1
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
2
|
Kornblum C, Lamperti C, Parikh S. Currently available therapies in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:189-206. [PMID: 36813313 DOI: 10.1016/b978-0-12-821751-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of multisystem disorders caused by impaired mitochondrial function. These disorders occur at any age and involve any tissue, typically affecting organs highly dependent on aerobic metabolism. Diagnosis and management are extremely difficult due to various underlying genetic defects and a wide range of clinical symptoms. Preventive care and active surveillance are strategies to try to reduce morbidity and mortality by timely treatment of organ-specific complications. More specific interventional therapies are in early phases of development and no effective treatment or cure currently exists. A variety of dietary supplements have been utilized based on biological logic. For several reasons, few randomized controlled trials have been completed to assess the efficacy of these supplements. The majority of the literature on supplement efficacy represents case reports, retrospective analyses and open-label studies. We briefly review selected supplements that have some degree of clinical research support. In mitochondrial diseases, potential triggers of metabolic decompensation or medications that are potentially toxic to mitochondrial function should be avoided. We shortly summarize current recommendations on safe medication in mitochondrial diseases. Finally, we focus on the frequent and debilitating symptoms of exercise intolerance and fatigue and their management including physical training strategies.
Collapse
Affiliation(s)
- Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany.
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sumit Parikh
- Center for Pediatric Neurosciences, Mitochondrial Medicine & Neurogenetics, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
3
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021; 25:181-206. [PMID: 33646563 PMCID: PMC7919238 DOI: 10.1007/s40291-020-00510-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
Collapse
Affiliation(s)
- Rory J Tinker
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders for Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Dard L, Blanchard W, Hubert C, Lacombe D, Rossignol R. Mitochondrial functions and rare diseases. Mol Aspects Med 2020; 71:100842. [PMID: 32029308 DOI: 10.1016/j.mam.2019.100842] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic cellular organelles responsible for a large variety of biochemical processes as energy transduction, REDOX signaling, the biosynthesis of hormones and vitamins, inflammation or cell death execution. Cell biology studies established that 1158 human genes encode proteins localized to mitochondria, as registered in MITOCARTA. Clinical studies showed that a large number of these mitochondrial proteins can be altered in expression and function through genetic, epigenetic or biochemical mechanisms including the interaction with environmental toxics or iatrogenic medicine. As a result, pathogenic mitochondrial genetic and functional defects participate to the onset and the progression of a growing number of rare diseases. In this review we provide an exhaustive survey of the biochemical, genetic and clinical studies that demonstrated the implication of mitochondrial dysfunction in human rare diseases. We discuss the striking diversity of the symptoms caused by mitochondrial dysfunction and the strategies proposed for mitochondrial therapy, including a survey of ongoing clinical trials.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - W Blanchard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - C Hubert
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076, Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
6
|
Lopalco A, Curci A, Lopedota A, Cutrignelli A, Laquintana V, Franco M, Denora N. Pharmaceutical preformulation studies and paediatric oral formulations of sodium dichloroacetate. Eur J Pharm Sci 2018; 127:339-350. [PMID: 30447284 DOI: 10.1016/j.ejps.2018.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/17/2018] [Accepted: 11/13/2018] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to develop liquid and solid paediatric formulations of sodium dichloroacetate (DCA) for the treatment of congenital lactic acidosis (CLA). In this work preformulation studies on the active molecule were performed to identify those physico-chemical properties of the drug relevant to the design of the dosage forms and their process of manufacture. TGA and DSC analysis suggested that sodium DCA was very hygroscopic. HPLC and NMR analysis showed that the compound was widely stable in aqueous solutions at 25 and 40 °C at all the pH values studied. Based on these results, sodium DCA was formulated as palatable solutions containing sweetener, viscosity enhancer and flavoring excipients tolerated by paediatric patients affected by CLA. The developed liquid formulations resulted chemically stable at 25 and 4 °C over three months. In use-stability tests showed no chemical degradation and microbiological contamination over one month. Oral tablets of sodium DCA were prepared by molding technique as an alternative and more practical formulation, easier to administer for caregivers than the liquid one. Technological assays (reported in the European Pharmacopeia) showed that oral tablets disaggregated quickly within 3 min at 25 °C in water, thus they were classified as orally disintegrating tablets. Preformulation studies provided a set of parameters against which detailed formulation design could be carried out. Formulation studies showed that the developed dosage forms achieved adequate stability, producibility and patient acceptability.
