1
|
Smack C, Johnson B, Nyalwidhe JO, Semmes OJ, Yang L. Small extracellular vesicles: Roles and clinical application in prostate cancer. Adv Cancer Res 2024; 161:119-190. [PMID: 39032949 DOI: 10.1016/bs.acr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is a significant health problem in the United States. It is remarkably heterogenous, ranging from slow growing disease amenable to active surveillance to highly aggressive forms requiring active treatments. Therefore, being able to precisely determine the nature of disease and appropriately match patients to available and/or novel therapeutics is crucial to improve patients' overall outcome and quality of life. Recently small extracellular vesicles (sEVs), a subset of nanoscale membranous vesicles secreted by various cells, have emerged as important analytes for liquid biopsy and promising vehicles for drug delivery. sEVs contain various biomolecules such as genetic material, proteins, and lipids that recapitulate the characteristics and state of their donor cells. The application of existing and newly developed technologies has resulted in an increased depth of knowledge about biophysical structures, biogenesis, and functions of sEVs. In prostate cancer patients, tumor-derived sEVs can be isolated from biofluids, commonly urine and blood. They mediate intercellular signaling within the tumor microenvironment and distal organ-specific sites, supporting cancer initiation, progression, and metastasis. A mounting body of evidence suggests that sEV components can be potent biomarkers for prostate cancer diagnosis, prognosis, and prediction of disease progression and treatment response. Due to enhanced circulation stability and bio-barrier permeability, sEVs can be also used as effective drug delivery carriers to improve the efficacy and specificity of anti-tumor therapies. This review discusses recent studies on sEVs in prostate cancer and is focused on their role as biomarkers and drug delivery vehicles in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Caleb Smack
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Benjamin Johnson
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - O John Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lifang Yang
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
2
|
Li K, Zhang Y, Tian S, Su Q, Mei Y, Shi W, Cao J, Song L. Analysis of factors associated with positive surgical margins and the five-year survival rate after prostate cancer resection and predictive modeling. Front Oncol 2024; 14:1360404. [PMID: 38903708 PMCID: PMC11187091 DOI: 10.3389/fonc.2024.1360404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/12/2024] [Indexed: 06/22/2024] Open
Abstract
Background This study analyzed the risk factors associated with positive surgical margins (PSM) and five-year survival after prostate cancer resection to construct a positive margin prediction model. Methods We retrospectively analyzed the clinical data of 148 patients treated with prostatectomy. The patients were divided into PSM group and Negative surgical margins (NSM) group. Several parameters were compared between the groups. All patients were followed up for 60 months. The risk factors for PSM and five-year survival were evaluated by univariate analysis, followed by multifactorial dichotomous logistic regression analysis. Finally, ROC curves were plotted for the risk factors to establish a predictive model for PSM after prostate cancer resection. Results (1) Serum PSA, percentage of positive puncture stitches, clinical stage, surgical approach, Gleason score on puncture biopsy, and perineural invasion were significantly associated with the risk of PSM (P < 0.05). Serum PSA, perineural invasion, Gleason score on puncture biopsy, and percentage of positive puncture stitches were independent risk factors for PSM. (2) Total prostate-specific antigen (tPSA) by puncture, nutritional status, lymph node metastasis, bone metastasis, and seminal vesicle invasion may be risk factors for five-year survival. Lymph node metastasis and nutritional status were the main risk factors for the five-year survival of patients with prostate cancer. (3) After plotting the ROC curve, the area under the curve (AUC) [AUC: 0.776, 95%, confidence interval (CI): 0.725 to 0.854] was found to be a valid predictor of PSM; the AUC [AUC: 0.664, 95%, confidence interval (CI): 0.576 to 0.753] was also a valid predictor of five-year survival (P < 0.05). (4) The scoring system had a standard error of 0.02 and a cut-off value of 6. It predicted PSM after prostate cancer resection with moderate efficacy. Conclusions Serum PSA, perineural invasion, puncture biopsy Gleason score, and percentage of positive puncture stitches were independent risk factors for positive surgical margins (PSM). Also, lymph node metastasis and nutritional status were the main risk factors for the five-year survival of patients with prostate cancer. Overall, the prediction efficacy of this scoring system concerning the risk of PSM after prostate cancer resection was moderate.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Yantao Zhang
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Sinan Tian
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Qingguo Su
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Yanhui Mei
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Wei Shi
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Jingyuan Cao
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Lijuan Song
- Department of Anesthesiology, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
3
|
Ambrosini G, Cordani M, Zarrabi A, Alcon-Rodriguez S, Sainz RM, Velasco G, Gonzalez-Menendez P, Dando I. Transcending frontiers in prostate cancer: the role of oncometabolites on epigenetic regulation, CSCs, and tumor microenvironment to identify new therapeutic strategies. Cell Commun Signal 2024; 22:36. [PMID: 38216942 PMCID: PMC10790277 DOI: 10.1186/s12964-023-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
Prostate cancer, as one of the most prevalent malignancies in males, exhibits an approximate 5-year survival rate of 95% in advanced stages. A myriad of molecular events and mutations, including the accumulation of oncometabolites, underpin the genesis and progression of this cancer type. Despite growing research demonstrating the pivotal role of oncometabolites in supporting various cancers, including prostate cancer, the root causes of their accumulation, especially in the absence of enzymatic mutations, remain elusive. Consequently, identifying a tangible therapeutic target poses a formidable challenge. In this review, we aim to delve deeper into the implications of oncometabolite accumulation in prostate cancer. We center our focus on the consequential epigenetic alterations and impacts on cancer stem cells, with the ultimate goal of outlining novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Ambrosini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Sergio Alcon-Rodriguez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pedro Gonzalez-Menendez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
4
|
Pitzer CR, Paez HG, Ferrandi PJ, Mohamed J, Alway SE. Extracellular vesicles from obese and diabetic mouse plasma alter C2C12 myotube glucose uptake and gene expression. Physiol Rep 2024; 12:e15898. [PMID: 38169108 PMCID: PMC10761623 DOI: 10.14814/phy2.15898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Recent studies have indicated a role for circulating extracellular vesicles (EVs) in the pathogenesis of multiple diseases. However, most in vitro studies have used variable and arbitrary doses of EVs rather than interpreting EVs as an existing component of standard skeletal muscle cell culture media. The current study provides an initial investigation into the effects of circulating EVs on the metabolic phenotype of C2C12 myotubes by replacing EVs from fetal bovine serum with circulating EVs from control mice or mice with obesity and type 2 diabetes (OT2D). We report that EVs associated with OT2D decrease 2-NBDG uptake (a proxy measure of glucose uptake) in the insulin-stimulated state compared to controls. OT2D associated EV treatment also significantly decreased myosin heavy chain type 1 (MHCI) mRNA abundance in myotubes but had no effect on mRNA expression of any other myosin heavy chain isoforms. OT2D-associated circulating EVs also significantly increased lipid accumulation within myotubes without altering the expression of a selection of genes important for lipid entry, synthesis, or catabolism. The data indicate that, in a severely diabetic state, circulating EVs may contribute to insulin resistance and alter gene expression in myotubes in a manner consistent with the skeletal muscle phenotype observed in OT2D.
