1
|
Huacachino AA, Chung A, Sharp K, Penning TM. Specific and potent inhibition of steroid hormone pre-receptor regulator AKR1C2 by perfluorooctanoic acid: Implications for androgen metabolism. J Steroid Biochem Mol Biol 2025; 246:106641. [PMID: 39571823 DOI: 10.1016/j.jsbmb.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental pollutants that are highly stable synthetic organofluorine compounds. One congener perfluorooctanoic acid (PFOA) can be detected in nearly all humans and is recognized as an endocrine disrupting chemical (EDC). EDCs disrupt hormone synthesis and metabolism and receptor function. One mechanism of steroid hormone action is the pre-receptor regulation of ligand access to steroid hormone receptors by aldo-keto reductases. Here we report PFOA inhibition of AKR family 1 member C2 (AKR1C2), leading to dysregulation of androgen action. Spectrofluorimetric inhibitor screens identified PFOA as a competitive and tight binding inhibitor of AKR1C2, whose role is to inactivate 5α-dihydrotestosterone (5α-DHT). Further site directed mutagenesis studies along with molecular docking simulations revealed the importance of residue Valine 54 in mediating AKR1C2 inhibitor specificity. Binding site restrictions were explored by testing inhibition of other related PFAS chemicals, confirming that steric hinderance is a key factor. Furthermore, radiochromatography using HPLC and in line radiometric detection confirmed the accumulation of 5α-DHT as a result of PFOA inhibition of AKR1C2. We showed that PFOA could enhance the transactivation of AR in reporter genes assays in which 5α-DHT metabolism was blocked by AKR1C2 inhibition in HeLa cells. Taken together, these data suggest PFOA has a role in disrupting androgen action through inhibiting AKR1C2. Our work identifies an EDC function for PFOA not previously revealed.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Chung
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M Penning
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Falcone M, Salhia B, Halbert CH, Torres ETR, Stewart D, Stern MC, Lerman C. Impact of Structural Racism and Social Determinants of Health on Disparities in Breast Cancer Mortality. Cancer Res 2024; 84:3924-3935. [PMID: 39356624 PMCID: PMC11611670 DOI: 10.1158/0008-5472.can-24-1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
The striking ethnic and racial disparities in breast cancer mortality are not explained fully by pathologic or clinical features. Structural racism contributes to adverse conditions that promote cancer inequities, but the pathways by which this occurs are not fully understood. Social determinants of health, such as economic status and access to care, account for a portion of this variability, yet interventions designed to mitigate these barriers have not consistently led to improved outcomes. Based on the current evidence from multiple disciplines, we describe a conceptual model in which structural racism and racial discrimination contribute to increased mortality risk in diverse groups of patients by promoting adverse social determinants of health that elevate exposure to environmental hazards and stress; these exposures in turn contribute to epigenetic and immune dysregulation, thereby altering breast cancer outcomes. Based on this model, opportunities and challenges arise for interventions to reduce racial and ethnic disparities in breast cancer mortality.
Collapse
Affiliation(s)
- Mary Falcone
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bodour Salhia
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chanita Hughes Halbert
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T. Roussos Torres
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Division of Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daphne Stewart
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Division of Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mariana C. Stern
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caryn Lerman
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Huang C, Murgulet I, Liu L, Zhang M, Garcia K, Martin L, Xu W. The effects of perfluorooctanoic acid on breast cancer metastasis depend on the phenotypes of the cancer cells: An in vivo study with zebrafish xenograft model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124975. [PMID: 39293659 DOI: 10.1016/j.envpol.2024.124975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Per- and polyfluorinated substances (PFAS) have been associated with numerous human diseases. Recent in vitro studies have implicated the association of PFAS with an increased risk of breast cancer in humans. This study aimed to assess the toxic effects of PFAS during the development of human breast cancer using a zebrafish xenograft model. Perfluorooctanoic acid (PFOA) was used as a PFAS chemical of interest for this study. Two common breast cancer cell lines, MCF-7 and MDA-MB-231, were used to represent the diversity of breast cancer phenotypes. Human preadipocytes were co-implanted with the breast cancer cells into the zebrafish embryos to optimize the microenvironment for tumor cells in vivo. With this modified model, we evaluated the potential effects of the PFOA on the metastatic potential of the two types of breast cancer cells. The presence of human preadipocytes resulted in an enhancement to the metastasis progress of the two types of cells, including the promotion of cell in vivo migration and proliferation, and the increased expression levels of metastatic biomarkers. The enhancement of MCF-7 proliferation by preadipocytes was observed after 2 days post injection (dpi) while the increase of MDA-MB-231 proliferation was seen after 6 dpi. The breast cancer metastatic biomarkers, cadherin 1 (cdh1), and small breast epithelial mucin (sbem) genes demonstrated significant down- and upregulations respectively, by the co-injection of preadipocytes. In the optimized xenograft model, the PFOA consistently promoted cell proliferation and migration and altered the metastatic biomarker expression in MCF-7, which suggested a metastatic effect of PFOA on MCF-7. However, those effects were not consistently observed in MDA-MB-231. The presence of the preadipocytes in the xenograft model may provide a necessary microenvironment for the progress of tumor cells in zebrafish embryos. The finding suggested that the impacts of PFOA exposure on different phenotypes of breast cancers may differ.
