1
|
Urrutia I, Martinez R, Calvo B, Marcelo I, Saso-Jimenez L, Martinez de Lapiscina I, Bilbao JR, Castano L, Rica I. Risk for progression to type 1 diabetes in first-degree relatives under 50 years of age. Front Endocrinol (Lausanne) 2024; 15:1411686. [PMID: 39188918 PMCID: PMC11345149 DOI: 10.3389/fendo.2024.1411686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The detection of pancreatic autoantibodies in first-degree relatives of patients with type 1 diabetes (T1D) is considered a risk factor for disease. Novel available immunotherapies to delay T1D progression highlight the importance of identifying individuals at risk who might benefit from emerging treatments. The objective was to assess the autoimmunity in first-degree relatives of patients with T1D, estimate the time from autoimmunity detection to the onset of clinical diabetes, and identify the associated risk factors. Methods Retrospective multicenter study of 3,015 first-degree relatives of patients with T1D recruited between 1992 and 2018. Pancreatic autoantibodies (IAA, GADA, IA2A, and ZnT8A) were determined by radioimmunoassay, starting the analyses at diagnosis of the proband. All those with positive autoimmunity and normal fasting blood glucose without clinical symptoms of diabetes were followed up in the study. The progression rate to T1D was assessed according to sex, relationship with the proband, age at autoimmunity detection, type/number of autoantibodies, and HLA-DRB1 genotype. Cox proportional-hazard models and Kaplan-Meier survival plots were used for statistical analyses. Results Among the relatives, 21 progenitors [43.7 years (IQR: 38.1-47.7)] and 27 siblings [7.6 years (IQR: 5.8-16.1)] had positive autoantibodies. Of these, 54.2% (95% CI: 39.2%-68.6%) developed T1D (age at autoimmunity detection 11 months to 39 years) in a median of 5 years (IQR: 3.6-8.7; ranged from 0.9 to 22.6 years). Risk factors associated with faster progression to T1D were multiple autoimmunity and <20 years at autoimmunity detection. Younger relatives (<20 years) with multiple autoantibodies had a 5-year cumulative risk of developing diabetes of 52.9% (95% CI: 22.1%-71.6%) and a 20-year risk of 91.2% (95% CI: 50.5%-98.4%). The 20-year risk decreased to 59.9% (95% CI: 21.9%-79.5%) if only one risk factor was met and to 35.7% (95% CI: 0.0%-66.2%) if the relative was older than 20 years with one autoantibody. Conclusions In first-degree relatives with autoimmunity, the time to progression to T1D is faster in children and adolescents with multiple autoantibodies. Young adults are also at risk, which supports their consideration in screening strategies for people at risk of developing T1D.
Collapse
Affiliation(s)
- Ines Urrutia
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Rosa Martinez
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Begona Calvo
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Department of Medical Oncology, Cruces University Hospital, Barakaldo, Spain
| | - Irene Marcelo
- Hospital de Mataró - Consorci Sanitari del Maresme, Barcelona, Spain
| | - Laura Saso-Jimenez
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Idoia Martinez de Lapiscina
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Jose Ramon Bilbao
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Luis Castano
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
| | - Itxaso Rica
- Biobizkaia Health Research Institute, Barakaldo, Spain
- UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Barakaldo, Spain
- Pediatric Endocrinology Unit, Cruces University Hospital, Barakaldo, Spain
| |
Collapse
|
2
|
Ghalwash M, Anand V, Ng K, Dunne JL, Lou O, Lundgren M, Hagopian WA, Rewers M, Ziegler AG, Veijola R. Data-Driven Phenotyping of Presymptomatic Type 1 Diabetes Using Longitudinal Autoantibody Profiles. Diabetes Care 2024; 47:1424-1431. [PMID: 38861550 PMCID: PMC11272969 DOI: 10.2337/dc24-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To characterize distinct islet autoantibody profiles preceding stage 3 type 1 diabetes. RESEARCH DESIGN AND METHODS The T1DI (Type 1 Diabetes Intelligence) study combined data from 1,845 genetically susceptible prospectively observed children who were positive for at least one islet autoantibody: insulin autoantibody (IAA), GAD antibody (GADA), or islet antigen 2 antibody (IA-2A). Using a novel similarity algorithm that considers an individual's temporal autoantibody profile, age at autoantibody appearance, and variation in the positivity of autoantibody types, we performed an unsupervised hierarchical clustering analysis. Progression rates to diabetes were analyzed via survival analysis. RESULTS We identified five main clusters of individuals with distinct autoantibody profiles characterized by seroconversion age and sequence of appearance of the three autoantibodies. The highest 5-year risk from first positive autoantibody to type 1 diabetes (69.9%; 95% CI 60.0-79.2) was observed in children who first developed IAA in early life (median age 1.6 years) followed by GADA (1.9 years) and then IA-2A (2.1 years). Their 10-year risk was 89.9% (95% CI 81.9-95.4). A high 5-year risk was also found in children with persistent IAA and GADA (39.1%) and children with persistent GADA and IA-2A (30.9%). A lower 5-year risk (10.5%) was observed in children with a late appearance of persistent GADA (6.1 years). The lowest 5-year diabetes risk (1.6%) was associated with positivity for a single, often reverting, autoantibody. CONCLUSIONS The novel clustering algorithm identified children with distinct islet autoantibody profiles and progression rates to diabetes. These results are useful for prediction, selection of individuals for prevention trials, and studies investigating various pathways to type 1 diabetes.
