1
|
Sarver DC, Garcia-Diaz J, Saqib M, Riddle RC, Wong GW. Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition. eLife 2024; 12:RP90949. [PMID: 38241182 PMCID: PMC10945605 DOI: 10.7554/elife.90949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first 2 weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
- Cell and Molecular Medicine graduate program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
- Research and Development Service, Baltimore Veterans Administration Medical CenterBaltimoreUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
2
|
Sarver DC, Garcia-Diaz J, Saqib M, Riddle RC, Wong GW. Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551694. [PMID: 37577461 PMCID: PMC10418210 DOI: 10.1101/2023.08.02.551694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first two weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted GH/IGF-1 axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling a wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Cell and Molecular Medicine graduate program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Page L, Younge N, Freemark M. Hormonal Determinants of Growth and Weight Gain in the Human Fetus and Preterm Infant. Nutrients 2023; 15:4041. [PMID: 37764824 PMCID: PMC10537367 DOI: 10.3390/nu15184041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The factors controlling linear growth and weight gain in the human fetus and newborn infant are poorly understood. We review here the changes in linear growth, weight gain, lean body mass, and fat mass during mid- and late gestation and the early postnatal period in the context of changes in the secretion and action of maternal, placental, fetal, and neonatal hormones, growth factors, and adipocytokines. We assess the effects of hormonal determinants on placental nutrient delivery and the impact of preterm delivery on hormone expression and postnatal growth and metabolic function. We then discuss the effects of various maternal disorders and nutritional and pharmacologic interventions on fetal and perinatal hormone and growth factor production, growth, and fat deposition and consider important unresolved questions in the field.
Collapse
Affiliation(s)
- Laura Page
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Noelle Younge
- Neonatology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
- The Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Muthuvel G, Al Remeithi SS, Foley C, Dauber A, Hwa V, Backeljauw P. Recombinant Human Insulin-Like Growth Factor-1 Treatment of Severe Growth Failure in Three Siblings with STAT5B Deficiency. Horm Res Paediatr 2023; 97:195-202. [PMID: 37586336 DOI: 10.1159/000531491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/24/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION Patients with homozygous recessive mutations in STAT5B have severe progressive postnatal growth failure and insulin-like growth factor-I (IGF-I) deficiency associated with immunodeficiency and increased risk of autoimmune and pulmonary conditions. This report describes the efficacy and safety of recombinant human IGF-1 (rhIGF-1) in treating severe growth failure due to STAT5B deficiency. CASE PRESENTATION Three siblings (P1, 4.4 year-old female; P2, 2.3 year-old male; and P3, 7 month-old female) with severe short stature (height SDS [HtSDS] -6.5, -4.9, -5.3, respectively) were referred to the Center for Growth Disorders at Cincinnati Children's Hospital Medical Center. All three had a homozygous mutation (p.Trp631*) in STAT5B. Baseline IGF-I was 14.7, 14.1, and 10.8 ng/mL, respectively (all < -2.5 SDS for age and sex), and IGFBP-3 was 796, 603, and 475 ng/mL, respectively (all < -3 SDS for age and sex). The siblings were started on rhIGF-1 at 40 μg/kg/dose twice daily subcutaneously (SQ), gradually increased to 110-120 μg/kg/dose SQ twice daily as tolerated. HtSDS and height velocity (HV) were monitored over time. RESULTS Six years of growth data was utilized to quantify growth response in the two older siblings and 5 years of data in the youngest. Pre-treatment HVs were, respectively, 3.0 (P1), 3.0 (P2), and 5.2 (P3) cm/year. With rhIGF-1 therapy, HVs increased to 5.2-6.0, 4.8-7.1, and 5.5-7.4 cm/year, respectively, in the first 3 years of treatment, before they decreased to 4.7, 3.8, and 4.3 cm/year, respectively, at a COVID-19 pandemic delayed follow-up visit and with decreased treatment adherence. ΔHtSDS for P1 and P2 was +2.21 and +0.93, respectively, over 6 years, but -0.62 for P3 after 5 years and in the setting of severe local lipohypertrophy and suboptimal weight gain. P3 also experienced hypoglycemia that limited our ability to maintain target rhIGF-1 dosing. CONCLUSION The response to rhIGF-1 therapy is less than observed with rhIGF-1 therapy for patients previously described with severe primary IGF-I deficiency, including patients with documented defects in the growth hormone receptor, but may still provide patients with STAT5B deficiency with an opportunity to prevent worsening growth failure.
Collapse
Affiliation(s)
- Gajanthan Muthuvel
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sareea Salem Al Remeithi
- Division of Endocrinology, Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Corinne Foley
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrew Dauber
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Philippe Backeljauw
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Kobets AJ, Ahmad S, Boyke A, Oriko D, Holland R, Eisenberg R, Alavi SAN, Abbott R. STAT5b gain-of-function disease in a child with mycobacterial osteomyelitis of the skull: rare presentation of an emerging disease entity. Childs Nerv Syst 2023:10.1007/s00381-023-05997-y. [PMID: 37243811 DOI: 10.1007/s00381-023-05997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE STAT proteins play a key role in several cellular functions related to cell development, differentiation, proliferation, and survival. Persistent STAT activation due to somatic STAT5bN642H gain-of-function mutation is a rare mechanism of STAT dysregulation that results in hypereosinophilia, frequent infections, leukemias, and pulmonary diseases. Herein, we describe a case of a child with a rare early onset STAT5b gain-of-function disease treated with targeted JAK inhibition who developed a cranial Mycobacterium avium osteomyelitis. METHODS A 3-year-old male with a known STAT5b gain-of-function mutation presented with a 10-day history of a firm, immobile, non-painful cranial mycobacterium mass with dural infiltration located anterior to the coronal suture. Stepwise management finalized with complete resection of the lesion with calvarial reconstruction. A case-based literature review was performed evaluating all patients with this mutation who developed cranial disease. RESULTS The patient was symptom and lesion-free at 1 year since surgical resection and initiation of triple mycobacterial pharmacotherapy. Our literature review demonstrated the rarity of this disease, as well as other presentations of this disease in other patients. CONCLUSION Patients with STAT5b gain-of-function mutations have attenuated Th1 responses and are treated with medications, such as JAK inhibitors, which further inhibit other STAT proteins that regulate immunity against rare infectious entities, such as mycobacterium. Our case highlights the importance of considering these rare infections in patients on JAK inhibitors and with STAT protein mutations. Possessing a clear mechanistic understanding of this genetic mutation, its downstream effect, and the consequences of treatment may enhance a physician's diagnostic and clinical management of similar patients in the future.
Collapse
Affiliation(s)
- Andrew J Kobets
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA.
| | - Samuel Ahmad
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA
| | - Andre Boyke
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA
| | - David Oriko
- University of Nairobi School of Medicine, Nairobi, Kenya
| | - Ryan Holland
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA
| | - Rachel Eisenberg
- Department of Pediatrics, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Rick Abbott
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA
| |
Collapse
|
6
|
Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol 2023; 13:1025373. [PMID: 36755813 PMCID: PMC9899847 DOI: 10.3389/fimmu.2022.1025373] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)-5 proteins are required in immune regulation and homeostasis and play a crucial role in the development and function of several hematopoietic cells. STAT5b activation is involved in the expression of genes that participate in cell development, proliferation, and survival. STAT5a and STAT5b are paralogs and only human mutations in STAT5B have been identified leading to immune dysregulation and hematopoietic malignant transformation. The inactivating STAT5B mutations cause impaired post-natal growth, recurrent infections and immune dysregulation, whereas gain of function somatic mutations cause dysregulated allergic inflammation. These mutations are rare, and they are associated with a wide spectrum of clinical manifestations which provide a disease model elucidating the biological mechanism of STAT5 by studying the consequences of perturbations in STAT5 activity. Further, the use of Jak inhibitors as therapy for a variety of autoimmune and malignant disorders has increased substantially heading relevant lessons for the consequences of Jak/STAT immunomodulation from the human model. This review summarizes the biology of the STAT5 proteins, human disease associate with molecular defects in STAT5b, and the connection between aberrant activation of STAT5b and the development of certain cancers.