Collapse
Affiliation(s)
- Chi Huang
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Ioana Murgulet
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States; Department of BioSciences, Rice University, 6100 Main St., Houston, TX, 77005, United States
| | - Linda Liu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Mona Zhang
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Kaitlin Garcia
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States.
| |
Collapse
|
4
|
Gorelick DA, Gertz J, Basham KJ, Treviño LS. A Stronger IMPACT on Career Development for Early- and Mid-career Faculty. J Endocr Soc 2024; 8:bvae191. [PMID: 39564580 PMCID: PMC11574551 DOI: 10.1210/jendso/bvae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Indexed: 11/21/2024] Open
Abstract
Nuclear receptors are important in normal physiology and disease. Physicians and scientists who study nuclear receptors organize and attend conferences and symposia devoted to foundational and translational nuclear receptor research, but the field lacks a platform for early-stage investigators and aspiring leaders. In 2019, Zeynep Madak-Erdogan, Rebecca Riggins, and Matthew Sikora founded Nuclear Receptor (NR) Interdisciplinary Meeting for Progress And Collaboration Together (IMPACT, https://nrimpact.com), a collaborative group designed for early- and mid-career faculty who study nuclear receptors in any context or organism [1]. NR IMPACT addresses challenges for early- and mid-career faculty. Here, we review the progress of NR IMPACT and discuss how our peer-mentoring cohort is removing hurdles for new faculty and advancing nuclear receptor biology.
Collapse
Affiliation(s)
- Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lindsey S Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Tapia JL, Lopez A, Turner DB, Fairley T, Tomlin-Harris T, Hawkins M, Holbert PR, Treviño LS, Teteh-Brooks DK. The bench to community initiative: community-based participatory research model for translating research discoveries into community solutions. Front Public Health 2024; 12:1394069. [PMID: 39165780 PMCID: PMC11334986 DOI: 10.3389/fpubh.2024.1394069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Community-based participatory research (CBPR) is an effective methodology for translating research findings from academia to community interventions. The Bench to Community Initiative (BCI), a CBPR program, builds on prior research to engage stakeholders across multiple disciplines with the goal of disseminating interventions to reduce breast cancer disparities and improve quality of life of Black communities. Methods The BCI program was established to understand sociocultural determinants of personal care product use, evaluate the biological impact of endocrine disrupting chemicals, and develop community interventions. The three pillars of the program include research, outreach and engagement as well as advocacy activities. The research pillar of the BCI includes development of multidisciplinary partnerships to understand the sociocultural and biological determinants of harmful chemical (e.g., endocrine disrupting chemicals) exposures from personal care products and to implement community interventions. The outreach and engagement pillar includes education and translation of research into behavioral practice. The research conducted through the initiative provides the foundation for advocacy engagement with applicable community-based organizations. Essential to the mission of the BCI is the participation of community members and trainees from underrepresented backgrounds who are affected by breast cancer disparities. Results Two behavioral interventions will be developed building on prior research on environmental exposures with the focus on personal care products including findings from the BCI. In person and virtual education activities include tabling at community events with do-it-yourself product demonstrations, Salon Conversations-a virtual platform used to bring awareness, education, and pilot behavior change interventions, biennial symposiums, and social media engagement. BCI's community advisory board members support activities across the three pillars, while trainees participate in personal and professional activities that enhance their skills in research translation. Discussion This paper highlights the three pillars of the BCI, lessons learned, testimonies from community advisory board members and trainees on the impact of the initiative, as well as BCI's mission driven approaches to achieving health equity.
