1
|
Ni T, Zhao RH, Wu JF, Li CY, Xue G, Lin X. KLK7, KLK10, and KLK11 in Papillary Thyroid Cancer: Bioinformatic Analysis and Experimental Validation. Biochem Genet 2024; 62:4446-4471. [PMID: 38316654 DOI: 10.1007/s10528-024-10679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
Despite many studies on papillary thyroid carcinoma (PTC) in the past few decades, some critical and significant genes remain undiscovered. To explore genes that may play crucial roles in PTC, a detailed analysis of the expression levels, mutations, and clinical significance of Kallikrein-related peptidases (KLKs) family genes in PTC was undertaken to provide new targets for the precise treatment of the disease. A comprehensive analysis of KLK family genes was performed using various online tools, such as GEPIA, Kaplan-Meier Plotter, LinkedOmics, GSCA, TIMER, and Cluego. KLK7, KLK10, and KLK11 were critical factors of KLK family genes. Then, functional assays were carried out on KLK7/10/11 to determine their proliferation, migration, and invasion capabilities in PTC. The mRNA expression levels of KLK7, KLK10, KLK11, and KLK13 were significantly elevated in thyroid carcinoma, while KLK1, KLK2, KLK3 and KLK4 mRNA levels were decreased compared to normal tissues. Correlations between KLK2/7-12/15 expression levels and tumor stage were also observed in thyroid carcinoma. Survival analysis demonstrated that KLK4/5/7/9-12/14 was associated with overall survival in patients with thyroid cancer. Not only were KLK genes strongly associated with cancer-related pathways, but also KLK7/10/11 was associated with immune-cell infiltration. Finally, silencing KLK7/10/11 impaired human papillary thyroid carcinoma cells' growth, migration ability, and invasiveness. The increased expression of KLK7, KLK10, and KLK11 may serve as molecular markers to identify PTC patients. KLK7, KLK10, and KLK11 could be potential prognostic indicators and targets for precision therapy against PTC.
Collapse
Affiliation(s)
- Tao Ni
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Ru-Hua Zhao
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China
| | - Jing-Fang Wu
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China
| | - Chao-You Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Gang Xue
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Xu Lin
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China.
| |
Collapse
|
2
|
Avila Rodríguez MI, Velez Rueda AJ, Hernández-Pérez J, Benavides J, Sanchez ML. Homology-based identification and structural analysis of Pangasius hypophthalmus Annexins and Serine proteases to search molecules for wound healing applications. Comput Struct Biotechnol J 2024; 23:3680-3691. [PMID: 39507818 PMCID: PMC11539086 DOI: 10.1016/j.csbj.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Chronic wounds and burns are a worldwide healthcare problem that erodes patients' well-being and healthcare systems. This silent and costly epidemic requires new, cost-efficient solutions to improve patients' physical and economic welfare. Eschar-degrading vegetal and bacterial proteases have been utilized as a solution. However, these proteins are evolutionarily far from those present in human wound healing. Serine protease (SP) and annexin (ANX) proteins interact within the skin healing process. A homology-based identification pipeline can help in discovering selective human SP and ANX analogs in the epithelial tissue of the fast-healing species, Pangasius hypophthalmus. In the present work, we found 14 candidates for RT-PCR in P. hypophthalmus using homology inference. The genetically detected candidates were then structurally and sequentially analyzed to understand their possible relation to SPs and ANXs involved in human wound healing. A total of six TBLASTN/BLASTX candidates (four SPs and two ANXs) were detected in P. hypophthalmus skin. Structural analysis revealed that all SP candidates resembled human KLK4, KLK5, KLK6, and KLK8, whereas all ANX only resembled human ANXA4. Structure and sequence analysis revealed high conservation of ANX Ca2+ binding sites (GDXD) and SP catalytic triad (HDS) motifs. In addition, structural analysis revealed that SP substrate selectivity position 186 was the main difference between human KLK5 and P. hypophthalmus SPs. These findings may allow the proposal and testing of more selective formulations, broadening treatments beyond debridement.
Collapse
Affiliation(s)
- Maria Isabela Avila Rodríguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada, 2501, Monterrey, Nuevo León C.P 64849, Mexico
| | - Ana Julia Velez Rueda
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Roque Sáenz Peña 352, Bernal, Buenos Aires B1876, Argentina
| | - Jesús Hernández-Pérez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada, 2501, Monterrey, Nuevo León C.P 64849, Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada, 2501, Monterrey, Nuevo León C.P 64849, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey C.P 64849, Mexico
| | - Mirna Lorena Sanchez
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires B1876, Argentina
| |
Collapse
|
3
|
Altıntaş UB, Seo JH, Giambartolomei C, Ozturan D, Fortunato BJ, Nelson GM, Goldman SR, Adelman K, Hach F, Freedman ML, Lack NA. Decoding the epigenetics and chromatin loop dynamics of androgen receptor-mediated transcription. Nat Commun 2024; 15:9494. [PMID: 39489778 PMCID: PMC11532539 DOI: 10.1038/s41467-024-53758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Androgen receptor (AR)-mediated transcription plays a critical role in development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigate the AR-driven epigenetic and chromosomal chromatin looping changes by generating a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we find that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we show that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then propose and experimentally validate an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide insights into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
Collapse
Grants
- 221Z116 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (Scientific and Technological Research Council of Turkey)
- R01 CA259058 NCI NIH HHS
- R01 CA227237 NCI NIH HHS
- W81XWH-21-1-0339 U.S. Department of Defense (United States Department of Defense)
- R01 CA251555 NCI NIH HHS
- W81XWH-21-1-0234 U.S. Department of Defense (United States Department of Defense)
- PJT-173331 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- W81XWH-22-1-0951 U.S. Department of Defense (United States Department of Defense)
- R01 CA262577 NCI NIH HHS
- N.A.L. was supported by funding from TUBITAK (221Z116), W81XWH-21-1-0234 (DoD), and CIHR PJT-173331.
- M.L.F. was supported by the Claudia Adams Barr Program for Innovative Cancer Research, the Dana-Farber Cancer Institute Presidential Initiatives Fund, the H.L. Snyder Medical Research Foundation, the Cutler Family Fund for Prevention and Early Detection, the Donahue Family Fund, W81XWH-21-1-0339, W81XWH-22-1-0951 (DoD), NIH Awards R01CA251555, R01CA227237, R01CA262577, R01CA259058 and a Movember PCF Challenge Award.
Collapse
Affiliation(s)
- Umut Berkay Altıntaş
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Ji-Heui Seo
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Claudia Giambartolomei
- Integrative Data Analysis Unit, Health Data Science Centre, Human Technopole, Milan, 20157, Italy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Dogancan Ozturan
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Brad J Fortunato
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth R Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
| | - Faraz Hach
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew L Freedman
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nathan A Lack
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
- Department of Medical Pharmacology, School of Medicine, Koç University, Istanbul, 34450, Turkey.
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
4
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024; 28:875-894. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Erickson JA, Jimmidi R, Anamthathmakula P, Qin X, Wang J, Gong L, Park J, Koolpe G, Tan C, Matzuk MM, Li F, Chamakuri S, Winuthayanon W. Synthesis and Optimization of Small Molecule Inhibitors of Prostate Specific Antigen. ACS Med Chem Lett 2024; 15:1526-1532. [PMID: 39291021 PMCID: PMC11403753 DOI: 10.1021/acsmedchemlett.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Semen liquefaction is a postejaculation process that transforms semen from a gel-like (coagulated) form to a water-like consistency (liquefied). This process is primarily regulated by serine proteases from the prostate gland, most prominently, prostate-specific antigen (PSA; KLK3). Inhibiting PSA activity has the potential to impede liquefaction of human semen, presenting a promising target for nonhormonal contraception in the female reproductive tract. This study employed triazole B1 as a starting compound. Through systematic design, synthesis, and optimization, we identified compound 20 (CDD-3290) as a 216 nM inhibitor of PSA with better stability in media than triazole B1. Further, we also evaluated the selectivity profile of compound 20 (CDD-3290) by testing against closely related proteases and demonstrated excellent inhibition of PSA versus α-chymotrypsin and elastase and similar potency versus thrombin. Thus, compound 20 is an improved PSA inhibitor that can be tested for efficacy in vitro or in the female reproductive tract.
Collapse
Affiliation(s)
- Jeffery A Erickson
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri - Columbia, Columbia, Missouri 65211, United States
| | - Ravikumar Jimmidi
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Prashanth Anamthathmakula
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri 64108, United States
| | - Xuan Qin
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jian Wang
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Leyi Gong
- Department of Medicinal and Synthetic Chemistry, Bioscience Division, SRI International, Menlo Park, California 94025, United States
| | - Jaehyeon Park
- Department of Medicinal and Synthetic Chemistry, Bioscience Division, SRI International, Menlo Park, California 94025, United States
| | - Gary Koolpe
- Department of Medicinal and Synthetic Chemistry, Bioscience Division, SRI International, Menlo Park, California 94025, United States
| | - Caitlin Tan
- Department of Medicinal and Synthetic Chemistry, Bioscience Division, SRI International, Menlo Park, California 94025, United States
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Feng Li
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Wipawee Winuthayanon
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri - Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Poyrazlı F, Okuyan D, Köçkar F, Türkoğlu SA. Hypoxic Regulation of the KLK4 Gene in two Different Prostate Cancer Cells Treated with TGF- β. Cell Biochem Biophys 2024; 82:2797-2812. [PMID: 39026058 DOI: 10.1007/s12013-024-01396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
The human kallikrein-related peptidase (KLK) family which consists of 15 members is associated with prostate cancer and other cancers. It has been reported that overexpression of KLK4 in prostate cancer correlates with bone metastasis or advanced stage. Hypoxia occurs in the early stages of prostate cancer due to the accumulation of acidic metabolites or reactive oxygen species (ROS). In our study, KLK4 gene expression in hypoxic conditions in PC-3 and LNCaP cells which are treated with TGF-β was evaluated with mRNA, protein, and promoter activity levels. A chemical hypoxia model was created and confirmed at mRNA and protein level. No statistically significant cytotoxic effect of CoCl2 and TGF-β was observed in PC-3 and LNCaP cells with the MTT test. Four different truncated KLK4 gene promoter constructs were cloned in pmetLuc expression vector and basal activities of all promoter fragments were analyzed. The activities of P1 (-447/ + 657), P2 (-103/ + 657), and P3 (-267/ + 657) promoter fragments increased in hypoxic conditions except P4 (+555/ + 657), which does not contain the SMAD and HRE region. KLK4 mRNA levels in both PC-3 and LNCaP cells increased in the hypoxia and hypoxia/TGF groups compared to the non-treated groups. The stimulating effect of TGF-β is correlated with the increase in SMAD2/3 mRNA levels. KLK4 expression is up-regulated by TGF-β, especially under hypoxic conditions, and its interaction with the SMAD pathway is determined with different inhibitor experiments. HIF-1α and SMAD transcription factors bind to the KLK4 promoter showing the direct interaction of HIF-1α (-80/-52) and SMAD (+163/+194) regions with EMSA.