Collapse
Affiliation(s)
- Madison R. Smith
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States,*Correspondence: Alexander Vargas-Hernández,
| |
Collapse
|
7
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
8
|
Hwa V, Fujimoto M, Zhu G, Gao W, Foley C, Kumbaji M, Rosenfeld RG. Genetic causes of growth hormone insensitivity beyond GHR. Rev Endocr Metab Disord 2021; 22:43-58. [PMID: 33029712 PMCID: PMC7979432 DOI: 10.1007/s11154-020-09603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Masanobu Fujimoto
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Gaohui Zhu
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China
| | - Wen Gao
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Corinne Foley
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Meenasri Kumbaji
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Ben-Skowronek I. IPEX Syndrome: Genetics and Treatment Options. Genes (Basel) 2021; 12:323. [PMID: 33668198 PMCID: PMC7995986 DOI: 10.3390/genes12030323] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
(1) Background: IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome characterizes a complex autoimmune reaction beginning in the perinatal period, caused by a dysfunction of the transcription factor forkhead box P3 (FOXP3). (2) Objectives: Studies have shown the clinical, immunological, and molecular heterogeneity of patients with IPEX syndrome. The symptoms, treatment, and survival were closely connected to the genotype of the IPEX syndrome. Recognition of the kind of mutation is important for the diagnostics of IPEX syndrome in newborns and young infants, as well as in prenatal screening. The method of choice for treatment is hematopoietic stem cell transplantation and immunosuppressive therapy. In children, supportive therapy for refractory diarrhea is very important, as well as replacement therapy of diabetes mellitus type 1 (DMT1) and other endocrinopathies. In the future, genetic engineering methods may be of use in the successful treatment of IPEX syndrome. (3) Conclusions: The genetic defects determine a diagnostic approach and prognosis, making the knowledge of the genetics of IPEX syndrome fundamental to introducing novel treatment methods.
Collapse
MESH Headings
- Allografts
- Animals
- Diabetes Mellitus, Type 1/congenital
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Diarrhea/diagnosis
- Diarrhea/genetics
- Diarrhea/metabolism
- Diarrhea/therapy
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/therapy
- Hematopoietic Stem Cell Transplantation
- Humans
- Immune System Diseases/congenital
- Immune System Diseases/diagnosis
- Immune System Diseases/genetics
- Immune System Diseases/metabolism
- Immune System Diseases/therapy
- Infant
- Infant, Newborn
- Male
- Mutation
Collapse
Affiliation(s)
- Iwona Ben-Skowronek
- Department of Pediatric Endocrinology and Diabetology, Medical University, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Hwa V. Human growth disorders associated with impaired GH action: Defects in STAT5B and JAK2. Mol Cell Endocrinol 2021; 519:111063. [PMID: 33122102 PMCID: PMC7736371 DOI: 10.1016/j.mce.2020.111063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022]
Abstract
Growth hormone (GH) promotes postnatal human growth primarily by regulating insulin-like growth factor (IGF)-I production through activation of the GH receptor (GHR)-JAK2-signal transducer and activator of transcription (STAT)-5B signaling pathway. Inactivating STAT5B mutations, both autosomal recessive (AR) and dominant-negative (DN), are causal of a spectrum of GH insensitivity (GHI) syndrome, IGF-I deficiency and postnatal growth failure. Only AR STAT5B defects, however, confer additional characteristics of immune dysfunction which can manifest as chronic, potentially fatal, pulmonary disease. Somatic activating STAT5B and JAK2 mutations are associated with a plethora of immune abnormalities but appear not to impact human linear growth. In this review, molecular defects associated with STAT5B deficiency is highlighted and insights towards understanding human growth and immunity is emphasized.
Collapse
Affiliation(s)
- Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, United States.
| |
Collapse
|
11
|
Foley CL, Al Remeithi SS, Towe CT, Dauber A, Backeljauw PF, Tyzinski L, Kumar AR, Hwa V. Developmental Adaptive Immune Defects Associated with STAT5B Deficiency in Three Young Siblings. J Clin Immunol 2021; 41:136-146. [PMID: 33090292 PMCID: PMC7854992 DOI: 10.1007/s10875-020-00884-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
Abstract
Patients with rare homozygous mutations in signal transducer and activator of transcription 5B (STAT5B) develop immunodeficiency resulting in chronic eczema, chronic infections, autoimmunity, and chronic lung disease. STAT5B-deficient patients are typically diagnosed in the teenage years, limiting our understanding of the development of associated phenotypic immune abnormalities. We report the first detailed chronological account of post-natal immune dysfunction associated with STAT5B deficiency in humans. Annual immunophenotyping of three siblings carrying a novel homozygous nonsense mutation in STAT5B was carried out over 4 years between the ages of 7 months to 8 years. All three siblings demonstrated consistent B cell hyperactivity including elevated IgE levels and autoantibody production, associated with diagnoses of atopy and autoimmunity. Total T cell levels in each sibling remained normal, with regulatory T cells decreasing in the oldest sibling. Interestingly, a skewing toward memory T cells was identified, with the greatest changes in CD8+ effector memory T cells. These results suggest an importance of STAT5B in B cell function and naïve versus memory T cell survival. Progressive dysregulation of FOXP3+ regulatory T cells and CD8+ memory T cell subsets reveal a crucial role of STAT5B in T cell homeostasis. The early diagnosis and focused immune evaluations of these three young STAT5B-deficient siblings support an important role of STAT5B in adaptive immune development and function.
Collapse
Affiliation(s)
- Corinne L Foley
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sareea S Al Remeithi
- Division of Endocrinology, Department of PediatricsSheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Christopher T Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Philippe F Backeljauw
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Tyzinski
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ashish R Kumar
- Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Consonni F, Favre C, Gambineri E. IL-2 Signaling Axis Defects: How Many Faces? Front Pediatr 2021; 9:669298. [PMID: 34277517 PMCID: PMC8282996 DOI: 10.3389/fped.2021.669298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
CD25, Signal transducer and activator of transcription 5B (STAT5B) and Forkhead box P3 (FOXP3) are critical mediators of Interleukin-2 (IL-2) signaling pathway in regulatory T cells (Tregs). CD25 (i.e., IL-2 Receptor α) binds with high affinity to IL-2, activating STAT5B-mediated signaling that eventually results in transcription of FOXP3, a master regulator of Treg function. Consequently, loss-of-function mutations in these proteins give rise to Treg disorders (i.e., Tregopathies) that clinically result in multiorgan autoimmunity. Immunodysregulation, Polyendocrinopathy Enteropathy X-linked (IPEX), due to mutations in FOXP3, has historically been the prototype of Tregopathies. This review describes current knowledge about defects in CD25, STAT5B, and FOXP3, highlighting that these disorders both share a common biological background and display comparable clinical features. However, specific phenotypes are associated with each of these syndromes, while certain laboratory findings could be helpful tools for clinicians, in order to achieve a prompt genetic diagnosis. Current treatment strategies will be outlined, keeping an eye on gene editing, an interesting therapeutic perspective that could definitely change the natural history of these disorders.
Collapse
Affiliation(s)
- Filippo Consonni
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
13
|
Li R, Gong F, Pan H, Liang H, Miao H, Zhao Y, Duan L, Yang H, Wang L, Chen S, Zhu H. Identification and In Vitro Functional Verification of Two Novel Mutations of GHR Gene in the Chinese Children with Laron Syndrome. Front Endocrinol (Lausanne) 2021; 12:605736. [PMID: 33912130 PMCID: PMC8072467 DOI: 10.3389/fendo.2021.605736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Laron syndrome (LS) is a severe growth disorder caused by GHR gene mutation or post-receptor pathways defect. The clinical features of these patients collected in our present study were summarized, GHR gene variants were investigated and further in vitro functional verification was carried out. METHODS Four patients with LS were collected, their clinical characteristics were summarized, genomic DNA was extracted, and GHR gene was amplified and sequenced. GHR wild type (GHR-WT) and mutant GHR expression plasmids were constructed, and transiently transfected into HepG2 cells and HEK293T cells to observe the subcellular distribution of the GHR protein by immunofluorescence and to determine the expression of GHR and its post-receptor signaling pathway changes by Western blotting. RESULTS All of the four patients were male, and the median height was -4.72 SDS. Four GHR gene variants including c.587A>C (p.Y196S), c.766C>T (p.Q256*), c.808A>G (p.I270V) and c.1707-1710del (p.E570Afs*30) were identified, and the latter two were novel mutations. The results of mutant GHR plasmids transfection experiments and immunofluorescence assay showed that the subcellular distribution of GHR-Q256* and GHR-E570Afs*30 mutant proteins in HepG2 and HEK293T cells presented with a unique ring-like pattern, gathering around the nucleus, while GHR-Y196S mutant protein was evenly distributed on HepG2 cell membrane similar to GHR-WT. The GHR protein levels of HepG2 cells transiently transfected with GHR-Y196S, GHR-Q256* and GHR-E570Afs*30 were all significantly lower when compared with cells transfected with GHR-WT (P<0.05). Further mutant GHR post-receptor signal transduction investigation demonstrated that GH induced phosphorylated STAT5 levels of HepG2 cells transfected with three mutant plasmids were all significantly decreased in comparison with that of GHR-WT (P<0.05). CONCLUSIONS Two novel GHR gene mutations (I270V and E570Afs*30) were found in our patients with LS. GHR mutations influenced the subcellular distribution and GHR protein levels, then led to the impaired post-receptor signal transduction, suggesting that the GHR mutations contributed to the pathological condition of LS patients.