Collapse
Affiliation(s)
- Jazma L. Tapia
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Abigail Lopez
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, United States
| | - D. Bing Turner
- Heritage Wellness Collective, Claremont, CA, United States
| | - Tonya Fairley
- TS Fairley Hair Restoration Center, Covina, CA, United States
| | | | - Maggie Hawkins
- California State University Los Angeles, Los Angeles, CA, United States
| | | | - Lindsey S. Treviño
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Dede K. Teteh-Brooks
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, United States
| |
Collapse
|
6
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
7
|
Arredondo Eve A, Tunc E, Mehta D, Yoo JY, Yilmaz HE, Emren SV, Akçay FA, Madak Erdogan Z. PFAS and their association with the increased risk of cardiovascular disease in postmenopausal women. Toxicol Sci 2024; 200:312-323. [PMID: 38758093 DOI: 10.1093/toxsci/kfae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the major causes of death globally. In addition to traditional risk factors such as unhealthy lifestyles (smoking, obesity, sedentary) and genetics, common environmental exposures, including persistent environmental contaminants, may also influence CVD risk. Per- and polyfluoroalkyl substances (PFASs) are a class of highly fluorinated chemicals used in household consumer and industrial products known to persist in our environment for years, causing health concerns that are now linked to endocrine disruptions and related outcomes in women, including interference of the cardiovascular and reproductive systems. In postmenopausal women, higher levels of PFAS are observed than in premenopausal women due to the cessation of menstruation, which is crucial for PFAS excretion. Because of these findings, we explored the association between perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorobutanesulfonic acid in postmenopausal women from our previously established CVD study. We used liquid chromatography with tandem mass spectrometry, supported by machine learning approaches, and the detection and quantification of serum metabolites and proteins. Here, we show that PFOS can be a good predictor of coronary artery disease, whereas PFOA can be an intermediate predictor of coronary microvascular disease. We also found that the PFAS levels in our study are significantly associated with inflammation-related proteins. Our findings may provide new insight into the potential mechanisms underlying the PFAS-induced risk of CVDs in this population. This study shows that exposure to PFOA and PFOS is associated with an increased risk of cardiovascular disease in postmenopausal women. PFOS and PFOA levels correlate with amino acids and proteins related to inflammation. These circulating biomarkers contribute to the etiology of CVD and potentially implicate a mechanistic relationship between PFAS exposure and increased risk of cardiovascular events in this population.
Collapse
Affiliation(s)
- Alicia Arredondo Eve
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elif Tunc
- Research and Training Hospital, Katip Celebi University, Izmir, 35310, Turkey
| | - Dhruv Mehta
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jin Young Yoo
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huriye Erbak Yilmaz
- Research and Training Hospital, Katip Celebi University, Izmir, 35310, Turkey
- Izmir Biomedicine and Genome Center, Balcova, Izmir, 35340, Turkey
| | - Sadık Volkan Emren
- Research and Training Hospital, Katip Celebi University, Izmir, 35310, Turkey
| | | | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
9
|
Goldberg M, Chang CJ, Ogunsina K, O’Brien KM, Taylor KW, White AJ, Sandler DP. Personal Care Product Use during Puberty and Incident Breast Cancer among Black, Hispanic/Latina, and White Women in a Prospective US-Wide Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27001. [PMID: 38306193 PMCID: PMC10836586 DOI: 10.1289/ehp13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Some personal care products (PCPs) contain endocrine-disrupting chemicals that may affect breast cancer (BC) risk. Patterns of use vary by race and ethnicity. Use often starts in adolescence, when rapidly developing breast tissue may be more susceptible to environmental carcinogens. Few studies have examined associations of BC with PCP use during this susceptible window. OBJECTIVES We characterized race and ethnicity-specific patterns of PCP use at 10-13 years of age and estimated associations of use with incident BC. METHODS At enrollment (2003-2009), Sister Study participants (n = 4,049 Black, 2,104 Latina, and 39,312 White women) 35-74 years of age reported use of 37 "everyday" PCPs during the ages of 10-13 y (did not use, sometimes, or frequently used). We conducted race and ethnicity-specific latent class analyses to separately identify groups of women with similar patterns of beauty, hair, and skincare/hygiene product use. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for associations of identified PCP classes and single products with incident BC using Cox proportional hazards regression. RESULTS During a mean follow-up time of 10.8 y, 280 Black, 128 Latina, and 3,137 White women were diagnosed with BC. Classes of adolescent PCP use were not clearly associated with BC diagnosis among Black, Latina, or White women. HRs were elevated but imprecise for frequent nail product and perfume use in Black women (HR = 1.34; 95% CI: 0.85, 2.12) and greater hair product use in Black (HR = 1.28; 95% CI: 0.91, 1.80) and Latina (HR = 1.42; 95% CI: 0.81, 2.48) women compared with lighter use. In single-product models, we observed higher BC incidence associated with frequent use of lipstick, nail products, pomade, perfume, makeup remover, and acne/blemish products in at least one group. DISCUSSION This work provides some support for the hypothesis that PCP use during puberty is associated with BC risk. More research is needed to confirm these novel findings. https://doi.org/10.1289/EHP13882.