Collapse
Affiliation(s)
- Mohamed Ghalwash
- T.J. Watson Research Center, IBM, Yorktown Heights, NY
- Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Vibha Anand
- T.J. Watson Research Center, IBM, Cambridge, MA
| | - Kenney Ng
- T.J. Watson Research Center, IBM, Yorktown Heights, NY
| | | | | | - Markus Lundgren
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | | | - Marian Rewers
- Department of Pediatrics, Barbara Davis Center for Diabetes, Denver, CO
| | - Anette-G. Ziegler
- Institute of Diabetes Research, German Research Center for Environmental Health, Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - Riitta Veijola
- Research Unit of Clinical Medicine, Medical Research Center, Department of Pediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
3
|
Starskaia I, Valta M, Pietilä S, Suomi T, Pahkuri S, Kalim UU, Rasool O, Rydgren E, Hyöty H, Knip M, Veijola R, Ilonen J, Toppari J, Lempainen J, Elo LL, Lahesmaa R. Distinct cellular immune responses in children en route to type 1 diabetes with different first-appearing autoantibodies. Nat Commun 2024; 15:3810. [PMID: 38714671 PMCID: PMC11076468 DOI: 10.1038/s41467-024-47918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/12/2024] [Indexed: 05/10/2024] Open
Abstract
Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.
Collapse
Grants
- 1-SRA-2016-342-M-R, 1-SRA-2019-732-M-B, 3-SRA-2020-955-S-B JDRF
- BMH4-CT98-3314 European Commission (EC)
- Academy of Finland (292538, 292335, 294337, 319280, 31444, 319280, 329277, 331790, 310561, 314443, 329278, 335434, 335611 and 341342), Novo Nordisk Foundation, Centre of Excellence in Molecular Systems Immunology and Physiology Research 2012-2017 [Decision No 250114]; Special Research Funds for University Hospitals in Finland; Diabetes Research Foundation, Finland; European Foundation for the Study of Diabetes; Päivikki and Sakari Sohlberg Foundation; Pediatric Research Foundation. Business Finland, the Sigrid Jusélius Foundation, Jane and Aatos Erkko Foundation, the Finnish Cancer Foundation, InFLAMES Flagship Programme of the Academy of Finland, Diabetes Wellness Suomi, the Finnish cultural foundation. the European Research Council ERC (677943), the Finnish Medical Foundation, the Finnish Pediatric Research Foundation and the Hospital Districht of South-West Finland.
Collapse
Affiliation(s)
- Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Milla Valta
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Sirpa Pahkuri
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Emilie Rydgren
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.
- Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
4
|
Zaeifi D, Azarnia M. Network Cluster Analysis of PPI and Phenotype Ontology for Type 1 Diabetes Mellitus. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3502. [PMID: 38827336 PMCID: PMC11139444 DOI: 10.30498/ijb.2024.361840.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/05/2023] [Indexed: 06/04/2024]
Abstract
Background Our knowledge of Type 1 Diabetes Mellitus (T1DM) etiology is incomplete; however, the pathogenesis of the disease includes T-cell-mediated destruction of β-cells. Objective The present study aimed to investigate the key gene pathways and co-expression networks in T1DM disease. Material and Methods TIDM-associated genes were identified from 13 databases, enrichment of pathways annotated with functional annotations, and analysis of protein-protein network interactions. Next, functional modules and transcription factor networks were constructed. The analysis of gene co-expression networks was conducted to discover associated pivotal modules. Results A total of 172 expressed genes and four variants (SNP) were filtered in the of T1DM disease; pathway enrichment analysis identified key pathways, such as inflammatory bowel disease, type I diabetes mellitus, cytokine-cytokine receptor interaction, Th17 cell differentiation, JAK-STAT signaling pathway, and graft-versus-host disease. A weighted correlation network analysis revealed one module that was strongly correlated with T1DM. Functional annotation revealed that the module was mainly enriched in pathways such as T cell activation, regulation of immune system process, and response to the organic substance. IRF2, IRF4, IRF8, and CDX2 were regulated in the module at a significant level. Conclusion The study identified IL-2 as a significant T1DM hotspot and highlighted the role of hub genes and transcription factors in the autoimmune disease, offering potentials for treatment and prevention.
Collapse
Affiliation(s)
- Davood Zaeifi
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Laboratory of Tissue and Embryology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
5
|
Frohnert BI, Ghalwash M, Li Y, Ng K, Dunne JL, Lundgren M, Hagopian W, Lou O, Winkler C, Toppari J, Veijola R, Anand V. Refining the Definition of Stage 1 Type 1 Diabetes: An Ontology-Driven Analysis of the Heterogeneity of Multiple Islet Autoimmunity. Diabetes Care 2023; 46:1753-1761. [PMID: 36862942 PMCID: PMC10516254 DOI: 10.2337/dc22-1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
OBJECTIVE To estimate the risk of progression to stage 3 type 1 diabetes based on varying definitions of multiple islet autoantibody positivity (mIA). RESEARCH DESIGN AND METHODS Type 1 Diabetes Intelligence (T1DI) is a combined prospective data set of children from Finland, Germany, Sweden, and the U.S. who have an increased genetic risk for type 1 diabetes. Analysis included 16,709 infants-toddlers enrolled by age 2.5 years and comparison between groups using Kaplan-Meier survival analysis. RESULTS Of 865 (5%) children with mIA, 537 (62%) progressed to type 1 diabetes. The 15-year cumulative incidence of diabetes varied from the most stringent definition (mIA/Persistent/2: two or more islet autoantibodies positive at the same visit with two or more antibodies persistent at next visit; 88% [95% CI 85-92%]) to the least stringent (mIA/Any: positivity for two islet autoantibodies without co-occurring positivity or persistence; 18% [5-40%]). Progression in mIA/Persistent/2 was significantly higher than all other groups (P < 0.0001). Intermediate stringency definitions showed intermediate risk and were significantly different than mIA/Any (P < 0.05); however, differences waned over the 2-year follow-up among those who did not subsequently reach higher stringency. Among mIA/Persistent/2 individuals with three autoantibodies, loss of one autoantibody by the 2-year follow-up was associated with accelerated progression. Age was significantly associated with time from seroconversion to mIA/Persistent/2 status and mIA to stage 3 type 1 diabetes. CONCLUSIONS The 15-year risk of progression to type 1 diabetes risk varies markedly from 18 to 88% based on the stringency of mIA definition. While initial categorization identifies highest-risk individuals, short-term follow-up over 2 years may help stratify evolving risk, especially for those with less stringent definitions of mIA.