Collapse
|
14
|
Abstract
Growth hormone (GH) plays a pivotal role in many physiological processes in humans, and in other mammalian and non-mammalian vertebrate species, through actions on somatic growth, tissue development and repair, and intermediary metabolism. This review will focus on mechanisms of GH actions on gene expression, primarily from the perspective of the genes that encode proteins stimulated by GH to regulate somatic growth, especially insulin-like growth factor 1 (IGF-I), but also others that are induced or repressed by GH. Topics to be discussed will include a brief overview of GH-mediated signal transduction pathways and how these cascades alter the functions of responsive transcription factors, with a specific focus on STAT5B, a key member of the signal transducers and activators of transcription family, characterization of essential GH-regulated genes, and elucidation of mechanisms of their regulation from biochemical, genetic, and genomic perspectives.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX, 79905, USA.
| |
Collapse
|
15
|
Carneiro-Sampaio M, Moreira-Filho CA, Bando SY, Demengeot J, Coutinho A. Intrauterine IPEX. Front Pediatr 2020; 8:599283. [PMID: 33330291 PMCID: PMC7714920 DOI: 10.3389/fped.2020.599283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
IPEX is one of the few Inborn Errors of Immunity that may manifest in the fetal period, and its intrauterine forms certainly represent the earliest human autoimmune diseases. Here, we review the clinical, histopathologic, and genetic findings from 21 individuals in 11 unrelated families, with nine different mutations, described as cases of intrauterine IPEX. Recurrent male fetal death (multigenerational in five families) due to hydrops in the midsemester of pregnancy was the commonest presentation (13/21). Noteworthy, in the affected families, there were only fetal- or perinatal-onset cases, with no affected individuals presenting milder forms with later-life manifestation. Most alive births were preterm (5/6). Skin desquamation and intrauterine growth restriction were observed in part of the cases. Fetal ultrasonography showed hyperechoic bowel or dilated bowel loops in the five cases with available imaging data. Histopathology showed multi-visceral infiltrates with T lymphocytes and other cells, including eosinophils, the pancreas being affected in most of the cases (11/21) and as early as at 18 weeks of gestational age. Regarding the nine FOXP3 mutations found in these cases, six determine protein truncation and three predictably impair protein function. Having found distinct presentations for the same FOXP3 mutation in different families, we resorted to the mouse system and showed that the scurfy mutation also shows divergent severity of phenotype and age of death in C57BL/6 and BALB/c backgrounds. We also reviewed age-of-onset data from other monogenic Tregopathies leading to IPEX-like phenotypes. In monogenic IPEX-like syndromes, the intrauterine onset was only observed in two kindreds with IL2RB mutations, with two stillbirths and two premature neonates who did not survive. In conclusion, intrauterine IPEX cases seem to constitute a particular IPEX subgroup, certainly with the most severe clinical presentation, although no strict mutation-phenotype correlations could be drawn for these cases.
Collapse
Affiliation(s)
- Magda Carneiro-Sampaio
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Moreira-Filho
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Yumi Bando
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
16
|
Cepika AM, Sato Y, Liu JMH, Uyeda MJ, Bacchetta R, Roncarolo MG. Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J Allergy Clin Immunol 2019; 142:1679-1695. [PMID: 30527062 DOI: 10.1016/j.jaci.2018.10.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
Monogenic diseases of the immune system, also known as inborn errors of immunity, are caused by single-gene mutations resulting in immune deficiency and dysregulation. More than 350 diseases have been described to date, and the number is rapidly expanding, with increasing availability of next-generation sequencing facilitating the diagnosis. The spectrum of immune dysregulation is wide, encompassing deficiencies in humoral, cellular, innate, and adaptive immunity; phagocytosis; and the complement system, which lead to autoinflammation and autoimmunity. Multiorgan autoimmunity is a dominant symptom when genetic mutations lead to defects in molecules essential for the development, survival, and/or function of regulatory T (Treg) cells. Studies of "Tregopathies" are providing critical mechanistic information on Treg cell biology, the role of Treg cell-associated molecules, and regulation of peripheral tolerance in human subjects. The pathogenic immune networks underlying these diseases need to be dissected to apply and develop immunomodulatory treatments and design curative treatments using cell and gene therapy. Here we review the pathogenetic mechanisms, clinical presentation, diagnosis, and current and future treatments of major known Tregopathies caused by mutations in FOXP3, CD25, cytotoxic T lymphocyte-associated antigen 4 (CTLA4), LPS-responsive and beige-like anchor protein (LRBA), and BTB domain and CNC homolog 2 (BACH2) and gain-of-function mutations in signal transducer and activator of transcription 3 (STAT3). We also discuss deficiencies in genes encoding STAT5b and IL-10 or IL-10 receptor as potential Tregopathies.
Collapse
Affiliation(s)
- Alma-Martina Cepika
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Yohei Sato
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Jeffrey Mao-Hwa Liu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Molly Javier Uyeda
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif.
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif.
| |
Collapse
|
17
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
18
|
Abbas AK, Trotta E, R Simeonov D, Marson A, Bluestone JA. Revisiting IL-2: Biology and therapeutic prospects. Sci Immunol 2019; 3:3/25/eaat1482. [PMID: 29980618 DOI: 10.1126/sciimmunol.aat1482] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Interleukin-2 (IL-2), the first cytokine that was molecularly cloned, was shown to be a T cell growth factor essential for the proliferation of T cells and the generation of effector and memory cells. On the basis of this activity, the earliest therapeutic application of IL-2 was to boost immune responses in cancer patients. Therefore, it was a surprise that genetic deletion of the cytokine or its receptor led not only to the expected immune deficiency but also to systemic autoimmunity and lymphoproliferation. Subsequent studies established that IL-2 is essential for the maintenance of Foxp3+ regulatory T cells (Treg cells), and in its absence, there is a profound deficiency of Treg cells and resulting autoimmunity. We now know that IL-2 promotes the generation, survival, and functional activity of Treg cells and thus has dual and opposing functions: maintaining Treg cells to control immune responses and stimulating conventional T cells to promote immune responses. It is well documented that certain IL-2 conformations result in selective targeting of Treg cells by increasing reliance on CD25 binding while compromising CD122 binding. Recent therapeutic strategies have emerged to use IL-2, monoclonal antibodies to IL-2, or IL-2 variants to boost Treg cell numbers and function to treat autoimmune diseases while dealing with the continuing challenges to minimize the generation of effector and memory cells, natural killer cells, and other innate lymphoid populations.
Collapse
Affiliation(s)
- Abul K Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Eleonora Trotta
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitre R Simeonov
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Wei M, Xu WT, Gan T, Wang L, Zhang HX, Zhao FZ, Chen SL. Cloning, expression prolife, and immune characterization of a novel stat family member (stat5bl) in Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2019; 84:962-969. [PMID: 30399402 DOI: 10.1016/j.fsi.2018.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
STAT plays important roles in innate immunity during JAK/STAT signaling pathway, and STAT5 is particularly focused due to the existence of duplicated forms in fish and mammal. In Chinese tongue sole, stat5bl was suggested to be a candidate related to Vibrio harveyi resistance based on previous QTL screening. In this study, the full length of stat5bl cDNA was cloned and its expression patterns were analyzed. stat5bl was predominantly expressed in immune tissues, where the highest level was observed in liver, followed by skin and gill. Time course expression patterns were examined in six tissues (liver, skin, gill, kidney, intestine, spleen) after V. harveyi infection. stat5bl could be up-regulated by V. harveyi infection in all tissues except liver, despite the timepoints of peak were different. In contrast, stat5bl was significantly downregulated in liver. To elucidate the role of stat5bl in liver, in vitro RNAi were performed using primary liver cell culture. Knockdown of stat5bl could regulate the expression of genes closely related to JAK/STAT pathway. This study would enlarge our understanding of stat5bl in fish immunity.