Collapse
Affiliation(s)
- Fatma Poyrazlı
- University of Balikesir, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balikesir, Turkey
| | - Derya Okuyan
- University of Bandırma, Susurluk Vocational Training Schools, Laboratory and Veterinary Health Program, Balikesir, Turkey
| | - Feray Köçkar
- University of Balikesir, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balikesir, Turkey
| | - Sümeyye Aydoğan Türkoğlu
- University of Balikesir, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balikesir, Turkey.
| |
Collapse
|
7
|
Csizmarik A, Nagy N, Keresztes D, Váradi M, Bracht T, Sitek B, Witzke K, Puhr M, Tornyi I, Lázár J, Takács L, Kramer G, Sevcenco S, Maj-Hes A, Hadaschik B, Nyirády P, Szarvas T. Comparative proteome and serum analysis identified FSCN1 as a marker of abiraterone resistance in castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:451-456. [PMID: 37634036 PMCID: PMC11319194 DOI: 10.1038/s41391-023-00713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Abiraterone (Abi) is an androgen receptor signaling inhibitor that significantly improves patients' life expectancy in metastatic prostate cancer (PCa). Despite its beneficial effects, many patients have baseline or acquired resistance against Abi. The aim of this study was to identify predictive serum biomarkers for Abi treatment. METHODS We performed a comparative proteome analysis on three Abi sensitive (LNCaPabl, LAPC4, DuCaP) and resistant (LNCaPabl-Abi, LAPC4-Abi, DuCaP-Abi) PCa cell lines using liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. Two bioinformatic selection workflows were applied to select the most promising candidate serum markers. Serum levels of selected proteins were assessed in samples of 100 Abi-treated patients with metastatic castration-resistant disease (mCRPC) using ELISA. Moreover, FSCN1 serum concentrations were measured in samples of 69 Docetaxel (Doc) treated mCRPC patients. RESULTS Our proteome analysis identified 68 significantly, at least two-fold upregulated proteins in Abi resistant cells. Using two filtering workflows four proteins (AMACR, KLK2, FSCN1 and CTAG1A) were selected for ELISA analyses. We found high baseline FSCN1 serum levels to be significantly associated with poor survival in Abi-treated mCRPC patients. Moreover, the multivariable analysis revealed that higher ECOG status (>1) and high baseline FSCN1 serum levels (>10.22 ng/ml by ROC cut-off) were independently associated with worse survival in Abi-treated patients (p < 0.001 and p = 0.021, respectively). In contrast, no association was found between serum FSCN1 concentrations and overall survival in Doc-treated patients. CONCLUSIONS Our analysis identified baseline FSCN1 serum levels to be independently associated with poor survival of Abi-treated, but not Doc-treated mCRPC patients, suggesting a therapy specific prognostic value for FSCN1.
Collapse
Affiliation(s)
- Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Nikolett Nagy
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Dávid Keresztes
- Department of Urology, Semmelweis University, Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Melinda Váradi
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
- Center for Protein Diagnostics, Medical Proteome Analysis, Ruhr-University Bochum, Bochum, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
- Center for Protein Diagnostics, Medical Proteome Analysis, Ruhr-University Bochum, Bochum, Germany
| | - Kathrin Witzke
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Center for Protein Diagnostics, Medical Proteome Analysis, Ruhr-University Bochum, Bochum, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ilona Tornyi
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary
| | - József Lázár
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary
| | - László Takács
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary
- Biosystems International Kft, Debrecen, Hungary
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Sabina Sevcenco
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Agnieszka Maj-Hes
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary.
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Patel VN, Aure MH, Choi SH, Ball JR, Lane ED, Wang Z, Xu Y, Zheng C, Liu X, Martin D, Pailin JY, Prochazkova M, Kulkarni AB, van Kuppevelt TH, Ambudkar IS, Liu J, Hoffman MP. Specific 3-O-sulfated heparan sulfate domains regulate salivary gland basement membrane metabolism and epithelial differentiation. Nat Commun 2024; 15:7584. [PMID: 39217171 PMCID: PMC11365954 DOI: 10.1038/s41467-024-51862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Heparan sulfate (HS) regulation of FGFR function, which is essential for salivary gland (SG) development, is determined by the immense structural diversity of sulfated HS domains. 3-O-sulfotransferases generate highly 3-O-sulfated HS domains (3-O-HS), and Hs3st3a1 and Hs3st3b1 are enriched in myoepithelial cells (MECs) that produce basement membrane (BM) and are a growth factor signaling hub. Hs3st3a1;Hs3st3b1 double-knockout (DKO) mice generated to investigate 3-O-HS regulation of MEC function and growth factor signaling show loss of specific highly 3-O-HS and increased FGF/FGFR complex binding to HS. During development, this increases FGFR-, BM- and MEC-related gene expression, while in adult, it reduces MECs, increases BM and disrupts acinar polarity, resulting in salivary hypofunction. Defined 3-O-HS added to FGFR pulldown assays and primary organ cultures modulates FGFR signaling to regulate MEC BM synthesis, which is critical for secretory unit homeostasis and acinar function. Understanding how sulfated HS regulates development will inform the use of HS mimetics in organ regeneration.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Sophie H Choi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - James R Ball
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ethan D Lane
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Glycan Therapeutics Corp, Raleigh, NC, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Changyu Zheng
- Translational Research Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Xibao Liu
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Daniel Martin
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Jillian Y Pailin
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Indu S Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| |
Collapse
|
9
|
Jiang S, Lu F, Chen J, Jiao Y, Qiu Q, Nian X, Qu M, Wang Y, Li M, Liu F, Gao X. UPCARE: Urinary Extracellular Vesicles-Derived Prostate Cancer Assessment for Risk Evaluation. J Extracell Vesicles 2024; 13:e12491. [PMID: 39175282 PMCID: PMC11341834 DOI: 10.1002/jev2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
In the quest for efficient tumor diagnosis via liquid biopsy, extracellular vesicles (EVs) have shown promise as a source of potential biomarkers. This study addresses the gap in biomarker efficacy for predicting clinically significant prostate cancer (csPCa) between the Western and Chinese populations. We developed a urinary extracellular vesicles-based prostate score (EPS) model, utilizing the EXODUS technique for EV isolation from 598 patients and incorporating gene expressions of FOXA1, PCA3, and KLK3. Our findings reveal that the EPS model surpasses prostate-specific antigen (PSA) testing in diagnostic accuracy within a training cohort of 234 patients, achieving an area under the curve (AUC) of 0.730 compared to 0.659 for PSA (p = 0.018). Similarly, in a validation cohort of 101 men, the EPS model achieved an AUC of 0.749, which was significantly better than PSA's 0.577 (p < 0.001). Our model has demonstrated a potential reduction in unnecessary prostate biopsies by 26%, with only a 3% miss rate for csPCa cases, indicating its effectiveness in the Chinese population.
Collapse
Affiliation(s)
- Shaoqin Jiang
- Department of UrologyFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Feiting Lu
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Jiadi Chen
- Department of Clinical LaboratoryFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Yingzhen Jiao
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Qingqing Qiu
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Xinwen Nian
- Department of UrologyChanghai HospitalShanghaiChina
| | - Min Qu
- Department of UrologyChanghai HospitalShanghaiChina
| | - Yan Wang
- Department of UrologyChanghai HospitalShanghaiChina
| | - Mengqiang Li
- Department of UrologyFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Fei Liu
- Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Xu Gao
- Department of UrologyChanghai HospitalShanghaiChina
| |
Collapse
|
10
|
Guo W, Zhang Z, Kang J, Gao Y, Qian P, Xie G. Single-cell transcriptome profiling highlights the importance of telocyte, kallikrein genes, and alternative splicing in mouse testes aging. Sci Rep 2024; 14:14795. [PMID: 38926537 PMCID: PMC11208613 DOI: 10.1038/s41598-024-65710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Advancing healthcare for elderly men requires a deeper understanding of testicular aging processes. In this study, we conducted transcriptomic profiling of 43,323 testicular single cells from young and old mice, shedding light on 1032 telocytes-an underexplored testicular cell type in previous research. Our study unveiled 916 age-related differentially expressed genes (age-DEGs), with telocytes emerging as the cell type harboring the highest count of age-DEGs. Of particular interest, four genes (Klk1b21, Klk1b22, Klk1b24, Klk1b27) from the Kallikrein family, specifically expressed in Leydig cells, displayed down-regulation in aged testes. Moreover, cell-type-level splicing analyses unveiled 1838 age-related alternative splicing (AS) events. While we confirmed the presence of more age-DEGs in somatic cells compared to germ cells, unexpectedly, more age-related AS events were identified in germ cells. Further experimental validation highlighted 4930555F03Rik, a non-coding RNA gene exhibiting significant age-related AS changes. Our study represents the first age-related single-cell transcriptomic investigation of testicular telocytes and Kallikrein genes in Leydig cells, as well as the first delineation of cell-type-level AS dynamics during testicular aging in mice.
Collapse
Affiliation(s)
- Wuyier Guo
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Ziyan Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Jiahui Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Yajing Gao
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Peipei Qian
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong, 226001, China.
| |
Collapse
|
11
|
Suzuki A, Yabuta N, Shimada K, Mashiko D, Tokuhiro K, Oyama Y, Miyata H, Garcia TX, Matzuk MM, Ikawa M. Individual disruption of 12 testis-enriched genes via the CRISPR/Cas9 system does not affect the fertility of male mice. J Reprod Immunol 2024; 163:104252. [PMID: 38697008 PMCID: PMC11390273 DOI: 10.1016/j.jri.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
More than 1200 genes have been shown in the database to be expressed predominantly in the mouse testes. Advances in genome editing technologies such as the CRISPR/Cas9 system have made it possible to create genetically engineered mice more rapidly and efficiently than with conventional methods, which can be utilized to screen genes essential for male fertility by knocking out testis-enriched genes. Finding such genes related to male fertility would not only help us understand the etiology of human infertility but also lead to the development of male contraceptives. In this study, we generated knockout mice for 12 genes (Acrv1, Adgrf3, Atp8b5, Cfap90, Cfap276, Fbxw5, Gm17266, Lrrd1, Mroh7, Nemp1, Spata45, and Trim36) that are expressed predominantly in the testis and examined the appearance and histological morphology of testes, sperm motility, and male fertility. Mating tests revealed that none of these genes is essential for male fertility at least individually. Notably, knockout mice for Gm17266 showed smaller testis size than the wild-type but did not exhibit reduced male fertility. Since 12 genes were not individually essential for male fertilization, it is unlikely that these genes could be the cause of infertility or contraceptive targets. It is better to focus on other essential genes because complementary genes to these 12 genes may exist.