Collapse
Affiliation(s)
- Mandy Goldberg
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Kemi Ogunsina
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Kyla W. Taylor
- Integrative Health Assessments Branch, Division of Translational Toxicology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
10
|
Weiss MC, Wang L, Sargis RM. Hormonal Injustice: Environmental Toxicants as Drivers of Endocrine Health Disparities. Endocrinol Metab Clin North Am 2023; 52:719-736. [PMID: 37865484 PMCID: PMC10929240 DOI: 10.1016/j.ecl.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
The toll of multiple endocrine disorders has increased substantially in recent decades, and marginalized populations bear a disproportionate burden of disease. Because of the significant individual and societal impact of these conditions, it is essential to identify and address all modifiable risk factors contributing to these disparities. Abundant evidence now links endocrine dysfunction with exposure to endocrine-disrupting chemicals (EDCs), with greater exposures to multiple EDCs occurring among vulnerable groups, such as racial/ethnic minorities, those with low incomes, and others with high endocrine disease burdens. Identifying and eliminating EDC exposures is an essential step in achieving endocrine health equity.
Collapse
Affiliation(s)
- Margaret C Weiss
- School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Chicago, IL 60612, USA; College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 South Wolcott, Suite E625, M/C 640, Chicago, IL 60612, USA
| | - Luyu Wang
- College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 South Wolcott, Suite E625, M/C 640, Chicago, IL 60612, USA
| | - Robert M Sargis
- College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 South Wolcott, Suite E625, M/C 640, Chicago, IL 60612, USA; Chicago Center for Health and Environment, School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Chicago, IL 60612, USA; Section of Endocrinology, Diabetes, and Metabolism, Jesse Brown Veterans Affairs Medical Center, 820 South Damen, Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Llanos AAM, Rockson A, Getz K, Greenberg P, Portillo E, McDonald JA, Teteh DK, Villasenor J, Lozada C, Franklin J, More V, Rivera-Núñez Z, Kinkade CW, Barrett ES. Assessment of personal care product use and perceptions of use in a sample of US adults affiliated with a university in the Northeast. ENVIRONMENTAL RESEARCH 2023; 236:116719. [PMID: 37481059 PMCID: PMC10592243 DOI: 10.1016/j.envres.2023.116719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Evidence supports unequal burdens of chemical exposures from personal care products (PCPs) among some groups, namely femme-identifying and racial and ethnic minorities. In this study, we implemented an online questionnaire to assess PCP purchasing and usage behaviors and perceptions of use among a sample of US adults recruited at a Northeastern university. We collected PCP use across seven product categories (hair, beauty, skincare, perfumes/colognes, feminine hygiene, oral care, other), and behaviors, attitudes, and perceptions of use and safety across sociodemographic factors to evaluate relationships between sociodemographic factors and the total number of products used within the prior 24-48 h using multivariable models. We also summarized participants' perceptions and attitudes. Among 591 adults (20.0% Asian American/Pacific Islander [AAPI], 5.9% Hispanic, 9.6% non-Hispanic Black [NHB], 54.6% non-Hispanic White [NHW], and 9.9% multiracial or other), the average number of PCPs used within the prior 24-48 h was 15.6 ± 7.7. PCP use was greater among females than males (19.0 vs. 7.9, P < 0.01) and varied by race and ethnicity among females. Relative to NHWs, AAPI females used fewer hair products (2.5 vs. 3.1) and more feminine hygiene products (1.5 vs. 1.1), NHB females used more hair products (3.8 vs. 3.1), perfumes (1.0 vs. 0.6), oral care (2.3 vs. 1.9), and feminine hygiene products (1.8 vs. 1.1), and multiracial or other females used more oral care (2.2 vs. 1.9) and feminine hygiene products (1.5 vs. 1.1) (P-values <0.05). Generally, study participants reported moderate concern about exposures and health effects from using PCPs, with few differences by gender, race, and ethnicity. These findings add to the extant literature on PCP use across sociodemographic characteristics. Improving the understanding of patterns of use for specific products and their chemical ingredients is critical for developing interventions to reduce these exposures, especially in vulnerable groups with an unequal burden of exposure.