Collapse
Affiliation(s)
- Min Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science and Fisheries, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Wen-Teng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Tian Gan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hong-Xiang Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fa-Zhen Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Song-Lin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|
20
|
Kaltenecker D, Themanns M, Mueller KM, Spirk K, Suske T, Merkel O, Kenner L, Luís A, Kozlov A, Haybaeck J, Müller M, Han X, Moriggl R. Hepatic growth hormone - JAK2 - STAT5 signalling: Metabolic function, non-alcoholic fatty liver disease and hepatocellular carcinoma progression. Cytokine 2018; 124:154569. [PMID: 30389231 DOI: 10.1016/j.cyto.2018.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
The rising prevalence of obesity came along with an increase in associated metabolic disorders in Western countries. Non-alcoholic fatty liver disease (NAFLD) represents the hepatic manifestation of the metabolic syndrome and is linked to primary stages of liver cancer development. Growth hormone (GH) regulates various vital processes such as energy supply and cellular regeneration. In addition, GH regulates various aspects of liver physiology through activating the Janus kinase (JAK) 2- signal transducer and activator of transcription (STAT) 5 pathway. Consequently, disrupted GH - JAK2 - STAT5 signaling in the liver alters hepatic lipid metabolism and is associated with NAFLD development in humans and mouse models. Interestingly, while STAT5 as well as JAK2 deficiency correlates with hepatic lipid accumulation, recent studies suggest that these proteins have unique ambivalent functions in chronic liver disease progression and tumorigenesis. In this review, we focus on the consequences of altered GH - JAK2 - STAT5 signaling for hepatic lipid metabolism and liver cancer development with an emphasis on lessons learned from genetic knockout models.
Collapse
Affiliation(s)
- Doris Kaltenecker
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Madeleine Themanns
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Kristina M Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Katrin Spirk
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olaf Merkel
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria; Institute of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Austria; Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Xiaonan Han
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health; Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Scalco RC, Gonçalves FT, Santos HC, Cardena MMSG, Tonelli CA, Funari MFA, Aracava RM, Pereira AC, Fridman C, Jorge AAL. Growth hormone insensitivity with immune dysfunction caused by a STAT5B mutation in the south of Brazil: evidence for a founder effect. Genet Mol Biol 2017; 40:436-441. [PMID: 28590503 PMCID: PMC5488464 DOI: 10.1590/1678-4685-gmb-2016-0231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/16/2016] [Indexed: 11/22/2022] Open
Abstract
Homozygous STAT5B mutations causing growth hormone insensitivity
with immune dysfunction were described in 10 patients since 2003, including two
Brazilian brothers from the south of Brazil. Our objectives were to evaluate the
prevalence of their STAT5B mutation in this region and to analyze
the presence of a founder effect. We obtained DNA samples from 1,205 local
inhabitants, 48 relatives of the homozygous patients and four individuals of another
affected family. Genotyping for STAT5B c.424_427del mutation and for
two polymorphic markers around it was done through fragment analysis technique. We
also determined Y-chromosome and mtDNA haplotypes and genomic ancestry in
heterozygous carriers. We identified seven families with STAT5B
c.424_427del mutation, with 33 heterozygous individuals. The minor allelic frequency
of this mutation was 0.29% in this population (confidence interval 95% 0.08-0.5%),
which is significantly higher than the frequency of other pathogenic
STAT5B allele variants observed in public databases (p <
0.001). All heterozygous carriers had the same haplotype present in the homozygous
patients, found in only 9.4% of non-carriers (p < 0.001), supporting the existence
of a founder effect. The Y-chromosome haplotype, mtDNA and genomic ancestry analysis
indicated a European origin of this mutation. Our results provide compelling evidence
for a founder effect of STAT5B c.424_427del mutation.
Collapse
Affiliation(s)
- Renata C Scalco
- Unidade de Endocrinologia Genética (LIM25), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.,Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Fernanda T Gonçalves
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, SP, Brazil
| | - Hadassa C Santos
- Laboratório de Cardiologia Genética e Molecular, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mari M S G Cardena
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, SP, Brazil
| | - Carlos A Tonelli
- Universidade do Extremo Sul de Santa Catarina, Criciúma, SC, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Rosana M Aracava
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Alexandre C Pereira
- Laboratório de Cardiologia Genética e Molecular, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cintia Fridman
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, SP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética (LIM25), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
22
|
Castilla-Cortazar I, de Ita JR, Aguirre GA, Castorena-Torres F, Ortiz-Urbina J, García-Magariño M, de la Garza RG, Diaz Olachea C, Elizondo Leal MI. Fanconi Anemia and Laron Syndrome. Am J Med Sci 2017; 353:425-432. [PMID: 28502327 DOI: 10.1016/j.amjms.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fanconi anemia (FA) is a condition characterized by genetic instability and short stature, which is due to growth hormone (GH) deficiency in most cases. However, no apparent relationships have been identified between FA complementation group genes and GH. In this study, we thereby considered an association between FA and Laron syndrome (LS) (insulin-like growth factor 1 [IGF-1] deficiency). METHODS A 21-year-old female Mexican patient with a genetic diagnosis of FA was referred to our research department for an evaluation of her short stature. Upon admission to our facility, her phenotype led to a suspicion of LS; accordingly, serum levels of IGF-1 and IGF binding protein 3 were analyzed and a GH stimulation test was performed. In addition, we used a next-generation sequencing approach for a molecular evaluation of FA disease-causing mutations and genes involved in the GH-IGF signaling pathway. RESULTS Tests revealed low levels of IGF-1 and IGF binding protein 3 that remained within normal ranges, as well as a lack of response to GH stimulation. Sequencing confirmed a defect in the GH receptor signaling pathway. CONCLUSIONS To the best of our knowledge, this study is the first to suggest an association between FA and LS. We propose that IGF-1 administration might improve some FA complications and functions based upon IGF-1 beneficial actions observed in animal, cell and indirect clinical models: erythropoiesis modulation, immune function improvement and metabolic regulation.
Collapse
Affiliation(s)
- Inma Castilla-Cortazar
- Escuela de Medicina, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico; Fundación de Investigación HM Hospitales, Madrid, Spain.
| | | | | | | | - Jesús Ortiz-Urbina
- Escuela de Medicina, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | | | | - Carlos Diaz Olachea
- Escuela de Medicina, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | |
Collapse
|
23
|
Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:123-133. [PMID: 28528685 DOI: 10.1016/j.mrrev.2016.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022]
Abstract
Laron syndrome (LS) is a unique model of congenital IGF-I deficiency. It is characterized by dwarfism and obesity, and is caused by deletion or mutations of the growth hormone receptor (GH-R) gene. It is hypothesized that LS is an old disease originating in Indonesia and that the mutated gene spread to South Asia, the Middle East, the Mediterranean region and South America.
Collapse
Affiliation(s)
- Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Israel.
| | - Rivka Kauli
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Israel
| | - Lena Lapkina
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
24
|
Carter-Su C, Schwartz J, Argetsinger LS. Growth hormone signaling pathways. Growth Horm IGF Res 2016; 28:11-15. [PMID: 26421979 PMCID: PMC7644140 DOI: 10.1016/j.ghir.2015.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/26/2015] [Accepted: 09/06/2015] [Indexed: 01/12/2023]
Abstract
Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight.
Collapse
Affiliation(s)
- Christin Carter-Su
- Departments of Molecular and Integrative Physiology and of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - Jessica Schwartz
- Departments of Molecular and Integrative Physiology and of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lawrence S Argetsinger
- Departments of Molecular and Integrative Physiology and of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| |
Collapse
|
25
|
Hwa V. STAT5B deficiency: Impacts on human growth and immunity. Growth Horm IGF Res 2016; 28:16-20. [PMID: 26703237 PMCID: PMC4846566 DOI: 10.1016/j.ghir.2015.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023]
Abstract
Growth hormone (GH) promotes postnatal human growth primarily by regulating insulin-like growth factor (IGF)-I production through activation of the GH receptor (GHR)-signal transducer and activator of transcription (STAT)-5B signaling cascade. The critical importance of STAT5B in human IGF-I production was confirmed with the identification of the first homozygous, autosomal recessive, STAT5B mutation in a young female patient who phenotypically resembled patients with classical growth hormone insensitivity (GHI) syndrome (Laron syndrome) due to mutations in the GHR gene, presenting with severe postnatal growth failure and marked IGF-I deficiency. Of note, the closely related STAT5A, which shares >95% amino acid identity with STAT5B, could not compensate for loss of functional STAT5B. To date, 7 homozygous, inactivating, STAT5B mutations in 10 patients have been reported. STAT5B deficient patients, unlike patients deficient in GHR, can also present with a novel, potentially fatal, primary immunodeficiency, which can manifest as chronic pulmonary disease. STAT5B deficiency may be underestimated in endocrine, immunology and pulmonary clinics.