Collapse
Affiliation(s)
- Akira Suzuki
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norikazu Yabuta
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Keisuke Shimada
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Mashiko
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1191, Japan
| | - Yuki Oyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Thomas X Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masahito Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
12
|
Valente-Santos J, Vitorino R, Sousa-Mendes C, Oliveira P, Colaço B, Faustino-Rocha AI, Neuparth MJ, Leite-Moreira A, Duarte JA, Ferreira R, Amado F. Long-Term Exposure to Supraphysiological Levels of Testosterone Impacts Rat Submandibular Gland Proteome. Int J Mol Sci 2023; 25:550. [PMID: 38203721 PMCID: PMC10778877 DOI: 10.3390/ijms25010550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The salivary glands play a central role in the secretion of saliva, whose composition and volume affect oral and overall health. A lesser-explored dimension encompasses the possible changes in salivary gland proteomes in response to fluctuations in sex hormone levels. This study aimed to examine the effects of chronic exposure to testosterone on salivary gland remodeling, particularly focusing on proteomic adaptations. Therefore, male Wistar rats were implanted with subcutaneous testosterone-releasing devices at 14 weeks of age. Their submandibular glands were histologically and molecularly analyzed 47 weeks later. The results underscored a significant increase in gland mass after testosterone exposure, further supported by histologic evidence of granular duct enlargement. Despite increased circulating sex hormones, there was no detectable shift in the tissue levels of estrogen alpha and androgen receptors. GeLC-MS/MS and subsequent bioinformatics identified 308 proteins in the submandibular glands, 12 of which were modulated by testosterone. Of note was the pronounced upregulation of Klk3 and the downregulation of Klk6 and Klk7 after testosterone exposure. Protein-protein interaction analysis with the androgen receptor suggests that Klk3 is a potential target of androgenic signaling, paralleling previous findings in the prostate. This exploratory analysis sheds light on the response of salivary glands to testosterone exposure, providing proteome-level insights into the associated weight and histological changes.
Collapse
Affiliation(s)
- João Valente-Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.-S.); (R.F.)
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Cláudia Sousa-Mendes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.-M.); (A.L.-M.)
| | - Paula Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (P.O.); (A.I.F.-R.)
| | - Bruno Colaço
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Department of Animal Science, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Ana I. Faustino-Rocha
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (P.O.); (A.I.F.-R.)
- Comprehensive Health Research Center, Department of Zootechnics, School of Sciences and Technology, University of Évora, 7006-554 Évora, Portugal
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal; (M.J.N.); (J.A.D.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Adelino Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.-M.); (A.L.-M.)
| | - José Alberto Duarte
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal; (M.J.N.); (J.A.D.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.-S.); (R.F.)
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.-S.); (R.F.)
| |
Collapse
|
13
|
Iwasaki T, Tokumori M, Matsubara M, Ojima F, Kamigochi K, Aizawa S, Ogoshi M, Kimura AP, Takeuchi S, Takahashi S. A regulatory mechanism of mouse kallikrein 1 gene expression by estrogen. Mol Cell Endocrinol 2023; 577:112044. [PMID: 37580010 DOI: 10.1016/j.mce.2023.112044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Tissue kallikrein 1 (Klk1) is a serine protease that degrades several proteins including insulin-like growth factor binding protein-3 and extracellular matrix molecules. Klk1 mRNA expression in the mouse uterus was increased by estradiol-17β (E2). The present study aimed to clarify the regulatory mechanism for Klk1 expression by estrogen. The promoter analysis of the 5'-flanking region of Klk1 showed that the minimal promoter of Klk1 existed in the -136/+24 region, and the estrogen-responsive region in the -433/-136 region. Tamoxifen increased Klk1 mRNA expression and the promoter activity, suggesting the involvement of AP-1 sites. Site-directed mutagenesis for the putative AP-1 sites in the -433/-136 region showed that the two putative AP-1 sites were involved in the regulation of Klk1 expression. Binding of estrogen receptor α (ERα) to the -433/-136 region was revealed by Chip assay. These results indicated that ERα bound the two putative AP-1 sites and transactivated Klk1 in the mouse uterus.
Collapse
Affiliation(s)
- Takumi Iwasaki
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Megumi Tokumori
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Misaki Matsubara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Fumiya Ojima
- Department of Natural Sciences and Biology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kana Kamigochi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Sayaka Aizawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Maho Ogoshi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Atsushi P Kimura
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sakae Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Sumio Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
14
|
Shen Y, Song L, Chen T, Jiang H, Yang G, Zhang Y, Zhang X, Lim KK, Meng X, Zhao J, Chen X. Identification of hub genes in digestive system of mandarin fish (Siniperca chuatsi) fed with artificial diet by weighted gene co-expression network analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101112. [PMID: 37516099 DOI: 10.1016/j.cbd.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a carnivorous freshwater fish and an economically important species. The digestive system (liver, stomach, intestine, pyloric caecum, esophagus, and gallbladder) is an important site for studying fish domestication. In our previous study, we found that mandarin fish undergoes adaptive changes in histological morphology and gene expression levels of the digestive system when subjected to artificial diet domestication. However, we are not clear which hub genes are highly associated with domestication. In this study, we performed WGCNA on the transcriptomes of 17 tissues and 9 developmental stages and combined differentially expressed genes analysis in the digestive system to identify the hub genes that may play important functions in the adaptation of mandarin fish to bait conversion. A total of 31,657 genes in 26 samples were classified into 23 color modules via WGCNA. The modules midnightblue, darkred, lightyellow, and darkgreen highly associated with the liver, stomach, esophagus, and gallbladder were extracted, respectively. Tan module was highly related to both intestine and pyloric caecum. The hub genes in liver were cp, vtgc, c1in, c9, lect2, and klkb1. The hub genes in stomach were ghrl, atp4a, gjb3, muc5ac, duox2, and chia2. The hub genes in esophagus were mybpc1, myl2, and tpm3. The hub genes in gallbladder were dyst, npy2r, slc13a1, and slc39a4. The hub genes in the intestine and pyloric caecum were slc15a1, cdhr5, btn3a1, anpep, slc34a2, cdhr2, and ace2. Through pathway analysis, modules highly related to the digestive system were mainly enriched in digestion and absorption, metabolism, and immune-related pathways. After domestication, the hub genes vtgc and lect2 were significantly upregulated in the liver. Chia2 was significantly downregulated in the stomach. Slc15a1, anpep, and slc34a2 were significantly upregulated in the intestine. This study identified the hub genes that may play an important role in the adaptation of the digestive system to artificial diet, which provided novel evidence and ideas for further research on the domestication of mandarin fish from molecular level.
Collapse
Affiliation(s)
- Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Lingyuan Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Kah Kheng Lim
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
15
|
Rauniyar K, Bokharaie H, Jeltsch M. Expansion and collapse of VEGF diversity in major clades of the animal kingdom. Angiogenesis 2023; 26:437-461. [PMID: 37017884 PMCID: PMC10328876 DOI: 10.1007/s10456-023-09874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Together with the platelet-derived growth factors (PDGFs), the vascular endothelial growth factors (VEGFs) form the PDGF/VEGF subgroup among cystine knot growth factors. The evolutionary relationships within this subgroup have not been examined thoroughly to date. Here, we comprehensively analyze the PDGF/VEGF growth factors throughout all animal phyla and propose a phylogenetic tree. Vertebrate whole-genome duplications play a role in expanding PDGF/VEGF diversity, but several limited duplications are necessary to account for the temporal pattern of emergence. The phylogenetically oldest PDGF/VEGF-like growth factor likely featured a C-terminus with a BR3P signature, a hallmark of the modern-day lymphangiogenic growth factors VEGF-C and VEGF-D. Some younger VEGF genes, such as VEGFB and PGF, appeared completely absent in important vertebrate clades such as birds and amphibia, respectively. In contrast, individual PDGF/VEGF gene duplications frequently occurred in fish on top of the known fish-specific whole-genome duplications. The lack of precise counterparts for human genes poses limitations but also offers opportunities for research using organisms that diverge considerably from humans. Sources for the graphical abstract: 326 MYA and older [1]; 72-240 MYA [2]; 235-65 MYA [3].
Collapse
Affiliation(s)
- Khushbu Rauniyar
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Biocenter 2, (Viikinkaari 5E), P.O. Box. 56, 00790, Helsinki, Finland
| | - Honey Bokharaie
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Biocenter 2, (Viikinkaari 5E), P.O. Box. 56, 00790, Helsinki, Finland
| | - Michael Jeltsch
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Biocenter 2, (Viikinkaari 5E), P.O. Box. 56, 00790, Helsinki, Finland.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Helsinki, Finland.
- Helsinki One Health, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Stuardo-Parada A, López-Muñoz R, Villarroel-Espindola F, Figueroa CD, Ehrenfeld P. Minireview: functional roles of tissue kallikrein, kinins, and kallikrein-related peptidases in lung cancer. Med Oncol 2023; 40:224. [PMID: 37405520 DOI: 10.1007/s12032-023-02090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Despite campaigns and improvements in detection and treatment, lung cancer continues to increase worldwide and represents a major public health problem. One approach to treating patients suffering from lung cancer is to target surface receptors overexpressed on tumor cells, such as GPCR-family kinin receptors, and proteases that control tumor progression, such as kallikrein-related peptidases (KLKs). These proteases have been visualized in recent years due to their contribution to the progression of cancers, such as prostate and ovarian cancer, facilitating the invasive and metastatic capacity of tumor cells in these tissues. In fact, KLK3 is the specific prostate antigen, the only tissue-specific biomarker used to diagnose this malignancy. In lung cancer to date, evidence indicates that KLK5, KLK6, KLK8, KLK11, and KLK14 are the major peptidases regulated and involved in its progression. The expression levels of KLKs in this neoplasm are modulated by the secretome of the different cell types present in the tumor microenvironment, the cancer subtype and the tumor stage, among others. Considering the multiple functions of kinin receptors and KLKs, this review highlights their roles, even considering the SARS-CoV-2 effects. Since lung cancer is often diagnosed in advanced stages, our efforts should focus on early diagnosis, validating for example specific KLKs, especially in high-risk populations such as smokers and people exposed to carcinogenic fumes, oil fields, and contaminated workplaces, unexplored fields to investigate. Furthermore, their modulation could be considered as a promising approach in lung cancer therapeutics.
