims to clarify the complicated interplay among Nrf2, oxidative stress, lipid metabolism, insulin signaling and chronic inflammation in obesity. Elucidating the implications of Nrf2 modulation on obesity would provide novel insights for potential therapeutic approaches in obesity and its comorbidities.
Collapse
|
14
|
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front Immunol 2022; 13:977485. [PMID: 36119080 PMCID: PMC9478335 DOI: 10.3389/fimmu.2022.977485] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue macrophage (ATM) has been appreciated for its critical contribution to obesity-associated metabolic diseases in recent years. Here, we discuss the regulation of ATM on both metabolic homeostatsis and dysfunction. In particular, the macrophage polarization and recruitment as well as the crosstalk between ATM and adipocyte in thermogenesis, obesity, insulin resistance and adipose tissue fibrosis have been reviewed. A better understanding of how ATM regulates adipose tissue remodeling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- *Correspondence: Yifu Qiu,
| |
Collapse
|
15
|
Single-Cell RNA-Sequencing Reveals the Active Involvement of Macrophage Polarizations in Pulmonary Hypertension. DISEASE MARKERS 2022; 2022:5398157. [PMID: 36246557 PMCID: PMC9553540 DOI: 10.1155/2022/5398157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Background. Sustained hypoxia can trigger a progressive rise in pulmonary artery pressure and cause serious pulmonary diseases. Macrophages play important roles along the progression of pulmonary hypertension. However, the state of macrophage polarization during the early stage of pulmonary hypertension is unclear. Methods. Unlike traditional sequencing method, single-cell sequencing can accurately distinguish among cell types and better understand cell-to-cell relationships. In this study, we investigated the polarization of macrophages in pulmonary hypertension via single-cell RNA-sequencing in a mice hypoxia model, which was then validated in patients with pulmonary hypertension. Results. We identified that the intermittent exposure to hypoxic conditions could lead to the production of more M2-type macrophages than M1-type macrophages in a mouse model. Further validation analysis was performed by analyzing lung tissue of patients with pulmonary hypertension, revealing that the number of disease-associated M2 macrophages was substantially increased. Conclusions. In this study, the active anti-inflammatory response of macrophage involved in pulmonary hypertension has been identified, suggesting that intervention against the polarization of macrophages to the M2 type may be a potential way to reduce chronic pulmonary inflammation, pulmonary vascular remodeling, and artery pressure. Thus, investigation of macrophage polarization associated with hypoxia could help us better understand disease mechanism and craft effective prevention strategies and approaches.
Collapse
|
16
|
Gao C, Koko MYF, Ding M, Hong W, Li J, Dong N, Hui M. Intestinal alkaline phosphatase (IAP, IAP Enhancer) attenuates intestinal inflammation and alleviates insulin resistance. Front Immunol 2022; 13:927272. [PMID: 35958560 PMCID: PMC9359302 DOI: 10.3389/fimmu.2022.927272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the effects of intestinal alkaline phosphatase (IAP) in controlled intestinal inflammation and alleviated associated insulin resistance (IR). We also explored the possible underlying molecular mechanisms, showed the preventive effect of IAP on IR in vivo, and verified the dephosphorylation of IAP for the inhibition of intestinal inflammation in vitro. Furthermore, we examined the preventive role of IAP in IR induced by a high-fat diet in mice. We found that an IAP + IAP enhancer significantly ameliorated blood glucose, insulin, low-density lipoprotein, gut barrier function, inflammatory markers, and lipopolysaccharide (LPS) in serum. IAP could dephosphorylate LPS and nucleoside triphosphate in a pH-dependent manner in vitro. Firstly, LPS is inactivated by IAP and IAP reduces LPS-induced inflammation. Secondly, adenosine, a dephosphorylated product of adenosine triphosphate, elicited anti-inflammatory effects by binding to the A2A receptor, which inhibits NF-κB, TNF, and PI3K-Akt signalling pathways. Hence, IAP can be used as a natural anti-inflammatory agent to reduce intestinal inflammation-induced IR.
