1
|
Whiley PAF, Luu MCM, O’Donnell L, Handelsman DJ, Loveland KL. Testis exposure to unopposed/elevated activin A in utero affects somatic and germ cells and alters steroid levels mimicking phthalate exposure. Front Endocrinol (Lausanne) 2023; 14:1234712. [PMID: 37727456 PMCID: PMC10505732 DOI: 10.3389/fendo.2023.1234712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Correct fetal testis development underpins adult male fertility, and TGFβ superfamily ligands control key aspects of this process. Transcripts encoding one such ligand, activin A, are upregulated in testes after sex determination and remain high until after birth. Testis development requires activin signalling; mice lacking activin A (Inhba KO) display altered somatic and germ cell proliferation, disrupted cord elongation and altered steroid synthesis. In human pregnancies with pre-eclampsia, the foetus is inappropriately exposed to elevated activin A. To learn how this affects testis development, we examined mice lacking the potent activin inhibitor, inhibin, (Inha KO) at E13.5, E15.5 and PND0. At E13.5, testes appeared similar in WT and KO littermates, however E15.5 Inha KO testes displayed two germline phenotypes: (1) multinucleated germ cells within cords, and (2) germ cells outside of cords, both of which are documented following in utero exposure to endocrine disrupting phthalates in rodents. Quantitation of Sertoli and germ cells in Inha KO (modelling elevated activin A) and Inhba KO (low activin A) testes using immunofluorescence demonstrated activin A bioactivity determines the Sertoli/germ cell ratio. The 50% reduction in gonocytes in Inha KO testes at birth indicates unopposed activin A has a profound impact on embryonic germ cells. Whole testis RNAseq on Inha KO mice revealed most transcripts affected at E13.5 were present in Leydig cells and associated with steroid biosynthesis/metabolism. In agreement, androstenedione (A4), testosterone (T), and the A4:T ratio were reduced in Inha KO testes at E17.5, confirming unopposed activin A disrupts testicular steroid production. E15.5 testes cultured with either activin A and/or mono-2-ethylhexyl phthalate (MEHP) generated common histological and transcriptional outcomes affecting germline and Leydig cells, recapitulating the phenotype observed in Inha KO testes. Cultures with activin A and MEHP together provided evidence of common targets. Lastly, this study extends previous work focussed on the Inhba KO model to produce a signature of activin A bioactivity in the fetal testis. These outcomes show the potential for elevated activin A signalling to replicate some aspects of fetal phthalate exposure prior to the masculinization programming window, influencing fetal testis growth and increasing the risk of testicular dysgenesis.
Collapse
Affiliation(s)
- Penny A. F. Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Michael C. M. Luu
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Liza O’Donnell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Nguyen LM, Aronoff DM, Eastman AJ. Matrix metalloproteinases in preterm prelabor rupture of membranes in the setting of chorioamnionitis: A scoping review. Am J Reprod Immunol 2023; 89:e13642. [PMID: 36300889 DOI: 10.1111/aji.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Fetal or gestational membranes extend from the placenta to enclose the fetus and amniotic fluid. While the membranes spontaneously rupture at term in normal pregnancies, they can rupture prematurely before the onset of labor, termed preterm prelabor rupture of membranes (PPROM). PPROM can be triggered by bacterial infection or sterile inflammation in the membranes, known as chorioamnionitis (CAM). The membranes derive their tensile strength from a collagen-rich extracellular matrix (ECM); as such, understanding the enzymes and processes that can degrade the membrane ECM are of paramount importance. Matrix metalloproteinases (MMPs) are a class of enzymes capable of degrading collagen and other components of the ECM, and can be induced by inflammation. We used a scoping review to address the question of how MMP activity is associated with PPROM, particularly their induction due to sterile or nonsterile CAM. We have found that the most studied MMPs in PPROM were MMPs 2, 8, and 9. Additionally, some MMPs are constitutively active, while others are induced by inflammation. Mechanistic studies of the pathways that induce MMP activation are sparse, and this area is ripe for future studies. Targeting MMP activation could be a future strategy to delay or prevent PPROM.
