1
|
Golshany H, Helmy SA, Morsy NFS, Kamal A, Yu Q, Fan L. The gut microbiome across the lifespan: how diet modulates our microbial ecosystem from infancy to the elderly. Int J Food Sci Nutr 2024:1-27. [PMID: 39701663 DOI: 10.1080/09637486.2024.2437472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
This comprehensive review examines the impact of dietary patterns on gut microbiome composition and diversity from infancy to old age, linking these changes to age-related health outcomes. It investigates how the gut microbiome develops and changes across life stages, focusing on the influence of dietary factors. The review explores how early-life feeding practices, including breastfeeding and formula feeding, shape the infant gut microbiota and have lasting effects. In elderly individuals, alterations in the gut microbiome are associated with increased susceptibility to infections, chronic inflammation, metabolic disorders and cognitive decline. The critical role of diet in modulating the gut microbiome throughout life is emphasised, particularly the potential benefits of probiotics and fortified foods in promoting healthy ageing. By elucidating the mechanisms connecting food systems to gut health, this review provides insights into interventions that could enhance gut microbiome resilience and improve health outcomes across the lifespan.
Collapse
Affiliation(s)
- Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | - Aya Kamal
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety & Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Tso-Yen M, Chun-Feng H, Hong-Wa L, Ying-Fang L, Wei-Hsun H, Shinn-Jang H. Recognition of mild cognitive impairment in older adults using a polynomial regression model based on prefrontal cortex hemoglobin oxygenation. Exp Gerontol 2024; 198:112637. [PMID: 39577711 DOI: 10.1016/j.exger.2024.112637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
AIM This study employed a three-minute game-based intelligence test (GBIT) to create a hemoglobin polynomial regression model for early identification of mild cognitive impairment (MCI) in older adults. METHODS 210 older adult participants were recruited from community centers in the central region of Taichung City. Working memory (WM) performance in older adults was assessed during GBIT, while hemoglobin responses were measured by near-infrared spectroscopy (NIRS). Variables included oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb). Data sequences underwent a fitting procedure using a transformed cubic polynomial function. The transformed coefficients were used as predictors of a logistic regression model to recognize MCI in older adults. RESULTS This study confirmed the relationship between age and cognitive performance. The findings demonstrate that the NIRS cubic polynomial function trends during the GBIT test showed significant changes in older adults, increasing with age. Logistic regression analysis identified age and the orientation (coefficient a) of HHb as the main factors for recognizing MCI. The model achieved an overall precision of 83.33 % (sensitivity = 75.00 %; specificity = 84.68 %) with the formula: ln (Odds [MCI]) = -1.64 + 0.57 × HHb_a + 1.40 × age. CONCLUSIONS NIRS hemoglobin response characteristics during GBIT may serve as an efficient indicator of MCI in older adults. These findings may advance the field of cognitive health evaluation, resulting in earlier detection of cognitive deterioration in older adults.
Collapse
Affiliation(s)
- Mao Tso-Yen
- Department of Leisure Services Management, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Huang Chun-Feng
- Department of Leisure Services Management, Chaoyang University of Technology, Taichung, Taiwan, ROC; Division of Family Medicine, En Chu Kong Hospital, New Taipei City, Taiwan, ROC; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Lo Hong-Wa
- Department of Leisure Services Management, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Liu Ying-Fang
- Department of Health and Leisure Management, Hsin Sheng College of Medical Care and Management, Taoyuan County, 325, Taiwan, ROC
| | - Hsu Wei-Hsun
- Department of Marketing and Logistics Management, Chaoyang University of Technology, Taichung City, Taiwan, ROC.
| | - Hwang Shinn-Jang
- Division of Family Medicine, En Chu Kong Hospital, New Taipei City, Taiwan, ROC; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| |
Collapse
|
3
|
Gopal RK, Ganesh PS, Pathoor NN. Synergistic Interplay of Diet, Gut Microbiota, and Insulin Resistance: Unraveling the Molecular Nexus. Mol Nutr Food Res 2024; 68:e2400677. [PMID: 39548908 DOI: 10.1002/mnfr.202400677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Indexed: 11/18/2024]
Abstract
This comprehensive review explores the intricate relationship between gut microbiota, diet, and insulin resistance, emphasizing the novel roles of diet-induced microbial changes in influencing metabolic health. It highlights how diet significantly influences gut microbiota composition, with different dietary patterns fostering diverse microbial communities. These diet-induced changes in the microbiome impact human metabolism by affecting inflammation, energy balance, and insulin sensitivity, particularly through microbial metabolites like short-chain fatty acids (SCFAs). Focusing the key mediators like endotoxemia and systemic inflammation, and introduces personalized microbiome-based therapeutic strategies, it also investigates the effects of dietary components-fiber, polyphenols, and lipids-on microbiota and insulin sensitivity, along with the roles of protein intake and amino acid metabolism. The study compares the effects of Western and Mediterranean diets on the microbiota-insulin resistance axis. Therapeutic implications, including probiotics, fecal microbiota transplantation (FMT), and personalized diets, are discussed. Key findings reveal that high-fat diets, especially those rich in saturated fats, contribute to dysbiosis and increased intestinal permeability, while high-fiber diets promote beneficial bacteria and SCFAs. The review underscores the future potential of food and microbiota interventions for preventing or managing insulin resistance.