Collapse
Affiliation(s)
- Antonio Lopalco
- University of Bari Aldo Moro, Department of Pharmacy - Drug Sciences, 4 E. Orabona st, 70125 Bari, Italy
| | - Alessandra Curci
- University of Bari Aldo Moro, Department of Pharmacy - Drug Sciences, 4 E. Orabona st, 70125 Bari, Italy
| | - Angela Lopedota
- University of Bari Aldo Moro, Department of Pharmacy - Drug Sciences, 4 E. Orabona st, 70125 Bari, Italy
| | - Annalisa Cutrignelli
- University of Bari Aldo Moro, Department of Pharmacy - Drug Sciences, 4 E. Orabona st, 70125 Bari, Italy
| | - Valentino Laquintana
- University of Bari Aldo Moro, Department of Pharmacy - Drug Sciences, 4 E. Orabona st, 70125 Bari, Italy
| | - Massimo Franco
- University of Bari Aldo Moro, Department of Pharmacy - Drug Sciences, 4 E. Orabona st, 70125 Bari, Italy
| | - Nunzio Denora
- University of Bari Aldo Moro, Department of Pharmacy - Drug Sciences, 4 E. Orabona st, 70125 Bari, Italy.
| |
Collapse
|
7
|
Comhaire F. Treating patients suffering from myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) with sodium dichloroacetate: An open-label, proof-of-principle pilot trial. Med Hypotheses 2018; 114:45-48. [PMID: 29602463 DOI: 10.1016/j.mehy.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 12/21/2022]
Abstract
Twenty-two consecutive patients suffering from refractory myalgic encephalitis/chronic fatigue syndrome (ME/CFS) were treated with an innovative nutriceutical containing sodium dichloroacetate in a proof-of-principle, pilot, open-label prospective cohort trial. Ten patients experienced significant improvement of their health condition with reduction to almost half of their score in the fatigue severity scale. In twelve patients treatment failed to exert any beneficial effect. In the latter patients several other diseases have commonly been revealed by extensive biological and imaging investigations. These preliminary findings sustain the hypothetical role of mitochondrial hypo-metabolism due to inhibition of the activity of the pyruvate dehydrogenase in the pathogenesis of primary ME/CFS, and suggest a possible benefit of nutriceutical treatment by sodium dichloroacetate.
Collapse
|
8
|
Abstract
Mitochondrial diseases are a clinically heterogeneous group of disorders that ultimately result from dysfunction of the mitochondrial respiratory chain. There is some evidence to suggest that mitochondrial dysfunction plays a role in neuropsychiatric illness; however, the data are inconclusive. This article summarizes the available literature published in the area of neuropsychiatric manifestations in both children and adults with primary mitochondrial disease, with a focus on autism spectrum disorder in children and mood disorders and schizophrenia in adults.
Collapse
Affiliation(s)
- Samantha E Marin
- Department of Neurosciences, University of California, San Diego (UCSD), 9500 Gilman Drive #0935, La Jolla, CA 92093-0935, USA
| | - Russell P Saneto
- Department of Neurology, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA.
| |
Collapse
|
9
|
Tischner C, Wenz T. Keep the fire burning: Current avenues in the quest of treating mitochondrial disorders. Mitochondrion 2015; 24:32-49. [DOI: 10.1016/j.mito.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
|
10
|
Therapeutic strategies for mitochondrial disorders. Pediatr Neurol 2015; 52:302-13. [PMID: 25701186 DOI: 10.1016/j.pediatrneurol.2014.06.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES There is currently no curative therapy for mitochondrial disorders, although symptomatic measures can be highly effective and greatly improve the quality of life and outcome of these patients. This review highlights potential strategies for the therapeutic management of mitochondrial disorders. METHODS Data for this review were identified by searches of MEDLINE, Current Contents, using various relevant search terms. RESULTS Strategies to establish a therapeutic regimen aim to enhance respiratory chain function, eliminate noxious compounds, shift the heteroplasmy rate, alter mitochondrial dynamics, transfer cytoplasm, and promote gene therapy. Symptomatic measures rely on drugs (e.g., antiepileptics), avoidance of mitochondrion-toxic agents, substitution of blood cells, hemodialysis, invasive measures (such as a pacemaker), surgery (e.g., ptosis correction), physiotherapy, speech therapy, occupational therapy, dietary measures (e.g., ketogenic diet, anaplerotic diet), and the avoidance of mitochondrion-toxic agents (e.g., ozone). With the increasing awareness of mitochondrial disorders, the number of treatment studies is growing and its quality is improving. If high quality studies (high Jadad score) yield statistical significance for end points, a treatment is more reliable than with lower quality studies. CONCLUSIONS Despite the lack of a proven treatment for mitochondrial disorders, a nihilistic attitude toward treatment is not justified. A number of studies are seeking targeted therapies, and highly effective symptomatic measures are available.
