1
|
Krausz C, Navarro-Costa P, Wilke M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: State of the art 2023. Andrology 2024; 12:487-504. [PMID: 37674303 DOI: 10.1111/andr.13514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Testing for AZoospermia Factor (AZF) deletions of the Y chromosome is a key component of the diagnostic workup of azoospermic and severely oligozoospermic men. This revision of the 2013 European Academy of Andrology (EAA) and EMQN CIC (previously known as the European Molecular Genetics Quality Network) laboratory guidelines summarizes recent clinically relevant advances and provides an update on the results of the external quality assessment program jointly offered by both organizations. A basic multiplex PCR reaction followed by a deletion extension analysis remains the gold-standard methodology to detect and correctly interpret AZF deletions. Recent data have led to an update of the sY84 reverse primer sequence, as well as to a refinement of what were previously considered as interchangeable border markers for AZFa and AZFb deletion breakpoints. More specifically, sY83 and sY143 are no longer recommended for the deletion extension analysis, leaving sY1064 and sY1192, respectively, as first-choice markers. Despite the transition, currently underway in several countries, toward a diagnosis based on certified kits, it should be noted that many of these commercial products are not recommended due to an unnecessarily high number of tested markers, and none of those currently available are, to the best of our knowledge, in accordance with the new first-choice markers for the deletion extension analysis. The gr/gr partial AZFc deletion remains a population-specific risk factor for impaired sperm production and a predisposing factor for testicular germ cell tumors. Testing for this deletion type is, as before, left at the discretion of the diagnostic labs and referring clinicians. Annual participation in an external quality control program is strongly encouraged, as the 22-year experience of the EMQN/EAA scheme clearly demonstrates a steep decline in diagnostic errors and an improvement in reporting practice.
Collapse
Affiliation(s)
- Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, University Hospital Careggi, Florence, Italy
| | - Paulo Navarro-Costa
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Gulbenkian Science Institute, Oeiras, Portugal
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Fedder J, Fagerberg C, Jørgensen MW, Gravholt CH, Berglund A, Knudsen UB, Skakkebæk A. Complete or partial loss of the Y chromosome in an unselected cohort of 865 non-vasectomized, azoospermic men. Basic Clin Androl 2023; 33:37. [PMID: 38093178 PMCID: PMC10720143 DOI: 10.1186/s12610-023-00212-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Structural abnormalities as well as minor variations of the Y chromosome may cause disorders of sex differentiation or, more frequently, azoospermia. This study aimed to determine the prevalence of loss of Y chromosome material within the spectrum ranging from small microdeletions in the azoospermia factor region (AZF) to complete loss of the Y chromosome in azoospermic men. RESULTS Eleven of 865 azoospermic men (1.3%) collected from 1997 to 2022 were found to have a karyotype including a 45,X cell line. Two had a pure 45,X karyotype and nine had a 45,X/46,XY mosaic karyotype. The AZF region, or part of it, was deleted in eight of the nine men with a structural abnormal Y-chromosome. Seven men had a karyotype with a structural abnormal Y chromosome in a non-mosaic form. In addition, Y chromosome microdeletions were found in 34 men with a structural normal Y chromosome. No congenital malformations were detected by echocardiography and ultrasonography of the kidneys of the 11 men with a 45,X mosaic or non-mosaic cell line. CONCLUSIONS In men with azoospermia, Y chromosome loss ranging from small microdeletions to complete loss of the Y chromosome was found in 6.1% (53/865). Partial AZFb microdeletions may give a milder testicular phenotype compared to complete AZFb microdeletions.
Collapse
Affiliation(s)
- J Fedder
- Centre of Andrology & Fertility Clinic, Odense University Hospital, Kløvervænget 23, DK-5000, Odense, Denmark.
- Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark.
- Fertility Clinic, Horsens Hospital, Horsens, Denmark.
| | - C Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - M W Jørgensen
- Department of Clinical Genetics, Lillebaelt Hospital, Vejle, Denmark
| | - C H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - A Berglund
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - U B Knudsen
- Fertility Clinic, Horsens Hospital, Horsens, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - A Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Mukherjee AG, Gopalakrishnan AV. Unlocking the mystery associated with infertility and prostate cancer: an update. Med Oncol 2023; 40:160. [PMID: 37099242 DOI: 10.1007/s12032-023-02028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Male-specific reproductive disorders and cancers have increased intensely in recent years, making them a significant public health problem. Prostate cancer (PC) is the most often diagnosed cancer in men and is one of the leading causes of cancer-related mortality. Both genetic and epigenetic modifications contribute to the development and progression of PC, even though the exact underlying processes causing this disease have yet to be identified. Male infertility is also a complex and poorly understood phenomenon believed to afflict a significant portion of the male population. Chromosomal abnormalities, compromised DNA repair systems, and Y chromosome alterations are just a few of the proposed explanations. It is becoming widely accepted that infertility shares a link with PC. Much of the link between infertility and PC is probably attributable to common genetic defects. This article provides an overview of PC and spermatogenic abnormalities. This study also investigates the link between male infertility and PC and uncovers the underlying reasons, risk factors, and biological mechanisms contributing to this association.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Seth A, Rivera A, Choi IS, Medina-Martinez O, Lewis S, O’Neill M, Ridgeway A, Moore J, Jorgez C, Lamb DJ. Gene dosage changes in KCTD13 result in penile and testicular anomalies via diminished androgen receptor function. FASEB J 2022; 36:e22567. [PMID: 36196997 PMCID: PMC10538574 DOI: 10.1096/fj.202200558r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023]
Abstract
Despite the high prevalence of hypospadias and cryptorchidism, the genetic basis for these conditions is only beginning to be understood. Using array-comparative-genomic-hybridization (aCGH), potassium-channel-tetramerization-domain-containing-13 (KCTD13) encoded at 16p11.2 was identified as a candidate gene involved in hypospadias, cryptorchidism and other genitourinary (GU) tract anomalies. Copy number variants (CNVs) at 16p11.2 are among the most common syndromic genomic variants identified to date. Many patients with CNVs at this locus exhibit GU and/or neurodevelopmental phenotypes. KCTD13 encodes a substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3-ubiquitin-protein-ligase complex (BCR (BTB-CUL3-RBX1) E3-ubiquitin-protein-ligase complex (B-cell receptor (BCR) [BTB (the BTB domain is a conserved motif involved in protein-protein interactions) Cullin3 complex RING protein Rbx1] E3-ubiqutin-protein-ligase complex), which has essential roles in the regulation of cellular cytoskeleton, migration, proliferation, and neurodevelopment; yet its role in GU development is unknown. The prevalence of KCTD13 CNVs in patients with GU anomalies (2.58%) is significantly elevated when compared with patients without GU anomalies or in the general population (0.10%). KCTD13 is robustly expressed in the developing GU tract. Loss of KCTD13 in cell lines results in significantly decreased levels of nuclear androgen receptor (AR), suggesting that loss of KCTD13 affects AR sub-cellular localization. Kctd13 haploinsufficiency and homozygous deletion in mice cause a significant increase in the incidence of cryptorchidism and micropenis. KCTD13-deficient mice exhibit testicular and penile abnormalities together with significantly reduced levels of nuclear AR and SOX9. In conclusion, gene-dosage changes of murine Kctd13 diminish nuclear AR sub-cellular localization, as well as decrease SOX9 expression levels which likely contribute in part to the abnormal GU tract development in Kctd13 mouse models and in patients with CNVs in KCTD13.
Collapse
Affiliation(s)
- Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Surgery, Nemours Children’s Hospital, Orlando, Florida 32827
| | - Armando Rivera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - In-Seon Choi
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Olga Medina-Martinez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Shaye Lewis
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Marisol O’Neill
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Alex Ridgeway
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Joshua Moore
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Carolina Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
| | - Dolores J. Lamb
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
- The James Buchanan Brady Foundation Department of Urology, Center for Reproductive Genomics and Englander Institute for Personalized Medicine, Weill Cornell Medical College
| |
Collapse
|
5
|
Krausz C, Cioppi F. Genetic Factors of Non-Obstructive Azoospermia: Consequences on Patients' and Offspring Health. J Clin Med 2021; 10:jcm10174009. [PMID: 34501457 PMCID: PMC8432470 DOI: 10.3390/jcm10174009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Non-Obstructive Azoospermia (NOA) affects about 1% of men in the general population and is characterized by clinical heterogeneity implying the involvement of several different acquired and genetic factors. NOA men are at higher risk to be carriers of known genetic anomalies such as karyotype abnormalities and Y-chromosome microdeletions in respect to oligo-normozoospermic men. In recent years, a growing number of novel monogenic causes have been identified through Whole Exome Sequencing (WES). Genetic testing is useful for diagnostic and pre-TESE prognostic purposes as well as for its potential relevance for general health. Several epidemiological observations show a link between azoospermia and higher morbidity and mortality rate, suggesting a common etiology for NOA and some chronic diseases, including cancer. Since on average 50% of NOA patients has a positive TESE outcome, the identification of genetic factors in NOA patients has relevance also to the offspring's health. Although still debated, the observed increased risk of certain neurodevelopmental disorders, as well as impaired cardiometabolic and reproductive health profile in children conceived with ICSI from NOA fathers may indicate the involvement of transmissible genetic factors. This review provides an update on the reproductive and general health consequences of known genetic factors causing NOA, including offspring's health.
