1
|
Heymsfield SB, Clément K, Dubern B, Goldstone AP, Haqq AM, Kühnen P, Richards J, Roth CL, Akker ELTVD, Wabitsch M, Yanovski JA. Defining Hyperphagia for Improved Diagnosis and Management of MC4R Pathway-Associated Disease: A Roundtable Summary. Curr Obes Rep 2025; 14:13. [PMID: 39856371 PMCID: PMC11762201 DOI: 10.1007/s13679-024-00601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
PURPOSE OF REVIEW Hyperphagia is a condition associated with rare obesity-related diseases, presenting as a pathologic, insatiable hunger accompanied by abnormal food-seeking behaviors. In October 2023, a group of researchers and clinicians with expert knowledge on hyperphagia convened at the annual ObesityWeek meeting to discuss the need for a unified definition of hyperphagia and key items necessary to improve the identification, assessment, and treatment of hyperphagia in patients with melanocortin 4 receptor (MC4R) pathway-associated diseases. RECENT FINDINGS The definition of hyperphagia proposed by this group is a pathologic, insatiable hunger accompanied by abnormal food-seeking behaviors. Suggested methods to accurately identify patients with hyperphagia include increased physician and parent/caregiver education and standardized efficient screening procedures for use in the clinic. The etiology of hyperphagia as related to abnormal MC4R signaling was also reviewed and proposed as a central cause of the condition across several underlying diseases. Given this potential unified underlying pathology, the expert group recommends that patients with hyperphagia undergo genetic testing and that treatment include comprehensive weight-management strategies incorporating lifestyle and pharmacotherapies targeted at addressing hyperphagia.
Collapse
Affiliation(s)
- Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
- Pennington Biomedical Research Center, Louisianna State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA.
| | - Karine Clément
- Nutrition Department, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, Inserm, Nutrition and Obesities, Systemic Approaches, NutriOmique Research Group, Paris, France
| | - Beatrice Dubern
- Sorbonne Université, Inserm, Nutrition and Obesities, Systemic Approaches, NutriOmique Research Group, Paris, France
- Sorbonne Université, Trousseau Hôpital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust Hammersmith Hospital, London, UK
| | - Andrea M Haqq
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Alberta, Edmonton, AB, Canada
| | - Peter Kühnen
- Department of Pediatric Endocrinology and Diabetology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site, Berlin, Germany
| | - Jesse Richards
- Department of Internal Medicine, University of Oklahoma at Tulsa, Tulsa, OK, USA
| | - Christian L Roth
- Seattle Children's Research Institute, Seattle, WA, USA
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site, Ulm, Germany
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Zhao S, Semeia L, Veit R, Luo S, Angelo BC, Chow T, Birkenfeld AL, Preissl H, Xiang AH, Page KA, Kullmann S. Exposure to gestational diabetes mellitus in utero impacts hippocampal functional connectivity in response to food cues in children. Int J Obes (Lond) 2024; 48:1728-1734. [PMID: 39198584 PMCID: PMC11584393 DOI: 10.1038/s41366-024-01608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES Intrauterine exposure to gestational diabetes mellitus (GDM) increases the risk of obesity in the offspring, but little is known about the underlying neural mechanisms. The hippocampus is crucial for food intake regulation and is vulnerable to the effects of obesity. The purpose of the study was to investigate whether GDM exposure affects hippocampal functional connectivity during exposure to food cues using functional magnetic resonance imaging (fMRI). METHODS Participants were 90 children age 7-11 years (53 females) who underwent an fMRI-based visual food cue task in the fasted state. Hippocampal functional connectivity (FC) was examined using generalized psychophysiological interaction in response to food versus non-food cues. Hippocampal FC was compared between children with and without GDM exposure, while controlling for possible confounding effects of age, sex and waist-to-hip ratio. In addition, the influence of childhood and maternal obesity were investigated using multiple regression models. RESULTS While viewing high caloric food cues compared to non-food cure, children with GDM exposure exhibited higher hippocampal FC to the insula and striatum (i.e., putamen, pallidum and nucleus accumbens) compared to unexposed children. With increasing BMI, children with GDM exposure had lower hippocampal FC to the somatosensory cortex (i.e., postcentral gyrus). CONCLUSIONS Intrauterine exposure to GDM was associated with higher food-cue induced hippocampal FC especially to reward processing regions. Future studies with longitudinal measurements are needed to clarify whether altered hippocampal FC may raise the risk of the development of metabolic diseases later in life.