Collapse
Affiliation(s)
- Vivian Hwa
- Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States.
| |
Collapse
|
26
|
Schilbach K, Bidlingmaier M. Growth hormone binding protein - physiological and analytical aspects. Best Pract Res Clin Endocrinol Metab 2015; 29:671-83. [PMID: 26522453 DOI: 10.1016/j.beem.2015.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A significant proportion of total circulating growth hormone (GH) is bound to a high affinity growth hormone binding protein (GHBP). Several low affinity binding proteins have also been described. Significant differences between species exist with respect to origin and regulation of GHBP, but generally it resembles the extracellular domain of the GH receptor. Concentrations are associated with GH status, body composition and other factors. Although the clinical relevance of GHBP is not fully understood it is suggested that concentrations indirectly reflect GH receptor status. This is supported by cases of Laron's syndrome where a molecular defect in the extracellular domain of the GH receptor is associated with low or unmeasurable GHBP concentrations. Methods to measure GHBP have evolved from chromatographic, activity based procedures to direct immunoassays. In clinical practice, measurement of GHBP can be helpful to differentiate between GH deficiency and GH insensitivity, particularly if GHBP is absent.
Collapse
Affiliation(s)
- Katharina Schilbach
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.
| | - Martin Bidlingmaier
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.
| |
Collapse
|
27
|
Scalco RC, Hwa V, Domené HM, Jasper HG, Belgorosky A, Marino R, Pereira AM, Tonelli CA, Wit JM, Rosenfeld RG, Jorge AAL. STAT5B mutations in heterozygous state have negative impact on height: another clue in human stature heritability. Eur J Endocrinol 2015; 173:291-6. [PMID: 26034074 PMCID: PMC4898761 DOI: 10.1530/eje-15-0398] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/01/2015] [Indexed: 01/16/2023]
Abstract
CONTEXT AND OBJECTIVE GH insensitivity with immune dysfunction caused by STAT5B mutations is an autosomal recessive condition. Heterozygous mutations in other genes involved in growth regulation were previously associated with a mild height reduction. Our objective was to assess for the first time the phenotype of heterozygous STAT5B mutations. METHODS We genotyped and performed clinical and laboratory evaluations in 52 relatives of two previously described Brazilian brothers with homozygous STAT5B c.424_427del mutation (21 heterozygous). Additionally, we obtained height data and genotype from 1104 adult control individuals from the same region in Brazil and identified five additional families harboring the same mutation (18 individuals, 11 heterozygous). Furthermore, we gathered the available height data from first-degree relatives of patients with homozygous STAT5B mutations (17 individuals from seven families). Data from heterozygous individuals and non-carriers were compared. RESULTS Individuals carrying heterozygous STAT5B c.424_427del mutation were 0.6 SDS shorter than their non-carrier relatives (P = 0.009). Heterozygous subjects also had significantly lower SDS for serum concentrations of IGF1 (P = 0.028) and IGFBP3 (P = 0.02) than their non-carrier relatives. The 17 heterozygous first-degree relatives of patients carrying homozygous STAT5B mutations had an average height SDS of -1.4 ± 0.8 when compared with population-matched controls (P < 0.001). CONCLUSIONS STAT5B mutations in the heterozygous state have a significant negative impact on height (∼ 3.9 cm). This effect is milder than the effect seen in the homozygous state, with height usually within the normal range. Our results support the hypothesis that heterozygosity of rare pathogenic variants contributes to normal height heritability.
Collapse
Affiliation(s)
- Renata C Scalco
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Vivian Hwa
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Horacio M Domené
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Héctor G Jasper
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Alicia Belgorosky
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Roxana Marino
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Alberto M Pereira
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Carlos A Tonelli
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Jan M Wit
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Ron G Rosenfeld
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Alexander A L Jorge
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
28
|
Passerini L, Santoni de Sio FR, Porteus MH, Bacchetta R. Gene/cell therapy approaches for Immune Dysregulation Polyendocrinopathy Enteropathy X-linked syndrome. Curr Gene Ther 2015; 14:422-8. [PMID: 25274247 PMCID: PMC4443799 DOI: 10.2174/1566523214666141001123828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023]
Abstract
Immune dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) syndrome is a rare autoimmune disease due to mutations in the gene encoding for Forkhead box P3 (FOXP3), a transcription factor fundamental for the function of thymus-derived (t) regulatory T (Treg) cells. The dysfunction of Treg cells results in the development of devastating autoimmune manifestations affecting multiple organs, eventually leading to premature death in infants, if not promptly treated by hematopoietic stem cell transplantation (HSCT). Novel gene therapy strategies can be developed for IPEX syndrome as more definitive cure than allogeneic HSCT. Here we describe the therapeutic approaches, alternative to HSCT, currently under development. We described that effector T cells can be converted in regulatory T cells by LV-mediated FOXP3-gene transfer in differentiated T lymphocytes. Despite FOXP3 mutations mainly affect a highly specific T cell subset, manipulation of stem cells could be required for long-term remission of the disease. Therefore, we believe that a more comprehensive strategy should aim at correcting FOXP3-mutated stem cells. Potentials and hurdles of both strategies will be highlighted here.
Collapse
Affiliation(s)
| | | | | | - Rosa Bacchetta
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20131, Milan, Italy.
| |
Collapse
|
29
|
Long-term follow-up of STAT5B deficiency in three argentinian patients: clinical and immunological features. J Clin Immunol 2015; 35:264-72. [PMID: 25753012 DOI: 10.1007/s10875-015-0145-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/17/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED The signal transducer and activator of transcription (STAT) family of proteins regulate gene transcription in response to a variety of cytokines. STAT5B, in particular, plays an important role in T cells, where it is a key mediator of interleukin-2 (IL-2) induced responses. STAT5B deficiency causes a rare autosomal recessive disorder reported in only a handful of individuals. There are currently ten published cases of STAT5B deficiency, four of which are Argentinians. AIM This is a report of more than 10 years follow up of the clinical and immunological features of three Argentinian STAT5B deficient patients. CONCLUSION More than a decade of follow-up demonstrates that STAT5B deficiency is associated with various clinical pathologies that cause significant morbidity. Early diagnosis is critical for the prevention and improvement of clinical outcomes for STAT5B deficient patients.
Collapse
|
30
|
Scalco RC, Pugliese-Pires PN, Jorge AAL. [STAT5B deficiency: a new growth hormone insensitivity syndrome associated to immunological dysfunction]. ACTA ACUST UNITED AC 2014; 57:333-8. [PMID: 23896798 DOI: 10.1590/s0004-27302013000500001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/12/2012] [Indexed: 11/21/2022]
Abstract
A new presentation of growth hormone insensitivity (GHI) caused by homozygous mutations in STAT5B (signal transducer and activator of transcription 5B) gene has been characterized in the last years. Its particularity is the association with severe immune dysfunction, especially with lymphocytic interstitial pneumonitis. This may mislead physicians into considering short stature as secondary to chronic immunological disease and consequently into underdiagnosing this form of GHI. The objective of this review is to propagate current knowledge about this rare pathology, facilitating the diagnosis of patients with GHI due to STAT5B mutations in endocrinology and other specialties clinics.
Collapse
Affiliation(s)
- Renata C Scalco
- Unidade de Endocrinologia Genética, LIM-25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
31
|
Cichocki F, Sitnicka E, Bryceson YT. NK cell development and function – Plasticity and redundancy unleashed. Semin Immunol 2014; 26:114-26. [DOI: 10.1016/j.smim.2014.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 01/16/2023]
|
32
|
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders: an evolving web of heritable autoimmune diseases. Curr Opin Pediatr 2013; 25:708-14. [PMID: 24240290 PMCID: PMC4047515 DOI: 10.1097/mop.0000000000000029] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW To summarize recent progress in our understanding of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders. RECENT FINDINGS A number of Mendelian disorders of immune dysregulation and autoimmunity have been noted to result from defects in T regulatory cell, development and function. The best characterized of these is IPEX, resulting from mutations affecting FOXP3. A number of other gene defects that affect T regulatory cell function also give rise to IPEX-related phenotypes, including loss-of-function mutations in CD25, STAT5b and ITCH. Recent progress includes the identification of gain-of-function mutations in STAT1 as a cause of an IPEX-like disease, emerging FOXP3 genotype/phenotype relationships in IPEX, and the elucidation of a role for the microbiota in the immune dysregulation associated with regulatory T cell deficiency. SUMMARY An expanding spectrum of genetic defects that compromise T regulatory cell function underlies human disorders of immune dysregulation and autoimmunity. Collectively, these disorders offer novel insights into pathways of peripheral tolerance and their disruption in autoimmunity.