Collapse
|
11
|
Kanabus M, Heales SJ, Rahman S. Development of pharmacological strategies for mitochondrial disorders. Br J Pharmacol 2014; 171:1798-817. [PMID: 24116962 PMCID: PMC3976606 DOI: 10.1111/bph.12456] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial diseases are an unusually genetically and phenotypically heterogeneous group of disorders, which are extremely challenging to treat. Currently, apart from supportive therapy, there are no effective treatments for the vast majority of mitochondrial diseases. Huge scientific effort, however, is being put into understanding the mechanisms underlying mitochondrial disease pathology and developing potential treatments. To date, a variety of treatments have been evaluated by randomized clinical trials, but unfortunately, none of these has delivered breakthrough results. Increased understanding of mitochondrial pathways and the development of many animal models, some of which are accurate phenocopies of human diseases, are facilitating the discovery and evaluation of novel prospective treatments. Targeting reactive oxygen species has been a treatment of interest for many years; however, only in recent years has it been possible to direct antioxidant delivery specifically into the mitochondria. Increasing mitochondrial biogenesis, whether by pharmacological approaches, dietary manipulation or exercise therapy, is also currently an active area of research. Modulating mitochondrial dynamics and mitophagy and the mitochondrial membrane lipid milieu have also emerged as possible treatment strategies. Recent technological advances in gene therapy, including allotopic and transkingdom gene expression and mitochondrially targeted transcription activator-like nucleases, have led to promising results in cell and animal models of mitochondrial diseases, but most of these techniques are still far from clinical application.
Collapse
Affiliation(s)
- M Kanabus
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, UK
| | | | | |
Collapse
|
12
|
Scarpelli M, Todeschini A, Rinaldi F, Rota S, Padovani A, Filosto M. Strategies for treating mitochondrial disorders: an update. Mol Genet Metab 2014; 113:253-60. [PMID: 25458518 DOI: 10.1016/j.ymgme.2014.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are a heterogeneous group of disorders resulting from primary dysfunction of the respiratory chain due to both nuclear and mitochondrial DNA mutations. The wide heterogeneity of biochemical dysfunctions and pathogenic mechanisms typical of this group of diseases has hindered therapy trials; therefore, available treatment options remain limited. Therapeutic strategies aimed at increasing mitochondrial functions (by enhancing biogenesis and electron transport chain function), improving the removal of reactive oxygen species and noxious metabolites, modulating aberrant calcium homeostasis and repopulating mitochondrial DNA could potentially restore the respiratory chain dysfunction. The challenge that lies ahead is the translation of some promising laboratory results into safe and effective therapies for patients. In this review we briefly update and discuss the most feasible therapeutic approaches for mitochondrial diseases.
Collapse
Affiliation(s)
- Mauro Scarpelli
- Section of Neurology, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Alice Todeschini
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Fabrizio Rinaldi
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Silvia Rota
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Alessandro Padovani
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy.
| |
Collapse
|
13
|
Pandey T, Chhetri G, Chinta R, Kumar B, Singh DB, Tripathi T, Singh AK. Functional classification and biochemical characterization of a novel rho class glutathione S-transferase in Synechocystis PCC 6803. FEBS Open Bio 2014; 5:1-7. [PMID: 25685659 PMCID: PMC4309839 DOI: 10.1016/j.fob.2014.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 01/17/2023] Open
Abstract
A novel class of glutathione S-transferase (GST) is reported. This GST catalyzes dichloroacetate (DCA) degradation and hydroperoxide reactions. Functionally this GST is similar to zeta and theta/alpha classes but structurally very different. In contrast to other bacterial GSTs, this GST exists as a monomer in solution. First report of DCA degradation by any bacterial GST and has potential biotechnological applications.
We report a novel class of glutathione S-transferase (GST) from the model cyanobacterium Synechocystis PCC 6803 (sll1545) which catalyzes the detoxification of the water pollutant dichloroacetate and also shows strong glutathione-dependent peroxidase activity representing the classical activities of zeta and theta/alpha class respectively. Interestingly, sll1545 has very low sequence and structural similarity with these classes. This is the first report of dichloroacetate degradation activity by any bacterial GST. Based on these results we classify sll1545 to a novel GST class, rho. The present data also indicate potential biotechnological and industrial applications of cyanobacterial GST in dichloroacetate-polluted areas.