Collapse
Affiliation(s)
- Sixiu Zhao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Lorenzo Semeia
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Shan Luo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan C Angelo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ting Chow
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Kathleen A Page
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Kullmann S, Zhao S, Semeia L, Veit R, Luo S, Angelo B, Chow T, Birkenfeld A, Preissl H, Xiang A, Page K. Exposure to gestational diabetes mellitus in utero impacts hippocampal functional connectivity in response to food cues in children. RESEARCH SQUARE 2024:rs.3.rs-3953330. [PMID: 38559106 PMCID: PMC10980092 DOI: 10.21203/rs.3.rs-3953330/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Objectives Intrauterine exposure to gestational diabetes mellitus (GDM) increases the risk of obesity in the offspring, but little is known about the underlying neural mechanisms. The hippocampus is crucial for food intake regulation and is vulnerable to the effects of obesity. The purpose of the study was to investigate whether GDM exposure affects hippocampal functional connectivity during exposure to food cues using functional magnetic resonance imaging. Methods Participants were 90 children age 7-11 years (53 females) who underwent an fMRI-based visual food cue task in the fasted state. Hippocampal functional connectivity (FC) was examined using generalized psychophysiological interaction in response to high-calorie food versus non-food cues. Food-cue induced hippocampal FC was compared between children with and without GDM exposure, while controlling for possible confounding effects of age, sex and waist-to-hip ratio. Results Children with GDM exposure exhibited stronger hippocampal FC to the insula and striatum (i.e., putamen, pallidum and nucleus accumbens) compared to unexposed children, while viewing high caloric food cues. Conclusions Intrauterine exposure to GDM was associated with higher food-cue induced hippocampal FC to reward processing regions. Future studies with longitudinal measurements are needed to clarify whether increased hippocampal FC to reward processing regions may raise the risk of the development of metabolic diseases later in life.
Collapse
Affiliation(s)
| | | | | | | | | | - Brendan Angelo
- Keck School of Medicine, University of Southern California
| | - Ting Chow
- Kaiser Permanente Southern California
| | | | | | | | | |
Collapse
|
4
|
Szmygin H, Szmygin M, Cheda M, Kłobuszewski B, Drelich-Zbroja A, Matyjaszek-Matuszek B. Current Insights into the Potential Role of fMRI in Discovering the Mechanisms Underlying Obesity. J Clin Med 2023; 12:4379. [PMID: 37445414 DOI: 10.3390/jcm12134379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity is becoming one of the major global health concerns. This chronic disease affects around 650 million people worldwide and is an underlying cause of a number of significant comorbidities. According to the World Health Organization (WHO) report on obesity from 2022, this disorder became the fourth leading cause of deaths in Europe. Thus, understanding the mechanisms underlying obesity is of essential importance to successfully prevent and treat this disease. The aim of this study was to review the current insights into the potential role of fMRI in discovering the mechanisms underlying obesity on the basis of recent scientific literature published up to December 2022 and searches of the PubMed, Google Scholar and Web of Science databases. The literature assessed indicated that a growing body of evidence suggests that obesity leads to changes in both structure and connectivity within the central nervous system. Emerging data from recent functional magnetic resonance imaging (fMRI) studies prove that obese individuals present an increased motivational drive to eat as well as impaired processing in reward- and control-related brain regions. Apart from this, it is clear that fMRI might be a useful tool in detection of obesity-induced changes within the central nervous system.