Collapse
|
33
|
Lin WC, Schmidt JW, Creamer BA, Triplett AA, Wagner KU. Gain-of-function of Stat5 leads to excessive granulopoiesis and lethal extravasation of granulocytes to the lung. PLoS One 2013; 8:e60902. [PMID: 23565285 PMCID: PMC3614894 DOI: 10.1371/journal.pone.0060902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/05/2013] [Indexed: 11/25/2022] Open
Abstract
The Signal Transducer and Activator of Transcription 5 (Stat5) plays a significant role in normal hematopoiesis and a variety of hematopoietic malignancies. Deficiency in Stat5 causes impaired cytokine-mediated proliferation and survival of progenitors and their differentiated descendants along major hematopoietic lineages such as erythroid, lymphoid, and myeloid cells. Overexpression and persistent activation of Stat5 are sufficient for neoplastic transformation and development of multi-lineage leukemia in a transplant model. Little is known, however, whether a continuous activation of this signal transducer is essential for the maintenance of hematopoietic malignancies. To address this issue, we developed transgenic mice that express a hyperactive mutant of Stat5 in hematopoietic progenitors and derived lineages in a ligand-controlled manner. In contrast to the transplant model, expression of mutant Stat5 did not adversely affect normal hematopoiesis in the presence of endogenous wildtype Stat5 alleles. However, the gain-of-function of this signal transducer in mice that carry Stat5a/b hypomorphic alleles resulted in abnormally high numbers of circulating granulocytes that caused severe airway obstruction. Downregulation of hyperactive Stat5 in diseased animals restored normal granulopoiesis, which also resulted in a swift clearance of granulocytes from the lung. Moreover, we demonstrate that Stat5 promotes the initiation and maintenance of severe granulophilia in a cell autonomous manner. The results of this study show that the gain-of-function of Stat5 causes excessive granulopoiesis and prolonged survival of granulocytes in circulation. Collectively, our findings underline the critical importance of Stat5 in maintaining a normal balance between myeloid and lymphoid cells during hematopoiesis, and we provide direct evidence for a function of Stat5 in granulophilia–associated pulmonary dysfunction.
Collapse
Affiliation(s)
- Wan-chi Lin
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jeffrey W. Schmidt
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Bradley A. Creamer
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aleata A. Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
34
|
A de novo 17q21.2 duplication in a boy with developmental delay and dysmorphic features. Eur J Med Genet 2013; 56:226-8. [PMID: 23337768 DOI: 10.1016/j.ejmg.2012.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/17/2012] [Indexed: 11/20/2022]
Abstract
We report a boy with severe developmental delay, microcephaly and characteristic facial dysmorphism consisting in round face, hypertelorism, upslanted palpebral fissures, small nose, large mouth, micrognathia, sparse hair and eyelashes. Array-CGH revealed a de novo duplication of 103 kb within 17q21.2 not reported to date. The duplication includes 8 genes: DHX58, KAT2A, HSPB9, RAB5C, KCNH4, HCRT, GHDC and STAT5B. Three genes (KATA2, KCNH4, and STAT5B) may contribute to intellectual deficiency. Further observations will be necessary to confirm the specificity of the facial Gestalt.
Collapse
|
35
|
Kanai T, Jenks J, Nadeau KC. The STAT5b Pathway Defect and Autoimmunity. Front Immunol 2012; 3:234. [PMID: 22912632 PMCID: PMC3418548 DOI: 10.3389/fimmu.2012.00234] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023] Open
Abstract
The signal transducer and activator of transcription (STAT) 5b is a universal transcription factor that plays key biological roles in allergic diseases, immunodeficiencies, autoimmunities, cancers, hematological diseases, growth disorders, and lung diseases. The identification of distinct pathological manifestations of STAT5b deficiency in humans has highlighted the critical role of the STAT5b pathway. Proper gene transcription at IL-2R α, FOXP3, Bcl-2, and growth hormone (GH) associated loci are thought to be associated with normal STAT5b transcriptional activity. These genes are thought to play important roles in allergy/autoimmunity, immunodeficiency, cancer/anemia, and growth, respectively. The STAT5A and STAT5B genes are collocated on 17q11. Although these two monomeric proteins exhibit peptide sequence similarities of >90%, it is known through observations of STAT5b deficient subjects that STAT5a and STAT5b are not fully redundant in humans. Patients with STAT5b deficiency have decreased numbers of regulatory CD4+CD25high T cell (Treg) despite their STAT5a levels being normal. Prior studies on STAT5b deficient subjects have revealed immunological aberrations associated with the following disease phenotype: modest lymphopenia and decreased populations of Treg, γ−δ T cells, and natural killer (NK) cells. Most subjects with STAT5b deficiency show severe eczema, and autoimmune disease (juvenile idiopathic arthritis, autoimmune thyroiditis, idiopathic thrombocytic purpura) which are thought to be associated with Treg dysfunction. We will review the likely pathophysiological mechanisms associated with STAT5b deficiency.
Collapse
Affiliation(s)
- Takahiro Kanai
- Division of Immunology and Allergy, Department of Pediatrics, School of Medicine, Stanford University Stanford, CA, USA
| | | | | |
Collapse
|
36
|
KANG JUHYUNG, KIM OKSOON, KIM JAHYUN, LEE SEONGKYU, PARK YOUNJONG, BAIK HAINGWOON. A novel mutation of exon 7 in growth hormone receptor mRNA in a patient with growth hormone insensitivity syndrome and neurofibromatosis type I. Int J Mol Med 2012; 30:713-7. [DOI: 10.3892/ijmm.2012.1048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/28/2012] [Indexed: 11/06/2022] Open
|
37
|
Backeljauw PF, Chernausek SD. The insulin-like growth factors and growth disorders of childhood. Endocrinol Metab Clin North Am 2012; 41:265-82, v. [PMID: 22682630 DOI: 10.1016/j.ecl.2012.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Specific lesions of the growth hormone (GH)/insulin-like growth factor (IGF) axis have been identified in humans, each of which has distinctive auxologic and biochemical features. Measures of circulating IGF-I are useful in diagnosing growth disorders in childhood and in evaluating response to GH therapy. Recombinant human IGF-I is an effective treatment of severe primary IGF deficiency, which is typical of patients with GH receptor defects (Laron syndrome). Such treatment has been limited to a few severely affected patients. Future studies will provide new insight into IGF-I as treatment and into the nature of growth disorders that involve the IGF axis.
Collapse
Affiliation(s)
- Philippe F Backeljauw
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
38
|
Coutant R, Dörr HG, Gleeson H, Argente J. Diagnosis of endocrine disease: limitations of the IGF1 generation test in children with short stature. Eur J Endocrinol 2012; 166:351-7. [PMID: 22048966 DOI: 10.1530/eje-11-0618] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The IGF1 generation test (IGFGT) is often used during the assessment of suspected GH insensitivity (GHI). We report the results of a survey undertaken in 2010 to determine the use of IGFGT amongst members of the European Society for Paediatric Endocrinology to evaluate suspected GHI. The literature surrounding the usefulness and limitations of IGFGT are reviewed, and recommendations provided for its use. Of 112 paediatric endocrinologists from 30 countries who responded to the survey, 91 (81%) reported that they had used the IGFGT in the previous 2 years; >10 IGFGT protocols were used. The IGFGT impacted treatment decisions for 97% of the respondents and was a prerequisite for recombinant human IGF1 treatment for 45% of respondents. From a literature review, sensitivity of the IGFGT was evaluated as 77-91% in molecularly proven cases of GHI; specificity was ≤97%, depending on the protocol. The positive predictive value of the IGFGT is likely to be low, as the frequency of normality is predictably higher than that of abnormality in GH signalling. Given the limitations of the IGFGT in the most severe cases of GHI syndrome (GHIS), the ability of the IGFGT to detect less severe GHIS is doubtful. In a pragmatic approach, the IGFGT may not be useful for the diagnosis of GHIS.