Collapse
Affiliation(s)
- Rajesh Kanna Gopal
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| | - Naji Naseef Pathoor
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
4
|
Asar TO, Al-Abbasi FA, Sheikh RA, Zeyadi MAM, Nadeem MS, Naqvi S, Kumar V, Anwar F. Metformin's dual impact on Gut microbiota and cardiovascular health: A comprehensive analysis. Biomed Pharmacother 2024; 178:117128. [PMID: 39079259 DOI: 10.1016/j.biopha.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/25/2024] Open
Abstract
Cardiovascular diseases (CVD) cause significant global morbidity, mortality and public health burden annually. CVD alters richness, diversity, and composition of Gut microbiota along with RAS and histopathological differences. Present study explores Metformin role in mitigating doxorubicin induced cardiovascular toxicity/remodeling. Animals were divided into 4 groups with n=6: Group I (N. Control) free access to diet and water; Group II (MET. Control) on oral Metformin (250 mg/kg) daily; Group III (DOX. Control) alternate day intraperitoneal Doxorubicin (3 mg/kg) totaling 18 mg/kg; Group IV (DOX. MET. Control) received both daily oral Metformin (250 mg/kg) and alternate day Doxorubicin (3 mg/kg). Gut microbial analysis was made from stool before animals were sacrificed for biochemical and histopathological analysis. Significant alterations were observed in ɑ and β-diversity with new genus from Firmicutes, specifically Clostridia_UCG-014, Eubacterium ruminantium, and Tunicibacter, were prevalent in both the DOX. Control and DOX.MET groups. Proteobacteria, represented by Succinivibrio, were absent in all groups. Additionally, Parabacteroides from the Bacteroidia phylum was absent in all groups except the N. control. In the DOX.MET Control group, levels of Angiotensin II ( 7.75± 0.49 nmol/min, p<0.01) and Renin (2.60±0.26 ng/ml/hr) were significantly reduced. Conversely, levels of CK-MB, Fibrinogen, Troponin, CRP ( p < 0.0001), and TNFɑ (p < 0.05) were elevated. Histopathological examination revealed substantial cardiac changes, including Fibrinogen and fat deposition and eosinophilic infiltration, as well as liver damage characterized by binucleated cells and damaged hepatocytes, along with altered renal tissues in the DOX.MET.Control group. The findings suggest that MET. significantly modifies gut microbiota, particularly impacting the Firmicutes and Proteobacteria phyla. The reduction in Angiotensin II levels, alongside increased inflammatory markers and myocardial damage, highlights the complex interactions and potential adverse effects associated with MET therapy on cardiovascular health.
Collapse
Affiliation(s)
- Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia.
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | | | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India.
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
de Galan BE. Diabetes and brain disorders, a new role for insulin? Neurosci Biobehav Rev 2024; 163:105775. [PMID: 38901787 DOI: 10.1016/j.neubiorev.2024.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Bastiaan E de Galan
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
IsHak WW, Meyer A, Freire L, Totlani J, Murphy N, Renteria S, Salem M, Chang T, Abdelsalam R, Khan R, Chandy T, Parrish T, Hirsch D, Patel B, Steiner AJ, Kim S, Hedrick R, Pechnick RN, Danovitch I. Overview of Psychiatric Medications in the Pipeline in Phase III Trials as of June 1, 2024: A Systematic Review. INNOVATIONS IN CLINICAL NEUROSCIENCE 2024; 21:27-47. [PMID: 39329027 PMCID: PMC11424068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Objective This systematic review provides an overview of psychiatric medications in the late stages of development (Phase III clinical trials) as of June 1, 2024. It details the mechanisms of action, efficacy, dosing, and adverse effects of these medications. Methods We searched the PubMed database for Phase III studies of psychiatric medications published until June 1, 2024, using the keywords "psychiatric" OR "psychopharm*" AND "medic*" OR "pharm*". Our review encompassed medications currently undergoing Phase III clinical trials and those that have completed Phase III but are awaiting approval from the United States Food and Drug Administration (FDA). We independently analyzed the identified studies and reached a consensus on the medications to be included in this systematic review. Results As of June 1, 2024, a total of 89 pipeline drug trials were identified, including nine for schizophrenia, five for bipolar disorders, 25 for depressive disorders, 11 for anxiety disorders, five for post-traumatic stress disorder (PTSD), one for obsessive compulsive disorder (OCD), two for eating disorders, two for sleep-wake disorders, three for sexual dysfunctions, one for substance-related and addictive disorders, 22 for neurocognitive disorders, and three for neurodevelopmental disorders, specifically attention deficit hyperactivity disorder (ADHD). Conclusion The psychiatric medications in the pipeline as of June 1, 2024, demonstrate significant promise in treating psychiatric disorders.