Collapse
|
6
|
Abstract
Male factor infertility is a common problem. Evidence is emerging regarding the spectrum of systemic disease and illness harbored by infertile men who otherwise appear healthy. In this review, we present evidence that infertile men have poor overall health and increased morbidity and mortality, increased rates of both genitourinary and non-genitourinary malignancy, and greater risks of systemic disease. The review also highlights numerous genetic conditions associated with male infertility as well as emerging translational evidence of genitourinary birth defects and their impact on male infertility. Finally, parallels to the overall health of infertile women are presented. This review highlights the importance of a comprehensive health evaluation of men who present for an infertility assessment.
Collapse
Affiliation(s)
- Nahid Punjani
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Dolores J Lamb
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, NY 10065, USA; .,Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10021, USA.,Center for Reproductive Genomics, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
7
|
Golin AP, Yuen W, Flannigan R. The effects of Y chromosome microdeletions on in vitro fertilization outcomes, health abnormalities in offspring and recurrent pregnancy loss. Transl Androl Urol 2021; 10:1457-1466. [PMID: 33850780 PMCID: PMC8039589 DOI: 10.21037/tau-19-672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Male factor infertility accounts for approximately 50% of all infertility evaluations. A common cause of severe oligozoospermia and azoospermia is Y chromosome microdeletions (YCMs). Men with these genetic microdeletions must typically undergo assisted reproductive technology (ART) procedures to obtain paternity. In this review, we performed a thorough and extensive search of the literature to summarize the effects of YCMs on in vitro fertilization (IVF) outcomes, health abnormalities in offspring and recurrent pregnancy loss (RPL). The PubMed database was searched using specific search terms and papers were identified using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Sperm retrieval amongst men with complete AZFa and/or AZFb deletions is extremely rare and thus data on ARTs is largely unavailable. In AZFc-deleted men undergoing assisted reproduction, the collective fertilization rate (FR) is 59.8%, the clinical pregnancy rate is 28.6% and the live birth rate is 23.4%. When successful, the YCM is always transmitted to the male offspring and the deletion size either remains unchanged or widens. YCMs generally result in decreased fertilization, clinical pregnancy and live birth rates compared to men with intact Y chromosomes during ART interventions. There is a minimal or absent association of YCMs with abnormalities in the offspring or RPL.
Collapse
Affiliation(s)
- Andrew P Golin
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wallace Yuen
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Xp;Yq Unbalanced Translocation with Pseudoautosomal Region Aberrations in a Natural Two-Generation Transmission. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4976204. [PMID: 33344636 PMCID: PMC7732387 DOI: 10.1155/2020/4976204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022]
Abstract
Translocations involving X and Y chromosomes rarely occur in humans and may affect reproductive function. We investigated an Xp:Yq unbalanced translocation with pseudoautosomal region (PAR) aberrations in a natural two-generation transmission. We report the case of an azoospermic male and his fertile mother without any other abnormal clinical phenotypes, except for short stature. Cytogenetic methods, including karyotyping and fluorescence in situ hybridization (FISH), revealed the translocation. Chromosomal microarray comparative genomic hybridization (array-CGH) was used to investigate the regions of Xp partial deletion and Yq partial duplication. Final chromosome karyotypes in the peripheral blood of the infertile male and his mother were 46,Y,der(X)t(X;Y)(p22.33;q11.22) and 46,X,der(X)t(X;Y)(p22.33;q11.22), respectively. Short-stature-homeobox gene deletion was responsible for the short stature in both subjects. PAR aberrations and AZFc duplication may be a direct genetic risk factor for spermatogenesis. This report further supports the use of routine karyotype analysis, FISH-based technology, and array-CGH analysis to identify derivative chromosomes in a complex rearrangement.
Collapse
|
9
|
Punjani N, Kang C, Schlegel PN. Clinical implications of Y chromosome microdeletions among infertile men. Best Pract Res Clin Endocrinol Metab 2020; 34:101471. [PMID: 33214080 DOI: 10.1016/j.beem.2020.101471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Male factor infertility contributes significantly to couples facing difficulty achieving a pregnancy. Genetic factors, and specifically those related to the Y chromosome, may occur in up to 15% of men with oligozoospermia or azoospermia. A subset of loci within the Y chromosome, known as the azoospermia factors (AZFa, AZFb, and AZFc), have been associated with male infertility. Emerging evidence has demonstrated that microdeletions of at least a subset of these regions may also have impacts on systemic conditions. This review provides a brief review of male infertility and the structure of the Y chromosome, and further highlights the role of Y chromosome microdeletions in male infertility and other systemic disease.
Collapse
Affiliation(s)
- Nahid Punjani
- Division of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Caroline Kang
- Division of Urology, Weill Cornell Medical College, New York, NY, USA.
| | - Peter N Schlegel
- Division of Urology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
10
|
Chen CH, Bournat JC, Wilken N, Rosenfeld JA, Zhang J, Seth A, Jorgez CJ. Variants in ALX4 and their association with genitourinary defects. Andrology 2020; 8:1243-1255. [PMID: 32385972 DOI: 10.1111/andr.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Genitourinary anomalies occur in approximately 1% of humans, but in most cases, the cause is unknown. Aristaless-like homeobox 4 (ALX4) is an important homeodomain transcription factor. ALX4 mutations in humans and mouse have been associated with craniofacial defects and genitourinary anomalies such as cryptorchidism and epispadias. OBJECTIVES To investigate the presence and the functional impact of ALX4 variants in patients with genitourinary defects. MATERIALS AND METHODS Two separate patient cohorts were analyzed. One includes clinical exome-sequencing (ES) data from 7500 individuals. The other includes 52 ALX4 Sanger-sequenced individuals with bladder exstrophy-epispadias complex (BEEC). Dual luciferase assays were conducted to investigate the functional transcriptional impact of ALX4 variants in HeLa cells and HEK293 cells. RESULTS A total of 41 distinct ALX4 heterozygous missense variants were identified in the ES cohort with 15 variants present as recurrent in multiple patients. p.G369E and p.L373F were the only two present in individuals with genitourinary defects. A p.L373F heterozygous variant was also identified in one of the 52 individuals in the BEEC cohort. p.L373F and p.G369E were tested in vitro as both are considered damaging by MutationTaster, although only p.G369E was considered damaging by PolyPhen-2. p.L373F did not alter transcriptional activity in HeLa and HEK293 cells. p.G369E caused a significant 3.4- and 1.8-fold decrease in transcriptional activities relative to wild-type ALX4 in HEK293 and HeLa cells, respectively. DISCUSSION AND CONCLUSIONS Our study supports the idea that transcription factors like ALX4 could influence the normal development of the GU tract in humans as demonstrated in mouse models as ALX4 variant p.G369E (predicted pathogenic by multiple databases) affects ALX4 function in vitro. Variant p.L373F (predicted pathogenic by only MutationTaster) did not affect ALX4 function in vitro. Exon-sequence information and mouse genetics provide important insights into the complex mechanisms driving genitourinary defects allowing the association of transcriptional defects with congenital disorders.
Collapse
Affiliation(s)
- Ching H Chen
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Juan C Bournat
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nathan Wilken
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX, USA
| | - Jason Zhang
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Abhishek Seth
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Urology, Baylor College of Medicine, Houston, TX, USA.,Division of Urology, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Carolina J Jorgez
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Urology, Baylor College of Medicine, Houston, TX, USA.,Division of Urology, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
11
|
Shang D, Wang L, Klionsky DJ, Cheng H, Zhou R. Sex differences in autophagy-mediated diseases: toward precision medicine. Autophagy 2020; 17:1065-1076. [PMID: 32264724 DOI: 10.1080/15548627.2020.1752511] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nearly all diseases in humans, to a certain extent, exhibit sex differences, including differences in the onset, progression, prevention, therapy, and prognosis of diseases. Accumulating evidence shows that macroautophagy/autophagy, as a mechanism for development, differentiation, survival, and homeostasis, is involved in numerous aspects of sex differences in diseases such as cancer, neurodegeneration, and cardiovascular diseases. Advances in our knowledge regarding sex differences in autophagy-mediated diseases have enabled an understanding of their roles in human diseases, although the underlying molecular mechanisms of sex differences in autophagy remain largely unexplored. In this review, we discuss current advances in our insight into the biology of sex differences in autophagy and disease, information that will facilitate precision medicine.Abbreviations: AD: Azheimer disease; AMBRA1: autophagy and beclin 1 regulator 1; APP: amyloid beta precursor protein; AR: androgen receptor; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATP6AP2: ATPase H+ transporting accessory protein 2; BCL2L1: BCL2 like 1; BECN1: beclin 1; CTSD: cathepsin D; CYP19A1: cytochrome P450 family 19 subfamily A member 1; DSD: disorders of sex development; eALDI: enhancer alternate long-distance initiator; ESR1: estrogen receptor 1; ESR2: estrogen receptor 2; FYCO1: FYVE and coiled-coil domain autophagy adaptor 1; GABARAP: GABA type A receptor-associated protein; GLA: galactosidase alpha; GTEx: genotype-tissue expression; HDAC6: histone deacetylase 6; I-R: ischemia-reperfusion; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; m6A: N6-methyladenosine; MYBL2: MYB proto-oncogene like 2; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PSEN1: presenilin 1; PSEN2: presenilin 2; RAB9A, RAB9A: member RAS oncogene family; RAB9B, RAB9B: member RAS oncogene family; RAB40AL: RAB40A like; SF1: splicing factor 1; SOX9: SRY-box transcription factor 9; SRY: sex determining region Y; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated; VDAC2: voltage dependent anion channel 2; WDR45: WD repeat domain 45; XPDS: X-linked parkinsonism and spasticity; YTHDF2: YTH N6-methyladenosine RNA binding protein 2.