Collapse
Affiliation(s)
- Adana A M Llanos
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| | - Amber Rockson
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Kylie Getz
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Patricia Greenberg
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Eva Portillo
- Biostatistics Epidemiology Summer Training (BEST) Diversity Program, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Jasmine A McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Dede K Teteh
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, USA
| | - Justin Villasenor
- Biostatistics Epidemiology Summer Training (BEST) Diversity Program, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Carolina Lozada
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jamirra Franklin
- Environmental and Health Sciences Department, Spelman College, Atlanta, GA, USA
| | - Vaishnavi More
- Department of Nursing and Health Sciences, The College of New Jersey, Ewing, NJ, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Emily S Barrett
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
12
|
Tapia JL, McDonough JC, Cauble EL, Gonzalez CG, Teteh DK, Treviño LS. Parabens Promote Protumorigenic Effects in Luminal Breast Cancer Cell Lines With Diverse Genetic Ancestry. J Endocr Soc 2023; 7:bvad080. [PMID: 37409182 PMCID: PMC10318621 DOI: 10.1210/jendso/bvad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 07/07/2023] Open
Abstract
Context One in 8 women will develop breast cancer in their lifetime. Yet, the burden of disease is greater in Black women. Black women have a 40% higher mortality rate than White women, and a higher incidence of breast cancer at age 40 and younger. While the underlying cause of this disparity is multifactorial, exposure to endocrine disrupting chemicals (EDCs) in hair and other personal care products has been associated with an increased risk of breast cancer. Parabens are known EDCs that are commonly used as preservatives in hair and other personal care products, and Black women are disproportionately exposed to products containing parabens. Objective Studies have shown that parabens impact breast cancer cell proliferation, death, migration/invasion, and metabolism, as well as gene expression in vitro. However, these studies were conducted using cell lines of European ancestry; to date, no studies have utilized breast cancer cell lines of West African ancestry to examine the effects of parabens on breast cancer progression. Like breast cancer cell lines with European ancestry, we hypothesize that parabens promote protumorigenic effects in breast cancer cell lines of West African ancestry. Methods Luminal breast cancer cell lines with West African ancestry (HCC1500) and European ancestry (MCF-7) were treated with biologically relevant doses of methylparaben, propylparaben, and butylparaben. Results Following treatment, estrogen receptor target gene expression and cell viability were examined. We observed altered estrogen receptor target gene expression and cell viability that was paraben and cell line specific. Conclusion This study provides greater insight into the tumorigenic role of parabens in the progression of breast cancer in Black women.