Collapse
Affiliation(s)
- Adriana Stuardo-Parada
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo López-Muñoz
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | | | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
17
|
Koistinen H, Kovanen RM, Hollenberg MD, Dufour A, Radisky ES, Stenman UH, Batra J, Clements J, Hooper JD, Diamandis E, Schilling O, Rannikko A, Mirtti T. The roles of proteases in prostate cancer. IUBMB Life 2023; 75:493-513. [PMID: 36598826 PMCID: PMC10159896 DOI: 10.1002/iub.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Ruusu-Maaria Kovanen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, U.S.A
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Eleftherios Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
18
|
Sato A, Takagi K, Yoshimura A, Tsukamoto W, Yamaguchi-Tanaka M, Miki Y, Ebata A, Miyashita M, Suzuki T. Kallikrein-Related Peptidase 12 (KLK12) in Breast Cancer as a Favorable Prognostic Marker. Int J Mol Sci 2023; 24:ijms24098419. [PMID: 37176127 PMCID: PMC10179240 DOI: 10.3390/ijms24098419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Kallikrein-related peptides (KLKs) form an evolutionally conserved subgroup of secreted serine proteases that consists of 15 members (KLK1-15). Previous studies have shown that KLKs regulate diverse biological processes, but the clinical significance of KLKs remains largely unclear in human breast cancers. We examined the expression profile of 15 KLK genes in breast carcinomas using microarray data. Next, we immunolocalized KLK12 in 140 breast carcinomas and evaluated its clinical significance. Subsequently, we examined the effects of KLK12 on proliferation and migration in breast cancer cell lines. From microarray analyses, it turned out that KLK12 was the most strongly associated with low-grade malignancy in breast carcinomas among the 15 KLK members. Immunohistochemical KLK12 status was positively associated with ER and PR status, while it was inversely associated with stage, pathological T factor, lymph node metastasis, and distant metastasis. Prognostic analyses demonstrated that KLK12 was a favorable prognostic factor for both disease-free and breast cancer-specific survival of the patients. Furthermore, the knockdown of KLK12 significantly increased cell proliferation activity and cell migration of breast cancer cells. These results suggest that KLK12 has antitumorigenic effects associated with proliferation and migration and immunohistochemical KLK12 status as a potent favorable prognostic factor in breast carcinoma patients.
Collapse
Affiliation(s)
- Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
| | - Ayano Yoshimura
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
| | - Wakana Tsukamoto
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University, Sendai 980-8574, Miyagi-ken, Japan
| | - Akiko Ebata
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
- Department of Breast Surgery, Osaki Citizen Hospital, Osaki 989-6183, Miyagi-ken, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi-ken, Japan
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Miyagi-ken, Japan
| |
Collapse
|
19
|
Lehto TPK, Kovanen RM, Lintula S, Malén A, Stürenberg C, Erickson A, Pulkka OP, Stenman UH, Diamandis EP, Rannikko A, Mirtti T, Koistinen H. Prognostic impact of kallikrein-related peptidase transcript levels in prostate cancer. Int J Cancer 2023. [PMID: 37139608 DOI: 10.1002/ijc.34551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
We aimed to study mRNA levels and prognostic impact of all 15 human kallikrein-related peptidases (KLKs) and their targets, proteinase-activated receptors (PARs), in surgically treated prostate cancer (PCa). Seventy-nine patients with localized grade group 2-4 PCas represented aggressive cases, based on metastatic progression during median follow-up of 11 years. Eighty-six patients with similar baseline characteristics, but no metastasis during follow-up, were assigned as controls. Transcript counts were detected with nCounter technology. KLK12 protein expression was investigated with immunohistochemistry. The effects of KLK12 and KLK15 were studied in LNCaP cells using RNA interference. KLK3, -2, -4, -11, -15, -10 and -12 mRNA, in decreasing order, were expressed over limit of detection (LOD). The expression of KLK2, -3, -4 and -15 was decreased and KLK12 increased in aggressive cancers, compared to controls (P < .05). Low KLK2, -3 and -15 expression was associated with short metastasis-free survival (P < .05) in Kaplan-Meier analysis. PAR1 and -2 were expressed over LOD, and PAR1 expression was higher, and PAR2 lower, in aggressive cases than controls. Together, KLKs and PARs improved classification of metastatic and lethal disease over grade, pathological stage and prostate-specific antigen combined, in random forest analyses. Strong KLK12 immunohistochemical staining was associated with short metastasis-free and PCa-specific survival in Kaplan-Meier analysis (P < .05). Knock-down of KLK15 reduced colony formation of LNCaP cells grown on Matrigel basement membrane preparation. These results support the involvement of several KLKs in PCa progression, highlighting, that they may serve as prognostic PCa biomarkers.
Collapse
Affiliation(s)
- Timo-Pekka K Lehto
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ruusu-Maaria Kovanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Susanna Lintula
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Adrian Malén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carolin Stürenberg
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Andrew Erickson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Olli-Pekka Pulkka
- Laboratory of Molecular Oncology, Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Antti Rannikko
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
21
|
Chuang TD, Gao J, Quintanilla D, McSwiggin H, Boos D, Yan W, Khorram O. Differential Expression of MED12-Associated Coding RNA Transcripts in Uterine Leiomyomas. Int J Mol Sci 2023; 24:ijms24043742. [PMID: 36835153 PMCID: PMC9960582 DOI: 10.3390/ijms24043742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Recent studies have demonstrated that somatic MED12 mutations in exon 2 occur at a frequency of up to 80% and have a functional role in leiomyoma pathogenesis. The objective of this study was to elucidate the expression profile of coding RNA transcripts in leiomyomas, with and without these mutations, and their paired myometrium. Next-generation RNA sequencing (NGS) was used to systematically profile the differentially expressed RNA transcripts from paired leiomyomas (n = 19). The differential analysis indicated there are 394 genes differentially and aberrantly expressed only in the mutated tumors. These genes were predominantly involved in the regulation of extracellular constituents. Of the differentially expressed genes that overlapped in the two comparison groups, the magnitude of change in gene expression was greater for many genes in tumors bearing MED12 mutations. Although the myometrium did not express MED12 mutations, there were marked differences in the transcriptome landscape of the myometrium from mutated and non-mutated specimens, with genes regulating the response to oxygen-containing compounds being most altered. In conclusion, MED12 mutations have profound effects on the expression of genes pivotal to leiomyoma pathogenesis in the tumor and the myometrium which could alter tumor characteristics and growth potential.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90502, USA
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90502, USA
- Correspondence: ; Tel.: +1-(310)-222-3867
| |
Collapse
|
22
|
Sams KL, Mukai C, Marks BA, Mittal C, Demeter EA, Nelissen S, Grenier JK, Tate AE, Ahmed F, Coonrod SA. Delayed puberty, gonadotropin abnormalities and subfertility in male Padi2/Padi4 double knockout mice. Reprod Biol Endocrinol 2022; 20:150. [PMID: 36224627 PMCID: PMC9555066 DOI: 10.1186/s12958-022-01018-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Peptidylarginine deiminase enzymes (PADs) convert arginine residues to citrulline in a process called citrullination or deimination. Recently, two PADs, PAD2 and PAD4, have been linked to hormone signaling in vitro and the goal of this study was to test for links between PAD2/PAD4 and hormone signaling in vivo. METHODS Preliminary analysis of Padi2 and Padi4 single knockout (SKO) mice did not find any overt reproductive defects and we predicted that this was likely due to genetic compensation. To test this hypothesis, we created a Padi2/Padi4 double knockout (DKO) mouse model and tested these mice along with wild-type FVB/NJ (WT) and both strains of SKO mice for a range of reproductive defects. RESULTS Controlled breeding trials found that male DKO mice appeared to take longer to have their first litter than WT controls. This tendency was maintained when these mice were mated to either DKO or WT females. Additionally, unsexed 2-day old DKO pups and male DKO weanlings both weighed significantly less than their WT counterparts, took significantly longer than WT males to reach puberty, and had consistently lower serum testosterone levels. Furthermore, 90-day old adult DKO males had smaller testes than WT males with increased rates of germ cell apoptosis. CONCLUSIONS The Padi2/Padi4 DKO mouse model provides a new tool for investigating PAD function and outcomes from our studies provide the first in vivo evidence linking PADs with hormone signaling.
Collapse
Affiliation(s)
- Kelly L Sams
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brooke A Marks
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Chitvan Mittal
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elena Alina Demeter
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sophie Nelissen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jennifer K Grenier
- Transcriptional Regulation and Expression Facility, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ann E Tate
- Transcriptional Regulation and Expression Facility, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Faraz Ahmed
- Transcriptional Regulation and Expression Facility, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
23
|
Liu Y, Gong W, Preis S, Dorn J, Kiechle M, Reuning U, Magdolen V, Dreyer TF. A Pair of Prognostic Biomarkers in Triple-Negative Breast Cancer: KLK10 and KLK11 mRNA Expression. Life (Basel) 2022; 12:life12101517. [PMID: 36294951 PMCID: PMC9605449 DOI: 10.3390/life12101517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with poor patient prognosis and limited therapeutic options. A lack of prognostic biomarkers and therapeutic targets fuels the need for new approaches to tackle this severe disease. Extracellular matrix degradation, release, and modulation of the activity of growth factors/cytokines/chemokines, and the initiation of signaling pathways by extracellular proteolytic networks, have been identified as major processes in the carcinogenesis of breast cancer. Members of the kallikrein-related peptidase (KLK) family contribute to these tumor-relevant processes, and are associated with breast cancer progression and metastasis. In this study, the clinical relevance of mRNA expression of two members of this family, KLK10 and KLK11, has been evaluated in TNBC. For this, their expression levels were quantified in tumor tissue of a large, well-characterized patient cohort (n = 123) via qPCR. Although, in general, the overall expression of both factors are lower in tumor tissue of breast cancer patients (encompassing all subtypes) compared to normal tissue of healthy donors, in the TNBC subtype, expression is even increased. In our cohort, a significant, positive correlation between the expression levels of both KLKs was detected, indicating a coordinate expression mode of these proteases. Elevated KLK10 and KLK11 mRNA levels were associated with poor patient prognosis. Moreover, both factors were found to be independent of other established clinical factors such as age, lymph node status, or residual tumor mass, as determined by multivariable Cox regression analysis. Thus, both proteases, KLK10 and KLK11, may represent unfavorable prognostic factors for TNBC patients and, furthermore, appear as promising potential targets for therapy in TNBC.
Collapse
Affiliation(s)
- Yueyang Liu
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 519041, China
| | - Weiwei Gong
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou 519041, China
| | - Sarah Preis
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Marion Kiechle
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
| | - Tobias F. Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-7408
| |
Collapse
|
24
|
Srinivasan S, Kryza T, Batra J, Clements J. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. Nat Rev Cancer 2022; 22:223-238. [PMID: 35102281 DOI: 10.1038/s41568-021-00436-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Kallikrein-related peptidases (KLKs) are critical regulators of the tumour microenvironment. KLKs are proteolytic enzymes regulating multiple functions of bioactive molecules including hormones and growth factors, membrane receptors and the extracellular matrix architecture involved in cancer progression and metastasis. Perturbations of the proteolytic cascade generated by these peptidases, and their downstream signalling actions, underlie tumour emergence or blockade of tumour growth. Recent studies have also revealed their role in tumour immune suppression and resistance to cancer therapy. Here, we present an overview of the complex biology of the KLK family and its context-dependent nature in cancer, and discuss the different therapeutic strategies available to potentially target these proteases.