Collapse
Affiliation(s)
- Dangtong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China
| | - Lingling Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan, China.,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Abstract
Somatic health is associated with male infertility; potential links between infertility and health may arise from genetic, developmental, and lifestyle factors. Studies have explored possible connections between male infertility and oncologic, cardiovascular, metabolic, chronic, and autoimmune diseases. Male infertility also may be a predictor of hospitalization and mortality. Additional research is required to elucidate the mechanisms by which male infertility affects overall health.
Collapse
|
13
|
Abstract
There is increasing evidence that male infertility may be a harbinger of comorbid medical illness. Existing studies have shed light on associations between infertility and the prevalence of cardiovascular, metabolic, and oncologic disease, along with rates of hospitalization and overall mortality. Although theorized mechanisms include genetic, developmental, and behavioral precipitants, the exact nature of these associations remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Jeremy T Choy
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Kasman AM, Del Giudice F, Eisenberg ML. New insights to guide patient care: the bidirectional relationship between male infertility and male health. Fertil Steril 2020; 113:469-477. [PMID: 32089256 DOI: 10.1016/j.fertnstert.2020.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Male reproduction is a complex process, and numerous medical conditions have the potential to alter spermatogenesis. In addition, male factor infertility may be a biomarker for future health. In the present review, we discuss the current literature regarding the association between systemic diseases and fertility, which may impact clinical outcomes or semen parameters. A number of conditions that have systemic consequences were identified, including genetic (e.g., cystic fibrosis, DNA mismatch repair alterations), obesity, psychological stress, exogenous testosterone, and a variety of common medications. As such, the infertility evaluation may offer an opportunity for health counseling beyond the discussion of reproductive goals. Moreover, male infertility has been suggested as a marker of future health, given that poor semen parameters and a diagnosis of male infertility are associated with an increased risk of hypogonadism, cardiometabolic disease, cancer, and even mortality. Therefore, male fertility requires multidisciplinary expertise for evaluation, treatment, and counseling.
Collapse
Affiliation(s)
- Alex M Kasman
- Department of Urology, School of Medicine, Stanford University, Stanford, California
| | - Francesco Del Giudice
- Department of Maternal-Infant and Urological Sciences, "Sapienza" Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - Michael L Eisenberg
- Department of Urology, School of Medicine, Stanford University, Stanford, California; Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, California.
| |
Collapse
|
15
|
The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility. Genes (Basel) 2019; 11:genes11010040. [PMID: 31905733 PMCID: PMC7016774 DOI: 10.3390/genes11010040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
The World Health Organization (WHO) defines infertility as the inability of a sexually active, non-contracepting couple to achieve spontaneous pregnancy within one year. Statistics show that the two sexes are equally at risk. Several causes may be responsible for male infertility; however, in 30–40% of cases a diagnosis of idiopathic male infertility is made in men with normal urogenital anatomy, no history of familial fertility-related diseases and a normal panel of values as for endocrine, genetic and biochemical markers. Idiopathic male infertility may be the result of gene/environment interactions, genetic and epigenetic abnormalities. Numerical and structural anomalies of the Y chromosome represent a minor yet significant proportion and are the topic discussed in this review. We searched the PubMed database and major search engines for reports about Y-linked male infertility. We present cases of Y-linked male infertility in terms of (i) anomalies of the Y chromosome structure/number; (ii) Y chromosome misbehavior in a normal genetic background; (iii) Y chromosome copy number variations (CNVs). We discuss possible explanations of male infertility caused by mutations, lower or higher number of copies of otherwise wild type, Y-linked sequences. Despite Y chromosome structural anomalies are not a major cause of male infertility, in case of negative results and of normal DNA sequencing of the ascertained genes causing infertility and mapping on this chromosome, we recommend an analysis of the karyotype integrity in all cases of idiopathic fertility impairment, with an emphasis on the structure and number of this chromosome.
Collapse
|
16
|
Abstract
Male infertility is a multifactorial pathological condition affecting approximately 7% of the male population. The genetic landscape of male infertility is highly complex as semen and testis histological phenotypes are extremely heterogeneous, and at least 2,000 genes are involved in spermatogenesis. The highest frequency of known genetic factors contributing to male infertility (25%) is in azoospermia, but the number of identified genetic anomalies in other semen and aetiological categories is constantly growing. Genetic screening is relevant for its diagnostic value, clinical decision making, and appropriate genetic counselling. Anomalies in sex chromosomes have major roles in severe spermatogenic impairment. Autosome-linked gene mutations are mainly involved in central hypogonadism, monomorphic teratozoospermia or asthenozoospermia, congenital obstructive azoospermia, and familial cases of quantitative spermatogenic disturbances. Results from whole-genome association studies suggest a marginal role for common variants as causative factors; however, some of these variants can be important for pharmacogenetic purposes. Results of studies on copy number variations (CNVs) demonstrate a considerably higher CNV load in infertile patients than in normozoospermic men, whereas whole-exome analysis has proved to be a highly successful diagnostic tool in familial cases of male infertility. Despite such efforts, the aetiology of infertility remains unknown in about 40% of patients, and the discovery of novel genetic factors in idiopathic infertility is a major challenge for the field of androgenetics. Large, international, and consortium-based whole-exome and whole-genome studies are the most promising approach for the discovery of the missing genetic aetiology of idiopathic male infertility.
Collapse
|
17
|
Thirumavalavan N, Gabrielsen JS, Lamb DJ. Where are we going with gene screening for male infertility? Fertil Steril 2019; 111:842-850. [PMID: 31029238 DOI: 10.1016/j.fertnstert.2019.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/11/2023]
Abstract
Male infertility is a heterogenous disease process requiring the proper functioning and interaction of thousands of genes. Given the number of genes involved, it is thought that genetic causes contribute to most cases of infertility. Identifying these causes, however, is challenging. Infertility is associated with negative health outcomes, such as cancer, highlighting the need to further understand the genetic underpinnings of this condition. This paper describes the genetic and genomic tests currently available to identify the etiology of male infertility and then will discuss emerging technologies that may facilitate diagnosis and treatment of in the future.
Collapse
Affiliation(s)
| | | | - Dolores J Lamb
- Department of Urology, Center for Reproductive Genomics and Caryle and Israel Englander, Institute for Precision Medicine, Weill Cornell School of Medicine, New York, New York.
| |
Collapse
|
18
|
Choy JT, Eisenberg ML. Male infertility as a window to health. Fertil Steril 2018; 110:810-814. [DOI: 10.1016/j.fertnstert.2018.08.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
|
19
|
Dey SK, Kamle A, Dereddi RR, Thomas SM, Thummala SR, Kumar A, Chakravarty S, Jesudasan RA. Mice With Partial Deletion of Y-Heterochromatin Exhibits Stress Vulnerability. Front Behav Neurosci 2018; 12:215. [PMID: 30297990 PMCID: PMC6160548 DOI: 10.3389/fnbeh.2018.00215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
The role of Y chromosome in sex determination and male fertility is well established. It is also known that infertile men are prone to psychological disturbances. Earlier studies in the laboratory identified genes expressed in testes that are putatively regulated by Y chromosome in man and mouse. With the availability of a Y-deleted mouse model, that is subfertile, we studied the effect of a partial deletion of Y-chromosomal heterochromatin on mouse behavior when compared to its wild type. The partial Y-deleted mice exhibited anxiety like phenotype under stress when different anxiety (open field test and elevated plus maze, EPM test) and depression related tests (tail suspension and force swim) were performed. The mutant mice also showed reduction in hippocampal neurogenesis and altered expression of neurogenesis markers such as Nestin, Sox2, Gfap, NeuroD1 and Dcx using quantitative real time PCR (qPCR) analysis. The genes with altered expression contained short stretches of homology to Y-derived transcripts only in their Untranslated Regions (UTRs). Our study suggests putative regulation of these genes by the Y chromosome in mouse brain altering stress related behavior.