Collapse
Affiliation(s)
- Lynsa M Nguyen
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alison J Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Tsogtgerel M, Murase H, Moriyama H, Sato F, Nambo Y. Plasma activin A concentrations during late gestation in Thoroughbred mares with abnormal pregnancies. J Equine Vet Sci 2023; 120:104184. [PMID: 36470514 DOI: 10.1016/j.jevs.2022.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
Late-term fetal loss in horses is a major problem in the horse-breeding industry globally. Abnormal pregnancies should be diagnosed as early as possible to prevent abortions and other gestational problems. According to our previous longitudinal study in healthy pregnant mares, the plasma activin A concentration increases as pregnancy progresses. The aim of the present study was to compare plasma activin A concentrations in healthy pregnant Thoroughbred mares (n=40) with those in pregnant mares that suffered fetal loss or showed abnormal symptoms (n=30) during late gestation. This field study found that plasma activin A concentrations were higher in the abnormal group (pregnancy loss, red bag delivery, premature udder development, and vaginal discharge) than the normal group (P < 0.001; cutoff value: ≥ 138.2 pg/mL; sensitivity, 74.4%; specificity, 77.5%). More specifically, plasma activin A concentrations in the "symptom" and "abnormal delivery" subgroups were higher than those in gestational-age-matched normal groups (P < 0.001). Nevertheless, the plasma activin A concentration in the "normal delivery" subgroup was not different from that in the "abnormal delivery" subgroup in samples collected within 10 days before delivery. In conclusion, this study is the first to demonstrate a significantly earlier increase in plasma activin A concentration in abnormal pregnancies of Thoroughbred mares during late gestation.
Collapse
Affiliation(s)
- Munkhtuul Tsogtgerel
- Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan; School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, 17024, Mongolia
| | - Harutaka Murase
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido, 057-0171, Japan
| | | | - Fumio Sato
- Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan
| | - Yasuo Nambo
- Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan.
| |
Collapse
|
4
|
Li J, Qi Y, Yang K, Zhu L, Cui X, Liu Z. Follistatin Is a Novel Chemoattractant for Migration and Invasion of Placental Trophoblasts of Mice. Cells 2022; 11:cells11233816. [PMID: 36497076 PMCID: PMC9741044 DOI: 10.3390/cells11233816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Follistatin (FST) as a gonadal protein is central to the establishment and maintenance of pregnancy. Trophoblasts' migration and invasion into the endometrium are critical events in placental development. This study aimed to elucidate the role of FST in the migration and invasion of placental trophoblasts of mice. We found that FST increased the vitality and proliferation of primary cultured trophoblasts of embryonic day 8.5 (E8.5) mice and promoted wound healing of trophoblasts. Moreover, FST significantly induced migration of trophoblasts in a microfluidic device and increased the number of invasive trophoblasts by Matrigel-coated transwell invasion assay. Being treated with FST, the adhesion of trophoblasts was inhibited, but intracellular calcium flux of trophoblasts was increased. Western blotting results showed that FST had no significant effects on the level of p-Smad3 or the ratio of p-Smad3/Smad3 in trophoblasts. Interestingly, FST elevated the level of p-JNK; the ratio of p-JNK/JNK; and expression of migration-related proteins N-cadherin, vimentin, ezrin and MMP2 in trophoblasts. Additionally, the migration of trophoblasts and expression of N-cadherin, vimentin, and MMP2 in trophoblasts induced by FST were attenuated by JNK inhibitor AS601245. These findings suggest that the elevated FST in pregnancy may act as a chemokine to induce trophoblast migration and invasion through the enhanced JNK signaling to maintain trophoblast function and promote placental development.