Collapse
Affiliation(s)
- Waguih William IsHak
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
- Dr. IsHak is also with David Geffen School of Medicine at UCLA in Los Angeles, California
| | - Ashley Meyer
- Ms. Meyer is with University of California Irvine, School of Medicine in Irvine, California
| | - Luiza Freire
- Dr. Freire is with Faculdade Pernambucana de Saude in Recife, PE, Brazil
| | - Jayant Totlani
- Drs. Totlani and Pechnick and Ms. Patel are with Western University of Health Sciences in Pomona, California
| | - Nathalie Murphy
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Sabrina Renteria
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Mohamed Salem
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Tiffany Chang
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Rasha Abdelsalam
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Rida Khan
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Thomas Chandy
- Dr. Chandy is with Loma Linda University in Loma Lina, California
| | - Thomas Parrish
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Drew Hirsch
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Bhumika Patel
- Drs. Totlani and Pechnick and Ms. Patel are with Western University of Health Sciences in Pomona, California
| | | | - Sarah Kim
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Rebecca Hedrick
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| | - Robert N. Pechnick
- Drs. Totlani and Pechnick and Ms. Patel are with Western University of Health Sciences in Pomona, California
| | - Itai Danovitch
- Drs. IsHak, Murphy, Renteria, Abdelsalam, Khan, Kim, Hedrick, and Danovitch; Mr. Salem; Ms. Chang; Mr. Parrish; and Mr. Hirsch are with Cedars-Sinai Health System in Los Angeles, California
| |
Collapse
|
7
|
Mok DZ, Tng DJ, Yee JX, Chew VS, Tham CY, Ooi JS, Tan HC, Zhang SL, Lin LZ, Ng WC, Jeeva LL, Murugayee R, Goh KKK, Lim TP, Cui L, Cheung YB, Ong EZ, Chan KR, Ooi EE, Low JG. Electron transport chain capacity expands yellow fever vaccine immunogenicity. EMBO Mol Med 2024; 16:1310-1323. [PMID: 38745062 PMCID: PMC11178804 DOI: 10.1038/s44321-024-00065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Vaccination has successfully controlled several infectious diseases although better vaccines remain desirable. Host response to vaccination studies have identified correlates of vaccine immunogenicity that could be useful to guide development and selection of future vaccines. However, it remains unclear whether these findings represent mere statistical correlations or reflect functional associations with vaccine immunogenicity. Functional associations, rather than statistical correlates, would offer mechanistic insights into vaccine-induced adaptive immunity. Through a human experimental study to test the immunomodulatory properties of metformin, an anti-diabetic drug, we chanced upon a functional determinant of neutralizing antibodies. Although vaccine viremia is a known correlate of antibody response, we found that in healthy volunteers with no detectable or low yellow fever 17D viremia, metformin-treated volunteers elicited higher neutralizing antibody titers than placebo-treated volunteers. Transcriptional and metabolomic analyses collectively showed that a brief course of metformin, started 3 days prior to YF17D vaccination and stopped at 3 days after vaccination, expanded oxidative phosphorylation and protein translation capacities. These increased capacities directly correlated with YF17D neutralizing antibody titers, with reduced reactive oxygen species response compared to placebo-treated volunteers. Our findings thus demonstrate a functional association between cellular respiration and vaccine-induced humoral immunity and suggest potential approaches to enhancing vaccine immunogenicity.
Collapse
Affiliation(s)
- Darren Zl Mok
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Danny Jh Tng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Jia Xin Yee
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Valerie Sy Chew
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Christine Yl Tham
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Justin Sg Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Summer L Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lowell Z Lin
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wy Ching Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lavanya Lakshmi Jeeva
- SingHealth Investigational Medicine Unit, Singapore General Hospital, Singapore, Singapore
| | - Ramya Murugayee
- SingHealth Investigational Medicine Unit, Singapore General Hospital, Singapore, Singapore
| | - Kelvin K-K Goh
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Liang Cui
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
| | - Yin Bun Cheung
- Center for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
- Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Eugenia Z Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.
- Department of Translational Clinical Research, Singapore General Hospital, Singapore, Singapore.
| | - Jenny G Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore.
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
8
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|