Collapse
Affiliation(s)
- Sandeep Kumar Dey
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Avijeet Kamle
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Shiju M. Thomas
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
20
|
Dumont BL, Williams CL, Ng BL, Horncastle V, Chambers CL, McGraw LA, Adams D, Mackay TFC, Breen M. Relationship Between Sequence Homology, Genome Architecture, and Meiotic Behavior of the Sex Chromosomes in North American Voles. Genetics 2018; 210:83-97. [PMID: 30002081 PMCID: PMC6116968 DOI: 10.1534/genetics.118.301182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022] Open
Abstract
In most mammals, the X and Y chromosomes synapse and recombine along a conserved region of homology known as the pseudoautosomal region (PAR). These homology-driven interactions are required for meiotic progression and are essential for male fertility. Although the PAR fulfills key meiotic functions in most mammals, several exceptional species lack PAR-mediated sex chromosome associations at meiosis. Here, we leveraged the natural variation in meiotic sex chromosome programs present in North American voles (Microtus) to investigate the relationship between meiotic sex chromosome dynamics and X/Y sequence homology. To this end, we developed a novel, reference-blind computational method to analyze sparse sequencing data from flow-sorted X and Y chromosomes isolated from vole species with sex chromosomes that always (Microtus montanus), never (Microtus mogollonensis), and occasionally synapse (Microtus ochrogaster) at meiosis. Unexpectedly, we find more shared X/Y homology in the two vole species with no and sporadic X/Y synapsis compared to the species with obligate synapsis. Sex chromosome homology in the asynaptic and occasionally synaptic species is interspersed along chromosomes and largely restricted to low-complexity sequences, including a striking enrichment for the telomeric repeat sequence, TTAGGG. In contrast, homology is concentrated in high complexity, and presumably euchromatic, sequence on the X and Y chromosomes of the synaptic vole species, M. montanus Taken together, our findings suggest key conditions required to sustain the standard program of X/Y synapsis at meiosis and reveal an intriguing connection between heterochromatic repeat architecture and noncanonical, asynaptic mechanisms of sex chromosome segregation in voles.
Collapse
Affiliation(s)
- Beth L Dumont
- Initiative in Biological Complexity, North Carolina State University, Raleigh, North Carolina 04609
| | - Christina L Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 04609
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, United Kingdom, CB10 1SA
| | - Valerie Horncastle
- School of Forestry, Northern Arizona University, Flagstaff, Arizona 86011
| | - Carol L Chambers
- School of Forestry, Northern Arizona University, Flagstaff, Arizona 86011
| | - Lisa A McGraw
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 04609
| | - David Adams
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, United Kingdom, CB10 1SA
| | - Trudy F C Mackay
- Initiative in Biological Complexity, North Carolina State University, Raleigh, North Carolina 04609
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 04609
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 04609
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 04609
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 04609
| |
Collapse
|
21
|
Spermatogenic failure and the Y chromosome. Hum Genet 2017; 136:637-655. [PMID: 28456834 DOI: 10.1007/s00439-017-1793-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022]
Abstract
The Y chromosome harbors a number of genes essential for testis development and function. Its highly repetitive structure predisposes this chromosome to deletion/duplication events and is responsible for Y-linked copy-number variations (CNVs) with clinical relevance. The AZF deletions remove genes with predicted spermatogenic function en block and are the most frequent known molecular causes of impaired spermatogenesis (5-10% of azoospermic and 2-5% of severe oligozoospermic men). Testing for this deletion has both diagnostic and prognostic value for testicular sperm retrieval in azoospermic men. The most dynamic region on the Yq is the AZFc region, presenting numerous NAHR hotspots leading to partial losses or gains of the AZFc genes. The gr/gr deletion (a partial AZFc deletion) negatively affects spermatogenic efficiency and it is a validated, population-dependent risk factor for oligozoospermia. In certain populations, the Y background may play a role in the phenotypic expression of partial AZFc rearrangements and similarly it may affect the predisposition to specific deletions/duplication events. Also, the Yp contains a gene array, TSPY1, with potential effect on germ cell proliferation. Despite intensive investigations during the last 20 years on the role of this sex chromosome in spermatogenesis, a number of clinical and basic questions remain to be answered. This review is aimed at providing an overview of the role of Y chromosome-linked genes, CNVs, and Y background in spermatogenesis.
Collapse
|
22
|
Meiotic Consequences of Genetic Divergence Across the Murine Pseudoautosomal Region. Genetics 2017; 205:1089-1100. [PMID: 28100589 PMCID: PMC5340325 DOI: 10.1534/genetics.116.189092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
The production of haploid gametes during meiosis is dependent on the homology-driven processes of pairing, synapsis, and recombination. On the mammalian heterogametic sex chromosomes, these key meiotic activities are confined to the pseudoautosomal region (PAR), a short region of near-perfect sequence homology between the X and Y chromosomes. Despite its established importance for meiosis, the PAR is rapidly evolving, raising the question of how proper X/Y segregation is buffered against the accumulation of homology-disrupting mutations. Here, I investigate the interplay of PAR evolution and function in two interfertile house mouse subspecies characterized by structurally divergent PARs, Mus musculus domesticus and M. m. castaneus. Using cytogenetic methods to visualize the sex chromosomes at meiosis, I show that intersubspecific F1 hybrids harbor an increased frequency of pachytene spermatocytes with unsynapsed sex chromosomes. This high rate of asynapsis is due, in part, to the premature release of synaptic associations prior to completion of prophase I. Further, I show that when sex chromosomes do synapse in intersubspecific hybrids, recombination is reduced across the paired region. Together, these meiotic defects afflict ∼50% of spermatocytes from F1 hybrids and lead to increased apoptosis in meiotically dividing cells. Despite flagrant disruption of the meiotic program, a subset of spermatocytes complete meiosis and intersubspecific F1 males remain fertile. These findings cast light on the meiotic constraints that shape sex chromosome evolution and offer initial clues to resolve the paradox raised by the rapid evolution of this functionally significant locus.
Collapse
|
23
|
Castro A, Rodríguez F, Flórez M, López P, Curotto B, Martínez D, Maturana A, Lardone MC, Palma C, Mericq V, Ebensperger M, Cassorla F. Pseudoautosomal abnormalities in terminal AZFb+c deletions are associated with isochromosomes Yp and may lead to abnormal growth and neuropsychiatric function. Hum Reprod 2017; 32:465-475. [PMID: 28057878 DOI: 10.1093/humrep/dew333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Are copy number variations (CNVs) in the pseudoautosomal regions (PARs) frequent in subjects with Y-chromosome microdeletions and can they lead to abnormal stature and/or neuropsychiatric disorders? SUMMARY ANSWER Only subjects diagnosed with azoospermia factor (AZF)b+c deletions spanning to the end of the Y chromosome (i.e. terminal deletions) harbor Y isochromosomes and/or cells 45,X that lead to pseudoautosomal gene CNVs, which were associated with abnormal stature and/or neuropsychiatric disorders. WHAT IS KNOWN ALREADY The microdeletions in the long arm of the Y chromosome (Yq) that include the loss of one to three AZF regions, referred to as Yq microdeletions, constitute the most important known etiological factor for primary spermatogenic failure. Recently, controversy has arisen about whether Yq microdeletions are associated with gain or loss of PAR genes, which are implicated in skeletal development and neuropsychiatric function. STUDY DESIGN, SIZE, DURATION We studied a cohort of 42 Chilean patients with complete AZF deletions (4 AZFa, 4 AZFb, 23 AZFc, 11 AZFb+c) from a university medical center, diagnosed over a period of 15 years. The subjects underwent complete medical examinations with special attention to their stature and neuropsychiatric function. PARTICIPANTS/MATERIALS, SETTING, METHODS All subjects were characterized for Yq breakpoints by PCR, and for CNVs in PARs by multiplex ligation-dependent probe amplification (MLPA), followed by qPCR analysis for genes in PAR1 (SHOX and ZBED1), PAR2 (IL9R) and two single copy genes (SRY and DDX3Y, respectively located in Yp11.3 and AZFa). In addition, karyotypes revision and fluorescence in situ hybridization (FISH) for SRY and centromeric probes for X (DXZ1) and Y (DYZ3) chromosomes were performed in males affected with CNVs. MAIN RESULTS AND THE ROLE OF CHANCE We did not detect CNVs in any of the 35 AZF-deleted men with interstitial deletions (AZFa, AZFb, AZFc or AZFb+c). However, six of the seven patients with terminal AZFb+c deletions showed CNVs: two patients showed a loss and four patients showed a gain of PAR1 genes, with the expected loss of VAMP-7 in PAR2. In these patients, the Yq breakpoints localized to the palindromes P8, P5 or P4. In the four cases with gain of PAR1, qPCR analysis showed duplicated signals for SRY and DDX3Y and one copy of IL9R, indicating isodicentric Yp chromosomes [idic(Y)] with breakpoint in Yq11.22. The two patients who had loss of PAR1, as shown by MLPA, had an additional reduction for SRY and DDX3Y, as shown by qPCR, associated with a high proportion of 45,X cells, as determined by FISH and karyotype. In agreement with the karyotype analysis, we detected DYZ3++ and DYZ3+ cells by FISH in the six patients, confirming idic(Y) and revealing additional monocentric Y chromosome [i(Y)]. Five patients had a history of major depressive disorders or bipolar disorder, and three had language impairment, whereas two patients showed severe short stature (Z score: -2.75 and -2.62), while a man with bipolar disorder was very tall (Z score: +2.56). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The number of males studied with Y-chromosome microdeletions and normozoospermic controls with normal karyotypes may not be enough to rule out an association between AZF deletions and PAR abnormalities. The prevalence of Y isochromosomes and/or 45,X cells detected in peripheral blood does not necessarily reflect the variations of PAR genes in target tissues. WIDER IMPLICATIONS OF THE FINDINGS This study shows that CNVs in PARs were present exclusively in patients with terminal AZFb+c deletions associated with the presence of Y isochromosomes and 45,X cells, and may lead to neuropsychiatric and growth disorders. In contrast, we show that men with interstitial Yq microdeletions with normal karyotypes do not have an increased risk of PAR abnormalities and of phenotypical consequences. Moreover, our results highlight the importance of performing molecular studies, which are not considered in the usual screening for patients with Yq microdeletions. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Fund for Scientific and Technological Development of Chile (FONDECYT), grant no. 1120176 (A.C.). The authors declare that no conflicting interests exist.