Collapse
Affiliation(s)
- Régis Coutant
- Endocrinologie Diabétologie Pédiatrique, Pôle Enfant, CHU Angers, 4 rue Larrey, 49933 Angers, Cedex 9, France
| | | | | | | |
Collapse
|
39
|
Barzaghi F, Passerini L, Gambineri E, Ciullini Mannurita S, Cornu T, Kang ES, Choe YH, Cancrini C, Corrente S, Ciccocioppo R, Cecconi M, Zuin G, Discepolo V, Sartirana C, Schmidtko J, Ikinciogullari A, Ambrosi A, Roncarolo MG, Olek S, Bacchetta R. Demethylation analysis of the FOXP3 locus shows quantitative defects of regulatory T cells in IPEX-like syndrome. J Autoimmun 2012; 38:49-58. [PMID: 22264504 PMCID: PMC3314976 DOI: 10.1016/j.jaut.2011.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 11/28/2022]
Abstract
Immune dysregulation, Polyendocrinopathy, Enteropathy X-linked (IPEX) syndrome is a unique example of primary immunodeficiency characterized by autoimmune manifestations due to defective regulatory T (Treg) cells, in the presence of FOXP3 mutations. However, autoimmune symptoms phenotypically resembling IPEX often occur in the absence of detectable FOXP3 mutations. The cause of this “IPEX-like” syndrome presently remains unclear. To investigate whether a defect in Treg cells sustains the immunological dysregulation in IPEX-like patients, we measured the amount of peripheral Treg cells within the CD3+ T cells by analysing demethylation of the Treg cell-Specific-Demethylated-Region (TSDR) in the FOXP3 locus and demethylation of the T cell-Specific-Demethylated-Region (TLSDR) in the CD3 locus, highly specific markers for stable Treg cells and overall T cells, respectively. TSDR demethylation analysis, alone or normalized for the total T cells, showed that the amount of peripheral Treg cells in a cohort of IPEX-like patients was significantly reduced, as compared to both healthy subjects and unrelated disease controls. This reduction could not be displayed by flow cytometric analysis, showing highly variable percentages of FOXP3+ and CD25+FOXP3+ T cells. These data provide evidence that a quantitative defect of Treg cells could be considered a common biological hallmark of IPEX-like syndrome. Since Treg cell suppressive function was not impaired, we propose that this reduction per se could sustain autoimmunity.
Collapse
Affiliation(s)
- F Barzaghi
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Via Olgettina 58, 20131 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fuentes EN, Einarsdottir IE, Valdes JA, Alvarez M, Molina A, Björnsson BT. Inherent growth hormone resistance in the skeletal muscle of the fine flounder is modulated by nutritional status and is characterized by high contents of truncated GHR, impairment in the JAK2/STAT5 signaling pathway, and low IGF-I expression. Endocrinology 2012; 153:283-94. [PMID: 22028448 DOI: 10.1210/en.2011-1313] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A detailed understanding of how the GH and IGF-I regulate muscle growth, especially in early vertebrates, is still lacking. The fine flounder is a flatfish species exhibiting remarkably slow growth, representing an intriguing model for elucidating growth regulatory mechanisms. Key components of the GH system were examined in groups of fish during periods of feeding, fasting, and refeeding. Under feeding conditions, there is an inherent systemic and local (muscle) GH resistance, characterized by higher levels of plasma GH than of IGF-I, skeletal muscle with a greater content of the truncated GH receptor (GHRt) than of full-length GHR (GHRfl), an impaired activation of the Janus kinase 2 (JAK2)-signal transducers and activators of transcription 5 (STAT5) signaling pathway, and low IGF-I expression. Fasting leads to further elevation of plasma GH levels concomitant with suppressed IGF-I levels. The ratio of GHRfl to GHRt in muscle decreases during fasting, causing an inactivation of the JAK2/STAT5 signaling pathway and suppressed IGF-I expression, further impairing growth. When fish are returned to nutritionally favorable conditions, plasma GH levels decrease, and the ratio of GHRfl to GHRt in muscle increases, triggering JAK2/STAT5 reactivation and local IGF-I expression, concomitant with increased growth. The study suggests that systemic IGF-I is supporting basal slow growth in this species, without ruling out that local IGF-I is participating in muscle growth. These results reveal for the first time a unique model of inherent GH resistance in the skeletal muscle of a nonmammalian species and contribute to novel insights of the endocrine and molecular basis of growth regulation in earlier vertebrates.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnologia Molecular, Departamento de Ciencias Biologicas, Facultad Ciencias Biologicas, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
41
|
Savage MO, Hwa V, David A, Rosenfeld RG, Metherell LA. Genetic Defects in the Growth Hormone-IGF-I Axis Causing Growth Hormone Insensitivity and Impaired Linear Growth. Front Endocrinol (Lausanne) 2011; 2:95. [PMID: 22654835 PMCID: PMC3356141 DOI: 10.3389/fendo.2011.00095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/21/2011] [Indexed: 11/13/2022] Open
Abstract
Human genetic defects in the growth hormone (GH)-IGF-I axis affecting the IGF system present with growth failure as their principal clinical feature. This is usually associated with GH insensitivity (GHI) presenting in childhood as severe or mild short stature. Dysmorphic features and metabolic abnormalities may also be present. The field of GHI due to mutations affecting GH action has evolved rapidly since the first description of the extreme phenotype related to homozygous GH receptor (GHR) mutations in 1966. A continuum of genetic, phenotypic, and biochemical abnormalities can be defined associated with clinically relevant defects in linear growth. The mechanisms of the GH-IGF-I axis in the regulation of normal human growth is discussed followed by descriptions of mutations in GHR, STAT5B, IGF-I, IGFALS, IGF1R, and GH1 defects causing bio-inactive GH or anti-GH antibodies. These GH-IGF-I axis defects are associated with a range of clinical, and hormonal characteristics. An up-dated approach to the clinical assessment of the patient with GHI focusing on investigation of the GH-IGF-I axis and relevant molecular studies contributing to the identification of causative genetic defects is also discussed.
Collapse
Affiliation(s)
- Martin O. Savage
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryLondon, UK
| | - Vivian Hwa
- Department of Pediatrics, Oregon Health and Science UniversityPortland, OR, USA
| | - Alessia David
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryLondon, UK
| | - Ron G. Rosenfeld
- Department of Pediatrics, Oregon Health and Science UniversityPortland, OR, USA
| | - Louise A. Metherell
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryLondon, UK
| |
Collapse
|
42
|
Wood SM, Ljunggren HG, Bryceson YT. Insights into NK cell biology from human genetics and disease associations. Cell Mol Life Sci 2011; 68:3479-93. [PMID: 21874350 PMCID: PMC11115003 DOI: 10.1007/s00018-011-0799-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/29/2022]
Abstract
Rare human primary immunodeficiency disorders with extreme susceptibility to infections in infancy have provided important insights into immune function. Increasingly, however, primary immunodeficiencies are also recognized as a cause of other more common, often discrete, infectious susceptibilities. In a wider context, loss-of-function mutations in immune genes may also cause disorders of immune regulation and predispose to cancer. Here, we review the associations between human diseases and mutations in genetic elements affecting natural killer (NK) cell development and function. Although many such genetic aberrations significantly reduce NK cell numbers or severely impair NK cell responses, inferences regarding the role of NK cells in disease are confounded by the fact that most mutations also affect the development or function of other cell types. Still, data suggest an important role for NK cells in diseases ranging from classical immunodeficiency syndromes with susceptibility to viruses and other intracellular pathogens to cancer, autoimmunity, and hypersensitivity reactions.
Collapse
Affiliation(s)
- Stephanie M Wood
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | | | | |
Collapse
|
43
|
David A, Hwa V, Metherell LA, Netchine I, Camacho-Hübner C, Clark AJL, Rosenfeld RG, Savage MO. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr Rev 2011; 32:472-97. [PMID: 21525302 DOI: 10.1210/er.2010-0023] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GH insensitivity (GHI) presents in childhood as growth failure and in its severe form is associated with dysmorphic and metabolic abnormalities. GHI may be caused by genetic defects in the GH-IGF-I axis or by acquired states such as chronic illness. This article discusses the former category. The field of GHI due to mutations affecting GH action has evolved considerably since the original description of the extreme phenotype related to homozygous GH receptor (GHR) mutations over 40 yr ago. A continuum of genetic, phenotypic, and biochemical abnormalities can be defined associated with clinically relevant defects in linear growth. The role and mechanisms of the GH-IGF-I axis in normal human growth is discussed, followed by descriptions of mutations in GHR, STAT5B, PTPN11, IGF1, IGFALS, IGF1R, and GH1 defects causing bioinactive GH or anti-GH antibodies. These defects are associated with a range of genetic, clinical, and hormonal characteristics. Genetic abnormalities causing growth failure that is less severe than the extreme phenotype are emphasized, together with an analysis of height and serum IGF-I across the spectrum of different types of GHR defects. An overall view of genotype and phenotype relationships is presented, together with an updated approach to the assessment of the patient with GHI, focusing on investigation of the GH-IGF-I axis and relevant molecular studies contributing to this diagnosis.