Collapse
Affiliation(s)
- Hanna Szmygin
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, 20-093 Lublin, Poland
| | - Maciej Szmygin
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Mateusz Cheda
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartosz Kłobuszewski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Drelich-Zbroja
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Beata Matyjaszek-Matuszek
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Bhargava R, Luur S, Rodriguez Flores M, Emini M, Prechtl CG, Goldstone AP. Postprandial Increases in Liver-Gut Hormone LEAP2 Correlate with Attenuated Eating Behavior in Adults Without Obesity. J Endocr Soc 2023; 7:bvad061. [PMID: 37287649 PMCID: PMC10243873 DOI: 10.1210/jendso/bvad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/09/2023] Open
Abstract
Background The novel liver-gut hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a centrally acting inverse agonist, and competitive antagonist of orexigenic acyl ghrelin (AG), at the GH secretagogue receptor, reducing food intake in rodents. In humans, the effects of LEAP2 on eating behavior and mechanisms behind the postprandial increase in LEAP2 are unclear, though this is reciprocal to the postprandial decrease in plasma AG. Methods Plasma LEAP2 was measured in a secondary analysis of a previous study. Twenty-two adults without obesity attended after an overnight fast, consuming a 730-kcal meal without or with subcutaneous AG administration. Postprandial changes in plasma LEAP2 were correlated with postprandial changes in appetite, high-energy (HE) or low-energy (LE) food cue reactivity using functional magnetic resonance imaging, ad libitum food intake, and plasma/serum AG, glucose, insulin, and triglycerides. Results Postprandial plasma LEAP2 increased by 24.5% to 52.2% at 70 to 150 minutes, but was unchanged by exogenous AG administration. Postprandial increases in LEAP2 correlated positively with postprandial decreases in appetite, and cue reactivity to HE/LE and HE food in anteroposterior cingulate cortex, paracingulate cortex, frontal pole, and middle frontal gyrus, with similar trend for food intake. Postprandial increases in LEAP2 correlated negatively with body mass index, but did not correlate positively with increases in glucose, insulin, or triglycerides, nor decreases in AG. Conclusions These correlational findings are consistent with a role for postprandial increases in plasma LEAP2 in suppressing human eating behavior in adults without obesity. Postprandial increases in plasma LEAP2 are unrelated to changes in plasma AG and the mediator(s) remain uncertain.
Collapse
Affiliation(s)
- Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sandra Luur
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Marcela Rodriguez Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Mimoza Emini
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Christina G Prechtl
- School of Public Health, Faculty of Medicine, Imperial College London, St. Mary's Hospital, London, W2 1PG, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
6
|
Yeum D, Jimenez CA, Emond JA, Meyer ML, Lansigan RK, Carlson DD, Ballarino GA, Gilbert-Diamond D, Masterson TD. Differential neural reward reactivity in response to food advertising medium in children. Front Neurosci 2023; 17:1052384. [PMID: 36816130 PMCID: PMC9933514 DOI: 10.3389/fnins.2023.1052384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Food cues including food advertisements (ads) activate brain regions related to motivation and reward. These responses are known to correlate with eating behaviors and future weight gain. The objective of this study was to compare brain responses to food ads by different types of ad mediums, dynamic (video) and static (images), to better understand how medium type impacts food cue response. Methods Children aged 9-12 years old were recruited to complete a functional magnetic resonance imaging (fMRI) paradigm that included both food and non-food dynamic and static ads. Anatomical and functional images were preprocessed using the fMRIPrep pipeline. A whole-brain analysis and a targeted region-of-interest (ROI) analysis for reward regions (nucleus accumbens, orbitofrontal cortex, amygdala, insula, hypothalamus, ventral tegmental area, substantia nigra) were conducted. Individual neural responses to dynamic and static conditions were compared using a paired t-test. Linear mixed-effects models were then constructed to test the differential response by ad condition after controlling for age, sex, BMI-z, physical activity, and % of kcal consumed of a participant's estimated energy expenditure in the pre-load prior to the MRI scan. Results A total of 115 children (mean=10.9 years) completed the fMRI paradigm. From the ROI analyses, the right and left hemispheres of the amygdala and insula, and the right hemisphere of the ventral tegmental area and substantia nigra showed significantly higher responses for the dynamic food ad medium after controlling for covariates and a false discovery rate correction. From the whole-brain analysis, 21 clusters showed significant differential responses between food ad medium including the precuneus, middle temporal gyrus, superior temporal gyrus, and inferior frontal gyrus, and all regions remained significant after controlling for covariates. Discussion Advertising medium has unique effects on neural response to food cues. Further research is needed to understand how this differential activation by ad medium ultimately affects eating behaviors and weight outcomes.