Collapse
Affiliation(s)
- A Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - F Rodríguez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - M Flórez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - P López
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - B Curotto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - D Martínez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - A Maturana
- Psychiatric Unit, Clínica Las Condes, Santiago 7591046, Chile
| | - M C Lardone
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - C Palma
- Department of Urology, José Joaquín Aguirre Clinical Hospital, School of Medicine, University of Chile, Santiago 8380453, Chile
- Department of Urology, Clínica Las Condes, Santiago 7591046, Chile
| | - V Mericq
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - M Ebensperger
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - F Cassorla
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| |
Collapse
|
24
|
He T, Zhang X, Deng H, Zhou W, Zhao X, Zhao H, Lu J, Zheng Y, Zhang C, Zhang L, Yin A. A novel Y chromosome microdeletion potentially associated with defective spermatogenesis identified by custom array comparative genome hybridization. Reprod Biomed Online 2017; 34:75-81. [DOI: 10.1016/j.rbmo.2016.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
|
25
|
AbuFaza M, Abdelazim IA, Osman HS, Alsharif DA. Evaluation of infertile men: Mini-review. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Krausz C, Escamilla AR, Chianese C. Genetics of male infertility: from research to clinic. Reproduction 2016; 150:R159-74. [PMID: 26447148 DOI: 10.1530/rep-15-0261] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Male infertility is a multifactorial complex disease with highly heterogeneous phenotypic representation and in at least 15% of cases, this condition is related to known genetic disorders, including both chromosomal and single-gene alterations. In about 40% of primary testicular failure, the etiology remains unknown and a portion of them is likely to be caused by not yet identified genetic anomalies. During the last 10 years, the search for 'hidden' genetic factors was largely unsuccessful in identifying recurrent genetic factors with potential clinical application. The armamentarium of diagnostic tests has been implemented only by the screening for Y chromosome-linked gr/gr deletion in those populations for which consistent data with risk estimate are available. On the other hand, it is clearly demonstrated by both single nucleotide polymorphisms and comparative genomic hybridization arrays, that there is a rare variant burden (especially relevant concerning deletions) in men with impaired spermatogenesis. In the era of next generation sequencing (NGS), we expect to expand our diagnostic skills, since mutations in several hundred genes can potentially lead to infertility and each of them is likely responsible for only a small fraction of cases. In this regard, system biology, which allows revealing possible gene interactions and common biological pathways, will provide an informative tool for NGS data interpretation. Although these novel approaches will certainly help in discovering 'hidden' genetic factors, a more comprehensive picture of the etiopathogenesis of idiopathic male infertility will only be achieved by a parallel investigation of the complex world of gene environmental interaction and epigenetics.
Collapse
Affiliation(s)
- Csilla Krausz
- Department of Experimental and Clinical Biomedical SciencesCentre of Excellence DeNothe, University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy and Andrology ServiceFundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Catalonia, Spain Department of Experimental and Clinical Biomedical SciencesCentre of Excellence DeNothe, University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy and Andrology ServiceFundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Antoni Riera Escamilla
- Department of Experimental and Clinical Biomedical SciencesCentre of Excellence DeNothe, University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy and Andrology ServiceFundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Chiara Chianese
- Department of Experimental and Clinical Biomedical SciencesCentre of Excellence DeNothe, University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy and Andrology ServiceFundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Catalonia, Spain Department of Experimental and Clinical Biomedical SciencesCentre of Excellence DeNothe, University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy and Andrology ServiceFundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Catalonia, Spain
| |
Collapse
|
27
|
Lodh M, Mukhopadhyay R. Hypogonadotropic Hypogonadism and Gynaecomastia in the Young Adult: A Case Series. Indian J Clin Biochem 2016; 31:121-4. [PMID: 26855499 DOI: 10.1007/s12291-015-0489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/27/2015] [Indexed: 11/25/2022]
Abstract
We present three cases who presented to our Endocrinology OPD a few days apart with the common complaints of no or minimal development of secondary sexual characteristics. Although they had similar problems, investigations revealed a spectrum of different clinical, biochemical and genetic abnormalities. All the patients had otherwise normal anterior pituitary hormone secretion and sellar anatomy. One had a short Y chromosome, one was a Klinefelter syndrome and the other had no chromosomal abnormality. These findings along with absence of any detectable abnormality on pituitary imaging helped us diagnose these cases as Idiopathic hypogonadotropic hypogonadism. Treatment with testosterone showed marked improvement at 1 year follow up.
Collapse
Affiliation(s)
| | - Rajarshi Mukhopadhyay
- Department of Endocrinology, The Mission Hospital, Imon Kalyan Sarani, Sec 2C, Bidhannagar, Durgapur, 713212 West Bengal India
| |
Collapse
|
28
|
Global patterns of large copy number variations in the human genome reveal complexity in chromosome organization. Genet Res (Camb) 2015; 97:e18. [PMID: 26390810 DOI: 10.1017/s0016672315000191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Global patterns of copy number variations (CNVs) in chromosomes are required to understand the dynamics of genome organization and complexity. For this study, analysis was performed using the Affymetrix Genome-Wide Human SNP Array 6.0 chip and CytoScan High-Density arrays. We identified a total of 44 109 CNVs from 1715 genomes with a mean of 25 CNVs in an individual, which established the first drafts of population-specific CNV maps providing a rationale for prioritizing chromosomal regions. About 19 905 ancient CNVs were identified across all chromosomes and populations at varying frequencies. CNV count, and sometimes CNV size, contributed to the bulk CNV size of the chromosome. Population specific lengthening and shortening of chromosomal length was observed. Sex bias for CNV presence was largely dependent on ethnicity. Lower CNV inheritance rate was observed for India, compared to YRI and CEU. A total of 33 candidate CNV hotspots from 5382 copy number (CN) variable region (CNVR) clusters were identified. Population specific CNV distribution patterns in p and q arms disturbed the assumption that CNV counts in the p arm are less common compared to long arms, and the CNV occurrence and distribution in chromosomes is length independent. This study unraveled the force of independent evolutionary dynamics on genome organization and complexity across chromosomes and populations.
Collapse
|
29
|
Johansson MM, Van Geystelen A, Larmuseau MHD, Djurovic S, Andreassen OA, Agartz I, Jazin E. Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups. PLoS One 2015; 10:e0137223. [PMID: 26322892 PMCID: PMC4554990 DOI: 10.1371/journal.pone.0137223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The human Y chromosome is almost always excluded from genome-wide investigations of copy number variants (CNVs) due to its highly repetitive structure. This chromosome should not be forgotten, not only for its well-known relevance in male fertility, but also for its involvement in clinical phenotypes such as cancers, heart failure and sex specific effects on brain and behaviour. RESULTS We analysed Y chromosome data from Affymetrix 6.0 SNP arrays and found that the signal intensities for most of 8179 SNP/CN probes in the male specific region (MSY) discriminated between a male, background signals in a female and an isodicentric male containing a large deletion of the q-arm and a duplication of the p-arm of the Y chromosome. Therefore, this SNP/CN platform is suitable for identification of gain and loss of Y chromosome sequences. In a set of 1718 males, we found 25 different CNV patterns, many of which are novel. We confirmed some of these variants by PCR or qPCR. The total frequency of individuals with CNVs was 14.7%, including 9.5% with duplications, 4.5% with deletions and 0.7% exhibiting both. Hence, a novel observation is that the frequency of duplications was more than twice the frequency of deletions. Another striking result was that 10 of the 25 detected variants were significantly overrepresented in one or more haplogroups, demonstrating the importance to control for haplogroups in genome-wide investigations to avoid stratification. NO-M214(xM175) individuals presented the highest percentage (95%) of CNVs. If they were not counted, 12.4% of the rest included CNVs, and the difference between duplications (8.9%) and deletions (2.8%) was even larger. CONCLUSIONS Our results demonstrate that currently available genome-wide SNP platforms can be used to identify duplications and deletions in the human Y chromosome. Future association studies of the full spectrum of Y chromosome variants will demonstrate the potential involvement of gain or loss of Y chromosome sequence in different human phenotypes.