Collapse
Affiliation(s)
- Chenzhe Gao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | | | | | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jianping Li
- College of Food, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| |
Collapse
|
17
|
An Update on the Chemokine System in the Development of NAFLD. Medicina (B Aires) 2022; 58:medicina58060761. [PMID: 35744024 PMCID: PMC9227560 DOI: 10.3390/medicina58060761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Sustained hepatic inflammation is a key driver of the transition from simple fatty liver to nonalcoholic steatohepatitis (NASH), the more aggressive form of NAFLD. Hepatic inflammation is orchestrated by chemokines, a family of chemoattractant cytokines that are produced by hepatocytes, Kupffer cells (liver resident macrophages), hepatic stellate cells, endothelial cells, and vascular smooth muscle cells. Over the last three decades, accumulating evidence from both clinical and experimental investigations demonstrated that chemokines and their receptors are increased in the livers of NAFLD patients and that CC chemokine ligand (CCL) 2 and CCL5 in particular play a pivotal role in inducing insulin resistance, steatosis, inflammation, and fibrosis in liver disease. Cenicriviroc (CVC), a dual antagonist of these chemokines’ receptors, CCR2 and CCR5, has been tested in clinical trials in patients with NASH-associated liver fibrosis. Additionally, recent studies revealed that other chemokines, such as CCL3, CCL25, CX3C chemokine ligand 1 (CX3CL1), CXC chemokine ligand 1 (CXCL1), and CXCL16, can also contribute to the pathogenesis of NAFLD. Here, we review recent updates on the roles of chemokines in the development of NAFLD and their blockade as a potential therapeutic approach.
Collapse
|
18
|
Takei Y, Amagase Y, Iida K, Sagawa T, Goto A, Kambayashi R, Izumi-Nakaseko H, Matsumoto A, Kawai S, Sugiyama A, Takada T, Hirasawa A. Alteration in peritoneal cells with the chemokine CX3CL1 reverses age-associated impairment of recognition memory. GeroScience 2022; 44:2305-2318. [PMID: 35593945 DOI: 10.1007/s11357-022-00579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Cognitive function progressively declines with advancing age. The aging process can be promoted by obesity and attenuated by exercise. Both conditions affect levels of the chemokine CX3CL1 in peripheral tissues; however, its role in cognitive aging is unknown. In the current study, we administered CX3CL1 into the peritoneal cavity of aged mice to investigate its impact on the aging process. In the peritoneal cavity, CX3CL1 not only reversed the age-associated accumulation of cells expressing the senescence marker p16INK4a but also increased peritoneal phagocytic activity, indicating that CX3CL1 affected the phenotypes of peritoneal cells. In the hippocampus of aged mice, intraperitoneal administration of CX3CL1 increased the number of Type-2 neural stem cells and promoted brain-derived neurotrophic factor (BDNF) expression. This treatment, furthermore, improved novel object recognition memory impaired with advancing age. Intraperitoneal transplantation of peritoneal cells from CX3CL1-treated aged mice improved novel object recognition memory in recipient aged mice. It indicates that peritoneal cells have a critical role in the CX3CL1-induced improvement of recognition memory in aged mice. Vagotomy inhibited the CX3CL1-induced increase in BDNF expression, demonstrating that the vagus nerve is involved in the hippocampal BDNF expression induced by intraperitoneal administration of CX3CL1. Thus, our results demonstrate that a novel connection among the peritoneal cells, the vagus nerve, and the hippocampus can reverse the age-associated decline in recognition memory.