Collapse
Affiliation(s)
- Tripti Pandey
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Gaurav Chhetri
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Ramesh Chinta
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Bijay Kumar
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
14
|
Pfeffer G, Horvath R, Klopstock T, Mootha VK, Suomalainen A, Koene S, Hirano M, Zeviani M, Bindoff LA, Yu-Wai-Man P, Hanna M, Carelli V, McFarland R, Majamaa K, Turnbull DM, Smeitink J, Chinnery PF. New treatments for mitochondrial disease-no time to drop our standards. Nat Rev Neurol 2013; 9:474-81. [PMID: 23817350 PMCID: PMC4967498 DOI: 10.1038/nrneurol.2013.129] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitochondrial dysfunction is a common cause of inherited multisystem disease that often involves the nervous system. Despite major advances in our understanding of the pathophysiology of mitochondrial diseases, clinical management of these conditions remains largely supportive. Using a systematic approach, we identified 1,039 publications on treatments for mitochondrial diseases, only 35 of which included observations on more than five patients. Reports of a positive outcome on the basis of a biomarker of unproven clinical significance were more common in nonrandomized and nonblinded studies, suggesting a publication bias toward positive but poorly executed studies. Although trial design is improving, there is a critical need to develop new biomarkers of mitochondrial disease. In this Perspectives article, we make recommendations for the design of future treatment trials in mitochondrial diseases. Patients and physicians should no longer rely on potentially biased data, with the associated costs and risks.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Ageing and Health, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jeppesen TD, Orngreen MC, Van Hall G, Vissing J. Lactate metabolism during exercise in patients with mitochondrial myopathy. Neuromuscul Disord 2013; 23:629-36. [PMID: 23838278 DOI: 10.1016/j.nmd.2013.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022]
Abstract
Patients with mitochondrial DNA mutations often have elevated plasma lactate at rest and during exercise, but it is unknown whether the high lactate levels are caused by a high production, an impaired oxidation or a combination. We studied lactate kinetics in 10 patients with mtDNA mutations and 10 matched healthy control subjects at rest and during cycle exercise with a combination of femoral arterio-venous differences of lactate, and lactate tracer dilution methodology. During exercise, lactate concentration and production rates were several-fold higher in patients, but despite mitochondrial dysfunction, lactate was oxidized in muscle to the same extent as in healthy control subjects. This surprisingly high ability to burn lactate in working muscle with defective mitochondria, probably relates to the variability of oxidative capacity among muscle fibers. The data suggests that lactate is not solely an indicator of impaired oxidative capacity, but an important fuel for oxidative metabolism, even in muscle with severely impaired mitochondrial function.
Collapse
Affiliation(s)
- Tina D Jeppesen
- Neuromuscular Research Unit, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
16
|
Abdelmalak M, Lew A, Ramezani R, Shroads AL, Coats BS, Langaee T, Shankar MN, Neiberger RE, Subramony S, Stacpoole PW. Long-term safety of dichloroacetate in congenital lactic acidosis. Mol Genet Metab 2013; 109:139-43. [PMID: 23611579 PMCID: PMC3751427 DOI: 10.1016/j.ymgme.2013.03.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 10/27/2022]
Abstract
We followed 8 patients (4 males) with biochemically and/or molecular genetically proven deficiencies of the E1α subunit of the pyruvate dehydrogenase complex (PDC; 3 patients) or respiratory chain complexes I (1 patient), IV (3 patients) or I+IV (1 patient) who received oral dichloroacetate (DCA; 12.5 mg/kg/12 h) for 9.7 to 16.5 years. All subjects originally participated in randomized controlled trials of DCA and were continued on an open-label chronic safety study. Patients (1 adult) ranged in age from 3.5 to 40.2 years at the start of DCA administration and are currently aged 16.9 to 49.9 years (mean ± SD: 23.5 ± 10.9 years). Subjects were either normal or below normal body weight for age and gender. The 3 PDC deficient patients did not consume high fat (ketogenic) diets. DCA maintained normal blood lactate concentrations, even in PDC deficient children on essentially unrestricted diets. Hematological, electrolyte, renal and hepatic status remained stable. Nerve conduction either did not change or decreased modestly and led to reduction or temporary discontinuation of DCA in 3 patients, although symptomatic worsening of peripheral neuropathy did not occur. We conclude that chronic DCA administration is generally well-tolerated in patients with congenital causes of lactic acidosis and is effective in maintaining normal blood lactate levels, even in PDC-deficient children not consuming strict ketogenic diets.