Collapse
Affiliation(s)
- Alessia David
- Department of Endocrinology, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nadeau K, Hwa V, Rosenfeld RG. STAT5b deficiency: an unsuspected cause of growth failure, immunodeficiency, and severe pulmonary disease. J Pediatr 2011; 158:701-8. [PMID: 21414633 DOI: 10.1016/j.jpeds.2010.12.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/02/2010] [Accepted: 12/23/2010] [Indexed: 01/03/2023]
Affiliation(s)
- Kari Nadeau
- Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
45
|
Ermakova O, Piszczek L, Luciani L, Cavalli FMG, Ferreira T, Farley D, Rizzo S, Paolicelli RC, Al-Banchaabouchi M, Nerlov C, Moriggl R, Luscombe NM, Gross C. Sensitized phenotypic screening identifies gene dosage sensitive region on chromosome 11 that predisposes to disease in mice. EMBO Mol Med 2011; 3:50-66. [PMID: 21204268 PMCID: PMC3402001 DOI: 10.1002/emmm.201000112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The identification of susceptibility genes for human disease is a major goal of current biomedical research. Both sequence and structural variation have emerged as major genetic sources of phenotypic variability and growing evidence points to copy number variation as a particularly important source of susceptibility for disease. Here we propose and validate a strategy to identify genes in which changes in dosage alter susceptibility to disease-relevant phenotypes in the mouse. Our approach relies on sensitized phenotypic screening of megabase-sized chromosomal deletion and deficiency lines carrying altered copy numbers of ∼30 linked genes. This approach offers several advantages as a method to systematically identify genes involved in disease susceptibility. To examine the feasibility of such a screen, we performed sensitized phenotyping in five therapeutic areas (metabolic syndrome, immune dysfunction, atherosclerosis, cancer and behaviour) of a 0.8 Mb reciprocal chromosomal duplication and deficiency on chromosome 11 containing 27 genes. Gene dosage in the region significantly affected risk for high-fat diet-induced metabolic syndrome, antigen-induced immune hypersensitivity, ApoE-induced atherosclerosis, and home cage activity. Follow up studies on individual gene knockouts for two candidates in the region showed that copy number variation in Stat5 was responsible for the phenotypic variation in antigen-induced immune hypersensitivity and metabolic syndrome. These data demonstrate the power of sensitized phenotypic screening of segmental aneuploidy lines to identify disease susceptibility genes.
Collapse
Affiliation(s)
- Olga Ermakova
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K. Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011; 32:159-224. [PMID: 20971919 PMCID: PMC3365792 DOI: 10.1210/er.2009-0039] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs.
Collapse
Affiliation(s)
- Z Hochberg
- Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hwa V, Nadeau K, Wit JM, Rosenfeld RG. STAT5b deficiency: lessons from STAT5b gene mutations. Best Pract Res Clin Endocrinol Metab 2011; 25:61-75. [PMID: 21396575 DOI: 10.1016/j.beem.2010.09.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth hormone (GH) regulates insulin-like growth factor (IGF)-I production primarily through activation of the GH receptor (GHR)-signal transducer and activator of transcription (STAT)-5b signaling cascade. One of four STAT proteins (STAT1, -3, -5a and -5b) activated by the GH-GHR system, the critical importance of STAT5b in IGF-I production became evident with the identification of homozygous, autosomal recessive STAT5b mutations in patients who presented with severe postnatal growth failure, growth hormone insensitivity syndrome (GHIS) and marked IGF-I deficiency. Unlike GHIS due to GHR mutations, patients carrying STAT5b mutations also presented with chronic pulmonary disease and evidence of perturbations of T-cell homeostasis. At present, no single treatment(s) is available to improve both poor statural growth and immune deficiency. Continued clinical evaluations of patients with STAT5b mutations and elucidating the impact of the mutation on STAT5b structure and function, are important to understanding the pathophysiology of this rare, complex, disease (MIM 245590).
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
48
|
Vigliano I, Fusco A, Palamaro L, Aloj G, Cirillo E, Salerno MC, Pignata C. γ Chain transducing element: A shared pathway between endocrine and immune system. Cell Immunol 2011; 269:10-5. [DOI: 10.1016/j.cellimm.2011.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/08/2011] [Indexed: 12/20/2022]
|
49
|
Chia DJ, Rotwein P. Defining the epigenetic actions of growth hormone: acute chromatin changes accompany GH-activated gene transcription. Mol Endocrinol 2010; 24:2038-49. [PMID: 20702579 DOI: 10.1210/me.2010-0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many of the long-term physiological effects of GH require hormone-mediated changes in gene expression. The transcription factor signal transducer and activator of transcription 5b (Stat5b) plays a critical role in the actions of GH on growth and metabolism by regulating a large number of GH-dependent genes by incompletely understood mechanisms. Here we have assessed the impact of GH-initiated and Stat5b-mediated signaling on the chromatin landscape of hormone-regulated genes in the liver of pituitary-deficient young adult male rats. In the absence of GH there was minimal ongoing transcription at the Socs2, Cish, Igfals, and Spi 2.1 promoters, minimal occupancy of Stat5b at proximal promoter sites, and relatively closed chromatin, as evidenced by low levels of core histone acetylation. In contrast, transcriptionally silent Igf1 promoter 1 appeared poised to be activated, based on binding of coactivators p300 and Med1/Trap220, high levels of histone acetylation, and the presence of RNA polymerase II. GH treatment led to a 8- to 20-fold rise in transcriptional activity of all five genes within 30-60 min and was accompanied by binding of Stat5b to the proximal Socs2, Cish, Igfals, and Spi 2.1 promoters and to seven distal Igf1 Stat5b elements, by enhanced histone acetylation at all five promoters, by recruitment of RNA polymerase II to the Socs2, Cish, Igfals, and Spi 2.1 promoters, and by loss of the transcriptional repressor Bcl6 from Socs2, Cish, and Igfals Stat5b sites, but not from two Igf1 Stat5b domains. We conclude that GH actions induce rapid and dramatic changes in hepatic chromatin at target promoters and propose that the chromatin signature of Igf1 differs from other GH-and Stat5b-dependent genes.
Collapse
Affiliation(s)
- Dennis J Chia
- Department of Pediatrics, Oregon Health & Science University, Portland Oregon 97239-3098, USA
| | | |
Collapse
|
50
|
Chia DJ, Varco-Merth B, Rotwein P. Dispersed Chromosomal Stat5b-binding elements mediate growth hormone-activated insulin-like growth factor-I gene transcription. J Biol Chem 2010; 285:17636-47. [PMID: 20378540 DOI: 10.1074/jbc.m110.117697] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis regulates somatic growth during childhood and orchestrates tissue repair throughout the life span. Recently described inactivating mutations in Stat5b in humans with impaired growth have focused attention on this transcription factor as a key agent linking GH-stimulated signals to IGF-I gene expression, and several putative Stat5b sites have been identified in the IGF-I gene. Here, we define and characterize potential GH- and Stat5b-activated chromosomal enhancers that can regulate IGF-I gene transcription. Of 89 recognizable Stat5 sequences in 200 kb centering on the rat IGF-I gene, 22 resided within conserved regions and/or were identical among different species. Only 15 of these sites, organized into 7 distinct domains, were found to bind Stat5b by quantitative chromatin immunoprecipitation assays in liver chromatin of rats, but only after acute GH treatment. These sites could bind Stat5b in vitro, and individual domains could mediate GH- and Stat5b-stimulated IGF-I promoter activity in cultured cells. Further analyses revealed that four Stat5b domains possessed chromatin signatures of enhancers, including binding of co-activators p300 and Med1, and RNA polymerase II. These modifications preceded GH-stimulated recruitment of Stat5b, as did lysine 4 monomethylation of histone H3, which was enriched in 6/7 Stat5b-binding elements. In contrast, histone acetylation was induced by GH but was limited to Stat5b binding domains found within the IGF-I transcription unit. We conclude that GH stimulates recruitment of Stat5b to multiple dispersed regions within the igf1 locus, including several with properties consistent with long range transcriptional enhancers that collectively regulate GH-activated IGF-I gene transcription.
Collapse
Affiliation(s)
- Dennis J Chia
- Department of Pediatrics, Oregon Health & Science University,Portland, Oregon 97239-3098, USA
| | | | | |
Collapse
|