Collapse
Affiliation(s)
- Jazma L Tapia
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jillian C McDonough
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Emily L Cauble
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Cesar G Gonzalez
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Dede K Teteh
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Lindsey S Treviño
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Rangsrikitphoti P, Marquez-Garban DC, Pietras RJ, McGowan E, Boonyaratanakornkit V. Sex steroid hormones and DNA repair regulation: Implications on cancer treatment responses. J Steroid Biochem Mol Biol 2023; 227:106230. [PMID: 36450315 DOI: 10.1016/j.jsbmb.2022.106230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The role of sex steroid hormones (SSHs) has been shown to modulate cancer cytotoxic treatment sensitivity. Dysregulation of DNA repair associated with genomic instability, abnormal cell survival and not only promotes cancer progression but also resistance to cancer treatment. The three major SSHs, androgen, estrogen, and progesterone, have been shown to interact with several essential DNA repair components. The presence of androgens directly regulates key molecules in DNA double-strand break (DSB) repair. Estrogen can promote cell proliferation and DNA repair, allowing cancer cells to tolerate chemotherapy and radiotherapy. Information on the role of progesterone in DNA repair is limited: progesterone interaction with some DNA repair components has been identified, but the biological significance is still unknown. Here, we review the roles of how each SSH affects DNA repair regulation and modulates response to genotoxic therapies and discuss future research that can be beneficial when combining SSHs with cancer therapy. We also provide preliminary analysis from publicly available databases defining the link between progesterone/PR and DDRs & DNA repair regulation that plausibly contribute to chemotherapy response and breast cancer patient survival.
Collapse
Affiliation(s)
- Pattarasiri Rangsrikitphoti
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Diana C Marquez-Garban
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Viroj Boonyaratanakornkit
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Li X, Gao X, Li A, Xu S, Zhou Q, Zhang L, Pan Y, Shi W, Song M, Shi P. Comparative cytotoxicity, endocrine-disrupting effects, oxidative stress of halophenolic disinfection byproducts and the underlying molecular mechanisms revealed by transcriptome analysis. WATER RESEARCH 2023; 229:119458. [PMID: 36516492 DOI: 10.1016/j.watres.2022.119458] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Halophenolic disinfection byproducts (DBPs) are a class of emerging pollutants whose adverse effects on human cells and the underlying molecular mechanisms still need further exploration. In this study, we found that when halophenolic DBPs were substituted with the same halogen, the more substitution sites, the more cytotoxic, while when they were substituted at the same sites, the most toxic chemical was iodophenols, followed by bromophenols and chlorophenols. In addition, several of them exerted significant endocrine-disrupting effects at sublethal concentrations. 2,4,6-triiodophenol (TIP) and 2,4-dichlorophenol (2,4-DCP) showed the highest estradiol equivalent factor (EEF) of 4.41 × 10-8 and flutamide equivalent factor (FEF) of 0.4, respectively. Furthermore, all of the halophenolic DBPs except for 2-chlorophenol (2-CP) and 2-bromophenol (2-BP) significantly increased the levels of reactive oxygen species (ROS) or 8-hydroxydeoxyguanosine (8-OHdG) in HepG2 cells. The lowest cytotoxicity and unchanged ROS and 8-OHdG levels after 2-CP exposure may result from the activation of the transporters of the adenosine triphosphate (ATP) binding cassette in cells. Transcriptome analysis revealed distinct grouping patterns of 2-CP, 2,6-dibromophenol (2,6-DBP), and TIP at the concentrations of EC20, and the top differentially expressed genes (DEGs) were involved in the antioxidant-, immune-, and endocrine-associated systems. The weighted gene correlation network analysis well connected the phenotypes (EC50, EEF, FEF, ROS, 8-OHdG, and ABC transporters) with the DEGs and revealed that the MAPK signaling pathway played a vital role in regulating the biological response after exposure to halophenolic DBPs. This study provides deep insights into the underlying mechanisms of the toxic effects induced by halophenolic DBPs.