Collapse
Affiliation(s)
- Monica Abdelmalak
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Alicia Lew
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Ryan Ramezani
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Albert L. Shroads
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Bonnie S. Coats
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
| | - Taimour Langaee
- Center for Pharmacogenomics, College of Pharmacy, University of Florida College of Medicine, Gainesville, FL 32610
| | - Meena N. Shankar
- Clinical Research Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Richard E. Neiberger
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610
| | - S.H. Subramony
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Peter W. Stacpoole
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
17
|
Goldstein A, Wolfe LA. The elusive magic pill: finding effective therapies for mitochondrial disorders. Neurotherapeutics 2013; 10:320-8. [PMID: 23355364 PMCID: PMC3625379 DOI: 10.1007/s13311-012-0175-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The incidence of mitochondrial diseases has been estimated at 11.5/100,000 (1:8500) worldwide. In the USA up to 4000 newborns annually are expected to develop a mitochondrial disease. More than 50 million adults in the USA also suffer from diseases in which primary or secondary mitochondrial dysfunction is involved. Mitochondrial dysfunction has been identified in cancer, infertility, diabetes, heart diseases, blindness, deafness, kidney disease, liver disease, stroke, migraine, dwarfism, and resulting from numerous medication toxicities. Mitochondrial dysfunction is also involved in normal aging and age-related neurodegenerative diseases, such as Parkinson and Alzheimer diseases. Yet most treatments available are based on empiric data and clinician experience because of the lack of randomized controlled clinical trials to provide evidence-based treatments for these disorders. Here we explore the current state of research for the treatment of mitochondrial disorders.
Collapse
Affiliation(s)
- Amy Goldstein
- />Division of Child Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA USA
| | - Lynne A. Wolfe
- />Undiagnosed Diseases Program, National Institutes of Health, 10 Center DR, MSC 1205, RM# 3-2551, Bethesda, MD 20892 USA
| |
Collapse
|
18
|
Abstract
Mitochondrial disorders are a heterogeneous group of disorders resulting from primary dysfunction of the respiratory chain. Muscle tissue is highly metabolically active, and therefore myopathy is a common element of the clinical presentation of these disorders, although this may be overshadowed by central neurological features. This review is aimed at a general medical and neurologist readership and provides a clinical approach to the recognition, investigation, and treatment of mitochondrial myopathies. Emphasis is placed on practical management considerations while including some recent updates in the field.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Institute of Genetic Medicine, Newcastle University, Newcastle NE13BZ, United Kingdom
| | | |
Collapse
|
19
|
Patel KP, O’Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab 2012; 106:385-94. [PMID: 22896851 PMCID: PMC4003492 DOI: 10.1016/j.ymgme.2012.03.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. OBJECTIVE We reviewed 371 cases of PDC deficiency, published between 1970 and 2010, that involved defects in subunits E1α and E1β and components E1, E2, E3 and the E3 binding protein of the complex. DATA SOURCES AND EXTRACTION English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. RESULTS Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. CONCLUSIONS Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio ≤ 20.
Collapse
Affiliation(s)
- Kavi P. Patel
- Department of Medicine (Division of Endocrinology, Metabolism and
Diabetes), College of Medicine, University of Florida, Gainesville, FL 32611,
USA
| | - Thomas W. O’Brien
- Department of Biochemistry and Molecular Biology, College of
Medicine, University of Florida, Gainesville, FL 32611, USA
| | | | - Jonathan Shuster
- Department of Epidemiology and Health Policy Research, College of
Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Peter W. Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and
Diabetes), College of Medicine, University of Florida, Gainesville, FL 32611,
USA
- Department of Biochemistry and Molecular Biology, College of
Medicine, University of Florida, Gainesville, FL 32611, USA
- Corresponding author at: UF College of Medicine, 1600 SW
Archer Road M2-238, P.O. Box 100226, Gainesville, FL 32610, USA. Fax: +1
352 273 9013. (P.W. Stacpoole)
| |
Collapse
|
20
|
Abstract
BACKGROUND Mitochondrial respiratory chain disorders are the most prevalent group of inherited neurometabolic diseases. They present with central and peripheral neurological features usually in association with other organ involvement including the eye, the heart, the liver, and kidneys, diabetes mellitus and sensorineural deafness. Current treatment is largely supportive and the disorders progress relentlessly causing significant morbidity and premature death. Vitamin supplements, pharmacological agents and exercise therapy have been used in isolated cases and small clinical trials, but the efficacy of these interventions is unclear. The first review was carried out in 2003, and identified six clinical trials. This major update was carried out to identify new studies and grade the original studies for potential bias in accordance with revised Cochrane Collaboration guidelines. OBJECTIVES To determine whether there is objective evidence to support the use of current treatments for mitochondrial disease. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (4 July 2011), CENTRAL (2011, Issue 2, MEDLINE (1966 to July 2011), and EMBASE (January 1980 to July 2011), and contacted experts in the field. SELECTION CRITERIA We included randomised controlled trials (including cross-over studies). Two of the authors independently selected abstracts for further detailed review. Further review was performed independently by all five authors to decide which trials fit the inclusion criteria and graded risk of bias. Participants included males and females of any age with a confirmed diagnosis of mitochondrial disease based upon muscle histochemistry, respiratory chain complex analysis of tissues or cell lines or DNA studies. Interventions included any pharmacological agent, dietary modification, nutritional supplement, exercise therapy or other treatment. The review authors excluded studies at high risk of bias in any category. The primary outcome measures included an change in muscle strength and/or endurance, or neurological clinical features. Secondary outcome measures included quality of life assessments, biochemical markers of disease and negative outcomes. DATA COLLECTION AND ANALYSIS Two of the authors (GP and PFC) independently identified studies for further evaluation from all abstracts within the search period. For those studies identified for further review, all five authors then independently assessed which studies met the entry criteria. For the included studies, we extracted details of the number of randomised participants, treatment, study design, study category, allocation concealment and other risk of bias criteria, and participant characteristics. Analysis was based on intention-to-treat data. We planned to use meta-analysis, but this did not prove necessary. MAIN RESULTS The authors reviewed 1335 abstracts, and from these identified 21 potentially eligible abstracts. Upon detailed review, 12 studies fulfilled the entry criteria. Of these, eight were new studies that had been published since the previous version of this review. Two studies which were included in the previous version of this review were excluded because of potential for bias. The comparability of the included studies is extremely low because of differences in the specific diseases studied, differences in the therapeutic agents used, dosage, study design, and outcomes. The methodological quality of included studies was generally high, although risk of bias was unclear in random sequence generation and allocation concealment for most studies. Otherwise, the risk of bias was low for most studies in the other categories. Serious adverse events were uncommon, except for peripheral nerve toxicity in a long-term trial of dichloroacetate (DCA) in adults.One trial studied high-dose coenzyme Q10 without clinically meaningful improvement (although there were multiple biochemical, physiologic, and neuroimaging outcomes, in 30 participants). Three trials used creatine monohydrate alone, with one reporting evidence of improved measures of muscle strength and post-exercise lactate, but the other two reported no benefit (total of 38 participants). One trial studied the effects of a combination of coenzyme Q10, creatine monohydrate, and lipoic acid and reported a statistically significant improvement in biochemical markers and peak ankle dorsiflexion strength, but overall no clinical improvement in 16 participants. Five trials studied the effects of DCA: three trials in children showed a statistically significant improvement in secondary outcome measures of mitochondrial metabolism (venous lactate in three trials, and magnetic resonance spectroscopy (MRS) in one trial; total of 63 participants). One trial of short-term DCA in adults demonstrated no clinically relevant improvement (improved venous lactate but no change in physiologic, imaging, or questionnaire findings, in eight participants). One longer-term DCA trial in adults was terminated prematurely due to peripheral nerve toxicity without clinical benefit (assessments included the GATE score, venous lactate and MRS, in 30 participants). One trial using dimethylglycine showed no significant effect (measurements of venous lactate and oxygen consumption (VO(2)) in five participants). One trial using a whey-based supplement showed statistically significant improvement in markers of free radical reducing capacity but no clinical benefit (assessments included the Short Form 36 Health Survey (SF-36) questionnaire and UK Medical Research Council (MRC) muscle strength, in 13 participants). AUTHORS' CONCLUSIONS Despite identifying eight new trials there is currently no clear evidence supporting the use of any intervention in mitochondrial disorders. Further research is needed to establish the role of a wide range of therapeutic approaches. We suggest further research should identify novel agents to be tested in homogeneous study populations with clinically relevant primary endpoints.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Newcastle UniversityInstitute of Genetic MedicineCentral ParkwayNewcastle upon TyneUKNE1 3BZ
- University of British ColumbiaClinician Investigator ProgramVancouverBritish ColumbiaCanada
| | - Kari Majamaa
- University of OuluInstitute of Clinical Medicine, Department of NeurologyPO Box 5000OuluFinland
| | - Douglass M Turnbull
- Newcastle UniversityMitochondrial Research Group, The Medical SchoolFramlington PlaceNewcastle Upon TyneUKNE2 4HH
| | - David Thorburn
- Royal Children's HospitalMurdoch Children's Research Institute10th Floor Main BuildingFlemington Rd, ParkvilleVictoriaAustralia3052
| | - Patrick F Chinnery
- Newcastle UniversityInstitute of Genetic MedicineCentral ParkwayNewcastle upon TyneUKNE1 3BZ
| | | |
Collapse
|
21
|
Patel KP, O'Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab 2012; 105:34-43. [PMID: 22079328 PMCID: PMC3754811 DOI: 10.1016/j.ymgme.2011.09.032] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 01/01/2023]
Abstract
CONTEXT Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. OBJECTIVE We reviewed 371 cases of PDC deficiency, published between 1970 and 2010, that involved defects in subunits E1α and E1β and components E1, E2, E3 and the E3 binding protein of the complex. DATA SOURCES AND EXTRACTION English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. RESULTS Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. CONCLUSIONS Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio ≤20.