Collapse
Affiliation(s)
- Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Centre for Genomics and Personalised Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
25
|
von Amsberg G, Alsdorf W, Karagiannis P, Coym A, Kaune M, Werner S, Graefen M, Bokemeyer C, Merkens L, Dyshlovoy SA. Immunotherapy in Advanced Prostate Cancer-Light at the End of the Tunnel? Int J Mol Sci 2022; 23:2569. [PMID: 35269712 PMCID: PMC8910587 DOI: 10.3390/ijms23052569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022] Open
Abstract
Immunotherapeutic treatment approaches are now an integral part of the treatment of many solid tumors. However, attempts to integrate immunotherapy into the treatment of prostate cancer have been disappointing so far. This is due to a highly immunosuppressive, "cold" tumor microenvironment, which is characterized, for example, by the absence of cytotoxic T cells, an increased number of myeloid-derived suppressor cells or regulatory T cells, a decreased number of tumor antigens, or a defect in antigen presentation. The consequence is a reduced efficacy of many established immunotherapeutic treatments such as checkpoint inhibitors. However, a growing understanding of the underlying mechanisms of tumor-immune system interactions raises hopes that immunotherapeutic strategies can be optimized in the future. The aim of this review is to provide an overview of the current status and future directions of immunotherapy development in prostate cancer. Background information on immune response and tumor microenvironment will help to better understand current therapeutic strategies under preclinical and clinical development.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Winfried Alsdorf
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Panagiotis Karagiannis
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Anja Coym
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Moritz Kaune
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Carsten Bokemeyer
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Lina Merkens
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Sergey A. Dyshlovoy
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| |
Collapse
|
26
|
Albracht SP. Immunotherapy with GcMAF revisited - A critical overview of the research of Nobuto Yamamoto. Cancer Treat Res Commun 2022; 31:100537. [PMID: 35217488 DOI: 10.1016/j.ctarc.2022.100537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
This overview describes the research of Nobutu Yamamoto (Philadelphia) concerning immunotherapy with GcMAF for patients with cancer and for patients infected with pathogenic envelope viruses. GcMAF (Group-specific component Macrophage-Activating Factor) is a mammalian protein with an incredible potency to directly activate macrophages. Since the late 1980s Yamamoto's investigations were published in numerous journals but in order to understand the details of his research, a minute survey of many of his patents was required. But even then, regrettably, a precise description of his experiments was sometimes lacking. This overview tries to summarize all of Yamamoto's research on GcMAF, as well as some selected more recent papers from other investigators, who tried to verify and/or reproduce Yamamoto's reports. In my opinion the most important result of the GcMAF research deserves widespread renewed attention: human GcMAF injections (100 ng per week, intramuscular or intravenous) can help to cure patients with a great variety of cancers as well as patients infected with pathogenic envelope viruses like the human immunodeficiency virus 1 (HIV-1), influenza, measles and rubella (and maybe also SARS-CoV-2). From Yamamoto's data it can be calculated that GcMAF is a near-stoichiometric activator of macrophages. Yamamoto monitored the progress of his immunotherapy via the serum level of an enzyme called nagalase (α-N-acetylgalactosaminidase activity at pH 6). I have extensively discussed the properties and potential catalytic site of this enzyme activity in an Appendix entitled: "Search for the potential active site of the latent α-N-acetylgalactosaminidase activity in the glycoproteins of some envelope viruses".
Collapse
Affiliation(s)
- Simon Pj Albracht
- Biochemist, retired from the Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Han Z, Li W. Enhancer RNA: What we know and what we can achieve. Cell Prolif 2022; 55:e13202. [PMID: 35170113 PMCID: PMC9055912 DOI: 10.1111/cpr.13202] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Enhancers are important cis-acting elements that can regulate gene transcription and cell fate alongside promoters. In fact, many human cancers and diseases are associated with the malfunction of enhancers. Recent studies have shown that enhancers can produce enhancer RNAs (eRNAs) by RNA polymerase II. In this review, we discuss eRNA production, characteristics, functions and mechanics. eRNAs can determine chromatin accessibility, histone modification and gene expression by constructing a 'chromatin loop', thereby bringing enhancers to their target gene. eRNA can also be involved in the phase separation with enhancers and other proteins. eRNAs are abundant, and importantly, tissue-specific in tumours, various diseases and stem cells; thus, eRNAs can be a potential target for disease diagnosis and treatment. As eRNA is produced from the active transcription of enhancers and is involved in the regulation of cell fate, its manipulation will influence cell function, and therefore, it can be a new target for biological therapy.
Collapse
Affiliation(s)
- Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Koistinen H, Künnapuu J, Jeltsch M. KLK3 in the Regulation of Angiogenesis-Tumorigenic or Not? Int J Mol Sci 2021; 22:ijms222413545. [PMID: 34948344 PMCID: PMC8704207 DOI: 10.3390/ijms222413545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
In this focused review, we address the role of the kallikrein-related peptidase 3 (KLK3), also known as prostate-specific antigen (PSA), in the regulation of angiogenesis. Early studies suggest that KLK3 is able to inhibit angiogenic processes, which is most likely dependent on its proteolytic activity. However, more recent evidence suggests that KLK3 may also have an opposite role, mediated by the ability of KLK3 to activate the (lymph)angiogenic vascular endothelial growth factors VEGF-C and VEGF-D, further discussed in the review.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
- Correspondence: (H.K.); (M.J.)
| | - Jaana Künnapuu
- Drug Research Program, University of Helsinki, 00014 Helsinki, Finland;
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, 00014 Helsinki, Finland;
- Individualized Drug Therapy Research Program, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
- Correspondence: (H.K.); (M.J.)
| |
Collapse
|
29
|
Mirzaei A, Akbari MR, Tamehri Zadeh SS, Khatami F, Mashhadi R, Aghamir SMK. Novel combination therapy of prostate cancer cells with arsenic trioxide and flutamide: An in-vitro study. Tissue Cell 2021; 74:101684. [PMID: 34800879 DOI: 10.1016/j.tice.2021.101684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The study objective was to assess the therapeutic potential of Arsenic Trioxide (ATO) and Flutamide combination for metastatic prostate cancer (PCa) treatment. MATERIAL AND METHOD LNCaP and PC3 cell lines were treated with different concentrations of ATO and PCa conventional drug Flutamide alone and/or in combination to find effective doses and IC50 values. Percentages of apoptotic cells were evaluated by Annexin/PI staining and the proliferative inhibitory effect was assessed by Micro Culture Tetrazolium Test (MTT). Expression of SNAIL, KLK2, E-cadherin, and angiogenesis genes (VEGFA and VEGFC), and apoptosis genes (Bcl2, and P53) were examined by real-time PCR. RESULTS The combination of Flutamide and ATO significantly increased the percentage of apoptotic cells and inhibited PCa cells proliferation compared with each drug alone in LNCaP and PC3 cell lines. Generally, both cell lines treated with the combination of Flutamide and ATO showed a decrease in expression of KLK2, angiogenesis genes (VEGFA and VEGFC), and apoptosis gene (Bcl2), and an increase in expression of E-cadherin and P53 genes; however, contradictory findings were found regarding SNAIL expression in LNCaP and PC3 cells. CONCLUSION The combination therapy with ATO and flutamide has augmented the anti-tumor effect on LNCaP and PC3 cells, which probably originates from their potential to induce apoptosis and inhibit the proliferation of PCa cells simultaneously.
Collapse
Affiliation(s)
- Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Canada
| | | | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
30
|
Han G, Hong SH, Lee SJ, Hong SP, Cho C. Transcriptome Analysis of Testicular Aging in Mice. Cells 2021; 10:2895. [PMID: 34831115 PMCID: PMC8616291 DOI: 10.3390/cells10112895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
Male reproductive aging, or andropause, is associated with gradual age-related changes in testicular properties, sperm production, and erectile function. The testis, which is the primary male reproductive organ, produces sperm and androgens. To understand the transcriptional changes underlying male reproductive aging, we performed transcriptome analysis of aging testes in mice. A total of 31,386 mRNAs and 9387 long non-coding RNAs (lncRNAs) were identified in the mouse testes of diverse age groups (3, 6, 12, and 18 months old) by total RNA sequencing. Of them, 1571 mRNAs and 715 lncRNAs exhibited changes in their levels during testicular aging. Most of these aging-related transcripts exhibited slight and continuous expression changes during aging, whereas some (9.6%) showed larger expression changes. The aging-related transcripts could be classified into diverse expression patterns, in which the transcripts changed mainly at 3-6 months or at 12-18 months. Our subsequent in silico analysis provided insight into the potential features of testicular aging-related mRNAs and lncRNAs. We identified testis-specific aging-related transcripts (121 mRNAs and 25 lncRNAs) by comparison with a known testis-specific transcript profile, and then predicted the potential reproduction-related functions of the mRNAs. By selecting transcripts that are altered only between 3 and 18 months, we identified 46 mRNAs and 34 lncRNAs that are stringently related to the terminal stage of male reproductive aging. Some of these mRNAs were related to hormonal regulation. Finally, our in silico analysis of the 34 aging-related lncRNAs revealed that they co-localized with 19 testis-expressed protein-coding genes, 13 of which are considered to show testis-specific or -predominant expression. These nearby genes could be potential targets of cis-regulation by the aging-related lncRNAs. Collectively, our results identify a number of testicular aging-related mRNAs and lncRNAs in mice and provide a basis for the future investigation of these transcripts in the context of aging-associated testicular dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.H.); (S.-H.H.); (S.-J.L.); (S.-P.H.)
| |
Collapse
|
31
|
Nishimura K, Mori J, Sawada T, Nomura S, Kouzmenko A, Yamashita K, Kanemoto Y, Kurokawa T, Hayakawa A, Tokiwa S, Ochi M, Shimmura H, Kato S. Profiling of Androgen-Dependent Enhancer RNAs Expression in Human Prostate Tumors: Search for Malignancy Transition Markers. Res Rep Urol 2021; 13:705-713. [PMID: 34549035 PMCID: PMC8449685 DOI: 10.2147/rru.s328661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023] Open
Abstract
Introduction Although the ability of androgens to promote prostate cancer development has been known for decades, the molecular mechanisms of androgen receptor (AR) signaling in the tumorigenesis remain unclear. Enhancer RNAs (eRNAs) transcribed from strong enhancers, or super-enhancers (SEs), have recently emerged as a novel class of regulatory non-coding RNAs (ncRNAs) that facilitate transcription, including that of androgen target genes, through chromatin looping to position enhancers proximate to the promoters. The aim of this study was to assess androgen-dependent transcription in prostate tumors of eRNAs (designated as KLK3eRNAs) from the SE of the KLK3 gene encoding the prostate-specific antigen (PSA) protein, a clinical marker of prostate carcinogenesis. Materials and Methods The androgen-induced KLK3eRNAs were identified in the LNCaP human prostate cancer cell line. The expressions of these KLK3eRNAs together with KLK3 and AR mRNA transcripts were assessed by qRT-PCR in prostate tumor samples from five prostate cancer patients. Results Androgen-induced KLK3eRNAs have been identified in the LNCaP cells, and their expression was further analyzed in tumors of prostate cancer patients. Transcripts of the tested KLK3eRNAs have been detected in all clinical samples, but their expression patterns differed between individual tumor specimens. We found a statistically significant correlation between the levels of the KLK3 and AR mRNAs with those of the previously reported KLK3eRNAs, while such correlation was not observed for novel KLK3eRNAs described in our recent report. Conclusion Presented data suggest that prostate tumor development may associate with epigenetic reorganization in the KLK3 genomic regulatory elements reflected by changes of the KLK3eRNA expression. Our findings support a potential of eRNAs profiling to be used as diagnostic marker.