Collapse
Affiliation(s)
- Christopher R. Pitzer
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of Physiology, College of MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health SciencesThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Hector G. Paez
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of Physiology, College of MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health SciencesThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Peter J. Ferrandi
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health SciencesThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Junaith S. Mohamed
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Tennessee Institute of Regenerative MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Stephen E. Alway
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of Physiology, College of MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health ProfessionsThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Tennessee Institute of Regenerative MedicineThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
5
|
Berenguer CV, Pereira F, Câmara JS, Pereira JAM. Underlying Features of Prostate Cancer-Statistics, Risk Factors, and Emerging Methods for Its Diagnosis. Curr Oncol 2023; 30:2300-2321. [PMID: 36826139 PMCID: PMC9955741 DOI: 10.3390/curroncol30020178] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently occurring type of malignant tumor and a leading cause of oncological death in men. PCa is very heterogeneous in terms of grade, phenotypes, and genetics, displaying complex features. This tumor often has indolent growth, not compromising the patient's quality of life, while its more aggressive forms can manifest rapid growth with progression to adjacent organs and spread to lymph nodes and bones. Nevertheless, the overtreatment of PCa patients leads to important physical, mental, and economic burdens, which can be avoided with careful monitoring. Early detection, even in the cases of locally advanced and metastatic tumors, provides a higher chance of cure, and patients can thus go through less aggressive treatments with fewer side effects. Furthermore, it is important to offer knowledge about how modifiable risk factors can be an effective method for reducing cancer risk. Innovations in PCa diagnostics and therapy are still required to overcome some of the limitations of the current screening techniques, in terms of specificity and sensitivity. In this context, this review provides a brief overview of PCa statistics, reporting its incidence and mortality rates worldwide, risk factors, and emerging screening strategies.
Collapse
Affiliation(s)
- Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Ferdinando Pereira
- SESARAM—Serviço de Saúde da Região Autónoma da Madeira, EPERAM, Hospital Dr. Nélio Mendonça, Avenida Luís de Camões 6180, 9000-177 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence:
| |
Collapse
|
6
|
Morales A, Siemens DR. Testosterone Therapy and Prostate Cancer. Urol Clin North Am 2022; 49:573-582. [DOI: 10.1016/j.ucl.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Zhang Y, Kim JS, Wang TZ, Newton RU, Galvão DA, Gardiner RA, Hill MM, Taaffe DR. Potential Role of Exercise Induced Extracellular Vesicles in Prostate Cancer Suppression. Front Oncol 2021; 11:746040. [PMID: 34595123 PMCID: PMC8476889 DOI: 10.3389/fonc.2021.746040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Physical exercise is increasingly recognized as a valuable treatment strategy in managing prostate cancer, not only enhancing supportive care but potentially influencing disease outcomes. However, there are limited studies investigating mechanisms of the tumor-suppressive effect of exercise. Recently, extracellular vesicles (EVs) have been recognized as a therapeutic target for cancer as tumor-derived EVs have the potential to promote metastatic capacity by transferring oncogenic proteins, integrins, and microRNAs to other cells and EVs are also involved in developing drug resistance. Skeletal muscle has been identified as an endocrine organ, releasing EVs into the circulation, and levels of EV-containing factors have been shown to increase in response to exercise. Moreover, preclinical studies have demonstrated the tumor-suppressive effect of protein and microRNA contents in skeletal muscle-derived EVs in various cancers, including prostate cancer. Here we review current knowledge of the tumor-derived EVs in prostate cancer progression and metastasis, the role of exercise in skeletal muscle-derived EVs circulating levels and the alteration of their contents, and the potential tumor-suppressive effect of skeletal muscle-derived EV contents in prostate cancer. In addition, we review the proposed mechanism of exercise in the uptake of skeletal muscle-derived EVs in prostate cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology, Harbin Medical University, Harbin, China.,Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Tian-Zhen Wang
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Department of Pathology, Harbin Medical University, Harbin, China
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Robert A Gardiner
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Michelle M Hill
- UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|