Collapse
Affiliation(s)
- Jing Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
| | - Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Linjing Zhu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xueling Cui
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
- Correspondence: ; Tel.: +86-431-8561-9476
| |
Collapse
|
5
|
Šket T, Ramuta TŽ, Starčič Erjavec M, Kreft ME. The Role of Innate Immune System in the Human Amniotic Membrane and Human Amniotic Fluid in Protection Against Intra-Amniotic Infections and Inflammation. Front Immunol 2021; 12:735324. [PMID: 34745106 PMCID: PMC8566738 DOI: 10.3389/fimmu.2021.735324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Intra-amniotic infection and inflammation (IAI) affect fetal development and are highly associated with preterm labor and premature rupture of membranes, which often lead to adverse neonatal outcomes. Human amniotic membrane (hAM), the inner part of the amnio-chorionic membrane, protects the embryo/fetus from environmental dangers, including microbial infection. However, weakened amnio-chorionic membrane may be breached or pathogens may enter through a different route, leading to IAI. The hAM and human amniotic fluid (hAF) respond by activation of all components of the innate immune system. This includes changes in 1) hAM structure, 2) presence of immune cells, 3) pattern recognition receptors, 4) cytokines, 5) antimicrobial peptides, 6) lipid derivatives, and 7) complement system. Herein we provide a comprehensive and integrative review of the current understanding of the innate immune response in the hAM and hAF, which will aid in design of novel studies that may lead to breakthroughs in how we perceive the IAI.
Collapse
Affiliation(s)
- Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Brunner G, Roux M, Böhm V, Meiners T. Cellular and molecular changes that predispose skin in chronic spinal cord injury to pressure ulcer formation. Int Wound J 2021; 18:728-737. [PMID: 33723924 PMCID: PMC8450792 DOI: 10.1111/iwj.13575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/04/2022] Open
Abstract
Patients with spinal cord injury have a predisposition to develop pressure ulcers. Specific characteristics of the patients' skin potentially involved have not yet been identified. The purpose of this investigation was to determine whether loss of neuronal control affects cellular and molecular homeostasis in the skin. Intact afflicted skin, wound edge of pressure ulcers, and control skin were analysed. Platelets, transforming growth factor‐β1, and activin A were identified by immunohistochemistry. Transforming growth factor‐β‐like activity was determined by bioassay, and gene expression by DNA microarray analysis or RT‐PCR. In afflicted skin, enhanced platelet extravasation was detected. Transforming growth factor‐β1 and activin A accumulated in the dermal‐epidermal junction zone. Transforming growth factor‐β‐like activity and activin A expression were increased in intact afflicted skin (compared to control skin) and were further enhanced in pressure ulcers. In vitro, activity was generated by fibroblast‐epithelial cell interactions, which also induced activin A. Thus, loss of neuronal control in spinal cord injury appears to trigger inappropriate wound healing processes in the patients' skin. Plasma leakage and increased transforming growth factor‐β‐like activity combined with shear forces potentially enhance the risk for pressure ulcer formation.
Collapse
Affiliation(s)
- Georg Brunner
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany.,Department of Cancer Research, Skin Cancer Center Hornheide, Münster, Germany
| | - Meike Roux
- Department of Cancer Research, Skin Cancer Center Hornheide, Münster, Germany
| | - Volker Böhm
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany
| | - Thomas Meiners
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany
| |
Collapse
|
7
|
Wu Q, Yang Z, Huang Y, Wang L, Weng R, Yang J. Effect of Activin A on activation status of monocytes in acute-phase Kawasaki disease. Clin Exp Med 2021; 21:407-414. [PMID: 33630201 DOI: 10.1007/s10238-021-00695-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Kawasaki disease is a kind of self-limited systemic vasculitis involving middle and small arteries, which usually occurs in children under 5 years old. Excessive inflammatory response caused by activation of monocytes is one of the important mechanisms of Kawasaki disease. Activated monocytes secrete large amounts of inflammatory mediators such as TNF-α and IL-1β. Activin A, a member of transforming growth factor-β superfamily, is a multifunctional growth and transforming factor. Several experimental evidences pinpoint that Activin A can regulate multiple biological function of the immune system. However, whether Activin A is involved in regulation of activation of monocytes in Kawasaki disease was not well characterized. Here, this study showed that the expression of Activin A in serum decreased in acute-phase Kawasaki disease. Furthermore, Activin A inhibits activin type IIA receptor, activin type IB receptor, CD86 and CD80 expression in over-activated monocytes. In addition, Activin A inhibited Smad3 expression and NF-κB signaling pathways. Specific function and mechanism of Activin A in acute-phase Kawasaki disease need further study.