Collapse
Affiliation(s)
- Kavi P. Patel
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Thomas W. O'Brien
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | | | - Jonathan Shuster
- Epidemiology and Health Policy Research College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Peter W. Stacpoole
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
22
|
Why are there no proven therapies for genetic mitochondrial diseases? Mitochondrion 2011; 11:679-85. [PMID: 21605707 DOI: 10.1016/j.mito.2011.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/04/2011] [Accepted: 05/05/2011] [Indexed: 12/13/2022]
Abstract
Although mitochondrial disease research in general is robust, adequate treatment of these life-threatening conditions has lagged, partly because of a persistence of clinical anecdotes as substitutes for scientifically and ethically rigorous clinical trials. Here I summarize the key lessons learned from some of the "first generation" of randomized controlled trials for genetic mitochondrial diseases and suggest how future trials may benefit from both past experience and exciting new resources available for patient-oriented research and training in this field.
Collapse
|
23
|
Cwerman-Thibault H, Sahel JA, Corral-Debrinski M. Mitochondrial medicine: to a new era of gene therapy for mitochondrial DNA mutations. J Inherit Metab Dis 2011; 34:327-44. [PMID: 20571866 DOI: 10.1007/s10545-010-9131-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 01/01/2023]
Abstract
Mitochondrial disorders can no longer be ignored in most medical disciplines. Such disorders include specific and widespread organ involvement, with tissue degeneration or tumor formation. Primary or secondary actors, mitochondrial dysfunctions also play a role in the aging process. Despite progresses made in identification of their molecular bases, nearly everything remains to be done as regards therapy. Research dealing with mitochondrial physiology and pathology has >20 years of history around the world. We are involved, as are many other laboratories, in the challenge of finding ways to fight these diseases. However, our main limitation is the scarcety of animal models required for both understanding the molecular mechanisms underlying the diseases and evaluating therapeutic strategies. This is especially true for diseases due to mutations in mitochondrial DNA (mtDNA), since an authentic genetic model of mtDNA mutations is technically a very difficult task due to both the inability of manipulating the mitochondrial genome of living mammalian cells and to its multicopy nature. This has led researchers in the field to consider the prospect of gene therapy approaches that can roughly be divided into three groups: (1) import of wild-type copies or relevant sections of DNA or RNA into mitochondria, (2) manipulation of mitochondrial genetic content, and (3) rescue of a defect by expression of an engineered gene product from the nucleus (allotopic or xenotropic expression). We briefly introduce these concepts and indicate where promising progress has been made in the last decade.
Collapse
|
24
|
Abstract
Metabolic myopathies are inborn errors of metabolism that result in impaired energy production due to defects in glycogen, lipid, mitochondrial, and possibly adenine nucleotide metabolism. Fatty acid oxidation defects (FAOD), glycogen storage disease, and mitochondrial myopathies represent the 3 main groups of disorders, and some consider myoadenylate deaminase (AMPD1 deficiency) to be a metabolic myopathy. Clinically, a variety of neuromuscular presentations are seen at different ages of life. Newborns and infants commonly present with hypotonia and multisystem involvement (liver and brain), whereas onset later in life usually presents with exercise intolerance with or without progressive muscle weakness and myoglobinuria. In general, the glycogen storage diseases result in high-intensity exercise intolerance, whereas the FAODs and the mitochondrial myopathies manifest predominately during endurance-type activity or under fasted or other metabolically stressful conditions. The clinical examination is often normal, and testing requires various combinations of exercise stress testing, serum creatine kinase activity and lactate concentration determination, urine organic acids, muscle biopsy, neuroimaging, and specific genetic testing for the diagnosis of a specific metabolic myopathy. Prenatal screening is available in many countries for several of the FAODs through liquid chromatography-tandem mass spectrometry. Early identification of these conditions with lifestyle measures, nutritional intervention, and cofactor treatment is important to prevent or delay the onset of muscle weakness and to avoid potential life-threatening complications such as rhabdomyolysis with resultant renal failure or hepatic failure. This article will review the key clinical features, diagnostic tests, and treatment recommendations for the more common metabolic myopathies, with an emphasis on mitochondrial myopathies.