Collapse
Affiliation(s)
- Koichi Nishimura
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| | - Jinichi Mori
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan.,Department of Hematology, Jyoban Hospital, Iwaki, Japan
| | - Takahiro Sawada
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| | - Shuhei Nomura
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Yoshiaki Kanemoto
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| | - Tomohiro Kurokawa
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| | - Akira Hayakawa
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan
| | - Suguru Tokiwa
- Department of Urology, Jyoban Hospital, Iwaki, Japan
| | | | | | - Shigeaki Kato
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| |
Collapse
|
32
|
Sawada T, Nishimura K, Mori J, Kanemoto Y, Kouzmenko A, Amano R, Hayakawa A, Tokiwa S, Shimmura H, Kato S. Androgen-dependent and DNA-binding-independent association of androgen receptor with chromatic regions coding androgen-induced noncoding RNAs. Biosci Biotechnol Biochem 2021; 85:2121-2130. [PMID: 34297060 DOI: 10.1093/bbb/zbab135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 11/14/2022]
Abstract
Androgen induces the binding of its receptor (AR) to androgen-responsive elements (AREs), while genome-wide studies showed that most androgen-induced AR binding sites on chromatin were unrelated to AREs. Enhancer RNAs (eRNAs), a class of noncoding RNAs (ncRNAs), are transcribed from superenhancers (SEs) and trigger the formation of large ribonucleoprotein condensates of transcription factors. By in silico search, an SE is found to be located on the locus of KLK3 that encodes prostate specific antigen. On the KLK3 SE, androgen-induced expression of ncRNAs was detected and designated as KLK3eRNAs in LNCaP cells, and androgen-induced association of AR and FOXA1 on the KLK3eRNA coding regions was detected. Such androgen-induced association of an AR mutant lacking DNA binding activity on the KLK3eRNA coding regions was undetectable on an exogenous ARE. Thus, the present findings suggest a molecular basis of androgen-induced association of AR with chromatin on ARE-unrelated sequences.
Collapse
Affiliation(s)
- Takahiro Sawada
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
| | - Koichi Nishimura
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
| | - Jinichi Mori
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Department of Hematology, Jyoban Hospital, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Yoshiaki Kanemoto
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
| | - Alexander Kouzmenko
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Rei Amano
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Akira Hayakawa
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
| | - Suguru Tokiwa
- Department of Urology, Jyoban Hospital, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Hiroaki Shimmura
- Department of Urology, Jyoban Hospital, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Shigeaki Kato
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| |
Collapse
|
33
|
Could Kallikrein-Related Serine Peptidase 3 Be an Early Biomarker of Environmental Exposure in Young Women? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168833. [PMID: 34444582 PMCID: PMC8392638 DOI: 10.3390/ijerph18168833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Bisphenols and phthalates affect androgen receptor-mediated signaling that directly regulates Kallikrein-Related serine Peptidase 3 (KLK3) secretion, indicating that environmental factors may play a role in KLK3 secretion. With the aim of obtaining preliminary data on whether KLK3 could serve as an early marker of environmental pollution effects, in 61 and 58 healthy women living in a high environmental impact (HEI) and low environmental impact (LEI) area, respectively, serum KLK3 levels at different phases of menstrual cycle were measured. KLK3 values resulted in always being higher in the HEI group with respect to the LEI group. These differences were particularly relevant in the ovulatory phase (cycle day 12°–13°) of the menstrual cycle. The differences in KLK3 values during the three phases of the menstrual cycle were significant in the LEI group differently from the HEI group. In addition, higher progesterone levels were observed in the LEI group with respect to the HEI group in the luteal phase, indicating an opposite trend of KLK3 and progesterone in this phase of the menstrual cycle. Although changes in KLK3 could also depend on other factors, these preliminary data could be an early indication of an expanding study of the role of biomarkers in assessing early environmental effects for female reproductive health.
Collapse
|
34
|
Riedel M, Bronger H, Magdolen V, Dreyer T. The prognostic and diagnostic potential of kallikrein-related peptidases in ovarian cancer. Expert Rev Mol Diagn 2021; 21:535-545. [PMID: 33947310 DOI: 10.1080/14737159.2021.1924680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Ovarian cancer is one of the deadliest malignancies among women worldwide. The lack of early diagnostic markers fuels an unfavorable prognosis as most patients are at an advanced stage when the disease is diagnosed for the first time. The role of the kallikrein-related peptidase (KLK) family in ovarian cancer progression and prognosis has been thoroughly investigated in various studies. Most of these peptidases are upregulated in ovarian cancer tissue compared to normal ovarian tissue and their expression is linked to overall and progression-free survival (OS/PFS). In this review, we address the clinical relevance of KLKs in ovarian cancer and their diagnostic potential.Areas covered: This review covers the expression and regulation of KLKs in ovarian cancer with focus on the prognostic and diagnostic potential, especially in liquid biopsies.Expert opinion: In ovarian cancer, several kallikrein-related peptidases are markedly expressed in a tissue-specific manner. Tumor-derived protease secretion results in elevated levels in serum and ascites. KLKs may thus serve as potential biomarkers alone or in combination with other serum tumor markers, such as Cancer Antigen 125 (CA125), for early detection and assessment of the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
- Maximilian Riedel
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Holger Bronger
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Tobias Dreyer
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| |
Collapse
|
35
|
Lin HY, Huang PY, Cheng CH, Tung HY, Fang Z, Berglund AE, Chen A, French-Kwawu J, Harris D, Pow-Sang J, Yamoah K, Cleveland JL, Awasthi S, Rounbehler RJ, Gerke T, Dhillon J, Eeles R, Kote-Jarai Z, Muir K, Schleutker J, Pashayan N, Neal DE, Nielsen SF, Nordestgaard BG, Gronberg H, Wiklund F, Giles GG, Haiman CA, Travis RC, Stanford JL, Kibel AS, Cybulski C, Khaw KT, Maier C, Thibodeau SN, Teixeira MR, Cannon-Albright L, Brenner H, Kaneva R, Pandha H, Srinivasan S, Clements J, Batra J, Park JY. KLK3 SNP-SNP interactions for prediction of prostate cancer aggressiveness. Sci Rep 2021; 11:9264. [PMID: 33927218 PMCID: PMC8084951 DOI: 10.1038/s41598-021-85169-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Risk classification for prostate cancer (PCa) aggressiveness and underlying mechanisms remain inadequate. Interactions between single nucleotide polymorphisms (SNPs) may provide a solution to fill these gaps. To identify SNP-SNP interactions in the four pathways (the angiogenesis-, mitochondria-, miRNA-, and androgen metabolism-related pathways) associated with PCa aggressiveness, we tested 8587 SNPs for 20,729 cases from the PCa consortium. We identified 3 KLK3 SNPs, and 1083 (P < 3.5 × 10-9) and 3145 (P < 1 × 10-5) SNP-SNP interaction pairs significantly associated with PCa aggressiveness. These SNP pairs associated with PCa aggressiveness were more significant than each of their constituent SNP individual effects. The majority (98.6%) of the 3145 pairs involved KLK3. The 3 most common gene-gene interactions were KLK3-COL4A1:COL4A2, KLK3-CDH13, and KLK3-TGFBR3. Predictions from the SNP interaction-based polygenic risk score based on 24 SNP pairs are promising. The prevalence of PCa aggressiveness was 49.8%, 21.9%, and 7.0% for the PCa cases from our cohort with the top 1%, middle 50%, and bottom 1% risk profiles. Potential biological functions of the identified KLK3 SNP-SNP interactions were supported by gene expression and protein-protein interaction results. Our findings suggest KLK3 SNP interactions may play an important role in PCa aggressiveness.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Po-Yu Huang
- Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chia-Ho Cheng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Heng-Yuan Tung
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Ann Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jennifer French-Kwawu
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Darian Harris
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Julio Pow-Sang
- Department of Genitourinary Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Shivanshu Awasthi
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Robert J Rounbehler
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Travis Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jasreman Dhillon
- Department of Pathology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Rosalind Eeles
- The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | | | - Kenneth Muir
- Division of Population Health, Health Services Research, and Primary Care, University of Manchester, Oxford Road, Manchester, M139PT, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Nora Pashayan
- Department of Applied Health Research, University College London, London, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge, CB1 8RN, UK
- Department of Applied Health Research, University College London, London, WC1E 7HB, UK
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Room 6603, Level 6, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Box 279, Cambridge, CB2 0QQ, UK
| | - Sune F Nielsen
- Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 2200, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 2200, Copenhagen, Denmark
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90015, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, 98195, USA
| | - Adam S Kibel
- Division of Urologic Surgery, Brigham and Womens Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Christiane Maier
- Humangenetik Tuebingen, Paul-Ehrlich-Str 23, 72076, Tuebingen, Germany
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University of Sofia, Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Hardev Pandha
- University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Srilakshmi Srinivasan
- Translational Research Institute, Brisbane, QLD, 4102, Australia
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Judith Clements
- Translational Research Institute, Brisbane, QLD, 4102, Australia
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Jyotsna Batra
- Translational Research Institute, Brisbane, QLD, 4102, Australia
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
36
|
Hormonal Effects on Urticaria and Angioedema Conditions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2209-2219. [PMID: 33895364 DOI: 10.1016/j.jaip.2021.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Women appear to be more frequently affected with urticaria and angioedema. Sex hormones are believed to have an important mechanistic role in regulating pathways involved in these conditions. This effect is likely nonspecific for chronic spontaneous urticaria (CSU) or many forms of angioedema (AE), because many other chronic diseases such as asthma are also affected by sex hormones. The role of sex hormones has been better elucidated for hereditary AE, because they have been shown to have multiple effects including upregulation of FXII, an important activator of the kallikrein pathway. However, their role in the underlying pathogenesis for CSU is less clear. Autoimmunity is clearly linked to CSU, which is more common in women. This suggests that sex hormones could act as adjuvants in activating or upregulating autoimmune pathways. The purpose of this review is to discuss in detail the role of sex hormones in CSU and AE and how a better understanding of the impact hormones has on these conditions might lead to new treatment advancements with better clinical outcomes.