Collapse
Affiliation(s)
- Dabin Yeum
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Courtney A. Jimenez
- Department of Psychological and Brain Science at Dartmouth College, Hanover, NH, United States
| | - Jennifer A. Emond
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Meghan L. Meyer
- Department of Psychology, Columbia University, New York, NY, United States
| | - Reina K. Lansigan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Delaina D. Carlson
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Grace A. Ballarino
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Travis D. Masterson
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Roth CL, Melhorn SJ, De Leon MRB, Rowland MG, Elfers CT, Huang A, Saelens BE, Schur EA. Impaired Brain Satiety Responses After Weight Loss in Children With Obesity. J Clin Endocrinol Metab 2022; 107:2254-2266. [PMID: 35544121 PMCID: PMC9282278 DOI: 10.1210/clinem/dgac299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity interventions often result in increased motivation to eat. OBJECTIVE We investigated relationships between obesity outcomes and changes in brain activation by visual food cues and hormone levels in response to obesity intervention by family-based behavioral treatment (FBT). METHODS Neuroimaging and hormone assessments were conducted before and after 24-week FBT intervention in children with obesity (OB, n = 28), or children of healthy weight without intervention (HW, n = 17), all 9- to 11-year-old boys and girls. We evaluated meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions and gut hormones. RESULTS Among children with OB who underwent FBT, greater declines of BMI z-score were associated with lesser reductions after the FBT intervention in meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions (P < 0.05), and the slope of relationship was significantly different compared with children of HW. In children with OB, less reduction in brain responses to a meal from before to after FBT was associated with greater meal-induced reduction in ghrelin and increased meal-induced stimulation in peptide YY and glucagon-like peptide-1 (all P < 0.05). CONCLUSION In response to FBT, adaptations of central satiety responses and peripheral satiety-regulating hormones were noted. After weight loss, changes of peripheral hormone secretion support weight loss, but there was a weaker central satiety response. The findings suggest that even when peripheral satiety responses by gut hormones are intact, the central regulation of satiety is disturbed in children with OB who significantly improve their weight status during FBT, which could favor future weight regain.
Collapse
Affiliation(s)
- Christian L Roth
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Susan J Melhorn
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mary Rosalynn B De Leon
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maya G Rowland
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | - Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Brian E Saelens
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Schur
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Saelens BE, Melhorn SJ, Rowland MG, Scholz K, De Leon MRB, Elfers CT, Schur EA, Roth CL. General and Food-Specific Impulsivity and Inhibition Related to Weight Management. Child Obes 2022; 18:84-91. [PMID: 34357785 PMCID: PMC8892982 DOI: 10.1089/chi.2021.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Understanding child characteristics that relate to weight management treatment outcome could help identify opportunities for intervention innovation or tailoring. The limited evidence available is inconsistent regarding whether and which aspects of children's general or food-specific impulsivity and inhibition relate to treatment outcomes. Methods: Children with (n = 54) and without obesity (n = 22) were compared on various measures of impulsivity and inhibition. Children with obesity (n = 40) then completed family-based treatment for weight management. Analyses examined associations between baseline children's impulsivity and inhibition and child weight status change (BMI z-score) and between treatment-based changes in impulsivity and inhibition and weight status change, with and without adjustment by baseline functional magnetic resonance imaging-measured appetitive drive. Results: Children with obesity scored more poorly on some, but not all, measures of impulsivity and inhibition than children without obesity. Lower baseline general inhibition and greater parent-report of child impulsivity were associated (independently) with greater improvements in child weight status, with modest attenuation after appetite drive adjustment. Children improved task-based general inhibition during treatment. Improvements in general inhibition and snack food discounting were associated with better child weight outcomes, although adjusting for baseline values attenuated these associations. Conclusions: Children with obesity having greater initial impulsivity had better weight outcomes in treatment even after adjusting for initial appetitive drive. In contrast, improvements in task-based inhibition and food-related discounting during treatment were also related to better outcomes. Research is needed on innovative approaches to better address impulsivity and inhibition in children's weight management. Clinical Trial Registration number: NCT02484976.