Collapse
Affiliation(s)
- Qian Wu
- Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genome, Peking University, Shenzhen, 518055, China.,Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Zhi Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yanyan Huang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Linlin Wang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Ruohang Weng
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China.
| |
Collapse
|
8
|
Wu Q, Weng R, Xu Y, Wang L, Huang Y, Yang J. Activin a suppresses peripheral CD8 + T lymphocyte activity in acute-phase Kawasaki disease. BMC Immunol 2021; 22:17. [PMID: 33622252 PMCID: PMC7903692 DOI: 10.1186/s12865-021-00407-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/15/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Kawasaki disease is an autoimmune disease characterized by systemic vasculitis of unknown aetiology and most commonly occurs in children under 5 years old. Previous studies have found that the over-activation of lymphocytes is an important mechanism of Kawasaki disease. Activin A, also known as immunosuppressive factor P, is a multifunctional growth and transforming factor. However, whether activin A is involved in the regulation of peripheral lymphocytes activity in Kawasaki disease is unclear. Thus, we aimed to investigate the effect of activin A on the activity of peripheral lymphocytes in acute-phase Kawasaki disease. METHODS Seven patients with Kawasaki disease and seven healthy controls were studied. Peripheral blood lymphocytes were isolated by Ficoll density gradient centrifugation. The activation of CD4+ and CD8+ T cells and CD19+ B cells was investigated by flow cytometry. The expression of activin type IIA receptors was investigated by flow cytometry. RESULTS Immune imbalance in CD4 and CD8 lymphocytes were detected in acute-phase Kawasaki disease. The expression of activin type IIA receptors on CD8+ T cells and CD19+ B cells was increased in acute-phase Kawasaki disease and decreased following treatment with activin A. Activin A suppressed the expression of CD25 and CD69 on CD8+ T cells and the expression of CD69 on CD19+ B cells. CONCLUSIONS The expression of activin type IIA receptor was increased on CD8+ T cells and CD19+ B cells in Kawasaki disease. Activin A suppressed the expression of CD25, CD69 and activin type IIA receptors on peripheral CD8+ T lymphocyte. Activin A plays different roles in different lymphocyte subsets and suppresses peripheral CD8+ T lymphocyte activity in acute-phase Kawasaki disease.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genome, Peking University, Shenzhen Graduate School, School of Chemical Biology & Biotechnology, Shenzhen, 518055, China.,Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Ruohang Weng
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yongbin Xu
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Linlin Wang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yanyan Huang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China.