Collapse
Affiliation(s)
- Yoshinori Takei
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Yoko Amagase
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Keiko Iida
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Sagawa
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Shinichi Kawai
- Department of Inflammation & Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
- Department of Inflammation & Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Tatsuyuki Takada
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
19
|
Varghese M, Clemente J, Lerner A, Abrishami S, Islam M, Subbaiah P, Singer K. Monocyte Trafficking and Polarization Contribute to Sex Differences in Meta-Inflammation. Front Endocrinol (Lausanne) 2022; 13:826320. [PMID: 35422759 PMCID: PMC9001155 DOI: 10.3389/fendo.2022.826320] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is associated with systemic inflammation and immune cell recruitment to metabolic tissues. Sex differences have been observed where male mice challenged with high fat diet (HFD) exhibit greater adipose tissue inflammation than females demonstrating a role for sex hormones in differential inflammatory responses. Circulating monocytes that respond to dietary lipids and chemokines and produce cytokines are the primary source of recruited adipose tissue macrophages (ATMs). In this study, we investigated sexual dimorphism in biological pathways in HFD-fed ATMs from male and female mice by RNA-seq. We also conducted chemotaxis assays to investigate sex differences in the migration of monocytes isolated from bone marrow from male and female mice toward a dietary saturated lipid - palmitate (PA), and a chemokine - monocyte chemoattractant protein 1 (MCP1), factors known to stimulate myeloid cells in obesity. ATM RNA-Seq demonstrated sex differences of both metabolic and inflammatory activation, including pathways for chemokine signaling and leukocyte trans-endothelial migration. In vivo monocyte transfer studies demonstrated that male monocytes traffic to female adipose tissue to generate ATMs more readily. In chemotaxis assays, lean male monocytes migrated in greater numbers than females toward PA and MCP1. With short-term HFD, male and female monocytes migrated similarly, but in chronic HFD, male monocytes showed greater migration than females upon PA and MCP1 stimulation. Studies with monocytes from toll-like receptor 4 knockout mice (Tlr4-/- ) demonstrated that both males and females showed decreased migration than WT in response to PA and MCP1 implying a role for TLR4 in monocyte influx in response to meta-inflammation. Overall, these data demonstrate the role of sexual dimorphism in monocyte recruitment and response to metabolic stimuli that may influence meta-inflammation in obesity.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jeremy Clemente
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Arianna Lerner
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Simin Abrishami
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Mohammed Islam
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Perla Subbaiah
- Department of Statistics and Mathematics, Oakland University, Rochester, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Kanakadurga Singer,
| |
Collapse
|
20
|
Chan PC, Hsieh PS. The Chemokine Systems at the Crossroads of Inflammation and Energy Metabolism in the Development of Obesity. Int J Mol Sci 2021; 22:ijms222413528. [PMID: 34948325 PMCID: PMC8709111 DOI: 10.3390/ijms222413528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue accompanied with alterations in the immune and metabolic responses. Although the chemokine systems have been documented to be involved in the control of tissue inflammation and metabolism, the dual role of chemokines and chemokine receptors in the pathogenesis of the inflammatory milieu and dysregulated energy metabolism in obesity remains elusive. The objective of this review is to present an update on the link between chemokines and obesity-related inflammation and metabolism dysregulation under the light of recent knowledge, which may present important therapeutic targets that could control obesity-associated immune and metabolic disorders and chronic complications in the near future. In addition, the cellular and molecular mechanisms of chemokines and chemokine receptors including the potential effect of post-translational modification of chemokines in the regulation of inflammation and energy metabolism will be discussed in this review.
Collapse
Affiliation(s)
- Pei-Chi Chan
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
| | - Po-Shiuan Hsieh
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
- Graduate Institute of Medical Science, NDMC, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18622); Fax: +886-2-87924827
| |
Collapse
|
21
|
Wiciński M, Ozorowski M, Wódkiewicz E, Otto SW, Kubiak K, Malinowski B. Impact of Vitamin D Supplementation on Inflammatory Markers' Levels in Obese Patients. Curr Issues Mol Biol 2021; 43:1606-1622. [PMID: 34698104 PMCID: PMC8929128 DOI: 10.3390/cimb43030114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
In view of research suggesting a possible beneficial impact of vitamin D on systemic inflammatory response, the authors decided to investigate an influence of vitamin D supplementation on serum levels of certain inflammatory markers in obese patients. The current study included such biomarkers as interleukin-6 (IL-6), pituitary adenylate cyclase-activating peptide (PACAP), advanced oxidation protein products (AOPP), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO). The measurements were performed with the ELISA method before and after 3-month-long supplementation of 2000 IU of vitamin D orally. The results showed that the therapy did not induce any statistically significant changes in serum levels of MCP-1, IL-6, CX3CL1, and PACAP. The supplementation was related to a significant increase in measurements of NO and AOPP levels, although the correlation analysis between vitamin D concentration after its supplementation and the concentration of the molecular parameters did not show significant relation. In conclusion, our study seems to contradict certain aspects of findings available in the literature regarding the vitamin D's impact.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Mateusz Ozorowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Eryk Wódkiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | | | - Karol Kubiak
- Department of Obstetrics and Gynecology, St. Franziskus-Hospital, 48145 Münster, Germany;
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| |
Collapse
|
22
|
Nagashimada M, Honda M. Effect of Microbiome on Non-Alcoholic Fatty Liver Disease and the Role of Probiotics, Prebiotics, and Biogenics. Int J Mol Sci 2021; 22:ijms22158008. [PMID: 34360773 PMCID: PMC8348401 DOI: 10.3390/ijms22158008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver cirrhosis and hepatocellular carcinoma. NAFLD is associated with metabolic disorders such as obesity, insulin resistance, dyslipidemia, steatohepatitis, and liver fibrosis. Liver-resident (Kupffer cells) and recruited macrophages contribute to low-grade chronic inflammation in various tissues by modulating macrophage polarization, which is implicated in the pathogenesis of metabolic diseases. Abnormalities in the intestinal environment, such as the gut microbiota, metabolites, and immune system, are also involved in the pathogenesis and development of NAFLD. Hepatic macrophage activation is induced by the permeation of antigens, endotoxins, and other proinflammatory substances into the bloodstream as a result of increased intestinal permeability. Therefore, it is important to understand the role of the gut–liver axis in influencing macrophage activity, which is central to the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH). Not only probiotics but also biogenics (heat-killed lactic acid bacteria) are effective in ameliorating the progression of NASH. Here we review the effect of hepatic macrophages/Kupffer cells, other immune cells, intestinal permeability, and immunity on NAFLD and NASH and the impact of probiotics, prebiotics, and biogenesis on those diseases.