Collapse
Affiliation(s)
- Brian E. Saelens
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA.,Address correspondence to: Brian E. Saelens, PhD, Seattle Children's Research Institute, 1920 Terry Avenue, Seattle, WA 98101, USA
| | - Susan J. Melhorn
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Kelley Scholz
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Mary Rosalynn B. De Leon
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ellen A. Schur
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christian L. Roth
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
9
|
Sewaybricker LE, Melhorn SJ, Rosenbaum JL, Askren MK, Tyagi V, Webb MF, De Leon MRB, Grabowski TJ, Schur EA. Reassessing relationships between appetite and adiposity in people at risk of obesity: A twin study using fMRI. Physiol Behav 2021; 239:113504. [PMID: 34147511 DOI: 10.1016/j.physbeh.2021.113504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neuroimaging studies suggest that appetitive drive is enhanced in obesity. OBJECTIVE To test if appetitive drive varies in direct proportion to the level of body adiposity after accounting for genetic factors that contribute to both brain response and obesity risk. SUBJECTS/METHODS Participants were adult monozygotic (n = 54) and dizygotic (n = 30) twins with at least one member of the pair with obesity. Body composition was assessed by dual-energy X-ray absorptiometry. Hormonal and appetite measures were obtained in response to a standardized meal that provided 20% of estimated daily caloric needs and to an ad libitum buffet meal. Pre- and post-meal functional magnetic resonance imaging (fMRI) assessed brain response to visual food cues in a set of a priori appetite-regulating regions. Exploratory voxelwise analyses outside a priori regions were performed with correction for multiple comparisons. RESULTS In a group of 84 adults, the majority with obesity (75%), body fat mass was not associated with hormonal responses to a meal (glucose, insulin, glucagon-like peptide-1 and ghrelin, all P>0.40), subjective feelings of hunger (β=-0.01 mm [95% CI -0.35, 0.34] P = 0.97) and fullness (β=0.15 mm [-0.15, 0.44] P = 0.33), or buffet meal intake in relation to estimated daily caloric needs (β=0.28% [-0.05, 0.60] P = 0.10). Body fat mass was also not associated with brain response to high-calorie food cues in appetite-regulating regions (Pre-meal β=-0.12 [-0.32, 0.09] P = 0.26; Post-meal β=0.18 [-0.02, 0.37] P = 0.09; Change by a meal β=0.29 [-0.02, 0.61] P = 0.07). Conversely, lower fat mass was associated with being weight reduced (β=-0.05% [-0.07, -0.03] P<0.001) and greater pre-meal activation to high-calorie food cues in the dorsolateral prefrontal cortex (Z = 3.63 P = 0.017). CONCLUSIONS In a large study of adult twins, the majority with overweight or obesity, the level of adiposity was not associated with excess appetitive drive as assessed by behavioral, hormonal, or fMRI measures.
Collapse
Affiliation(s)
- Leticia E Sewaybricker
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Jennifer L Rosenbaum
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary K Askren
- Departments of Radiology and Neurology, University of Washington, 1959 NE Pacific St. Seattle, WA, 98195 USA
| | - Vidhi Tyagi
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary F Webb
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary Rosalynn B De Leon
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Thomas J Grabowski
- Departments of Radiology and Neurology, University of Washington, 1959 NE Pacific St. Seattle, WA, 98195 USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA.