| |
Collapse
|
9
|
Qi Y, Jiang L, Wu C, Li J, Wang H, Wang S, Chen X, Cui X, Liu Z. Activin A impairs ActRIIA + neutrophil recruitment into infected skin of mice. iScience 2021; 24:102080. [PMID: 33604525 PMCID: PMC7873648 DOI: 10.1016/j.isci.2021.102080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/10/2020] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Activin A levels are elevated during multiple severe infections and associated with an increased risk of death. However, the role of activin A in bacterial infection is still unclear. Here, we found that activin A levels were increased during S. aureus skin infection in mice. Administration of activin A increased the bacterial burden and promoted the spread of bacteria in vivo. Moreover, activin A inhibited neutrophil chemotaxis to N-formylmethionine-leucyl-phenylalanine via the type IIA activin receptor (ActRIIA) in vitro and impaired ActRIIA+ neutrophil recruitment to infection foci in vivo. Additionally, we identified a novel subpopulation of neutrophils, ActRIIA+ neutrophils, which exhibit superior phagocytic capacity compared to ActRIIA− neutrophils and possess an N2-like immunoregulatory activity via secreting IL-10 and TGF-β. Taken together, these findings indicate that activin A inhibits the recruitment of ActRIIA+ neutrophils to infected foci, leading to the impairment of bacterial clearance, and thus may hamper early infection control. A novel activin A-responsitive subpopulation of neutrophils (ActRIIA+) was identified ActRIIA+ neutrophils exhibit N2-like immunoregulatory properties Activin A inhibits ActRIIA+ neutrophil recruitment to infected skin
Collapse
Affiliation(s)
- Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Lingling Jiang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Oral Comprehensive Therapy, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chengdong Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jing Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Heyuan Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shiji Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xintong Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
10
|
Blois SM, Verlohren S, Wu G, Clark G, Dell A, Haslam SM, Barrientos G. Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB). Semin Immunopathol 2020; 42:469-486. [PMID: 32601855 PMCID: PMC7508936 DOI: 10.1007/s00281-020-00801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Growing evidence suggests that galectins, an evolutionarily conserved family of glycan-binding proteins, fulfill key roles in pregnancy including blastocyst implantation, maternal-fetal immune tolerance, placental development, and maternal vascular expansion, thereby establishing a healthy environment for the growing fetus. In this review, we comprehensively present the function of galectins in shaping cellular circuits that characterize a healthy pregnancy. We describe the current understanding of galectins in term and preterm labor and discuss how the galectin-glycan circuits contribute to key immunological pathways sustaining maternal tolerance and preventing microbial infections. A deeper understanding of the glycoimmune pathways regulating early events in preterm birth could offer the broader translational potential for the treatment of this devastating syndrome.
Collapse
Affiliation(s)
- Sandra M Blois
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, AG GlycoImmunology, Berlin, Germany. .,Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stefan Verlohren
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, UK
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Appiah Adu-Gyamfi E, Tanam Djankpa F, Nelson W, Czika A, Kumar Sah S, Lamptey J, Ding YB, Wang YX. Activin and inhibin signaling: From regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine 2020; 133:155105. [PMID: 32438278 DOI: 10.1016/j.cyto.2020.155105] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Activins and inhibins - comprising activin A, B, AB, C and E, and inhibin A and B isoforms - belong to the transforming growth factor beta (TGFβ) superfamily. They regulate several biological processes, including cellular proliferation, differentiation and invasiveness, to enhance the formation and functioning of many human tissues and organs. In this review, we have discussed the role of activin and inhibin signaling in the physiological and female-specific pathological events that occur in the female reproductive system. The up-to-date evidence indicates that these cytokines regulate germ cell development, follicular development, ovulation, uterine receptivity, decidualization and placentation through the activation of several signaling pathways; and that their dysregulated expression is involved in the pathogenesis and pathophysiology of the numerous diseases, including pregnancy complications, that disturb reproduction. Hence, some of the isoforms have been suggested as potential biomarkers and therapeutic targets for the management of some of these diseases. Tackling the research directions highlighted in this review will enhance a detailed comprehension and the clinical utility of these cytokines.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - William Nelson
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania.
| | - Armin Czika
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Sanjay Kumar Sah
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Kumasi Centre for Collaborative Research in Tropical Medicine, KCCR, Ghana.