Collapse
|
37
|
Rehman SU, Schallschmidt T, Rasche A, Knebel B, Stermann T, Altenhofen D, Herwig R, Schürmann A, Chadt A, Al-Hasani H. Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development. Mamm Genome 2021; 32:153-172. [PMID: 33880624 PMCID: PMC8128753 DOI: 10.1007/s00335-021-09869-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/03/2021] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic β-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for β-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with β-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Tanja Schallschmidt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Axel Rasche
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Institute of Human Nutrition, Potsdam, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
38
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
39
|
Künnapuu J, Bokharaie H, Jeltsch M. Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs. BIOLOGY 2021; 10:167. [PMID: 33672235 PMCID: PMC7926383 DOI: 10.3390/biology10020167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph-angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. At least five different proteases mediate the activating cleavage of VEGF-C: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the "mature" growth factors, which differ in affinity and receptor activation potential. The "default" VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D, and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by distinct proteases. During embryonic development, ADAMTS3 activates VEGF-C. The other activating proteases are likely important for non-developmental lymphangiogenesis during, e.g., tissue regeneration, inflammation, immune response, and pathological tumor-associated lymphangiogenesis. The better we understand these events at the molecular level, the greater our chances of developing successful therapies targeting VEGF-C and VEGF-D for diseases involving the lymphatics such as lymphedema or cancer.
Collapse
Affiliation(s)
- Jaana Künnapuu
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Honey Bokharaie
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Michael Jeltsch
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
| |
Collapse
|
40
|
Kumar DV, Sivaranjani Y, Rao GV. Immunohistochemical expression of kallikrein 7 in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2021; 24:580. [PMID: 33967508 PMCID: PMC8083413 DOI: 10.4103/jomfp.jomfp_244_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
Background and Objectives: The kallikrein (KLK) family of genes consists of 15 members, many of which are highly expressed in number of cancers compared to their normal parent tissues. KLK7 was initially characterized as an enzyme implicated in the degradation of intercellular cohesive structures in the stratum corneum of stratified squamous epithelia, preceding desquamation in the skin. It catalyzes the degradation of desmosomes in the outermost layer of skin and permits cell shedding to take place at the skin surface. Overexpression of KLK7 in tumor cells has been reported to significantly enhance the invasive potential in intracranial malignancies and ovarian cancer cells. Thus, KLK7 could contribute to the degradation of extracellular matrices in oral squamous cell carcinoma (OSCC) tissues, promoting invasion of neoplastic cells locally and facilitating metastasis to regional lymph nodes. The objectives of the present study were to compare the expression of KLK 7 in normal subjects and patients with OSCC, to correlate the expression of KLK 7 with respect to the clinical staging of OSCC and to evaluate the expression of KLK 7with respect to different histopathological grades of OSCC. Materials and Methods: Thirty cases of OSCC were staged clinically and graded histopathologically. The immunohistochemical method was used to detect the expression of KLK 7 in OSCC. The scores obtained were documented and compared statistically. Results: KLK 7 immunoreactivity was noticed in all cases of OSCC. A statistically significant difference was observed in immunoreactivity of KLK 7 between the normal and OSCC (P = 0.0001*) and in different histopathological grades (P = 0.0001*) and in different clinical stages (P = 0.0127*) of OSCC using Kruskal–Wallis analysis of variance test. Conclusion: The KLK 7 immunoexpression histopathologically increased from low grade to high grade and clinically from Stage 1 to Stage 4 in OSCC. Hence, increased expression of KLK 7 may be related to poor prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Dodda Venkatesh Kumar
- Department of Oral Pathology and Microbiology, Mamata Dental College, Khammam, Telangana, India
| | - Y Sivaranjani
- Department of Oral Pathology and Microbiology, Mamata Dental College, Khammam, Telangana, India
| | | |
Collapse
|
41
|
Tse BWC, Kryza T, Yeh MC, Dong Y, Sokolowski KA, Walpole C, Dreyer T, Felber J, Harris J, Magdolen V, Russell PJ, Clements JA. KLK4 Induces Anti-Tumor Effects in Human Xenograft Mouse Models of Orthotopic and Metastatic Prostate Cancer. Cancers (Basel) 2020; 12:cancers12123501. [PMID: 33255452 PMCID: PMC7761350 DOI: 10.3390/cancers12123501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The serine protease kallikrein-related peptidase 4 (KLK4) has been reported to potentially play a role in the progression of prostate cancer and other cancer types. However, most of these reports have been limited to in vitro studies. In vivo cancer models offer greater complexity to mimic the characteristics of cancer growth and metastasis in humans. In this study, we used in vivo models of prostate cancer and demonstrated that KLK4 can strongly inhibit the growth of primary prostate tumors as well as bone metastases. To our knowledge, this is the first report of an anti-tumor effect of KLK4 in prostate cancer in vivo. Abstract Recent reports have suggested the role of kallikrein-related peptidase 4 (KLK4) to be that of remodeling the tumor microenvironment in many cancers, including prostate cancer. Notably, these studies have suggested a pro-tumorigenic role for KLK4, especially in prostate cancer. However, these have been primarily in vitro studies, with limited in vivo studies performed to date. Herein, we employed an orthotopic inoculation xenograft model to mimic the growth of primary tumors, and an intracardiac injection to induce metastatic dissemination to determine the in vivo tumorigenic effects of KLK4 overexpressed in PC3 prostate cancer cells. Notably, we found that these KLK4-expressing cells gave rise to smaller localized tumors and decreased metastases than the parent PC-3 cells. To our knowledge, this is the first report of an anti-tumorigenic effect of KLK4, particularly in prostate cancer. These findings also provide a cautionary tale of the need for in vivo analyses to substantiate in vitro experimental data.
Collapse
Affiliation(s)
- Brian W.-C. Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane 4102, Australia;
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
- Correspondence:
| | - Thomas Kryza
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
- Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane 4102, Australia
| | - Mei-Chun Yeh
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| | - Ying Dong
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| | - Kamil A. Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane 4102, Australia;
| | - Carina Walpole
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
- Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane 4102, Australia
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany; (T.D.); (J.F.); (V.M.)
| | - Johanna Felber
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany; (T.D.); (J.F.); (V.M.)
| | - Jonathan Harris
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany; (T.D.); (J.F.); (V.M.)
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| |
Collapse
|
42
|
Milewska A, Falkowski K, Kulczycka M, Bielecka E, Naskalska A, Mak P, Lesner A, Ochman M, Urlik M, Diamandis E, Prassas I, Potempa J, Kantyka T, Pyrc K. Kallikrein 13 serves as a priming protease during infection by the human coronavirus HKU1. Sci Signal 2020; 13:13/659/eaba9902. [PMID: 33234691 PMCID: PMC7857416 DOI: 10.1126/scisignal.aba9902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Unlike SARS-CoV-2, the human coronavirus HKU1 normally causes relatively mild respiratory tract infections; however, it shares with SARS-CoV-2 the mechanism of using its surface spike (S) protein to enter target cells. Because the host receptor for HCoV-HKU1 is unknown, efforts to study the virus in cell culture systems have proved difficult. Milewska et al. found that knockout of the protease kallikrein 13 (KLK13) in human airway epithelial cells blocked their infection by HCoV-HKU1, that overexpression of KLK13 in nonpermissive cells enabled their infection by the virus, and that KLK13 cleaved the viral S protein. Together, these findings suggest that KLK13 is a priming enzyme for viral entry and may help to establish cell lines that can facilitate further investigation of the mechanism of viral pathogenesis. Human coronavirus HKU1 (HCoV-HKU1) is associated with respiratory disease and is prevalent worldwide, but an in vitro model for viral replication is lacking. An interaction between the coronaviral spike (S) protein and its receptor is the primary determinant of tissue and host specificity; however, viral entry is a complex process requiring the concerted action of multiple cellular elements. Here, we found that the protease kallikrein 13 (KLK13) was required for the infection of human respiratory epithelial cells and was sufficient to mediate the entry of HCoV-HKU1 into nonpermissive RD cells. We also demonstrated the cleavage of the HCoV-HKU1 S protein by KLK13 in the S1/S2 region, suggesting that KLK13 is the priming enzyme for this virus. Together, these data suggest that protease distribution and specificity determine the tissue and cell specificity of the virus and may also regulate interspecies transmission.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.,Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Katherine Falkowski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Magdalena Kulczycka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Ewa Bielecka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Antonina Naskalska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Pawel Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marek Ochman
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Maciej Urlik
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Elftherios Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jan Potempa
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.,Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Tomasz Kantyka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
43
|
Arao Y, Hamilton KJ, Grimm SA, Korach KS. The genomic regulatory elements for estrogen receptor alpha transactivation-function-1 regulated genes. FASEB J 2020; 34:16003-16021. [PMID: 33064339 DOI: 10.1096/fj.202001435r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/24/2020] [Indexed: 01/24/2023]
Abstract
Estrogen receptor alpha (ERα) is a ligand-dependent transcription regulator, containing two transactivation functional domains, AF-1 and AF-2. The selective estrogen receptor modulators (SERMs), including 4-hydroxytamoxifen (4OHT), activate AF-1 preferentially rather than AF-2. However, it is unclear whether this specific function is related to the tissue-selective functionality of SERMs. Moreover, there is no information determining AF-1-dependent estrogenic-genes existing in tissues. We sought to identify AF-1-dependent estrogenic-genes using the AF-2 mutated knock-in (KI) mouse model, AF2ERKI. AF2ER is an AF-2 disrupted estradiol (E2)-insensitive mutant ERα, but AF-1-dependent transcription can be activated by the estrogen-antagonists, fulvestrant (ICI) and 4OHT. Gene profiling and ChIP-Seq analysis identified Klk1b21 as an ICI-inducible gene in AF2ERKI uterus. The regulatory activity was analyzed further using a cell-based reporter assay. The 5'-flanking 0.4k bp region of Klk1b21 gene responded as an ERα AF-1-dependent estrogen-responsive promoter. The 150 bp minimum ERα binding element (EBE) consists of three direct repeats. These three half-site sequences were essential for the ERα-dependent transactivation and were differentially recognized by E2 and 4OHT for the gene activation. This response was impaired when the minimum EBE was fused with a thymidine-kinase promoter but could be restored by fusion with the 100 bp minimum transcription initiation element (TIE) of Klk1b21, suggesting that the cooperative function of EBE and TIE is essential for mediating AF-1-dependent transactivation. These findings provide the first in vivo evidence that endogenous ERα AF-1 dominant estrogenic-genes exist in estrogen-responsive organs. Such findings will aid in understanding the mechanism of ERα-dependent tissue-selective activity of SERMs.