| |
Collapse
|
10
|
Loos RJF, Burant C, Schur EA. Strategies to Understand the Weight-Reduced State: Genetics and Brain Imaging. Obesity (Silver Spring) 2021; 29 Suppl 1:S39-S50. [PMID: 33759393 PMCID: PMC8500189 DOI: 10.1002/oby.23101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022]
Abstract
Most individuals with obesity or overweight have difficulty maintaining weight loss. The weight-reduced state induces changes in many physiological processes that appear to drive weight regain. Here, we review the use of cell biology, genetics, and imaging techniques that are being used to begin understanding why weight regain is the normal response to dieting. As with obesity itself, weight regain has both genetic and environmental drivers. Genetic drivers for "thinness" and "obesity" largely overlap, but there is evidence for specific genetic loci that are different for each of these weight states. There is only limited information regarding the genetics of weight regain. Currently, most genetic loci related to weight point to the central nervous system as the organ responsible for determining the weight set point. Neuroimaging tools have proved useful in studying the contribution of the central nervous system to the weight-reduced state in humans. Neuroimaging technologies fall into three broad categories: functional, connectivity, and structural neuroimaging. Connectivity and structural imaging techniques offer unique opportunities for testing mechanistic hypotheses about changes in brain function or tissue structure in the weight-reduced state.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles Burant
- Department of Internal Medicine, University of Washington, Seattle, Washington, USA
| | - Ellen A. Schur
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Sigala DM, Stanhope KL. An Exploration of the Role of Sugar-Sweetened Beverage in Promoting Obesity and Health Disparities. Curr Obes Rep 2021; 10:39-52. [PMID: 33411311 PMCID: PMC7788552 DOI: 10.1007/s13679-020-00421-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The mechanistic role of sugar-sweetened beverage (SSB) in the etiology of obesity is undetermined. We address whether, compared to other foods, does consumption of SSB (1) automatically lead to failure to compensate for the energy it contains? (2) fail to elicit homeostatic hormone responses? (3) promote hedonic eating through activation of the brain's reward pathways? We followed the evidence to address: (4) Would restriction of targeted marketing of SSB and other unhealthy foods to vulnerable populations decrease their prevalence of obesity? RECENT FINDINGS The data are lacking to demonstrate that SSB consumption promotes body weight gain compared with isocaloric consumption of other beverages or foods and that this is linked to its failure to elicit adequate homeostatic hormone responses. However, more recent data have linked body weight gain to reward activation in the brain to palatable food cues and suggest that sweet tastes and SSB consumption heightens the reward response to food cues. Studies investigating the specificity of these responses have not been conducted. Nevertheless, the current data provide a biological basis to the body of evidence demonstrating that the targeted marketing (real life palatable food cues) of SSB and other unhealthy foods to vulnerable populations, including children and people of color and low socioeconomic status, is increasing their risk for obesity. While the mechanisms for the association between SSB consumption and body weight gain cannot be identified, current scientific evidence strongly suggests that proactive environmental measures to reduce exposure to palatable food cues in the form of targeting marketing will decrease the risk of obesity in vulnerable populations.
Collapse
Affiliation(s)
- Desiree M. Sigala
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California (UC), Davis, 2211 VM3B, Davis, CA 95616 USA
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California (UC), Davis, 2211 VM3B, Davis, CA 95616 USA
- Basic Sciences, Touro University of California, Vallejo, CA USA
| |
Collapse
|
12
|
Kerem L, Holsen L, Fazeli P, Bredella MA, Mancuso C, Resulaj M, Holmes TM, Klibanski A, Lawson EA. Modulation of neural fMRI responses to visual food cues by overeating and fasting interventions: A preliminary study. Physiol Rep 2021; 8:e14639. [PMID: 33369272 PMCID: PMC7758977 DOI: 10.14814/phy2.14639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Neural processing of visual food stimuli is perturbated at extremes of weight. Human fMRI studies investigating diet effects on neural processing of food cues could aid in understanding altered brain activation in conditions of under- and overnutrition. In this preliminary study, we examined brain activity changes in response to 10 days of high-calorie-diet (HCD), followed by 10 days of fasting, hypothesizing that HCD would decrease activation in homeostatic and reward regions, while fasting would increase activation in homeostatic/reward regions and decrease activation of self-control regions. Seven adults completed fMRI scanning during a food-cue paradigm (high- and low-calorie food images and nonfood objects), pre- and post-10-day HCD. Six