Collapse
Affiliation(s)
- Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xinran Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shuhui Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| | - Lulu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
15
|
Llanos AAM, McDonald JA, Teteh DK, Bethea TN. Chemical Relaxers and Hair-Straightening Products: Potential Targets for Hormone-Related Cancer Prevention and Control. J Natl Cancer Inst 2022; 114:1567-1569. [PMID: 36245085 DOI: 10.1093/jnci/djac169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Adana A M Llanos
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jasmine A McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Dede K Teteh
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, USA
| | - Traci N Bethea
- Office of Minority Health and Health Disparities Research, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| |
Collapse
|
16
|
Barr KJ, Johnson CL, Cohen J, D’Souza P, Gallegos EI, Tsai CC, Dunlop AL, Corwin EJ, Barr DB, Ryan PB, Panuwet P. Legacy Chemical Pollutants in House Dust of Homes of Pregnant African Americans in Atlanta. TOXICS 2022; 10:toxics10120755. [PMID: 36548588 PMCID: PMC9784423 DOI: 10.3390/toxics10120755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 05/09/2023]
Abstract
We developed and applied a method for measuring selected persistent organic pollutants (POPs) (i.e., polybrominated diphenyl ethers (PBDEs), organochlorine pesticides, and polychlorinated biphenyls (PCBs)) in dust collected from pregnant African Americans (AAs) in Atlanta using isotope dilution gas chromatography-tandem mass spectrometry. Limits of quantification were ranged from 0.10 to 2.50 ng/g dust. NIST standard reference material measurements demonstrated the robustness of our method. Our accuracies ranged from 82 to 108%, relative standard deviations ranged from 2 to 16%, and extraction recoveries ranged from 76 to 102%. We measured POPs in dust collected from 34 homes of pregnant AAs participating in the Atlanta AA birth cohort study who were enrolled from 2016 to 2019. Concentrations of POPs were detected in all samples with the frequencies of detection ranging from 8 to 100%. Concentrations of PBDE congeners 99 and 47, p,p'-DDT, and PCB153 were detected at some of the highest concentrations with geometric means of 1270, 730, 63.4 and 240 ng/g, respectively. The ratio of DDT/DDE was quite large (~2.7) indicating that p,p'-DDT remains intact in homes for long periods of time. These data demonstrate that care should be taken to remediate POPs in indoor dust, especially in vulnerable, disparate segments of the population.
Collapse
Affiliation(s)
- Kathryn J. Barr
- Department of Environmental Sciences, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Cierra L. Johnson
- Laboratory of Exposure Assessment and Development for Environmental Research, Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jordan Cohen
- Laboratory of Exposure Assessment and Development for Environmental Research, Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Priya D’Souza
- Laboratory of Exposure Assessment and Development for Environmental Research, Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | | | - Chia-Chen Tsai
- Laboratory of Exposure Assessment and Development for Environmental Research, Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Anne L. Dunlop
- Division of Preventive Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | - Dana Boyd Barr
- Laboratory of Exposure Assessment and Development for Environmental Research, Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - P. Barry Ryan
- Laboratory of Exposure Assessment and Development for Environmental Research, Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Laboratory of Exposure Assessment and Development for Environmental Research, Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
17
|
Kowalczyk A, Wrzecińska M, Czerniawska-Piątkowska E, Araújo JP, Cwynar P. Molecular consequences of the exposure to toxic substances for the endocrine system of females. Biomed Pharmacother 2022; 155:113730. [PMID: 36152416 DOI: 10.1016/j.biopha.2022.113730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are common in the environment and in everyday products such as cosmetics, plastic food packaging, and medicines. These substances are toxic in small doses (even in the order of micrograms) and enter the body through the skin, digestive or respiratory system. Numerous studies confirm the negative impact of EDCs on living organisms. They disrupt endocrine functions, contributing to the development of neoplastic and neurological diseases, as well as problems with the circulatory system and reproduction. EDCs affect humans and animals by modulating epigenetic processes that can lead to disturbances in gene expression or failure and even death. They also affect steroid hormones by binding to their receptors as well as interfering with synthesis and secretion of hormones. Prenatal exposure may be related to the impact of EDCs on offspring, resulting in effects of these substances on the ovaries and leading to the reduction of fertility through disturbances in the function of steroid receptors or problems with steroidogenesis and gametogenesis. Current literature indicates the need to continue research on the effects of EDCs on the female reproductive system. The aim of this review was to identify the effects of endocrine-disrupting chemicals on the female reproductive system and their genetic effects based on recent literature.
Collapse
Affiliation(s)
- Alicja Kowalczyk
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, Wrocław, Poland.
| | - Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland.
| | - Ewa Czerniawska-Piątkowska
- Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland.
| | - José Pedro Araújo
- Mountain Research Centre (CIMO), Instituto Politécnico de Viana do Castelo, Rua D. Mendo Afonso, 147, Refóios do Lima, 4990-706 Ponte de Lima, Portugal.
| | - Przemysław Cwynar
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, Wrocław, Poland.
| |
Collapse
|