Collapse
Affiliation(s)
- Martin M. Johansson
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
- * E-mail: (MMJ); (EJ)
| | - Anneleen Van Geystelen
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Maarten H. D. Larmuseau
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
- * E-mail: (MMJ); (EJ)
| |
Collapse
|
30
|
Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril 2015; 103:e18-25. [PMID: 25597249 DOI: 10.1016/j.fertnstert.2014.12.103] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023]
Abstract
The purpose of this ASRM Practice Committee report is to provide clinicians with principles and strategies for the evaluation of couples with male infertility problems. This revised document replaces the document of the same name, last published in 2012 (Fertil Steril 2012;98:294-301).
Collapse
|
31
|
Jorgez CJ, Wilken N, Addai JB, Newberg J, Vangapandu HV, Pastuszak AW, Mukherjee S, Rosenfeld JA, Lipshultz LI, Lamb DJ. Genomic and genetic variation in E2F transcription factor-1 in men with nonobstructive azoospermia. Fertil Steril 2015; 103:44-52.e1. [PMID: 25439843 PMCID: PMC4282601 DOI: 10.1016/j.fertnstert.2014.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To identify gene dosage changes associated with nonobstructive azoospermia (NOA) using array comparative genomic hybridization (aCGH). DESIGN Prospective study. SETTING Medical school. PATIENT(S) One hundred ten men with NOA and 78 fertile controls. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The study has four distinct analytic components: aCGH, a molecular karyotype that detects copy number variations (CNVs); Taqman CNV assays to validate CNVs; mutation identification by Sanger sequencing; and histological analyses of testicular tissues. RESULT(S) A microduplication at 20q11.22 encompassing E2F transcription factor-1 (E2F1) was identified in one of eight men with NOA analyzed using aCGH. CNVs were confirmed and in an additional 102 men with NOA screened using Taqman CNV assays, for a total of 110 NOA men analyzed for CNVs in E2F1. Eight of 110 (7.3%) NOA men had microduplications or microdeletions of E2F1 that were absent in fertile controls. CONCLUSION(S) E2F1 microduplications or microdeletions are present in men with NOA (7.3%). Duplications or deletions of E2F1 occur very rarely in the general population (0.011%), but E2F1 gene dosage changes, previously reported only in cancers, are present in a subset of NOA men. These results recapitulate the infertility phenotype seen in mice lacking or overexpressing E2f1.
Collapse
Affiliation(s)
- Carolina J. Jorgez
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
| | - Nathan Wilken
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
| | - Josephine B. Addai
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
| | - Justin Newberg
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Hima V. Vangapandu
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
| | - Alexander W. Pastuszak
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
| | | | - Jill A. Rosenfeld
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, WA, 99207
| | - Larry I. Lipshultz
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
| | - Dolores J. Lamb
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
32
|
Pseudoautosomal region 1 length polymorphism in the human population. PLoS Genet 2014; 10:e1004578. [PMID: 25375121 PMCID: PMC4222609 DOI: 10.1371/journal.pgen.1004578] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022] Open
Abstract
The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into theMa Y chromosome generates an extended PAR. The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution. The human sex chromosomes differ in sequence, except for homologous sequences at both ends, termed the pseudoautosomal regions (PAR1 and PAR2). PAR enables the pairing of chromosomes Y and X during meiosis. The PARs are located at the termini of respectively the short and long arms of chromosomes X and Y. The observation of gradual shortening of the Y chromosome over evolutionary time has led to speculations that the Y chromosome is “doomed to extinction.” However, the Y chromosome has been shaped over evolution not only by the loss of genes, but also by addition of genes as a result of interchromosomal exchanges. In this work, we identified males with a duplication on chromosome Xp22.33 of about 136 kb as an incidental finding during a copy number variation screen. We demonstrate that the duplicon is an insertional translocation due to non-allelic homologous recombination from the X to the Y chromosome that is flanked by a long terminal repeat (LTR6B). We show this translocation event has occurred independently multiple times and that the duplicated region recombines with the X chromosome. Therefore, the duplicated region represents an extension of the pseudoautosomal region, representing a novel mechanism shaping sex chromosomal evolution in humans.
Collapse
|
33
|
Jorgez CJ, Rosenfeld JA, Wilken NR, Vangapandu HV, Sahin A, Pham D, Carvalho CMB, Bandholz A, Miller A, Weaver DD, Burton B, Babu D, Bamforth JS, Wilks T, Flynn DP, Roeder E, Patel A, Cheung SW, Lupski JR, Lamb DJ. Genitourinary defects associated with genomic deletions in 2p15 encompassing OTX1. PLoS One 2014; 9:e107028. [PMID: 25203062 PMCID: PMC4159299 DOI: 10.1371/journal.pone.0107028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/06/2014] [Indexed: 02/08/2023] Open
Abstract
Normal development of the genitourinary (GU) tract is a complex process that frequently goes awry. In male children the most frequent congenital GU anomalies are cryptorchidism (1-4%), hypospadias (1%) and micropenis (0.35%). Bladder exstrophy and epispadias complex (BEEC) (1∶47000) occurs less frequently but significantly impacts patients' lives. Array comparative genomic hybridization (aCGH) identified seven individuals with overlapping deletions in the 2p15 region (66.0 kb-5.6 Mb). Six of these patients have GU defects, while the remaining patient has no GU defect. These deletions encompass the transcription factor OTX1. Subjects 2-7 had large de novo CNVs (2.39-6.31 Mb) and exhibited features similar to those associated with the 2p15p16.1 and 2p15p14 microdeletion syndromes, including developmental delay, short stature, and variable GU defects. Subject-1 with BEEC had the smallest deletion (66 kb), which deleted only one copy of OTX1. Otx1-null mice have seizures, prepubescent transient growth retardation and gonadal defects. Two subjects have short stature, two have seizures, and six have GU defects, mainly affecting the external genitalia. The presence of GU defects in six patients in our cohort and eight of thirteen patients reported with deletions within 2p14p16.1 (two with deletion of OTX1) suggest that genes in 2p15 are important for GU development. Genitalia defects in these patients could result from the effect of OTX1 on pituitary hormone secretion or on the regulation of SHH signaling, which is crucial for development of the bladder and genitalia.
Collapse
Affiliation(s)
- Carolina J. Jorgez
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (CJJ); (DJL)
| | - Jill A. Rosenfeld
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Nathan R. Wilken
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hima V. Vangapandu
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aysegul Sahin
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dung Pham
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Claudia M. B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anne Bandholz
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Amanda Miller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - David D. Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Barbara Burton
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States of America
| | - Deepti Babu
- University of Alberta, Edmonton, Alberta, Canada
| | | | - Timothy Wilks
- Madigan Army Medical Center, Department of Pediatrics, Tacoma, Washington, United States of America
| | - Daniel P. Flynn
- Department of Children's Endocrinology, St. Luke's Children's Specialty Center, Boise, Idaho, United States of America
| | - Elizabeth Roeder
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sau W. Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dolores J. Lamb
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (CJJ); (DJL)
| |
Collapse
|
34
|
Chianese C, Gunning AC, Giachini C, Daguin F, Balercia G, Ars E, Giacco DL, Ruiz-Castañé E, Forti G, Krausz C. X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance. PLoS One 2014; 9:e97746. [PMID: 24914684 PMCID: PMC4051606 DOI: 10.1371/journal.pone.0097746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/24/2014] [Indexed: 12/13/2022] Open
Abstract
Introduction Spermatogenesis is a highly complex process involving several thousand genes, only a minority of which have been studied in infertile men. In a previous study, we identified a number of Copy Number Variants (CNVs) by high-resolution array-Comparative Genomic Hybridization (a-CGH) analysis of the X chromosome, including 16 patient-specific X chromosome-linked gains. Of these, five gains (DUP1A, DUP5, DUP20, DUP26 and DUP40) were selected for further analysis to evaluate their clinical significance. Materials and Methods The copy number state of the five selected loci was analyzed by quantitative-PCR on a total of 276 idiopathic infertile patients and 327 controls in a conventional case-control setting (199 subjects belonged to the previous a-CGH study). For one interesting locus (intersecting DUP1A) additional 338 subjects were analyzed. Results and Discussion All gains were confirmed as patient-specific and the difference in duplication load between patients and controls is significant (p = 1.65×10−4). Two of the CNVs are private variants, whereas 3 are found recurrently in patients and none of the controls. These CNVs include, or are in close proximity to, genes with testis-specific expression. DUP1A, mapping to the PAR1, is found at the highest frequency (1.4%) that was significantly different from controls (0%) (p = 0.047 after Bonferroni correction). Two mechanisms are proposed by which DUP1A may cause spermatogenic failure: i) by affecting the correct regulation of a gene with potential role in spermatogenesis; ii) by disturbing recombination between PAR1 regions during meiosis. This study allowed the identification of novel spermatogenesis candidate genes linked to the 5 CNVs and the discovery of the first recurrent, X-linked gain with potential clinical relevance.