Collapse
|
25
|
Stacpoole PW, Kurtz TL, Han Z, Langaee T. Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv Drug Deliv Rev 2008; 60:1478-87. [PMID: 18647626 DOI: 10.1016/j.addr.2008.02.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 02/22/2008] [Indexed: 02/06/2023]
Abstract
Dichloroacetate (DCA) is an investigational drug for the treatment of genetic mitochondrial diseases. Its primary site of action is the pyruvate dehydrogenase (PDH) complex, which it stimulates by altering its phosphorylation state and stability. DCA is metabolized by and inhibits the bifunctional zeta-1 family isoform of glutathione transferase/maleylacetoacetate isomerase. Polymorphic variants of this enzyme differ in their kinetic properties toward DCA, thereby influencing its biotransformation and toxicity, both of which are also influenced by subject age. Results from open label studies and controlled clinical trials suggest chronic oral DCA is generally well-tolerated by young children and may be particularly effective in patients with PDH deficiency. Recent in vitro data indicate that a combined DCA and gene therapy approach may also hold promise for the treatment of this devastating condition.
Collapse
|
26
|
Berendzen K, Theriaque DW, Shuster J, Stacpoole PW. Therapeutic potential of dichloroacetate for pyruvate dehydrogenase complex deficiency. Mitochondrion 2006; 6:126-35. [PMID: 16725381 DOI: 10.1016/j.mito.2006.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/05/2006] [Accepted: 04/13/2006] [Indexed: 02/06/2023]
Abstract
We reviewed the use of oral dichloroacetate (DCA) in the treatment of children with congenital lactic acidosis caused by mutations in the pyruvate dehydrogenase complex (PDC). The case histories of 46 subjects were analyzed with regard to diagnosis, clinical presentation and response to DCA. DCA decreased blood and cerebrospinal fluid lactate concentrations, and was generally well tolerated. DCA may be particularly effective in children with PDC deficiency by stimulating residual enzyme activity and, consequently, cellular energy metabolism. A controlled trial is needed to determine the definitive role of DCA in the management of this devastating disease.
Collapse
Affiliation(s)
- Kristen Berendzen
- Division of Endocrinology and Metabolism, Department of Medicine, University of Florida College of Medicine, P.O. Box 10226, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
27
|
Nakano K, Tarashima M, Tachikawa E, Noda N, Nakayama T, Sasaki K, Mizoguchi E, Matsuzaki M, Osawa M. Platelet mitochondrial evaluation during cytochrome c and dichloroacetate treatments of MELAS. Mitochondrion 2005; 5:426-33. [PMID: 16290150 DOI: 10.1016/j.mito.2005.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 09/13/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
We hypothesized that serial changes in platelet (PLT) mitochondrial enzyme (ME) activities might correspond to the effects of medications for mitochondrial encephalomyopathy and stroke-like episodes (MELAS). Cytochrome c and sodium dichloroacetate (DCA) were given to a 7-year-old girl with MELAS who had an A3243G mitochondrial DNA mutation. The effects were evaluated with whole PLT-ME assays, developed by our group, using a microplate-reader. During cytochrome c treatment, complex II+III (II+III), complex IV (IV) and citrate synthase (CS) activities showed gradual but statistically significant decrease. II+III activity dropped below normal. II+III/CS activity was initially below normal, followed by a transient improvement, then decreased again before the appearance of central nervous system symptoms. II+III, IV, II+III/CS and IV/CS activities reached their lowest levels in association with a stroke-like episode, then increased with DCA treatment. Our results suggest that progressive mitochondrial dysfunction may occur before the stroke-like episodes in MELAS and that DCA treatment may increase mitochondrial activities. Our whole PLT-ME assay system may be useful for serially evaluating mitochondrial functions in relation to clinical symptoms.
Collapse
Affiliation(s)
- Kazutoshi Nakano
- Department of Pediatrics, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|