adults completed fMRI scanning pre- and post-10-day fasting. BOLD response changes for contrasts of interest pre- versus post-intervention in regions of interest were examined (peak-level significance set at p(FWE)<0.05). BMI increased by 6.8% and decreased by 8.1% following HCD and fasting, respectively. Following HCD, BOLD response in the hypothalamus (homeostatic control), was attenuated at trend level in response to high- versus low-calorie foods. Following fasting, BOLD response to food versus objects in inhibitory-control areas (dorsolateral prefrontal cortex) was reduced, whereas the activation of homeostatic (hypothalamus), gustatory, and reward brain areas (anterior insula and orbitofrontal cortex) increased. Overfeeding and fasting for 10 days modulate brain activity in response to food stimuli, suggesting that in healthy adults, changes in energy balance affect saliency and reward value of food cues. Future studies are required to understand this interaction in states of unhealthy weight.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
- Pediatric EndocrinologyMassachusetts General Hospital for ChildrenBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Laura Holsen
- Harvard Medical SchoolBostonMAUSA
- Division of Women’s HealthDepartment of MedicineBrigham and Women’s HospitalBostonMaUSA
- Department of PsychiatryBrigham and Women’s HospitalBostonMAUSA
| | - Pouneh Fazeli
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Miriam A. Bredella
- Harvard Medical SchoolBostonMAUSA
- Department of RadiologyMassachusetts General HospitalBostonMAUSA
| | - Christopher Mancuso
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
| | - Megi Resulaj
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
| | - Tara M. Holmes
- Translational and Clinical Research CenterMassachusetts General HospitalBostonMAUSA
| | - Anne Klibanski
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Elizabeth A. Lawson
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
13
|
Schur EA, Melhorn SJ, Scholz K, De Leon MRB, Elfers CT, Rowland MG, Saelens BE, Roth CL. Child neurobiology impacts success in family-based behavioral treatment for children with obesity. Int J Obes (Lond) 2020; 44:2011-2022. [PMID: 32713944 PMCID: PMC7530004 DOI: 10.1038/s41366-020-0644-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/08/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
Background and Objectives: Family-based behavioral treatment (FBT) is the recommended treatment for children with common obesity. However, there is a large variability in short- and long-term treatment response and mechanisms for unsuccessful treatment outcomes are not fully understood. In this study, we tested if brain response to visual food cues among children with obesity before treatment predicted weight or behavioral outcomes during a 6-mo. behavioral weight management program and/or long-term relative weight maintenance over a 1-year follow-up period. Subjects and Methods: Thirty-seven children with obesity (age 9–11y, 62% male) who entered active FBT (attended 2 or more sessions) and had outcome data. Brain activation was assessed at pre-treatment by functional magnetic resonance imaging across an a priori set of appetite-processing brain regions that included the ventral and dorsal striatum, medial orbitofrontal cortex, amygdala, substantia nigra/ventral tegmental area and insula in response to viewing food images before and after a standardized meal. Results: Children with more robust reductions in brain activation to high-calorie food cue images following a meal had greater declines in BMI z-score during FBT (r= 0.42; 95% CI: 0.09, 0.66; P=0.02) and greater improvements in Healthy Eating Index scores (r= −0.41; 95% CI: −0.67, −0.06; P=0.02). In whole-brain analyses, greater activation in the ventromedial prefrontal cortex, specifically by high-calorie food cues, was predictive of better treatment outcomes (whole-brain cluster corrected P=0.02). There were no significant predictors of relative weight maintenance and initial behavioral or hormonal measures did not predict FBT outcomes. Conclusions: Children’s brain responses to a meal prior to obesity treatment were related to treatment-based weight outcomes, suggesting that neurophysiologic factors and appetitive drive, more so than initial hormone status or behavioral characteristics, limit intervention success.
Collapse
Affiliation(s)
- Ellen A Schur
- Division of General Internal Medicine, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA.
| | - Susan J Melhorn
- Division of General Internal Medicine, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
| | - Kelley Scholz
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Mary Rosalynn B De Leon
- Division of General Internal Medicine, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
| | - Clinton T Elfers
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Maya G Rowland
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Brian E Saelens
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA.,Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Christian L Roth
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA.,Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| |
Collapse
|