Collapse
Affiliation(s)
- Chiara Chianese
- Department of Experimental and Clinical Biomedical Sciences, University of Florence and Centre of Excellence DeNothe, Florence, Italy
- Molecular Biology Laboratory, Fundació Puigvert, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Adam C. Gunning
- Department of Experimental and Clinical Biomedical Sciences, University of Florence and Centre of Excellence DeNothe, Florence, Italy
| | - Claudia Giachini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence and Centre of Excellence DeNothe, Florence, Italy
| | - Fabrice Daguin
- Department of Experimental and Clinical Biomedical Sciences, University of Florence and Centre of Excellence DeNothe, Florence, Italy
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Deborah Lo Giacco
- Molecular Biology Laboratory, Fundació Puigvert, Universitat Autonoma de Barcelona, Barcelona, Spain
- Andrology Service, Fundació Puigvert, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Eduard Ruiz-Castañé
- Andrology Service, Fundació Puigvert, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Gianni Forti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence and Centre of Excellence DeNothe, Florence, Italy
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, University of Florence and Centre of Excellence DeNothe, Florence, Italy
- Andrology Service, Fundació Puigvert, Universitat Autonoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Genetic disorders can be identified in about 15% of cases of male infertility. With the widespread application of assisted reproductive technology, infertile patients are now given the possibility of having their biological children; however, a genetic risk exists for assisted reproductive technology-born offspring, implying the necessity for future parents to be appropriately informed about potential consequences. In this review, we provide current recommendations on clinical genetic testing and genetic counselling. RECENT FINDINGS New insights are presented concerning Klinefelter syndrome, X and Y chromosome-linked deletions, monogenic diseases and pharmacogenetics. SUMMARY As for Klinefelter patients, novel preventive measures to preserve fertility have been proposed although they are not yet applicable in the routine setting. Y-chromosome deletions have both diagnostic and prognostic values and their testing is advised to be performed according to the new European Academy of Andrology/European Molecular Genetics Quality Network guidelines. Among monogenic diseases, major advances have been obtained in the identification of novel genes of hypogonadotrophic hypogonadism. Pharmacogenetic approaches of hormonal treatment in infertile men with normal values of follicle-stimulating hormone (FSH) are promising and based on FSHR and FSHB polymorphisms. X chromosome-linked deletions are relevant for impaired spermatogenesis. In about 40% of male infertility, the cause is unknown and novel genetic factors are expected to be discovered in the near future.
Collapse
Affiliation(s)
- Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini, Florence, Italy
| | | |
Collapse
|
36
|
Krausz C, Chianese C, Lo Giacco D, Tüttelmann F, Ferlin A, Ntostis P, Vinci S, Balercia G, Ars E, Ruiz-Castañé E, Giglio S, Kliesch S, Forti G. Reply: Y-chromosome microdeletions are not associated with SHOX haploinsufficiency. Hum Reprod 2014; 29:1114-5. [PMID: 24634250 DOI: 10.1093/humrep/deu037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- C Krausz
- Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jorgez CJ, Weedin JW, Sahin A, Tannour-Louet M, Han S, Bournat JC, Mielnik A, Cheung SW, Nangia A, Schlegel PN, Lipshultz LI, Lamb DJ. Y-chromosome microdeletions are not associated with SHOX haploinsufficiency. Hum Reprod 2014; 29:1113-4. [PMID: 24634249 DOI: 10.1093/humrep/deu038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
38
|
Kanto S, Yamasaki K, Iwamoto T. Progressing management of non-obstructive azoospermia in the era of microdissection testicular sperm extraction. Reprod Med Biol 2014; 13:119-125. [PMID: 29699155 DOI: 10.1007/s12522-014-0178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022] Open
Abstract
Previously, it was absolutely impossible for azoospermic men to reproduce except in some obstructive azoospermic cases for whom reconstruction of the seminal pathway was successful. However, nowadays, intracytoplasmic sperm injection and microdissection testicular sperm extraction have brought about chances of biological paternity in some non-obstructive azoospermic men. It is almost 15 years since the first trials of testicular sperm retrieval using surgical microscopy for non-obstructive azoospermia were reported. In this manuscript, the progress and outcomes of these novel techniques since then are reviewed, the controversial points are discussed and the latest research to achieve pregnancies in tough non-obstructive azoospermic couples are introduced. Not only the bright side of the renovations, but the underlying concerns are also discussed.
Collapse
Affiliation(s)
- Satoru Kanto
- Department of Urology International University of Health and Welfare Shioya Hospital 77 Tomita 329-2145 Yaita Tochigi Japan
| | - Kazumitsu Yamasaki
- Department of Urology International University of Health and Welfare Hospital 537-3 Iguchi Nasushiobara Japan
| | - Teruaki Iwamoto
- International University of Health and Welfare Hospital, Reproduction Center 537-3 Iguchi Nasushiobara Japan
| |
Collapse
|
39
|
Krausz C, Hoefsloot L, Simoni M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology 2014; 2:5-19. [PMID: 24357628 PMCID: PMC4065365 DOI: 10.1111/j.2047-2927.2013.00173.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/06/2023]
Abstract
The molecular diagnosis of Y-chromosomal microdeletions is a common routine genetic test which is part of the diagnostic workup of azoospermic and severe oligozoospermic men. Since 1999, the European Academy of Andrology (EAA) and the European Molecular Genetics Quality Network (EMQN) have been actively involved in supporting the improvement of the quality of the diagnostic assays by publication of the laboratory guidelines for molecular diagnosis of Y-chromosomal microdeletions and by offering external quality assessment trials. The present revision of the 2004 laboratory guidelines summarizes all the clinical novelties related to the Y chromosome (classic, partial and gene-specific deletions, genotype-phenotype correlations, methodological issues) and provides an update on the results of the quality control programme. These aspects also reflect the consensus of a large group of specialists present at a round table session during the recent Florence-Utah-Symposium on 'Genetics of male infertility' (Florence, 19-21 September, 2013). During the last 10 years the gr/gr deletion has been demonstrated as a significant risk factor for impaired sperm production. However, the screening for this deletion type in the routine diagnostic setting is still a debated issue among experts. The original basic protocol based on two multiplex polymerase chain reactions remains fully valid and appropriate for accurate diagnosis of complete AZF deletions and it requires only a minor modification in populations with a specific Y chromosome background. However, in light of novel data on genotype-phenotype correlations, the extension analysis for the AZFa and AZFb deletions is now routinely recommended. Novel methods and kits with excessively high number of markers do not improve the sensitivity of the test, may even complicate the interpretation of the results and are not recommended. Annual participation in an external quality control programme is strongly encouraged. The 12-year experience with the EMQN/EAA scheme has shown a steep decline in diagnostic (genotyping) error rate and a simultaneous improvement on reporting practice.
Collapse
Affiliation(s)
- C Krausz
- Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | | | | |
Collapse
|
40
|
Zorrilla M, Yatsenko AN. The Genetics of Infertility: Current Status of the Field. CURRENT GENETIC MEDICINE REPORTS 2013; 1:10.1007/s40142-013-0027-1. [PMID: 24416713 PMCID: PMC3885174 DOI: 10.1007/s40142-013-0027-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infertility is a relatively common health condition, affecting nearly 7% of all couples. Clinically, it is a highly heterogeneous pathology with a complex etiology that includes environmental and genetic factors. It has been estimated that nearly 50% of infertility cases are due to genetic defects. Hundreds of studies with animal knockout models convincingly showed infertility to be caused by gene defects, single or multiple. However, despite enormous efforts, progress in translating basic research findings into clinical studies has been challenging. The genetic causes remain unexplained for the vast majority of male or female infertility patients. A particular difficulty is the huge number of candidate genes to be studied; there are more than 2,300 genes expressed in the testis alone, and hundreds of those genes influence reproductive function in humans and could contribute to male infertility. At present, there are only a handful of genes or genetic defects that have been shown to cause, or to be strongly associated with, primary infertility. Yet, with completion of the human genome and progress in personalized medicine, the situation is rapidly changing. Indeed, there are 10-15 new gene tests, on average, being added to the clinical genetic testing list annually.