Collapse
Affiliation(s)
- Yukitomo Arao
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, USA
| | - Katherine J Hamilton
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, USA
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, USA
| |
Collapse
|
44
|
Bonk S, Kluth M, Jansen K, Hube-Magg C, Makrypidi-Fraune G, Höflmayer D, Weidemann S, Möller K, Uhlig R, Büscheck F, Luebke AM, Burandt E, Clauditz TS, Steurer S, Schlomm T, Huland H, Heinzer H, Sauter G, Simon R, Dum D. Reduced KLK2 expression is a strong and independent predictor of poor prognosis in ERG-negative prostate cancer. Prostate 2020; 80:1097-1107. [PMID: 32628300 DOI: 10.1002/pros.24038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Kallikrein-related peptidase 2 (KLK2)-like KLK3 (prostate-specific antigen [PSA])-belongs to the highly conserved serine proteases of the glandular kallikrein protein family (KLK family). Studies suggested that measurement of KLK2 serum levels advanced the predictive accuracy of PSA testing in prostate cancer. METHODS To clarify the potential utility of KLK2 as a prognostic tissue biomarker, KLK2 expression was analyzed by immunohistochemistry in more than 12 000 prostate cancers. RESULTS Normal epithelium cells usually showed weak to moderate KLK2 immunostaining, whereas KLK2 was negative in 23%, weak in 38%, moderate in 35%, and strong in 4% of 9576 analyzable cancers. Lost or reduced KLK2 immunostaining was associated with advanced tumor stage, high Gleason score, lymph node metastasis, increased cell proliferation, positive resection margin, and early PSA recurrence (P < .0001). Comparison with previously analyzed molecular alterations revealed a strong association of KLK2 loss and presence of TMPRSS2:ERG fusion (P < .0001), most of all analyzed common deletions (9 of 11; P ≤ .03), and decreased PSA immunostaining (P < .0001 each). Cancers with combined negative or weak immunostaining of KLK2 and PSA showed worse prognosis than cancers with at least moderate staining of one or both proteins (P < .0001). Multivariate analyses including established preoperative and postoperative prognostic parameters showed a strong independent prognostic impact of KLK2 loss alone or in combination of PSA, especially in erythroblast transformation-specific-negative cancers (P ≤ .006). CONCLUSIONS Loss of KLK2 expression is a potentially useful prognostic marker in prostate cancer. Analysis of KLK2 alone or in combination with PSA may be useful for estimating cancer aggressiveness at the time of biopsy.
Collapse
Affiliation(s)
- Sarah Bonk
- Department of General, Visceral and Thoracic Surgery and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Jansen
- Department of General, Visceral and Thoracic Surgery and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Prostate Cancer Center (Martini-Clinic), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center (Martini-Clinic), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Cao X, Wang M, Li J, Luo Y, Li R, Yan X, Zhang H. Fine particulate matter increases airway hyperresponsiveness through kallikrein-bradykinin pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110491. [PMID: 32213367 DOI: 10.1016/j.ecoenv.2020.110491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/22/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Epidemiological studies have reported short-term fine particulate matter (PM2.5) exposure to increase incidence of asthma, related to the increase of airway hyperresponsiveness (AHR); however, the underlying mechanism remains unclear. Aim of this study was to elucidate the role of kallikrein in PM2.5-induced airway hyperresponsiveness and understand the underlying mechanism. Nose-only PM2.5 exposure system was used to generate a mouse model of airway hyperresponsiveness. Compared with the control group, PM2.5 exposure could significantly increase airway resistance, lung inflammation, kallikrein expression of bronchi-lung tissue and bradykinin (BK) secretion. However, these changes could be alleviated by kallikrein inhibitor. In addition,PM2.5 could increase the viability of human airway smooth muscle cells (hASMCs), accompanied by increased expression of kallikrein 14 (Klk14), bradykinin 2 receptor (B2R), bradykinin secretion and cytosol calcium level, while kallikrein 14 gene knockdown could significantly amelioratethe above response induced by PM2.5. Taken together, the data suggested kallikrein to play a key role in PM2.5-induced airway hyperresponsiveness, and that it could be a potential therapeutic target in asthma.
Collapse
Affiliation(s)
- Xiaowei Cao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China; Department of Respiratory Medicine, The No.1 Hospital of Shijiazhuang, Hebei, 050000, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yuan Luo
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Huiran Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
46
|
Pinto AR, Silva J, Pinto R, Medeiros R. Aggressive prostate cancer phenotype and genome-wide association studies: where are we now? Pharmacogenomics 2020; 21:487-503. [PMID: 32343194 DOI: 10.2217/pgs-2019-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The majority of prostate cancer (PCa) is indolent, however, a percentage of patients are initially diagnosed with metastatic disease, for which there is a worse prognosis. There is a lack of biomarkers to identify men at greater risk for developing aggressive PCa. Genome-wide association studies (GWAS) scan the genome to search associations of SNPs with specific traits, like cancer. To date, eight GWAS have resulted in the reporting of 16 SNPs associated with aggressive PCa (p < 5.00 × 10-2). Still, validation studies need to be conducted to confirm the obtained results as GWAS can generate false-positive results. Furthermore, post-GWAS studies provide a better understanding of the functional consequences.
Collapse
Affiliation(s)
- Ana R Pinto
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center, (CI-IPOP) Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-4072 Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jani Silva
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center, (CI-IPOP) Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-4072 Porto, Portugal
| | - Ricardo Pinto
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center, (CI-IPOP) Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-4072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center, (CI-IPOP) Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-4072 Porto, Portugal.,Research Department, Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação, 6657, 4200-172 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| |
Collapse
|
47
|
Moradi A, Srinivasan S, Clements J, Batra J. Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev 2020; 38:333-346. [PMID: 31659564 DOI: 10.1007/s10555-019-09815-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prostate-specific antigen (PSA) blood test is the accepted biomarker of tumor recurrence. PSA levels in serum correlate with disease progression, though its diagnostic accuracy is questionable. As a result, significant progress has been made in developing modified PSA tests such as PSA velocity, PSA density, 4Kscore, PSA glycoprofiling, Prostate Health Index, and the STHLM3 test. PSA, a serine protease, is secreted from the epithelial cells of the prostate. PSA has been suggested as a molecular target for prostate cancer therapy due to the fact that it is not only active in prostate tissue but also has a pivotal role on prostate cancer signaling pathways including proliferation, invasion, metastasis, angiogenesis, apoptosis, immune response, and tumor microenvironment regulation. Here, we summarize the current standing of PSA in prostate cancer progression as well as its utility in prostate cancer therapeutic approaches with an emphasis on the role of PSA in the tumor microenvironment.
Collapse
Affiliation(s)
- Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. .,Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
48
|
Gompel A, Fain O, Boccon-Gibod I, Gobert D, Bouillet L. Exogenous hormones and hereditary angioedema. Int Immunopharmacol 2020; 78:106080. [DOI: 10.1016/j.intimp.2019.106080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/17/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
|
49
|
Kallikrein-related Peptidase 5 (KLK5) Expression and Distribution in Canine Cutaneous Squamous Cell Carcinoma. J Comp Pathol 2019; 174:113-119. [PMID: 31955796 DOI: 10.1016/j.jcpa.2019.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/23/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common types of malignant skin cancer in dogs, representing 3.9-10.4% of all canine skin tumours. Although the metastatic potential of cSCC is debated, it appears to mimic that observed in man. In man, predictive histopathological features for metastasis include tumour depth, lesions >5-6 mm in depth, and invasion of muscle, cartilage or bone. In dogs, some reports have focused on the clinical features and long-term progression of cSCC, but a gold standard treatment has not yet been developed. We explored the protein expression of kallikrein-related peptidase 5 (KLK5), an important modulator of skin homeostasis, in normal canine skin and in examples of cSCC. KLK5 was highly expressed in the upper stratum granulosum, stratum corneum, hair follicles and sweat glands, skin sites where human KLK5 has been shown to be involved in physiological processes including keratinocyte desquamation, antimicrobial defence, lipid permeability and pigmentation. In cSCC, tumour cells at the deep margin, as well as those in the centre of keratin pearls, displayed cytoplasmic expression of KLK5. Some of the KLK5 immunoreactive cells also expressed vimentin, suggesting that they may be undergoing epithelial-mesenchymal transition and therefore have a more invasive behaviour than those expressing only KLK5. KLK5 may be a novel molecular biomarker useful for predicting prognosis of cSSC in dogs.
Collapse
|
50
|
Casewell NR, Petras D, Card DC, Suranse V, Mychajliw AM, Richards D, Koludarov I, Albulescu LO, Slagboom J, Hempel BF, Ngum NM, Kennerley RJ, Brocca JL, Whiteley G, Harrison RA, Bolton FMS, Debono J, Vonk FJ, Alföldi J, Johnson J, Karlsson EK, Lindblad-Toh K, Mellor IR, Süssmuth RD, Fry BG, Kuruppu S, Hodgson WC, Kool J, Castoe TA, Barnes I, Sunagar K, Undheim EAB, Turvey ST. Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proc Natl Acad Sci U S A 2019; 116:25745-25755. [PMID: 31772017 PMCID: PMC6926037 DOI: 10.1073/pnas.1906117116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.
Collapse
Affiliation(s)
- Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom;
| | - Daniel Petras
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA 92093
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Vivek Suranse
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India
| | - Alexis M Mychajliw
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Rancho La Brea, Natural History Museum of Los Angeles County, Los Angeles, CA 90036
- Institute of Low Temperature Science, Hokkaido University, 060-0819 Sapporo, Japan
| | - David Richards
- School of Life Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Ivan Koludarov
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | | | - Neville M Ngum
- School of Life Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | - Rosalind J Kennerley
- Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey JE3 5BP, British Channel Islands, United Kingdom
| | - Jorge L Brocca
- SOH Conservación, Apto. 401 Residencial Las Galerías, Santo Domingo, 10130, Dominican Republic
| | - Gareth Whiteley
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Fiona M S Bolton
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Jessica Alföldi
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Jeremy Johnson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Elinor K Karlsson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Kerstin Lindblad-Toh
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ian R Mellor
- School of Life Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Sanjaya Kuruppu
- Monash Venom Group, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, SW7 5BD London, United Kingdom
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, Brisbane QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, NW1 4RY London, United Kingdom
| |
Collapse
|