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
12
|
Mdlalose S, Moodley J, Naicker T. The role of follistatin and granulocyte-colony stimulating factor in HIV-associated pre-eclampsia. Pregnancy Hypertens 2019; 19:81-86. [PMID: 31926380 DOI: 10.1016/j.preghy.2019.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
KwaZulu-Natal has a high burden of HIV infection and high blood pressure, specifically pre-eclampsia (PE) in pregnancy. Follistatin (FS) and granulocyte-colony stimulating factor (G-CSF) are two glycoproteins involved in PE pathogenesis. In light of the high maternal mortality and morbidity in South Africa (SA), we investigated the expression of FS and G-CSF in the duality of HIV-associated PE. Serum samples of normotensive and pre-eclamptic women were analysed using the Bio-Plex Multiplex Immunoassay. FS expression was significantly reduced in pre-eclamptic (median = 372.0, IQR = 719.2) compared to normotensive (median = 1569.0, IQR = 2043.0) (p < 0.0001). Furthermore, we detected significant FS expression across all study groups. There was a significant difference between HIV -ve normotensive (median = 9.0, IQR = 7.0) vs HIV +ve normotensive (median = 12.0, IQR = 5.0) groups. Additionally, G-CSF expression was notably higher in HIV +ve normotensive when compared to all study groups. This study demonstrated a downregulation of FS and G-CSF expression in PE, compared to normotensive pregnancies. This finding may be attributed to oxidative stress and its immunoregulatory role in the hyperinflammatory milieu of PE. HIV status had no effect on both analytes, albeit upregulated due to immune reconstitution emanating from highly active antiretroviral therapy. Our novel findings suggest that FS and G-CSF may have a potential predictor test value in early pregnancy, hence work on this is ongoing.
Collapse
Affiliation(s)
- Siphesihle Mdlalose
- Optics and Imaging Centre, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| |
Collapse
|
13
|
Activin-A in the regulation of immunity in health and disease. J Autoimmun 2019; 104:102314. [PMID: 31416681 DOI: 10.1016/j.jaut.2019.102314] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/08/2023]
Abstract
The TGF-β superfamily of cytokines plays pivotal roles in the regulation of immune responses protecting against or contributing to diseases, such as, allergy, autoimmunity and cancer. Activin-A, a member of the TGF-β superfamily, was initially identified as an inducer of follicle-stimulating hormone secretion. Extensive research over the past decades illuminated fundamental roles for activin-A in essential biologic processes, including embryonic development, stem cell maintenance and differentiation, haematopoiesis, cell proliferation and tissue fibrosis. Activin-A signals through two type I and two type II receptors which, upon ligand binding, activate their kinase activity, phosphorylate the SMAD2 and 3 intracellular signaling mediators that form a complex with SMAD4, translocate to the nucleus and activate or silence gene expression. Most immune cell types, including macrophages, dendritic cells (DCs), T and B lymphocytes and natural killer cells have the capacity to produce and respond to activin-A, although not in a similar manner. In innate immune cells, including macrophages, DCs and neutrophils, activin-A exerts a broad range of pro- or anti-inflammatory functions depending on the cell maturation and activation status and the spatiotemporal context. Activin-A also controls the differentiation and effector functions of Th cell subsets, including Th9 cells, TFH cells, Tr1 Treg cells and Foxp3+ Treg cells. Moreover, activin-A affects B cell responses, enhancing mucosal IgA secretion and inhibiting pathogenic autoantibody production. Interestingly, an array of preclinical and clinical studies has highlighted crucial functions of activin-A in the initiation, propagation and resolution of human diseases, including autoimmune diseases, such as, systemic lupus erythematosus, rheumatoid arthritis and pulmonary alveolar proteinosis, in allergic disorders, including allergic asthma and atopic dermatitis, in cancer and in microbial infections. Here, we provide an overview of the biology of activin-A and its signaling pathways, summarize recent studies pertinent to the role of activin-A in the modulation of inflammation and immunity, and discuss the potential of targeting activin-A as a novel therapeutic approach for the control of inflammatory diseases.
Collapse
|
14
|
Xie D, Liu Z, Wu J, Feng W, Yang K, Deng J, Tian G, Santos S, Cui X, Lin F. The effects of activin A on the migration of human breast cancer cells and neutrophils and their migratory interaction. Exp Cell Res 2017; 357:107-115. [DOI: 10.1016/j.yexcr.2017.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 05/03/2017] [Indexed: 01/23/2023]
|