Collapse
Affiliation(s)
- Michelle Zorrilla
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Pathology, School of Medicine, University of Pittsburgh
| | - Alexander N Yatsenko
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Pathology, School of Medicine, University of Pittsburgh
| |
Collapse
|
41
|
Chianese C, Lo Giacco D, Tüttelmann F, Ferlin A, Ntostis P, Vinci S, Balercia G, Ars E, Ruiz-Castañé E, Giglio S, Forti G, Kliesch S, Krausz C. Y-chromosome microdeletions are not associated with SHOX haploinsufficiency. Hum Reprod 2013; 28:3155-60. [DOI: 10.1093/humrep/det322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Lopes AM, Aston KI, Thompson E, Carvalho F, Gonçalves J, Huang N, Matthiesen R, Noordam MJ, Quintela I, Ramu A, Seabra C, Wilfert AB, Dai J, Downie JM, Fernandes S, Guo X, Sha J, Amorim A, Barros A, Carracedo A, Hu Z, Hurles ME, Moskovtsev S, Ober C, Paduch DA, Schiffman JD, Schlegel PN, Sousa M, Carrell DT, Conrad DF. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet 2013; 9:e1003349. [PMID: 23555275 PMCID: PMC3605256 DOI: 10.1371/journal.pgen.1003349] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 01/17/2013] [Indexed: 01/17/2023] Open
Abstract
Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man's risk of disease by 10% (OR 1.10 [1.04–1.16], p<2×10−3), rare X-linked CNVs by 29%, (OR 1.29 [1.11–1.50], p<1×10−3), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], p<0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2×10−5). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes. Infertility is a disease that prevents the transmission of DNA from one generation to the next, and consequently it has been difficult to study the genetics of infertility using classical human genetics methods. Now, new technologies for screening entire genomes for rare and patient-specific mutations are revolutionizing our understanding of reproductively lethal diseases. Here, we apply techniques for variation discovery to study a condition called azoospermia, the failure to produce sperm. Large deletions of the Y chromosome are the primary known genetic risk factor for azoospermia, and genetic testing for these deletions is part of the standard treatment for this condition. We have screened over 300 men with azoospermia for rare deletions and duplications, and find an enrichment of these mutations throughout the genome compared to unaffected men. Our results indicate that sperm production is affected by mutations beyond the Y chromosome and will motivate whole-genome analyses of larger numbers of men with impaired spermatogenesis. Our finding of an enrichment of rare deleterious mutations in men with poor sperm production also raises the possibility that the slightly increased rate of birth defects reported in children conceived by in vitro fertilization may have a genetic basis.
Collapse
Affiliation(s)
- Alexandra M. Lopes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- * E-mail: (AML); (DFC)
| | - Kenneth I. Aston
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Emma Thompson
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Filipa Carvalho
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Gonçalves
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Ni Huang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rune Matthiesen
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Michiel J. Noordam
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Inés Quintela
- Genomics Medicine Group, National Genotyping Center, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Avinash Ramu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Catarina Seabra
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Amy B. Wilfert
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jonathan M. Downie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Susana Fernandes
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - António Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Alberto Barros
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Alberto Barros, Porto, Portugal
| | - Angel Carracedo
- Genomics Medicine Group, National Genotyping Center, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine and University of Santiago de Compostela, CIBERER, Santiago de Compostela, Spain
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Matthew E. Hurles
- Genome Mutation and Genetic Disease Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Sergey Moskovtsev
- CReATe Fertility Center, University of Toronto, Toronto, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois, United States of America
| | - Darius A. Paduch
- Department of Urology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York, United States of America
| | - Joshua D. Schiffman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Center for Children's Cancer Research (C3R), Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Division of Pediatric Hematology/Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Peter N. Schlegel
- Department of Urology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York, United States of America
| | - Mário Sousa
- Laboratory of Cell Biology, UMIB, ICBAS, University of Porto, Porto, Portugal
| | - Douglas T. Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Donald F. Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (AML); (DFC)
| |
Collapse
|
43
|
Krausz C, Giachini C, Lo Giacco D, Daguin F, Chianese C, Ars E, Ruiz-Castane E, Forti G, Rossi E. High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS One 2012; 7:e44887. [PMID: 23056185 PMCID: PMC3467283 DOI: 10.1371/journal.pone.0044887] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/15/2012] [Indexed: 11/18/2022] Open
Abstract
CONTEXT The role of CNVs in male infertility is poorly defined, and only those linked to the Y chromosome have been the object of extensive research. Although it has been predicted that the X chromosome is also enriched in spermatogenesis genes, no clinically relevant gene mutations have been identified so far. OBJECTIVES In order to advance our understanding of the role of X-linked genetic factors in male infertility, we applied high resolution X chromosome specific array-CGH in 199 men with different sperm count followed by the analysis of selected, patient-specific deletions in large groups of cases and normozoospermic controls. RESULTS We identified 73 CNVs, among which 55 are novel, providing the largest collection of X-linked CNVs in relation to spermatogenesis. We found 12 patient-specific deletions with potential clinical implication. Cancer Testis Antigen gene family members were the most frequently affected genes, and represent new genetic targets in relationship with altered spermatogenesis. One of the most relevant findings of our study is the significantly higher global burden of deletions in patients compared to controls due to an excessive rate of deletions/person (0.57 versus 0.21, respectively; p = 8.785×10(-6)) and to a higher mean sequence loss/person (11.79 Kb and 8.13 Kb, respectively; p = 3.435×10(-4)). CONCLUSIONS By the analysis of the X chromosome at the highest resolution available to date, in a large group of subjects with known sperm count we observed a deletion burden in relation to spermatogenic impairment and the lack of highly recurrent deletions on the X chromosome. We identified a number of potentially important patient-specific CNVs and candidate spermatogenesis genes, which represent novel targets for future investigations.
Collapse
Affiliation(s)
- Csilla Krausz
- Unit of Sexual Medicine and Andrology, Molecular Genetic Laboratory, Department of Clinical Physiopathology, University of Florence, Florence, Italy. c.krausz@ dfc.unifi.it
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril 2012; 98:294-301. [PMID: 22698639 DOI: 10.1016/j.fertnstert.2012.05.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
The purpose of this ASRM Practice Committee report is to provide clinicians with principles and strategies for the evaluation of couples with male infertility problems. This revised document replaces, "Report on optimal evaluation of the infertile male," most recently published in Fertil Steril 2006.
Collapse
|
45
|
Mancini TI, Oliveira MM, Dutra ARN, Perez ABA, Minillo RM, Takeno SS, Melaragno MI. Interstitial 4q Deletion and Isodicentric Y-Chromosome in a Patient with Dysmorphic Features. Mol Syndromol 2012; 3:39-43. [PMID: 22855654 DOI: 10.1159/000338468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2012] [Indexed: 12/12/2022] Open
Abstract
We present a 2-year-old boy with a de novo 46,XY,idic(Y)(q11.221),del(4)(q26q31.1) karyotype. G-banding, FISH, MLPA, and SNP-array techniques were used to characterize the 24-Mb deletion in 4q and the breakpoint in the isodicentric Y-chromosome region between 15,982,252 and 15,989,842 bp. The patient presented with mild facial dysmorphism, hemangioma, mild frontal cerebral atrophy, and Dandy-Walker variant. Essentially, this case reveals that patients can present more complex genomic imbalances than initially suspected.
Collapse
Affiliation(s)
- T I Mancini
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
When presented with an azoospermic patient, a thorough history and careful, considered physical examination often leads to a definite or presumptive diagnosis. An algorithmic, logical thought process is important to have in mind when embarking on the evaluation. Adjunctive laboratory tests, such as hormonal assays or genetic studies, are often complementary and/or additive and allow a very precise determination to be made as to the etiologies, either genetic or acquired. It is only with this information that a therapeutic plan can be made for the patient. As will be discussed, a targeted approach to testing is far more satisfying and cost-effective than a blind, shotgun approach.
Collapse
Affiliation(s)
- Robert Oates
- Boston University School of Medicine, MA 02118, USA.
| |
Collapse
|
47
|
Aston KI, Carrell DT. Emerging evidence for the role of genomic instability in male factor infertility. Syst Biol Reprod Med 2011; 58:71-80. [PMID: 22142145 DOI: 10.3109/19396368.2011.635751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Male infertility is a common and complex pathology affecting about 7% of men of reproductive age. Given its complexity, the underlying etiology for male infertility is often unknown. A growing amount of evidence suggests genomic instability may be an important factor in some cases of male factor infertility. While some specific manifestations of genomic instability, such as increased sperm aneuploidy rates and increased somatic translocations and inversions in infertile men, are well established, other facets of genomic instability associated with male infertility have not been thoroughly investigated. A limited body of recent work has identified a potential association between microsatellite instability and spermatogenic failure. In addition, mutations in mismatch repair and tumor suppressor genes, which could potentially lead to genomic instability, have been identified in some infertile men and animal models. In addition, results of two epidemiologic studies suggest spermatogenic defects might be just one aspect of a more systemic problem, possibly due to increased genomic instability. In this review we discuss well-established links between genomic instability and male infertility, as well as some of the emerging but less established data to support this relationship. We also propose some important areas of future research toward a more complete understanding of the underlying mechanisms for male infertility.
Collapse
Affiliation(s)
- Kenneth I Aston
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | | |
Collapse
|