Collapse
|
23
|
Hashida R, Matsuse H, Kawaguchi T, Yoshio S, Bekki M, Iwanaga S, Sugimoto T, Hara K, Koya S, Hirota K, Nakano D, Tsutsumi T, Kanto T, Torimura T, Shiba N. Effects of a low-intensity resistance exercise program on serum miR-630, miR-5703, and Fractalkine/CX3CL1 expressions in subjects with No exercise habits: A preliminary study. Hepatol Res 2021; 51:823-833. [PMID: 34014020 DOI: 10.1111/hepr.13670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
AIMS Exercise is effective for the prevention of liver cancer. Exercise exerts biological effects through the regulation of microRNAs (miRNAs) and cytokines/myokines. We aimed to investigate the effects of low-intensity resistance exercise on serum miRNA and cytokine/myokine expressions in subjects with no exercise habits. METHODS We enrolled seven male subjects with no exercise habits in this prospective before-after study. All subjects performed a low-intensity resistance exercise program (three metabolic equivalents, approximately 20 min/session). Serum miRNA expressions were evaluated using microarrays. We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed miRNAs before and after exercise. Serum cytokine/myokine expressions were evaluated using a multiplex panel. RESULTS All subjects completed the exercise program with no adverse events. In the microarray analysis, seven miRNAs showed a significant change between before and after exercise. Of these, microRNA (miR)-630 and miR-5703 showed a >1.5-fold increase (miR-630: 40.7 vs. 69.3 signal intensity, p = 0.0133; miR-5703: 30.7 vs. 55.9 signal intensity, p = 0.0051). KEGG pathway enrichment analysis showed that miR-630- and miR-5703-related genes were enriched in 37 and 5 pathways, including transforming growth factor-beta and Wnt signaling pathways, respectively. In the multiplex analysis, 12 cytokines/myokines showed significant alteration after exercise compared to before exercise. Of these, fractalkine/CX3CL1 showed the most significant up-regulation by exercise (94.5 vs. 109.1 pg/ml, p = 0.0017). CONCLUSIONS A low-intensity resistance exercise program was associated with upregulation of serum miR-630, miR-5703, and fractalkine/CX3CL1 expressions in subjects with no exercise habits. Thus, even low-intensity exercise may alter miRNA and cytokine/myokine expressions in humans.
Collapse
Affiliation(s)
- Ryuki Hashida
- Department of Orthopedics, School of Medicine, Kurume University, Kurume, Japan.,Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Hiroo Matsuse
- Department of Orthopedics, School of Medicine, Kurume University, Kurume, Japan.,Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sachiyo Yoshio
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masafumi Bekki
- Department of Orthopedics, School of Medicine, Kurume University, Kurume, Japan.,Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Sohei Iwanaga
- Department of Orthopedics, School of Medicine, Kurume University, Kurume, Japan.,Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Takahiro Sugimoto
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Koji Hara
- Department of Orthopedics, School of Medicine, Kurume University, Kurume, Japan.,Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Shunji Koya
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Keisuke Hirota
- Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuya Kanto
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Naoto Shiba
- Department of Orthopedics, School of Medicine, Kurume University, Kurume, Japan
| |
Collapse
|