Collapse
Affiliation(s)
| | - Mohamed Ghalwash
- Center for Computational Health at IBM Research at IBM T.J. Watson Research Center, Yorktown Heights, NY
- Ain Shams University, Cairo, Egypt
| | - Ying Li
- Center for Computational Health at IBM Research at IBM T.J. Watson Research Center, Yorktown Heights, NY
| | - Kenney Ng
- Center for Computational Health at IBM Research at IBM T.J. Watson Research Center, Cambridge, MA
| | | | - Markus Lundgren
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | | | | | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum, Munich, Germany
| | - Jorma Toppari
- Institute of Biomedicine and Population Research Centre, University of Turku and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Vibha Anand
- Center for Computational Health at IBM Research at IBM T.J. Watson Research Center, Cambridge, MA
| |
Collapse
|
6
|
Hirvonen MK, Lietzén N, Moulder R, Bhosale SD, Koskenniemi J, Vähä-Mäkilä M, Nurmio M, Orešič M, Ilonen J, Toppari J, Veijola R, Hyöty H, Lähdesmäki H, Knip M, Cheng L, Lahesmaa R. Serum APOC1 levels are decreased in young autoantibody positive children who rapidly progress to type 1 diabetes. Sci Rep 2023; 13:15941. [PMID: 37743383 PMCID: PMC10518308 DOI: 10.1038/s41598-023-43039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Better understanding of the early events in the development of type 1 diabetes is needed to improve prediction and monitoring of the disease progression during the substantially heterogeneous presymptomatic period of the beta cell damaging process. To address this concern, we used mass spectrometry-based proteomics to analyse longitudinal pre-onset plasma sample series from children positive for multiple islet autoantibodies who had rapidly progressed to type 1 diabetes before 4 years of age (n = 10) and compared these with similar measurements from matched children who were either positive for a single autoantibody (n = 10) or autoantibody negative (n = 10). Following statistical analysis of the longitudinal data, targeted serum proteomics was used to verify 11 proteins putatively associated with the disease development in a similar yet independent and larger cohort of children who progressed to the disease within 5 years of age (n = 31) and matched autoantibody negative children (n = 31). These data reiterated extensive age-related trends for protein levels in young children. Further, these analyses demonstrated that the serum levels of two peptides unique for apolipoprotein C1 (APOC1) were decreased after the appearance of the first islet autoantibody and remained relatively less abundant in children who progressed to type 1 diabetes, in comparison to autoantibody negative children.
Collapse
Affiliation(s)
- M Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Santosh D Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jaakko Koskenniemi
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Mari Vähä-Mäkilä
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Mirja Nurmio
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Jorma Toppari
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Center, University of Oulu, Oulu, Finland
- Department for Children and Adolescents, Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University School of Science, Aalto, Finland
| | - Mikael Knip
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Lu Cheng
- Department of Computer Science, Aalto University School of Science, Aalto, Finland.
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Lernmark Å, Akolkar B, Hagopian W, Krischer J, McIndoe R, Rewers M, Toppari J, Vehik K, Ziegler AG. Possible heterogeneity of initial pancreatic islet beta-cell autoimmunity heralding type 1 diabetes. J Intern Med 2023; 294:145-158. [PMID: 37143363 PMCID: PMC10524683 DOI: 10.1111/joim.13648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The etiology of type 1 diabetes (T1D) foreshadows the pancreatic islet beta-cell autoimmune pathogenesis that heralds the clinical onset of T1D. Standardized and harmonized tests of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A), and ZnT8 transporter (ZnT8A) allowed children to be followed from birth until the appearance of a first islet autoantibody. In the Environmental Determinants of Diabetes in the Young (TEDDY) study, a multicenter (Finland, Germany, Sweden, and the United States) observational study, children were identified at birth for the T1D high-risk HLA haploid genotypes DQ2/DQ8, DQ2/DQ2, DQ8/DQ8, and DQ4/DQ8. The TEDDY study was preceded by smaller studies in Finland, Germany, Colorado, Washington, and Sweden. The aims were to follow children at increased genetic risk to identify environmental factors that trigger the first-appearing autoantibody (etiology) and progress to T1D (pathogenesis). The larger TEDDY study found that the incidence rate of the first-appearing autoantibody was split into two patterns. IAA first peaked already during the first year of life and tapered off by 3-4 years of age. GADA first appeared by 2-3 years of age to reach a plateau by about 4 years. Prior to the first-appearing autoantibody, genetic variants were either common or unique to either pattern. A split was also observed in whole blood transcriptomics, metabolomics, dietary factors, and exposures such as gestational life events and early infections associated with prolonged shedding of virus. An innate immune reaction prior to the adaptive response cannot be excluded. Clarifying the mechanisms by which autoimmunity is triggered to either insulin or GAD65 is key to uncovering the etiology of autoimmune T1D.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD USA
| | | | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | | |
Collapse
|
8
|
Peters LD, Yeh WI, Arnoletti JM, Brown ME, Posgai AL, Mathews CE, Brusko TM. Modeling cell-mediated immunity in human type 1 diabetes by engineering autoreactive CD8 + T cells. Front Immunol 2023; 14:1142648. [PMID: 37325626 PMCID: PMC10262917 DOI: 10.3389/fimmu.2023.1142648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 06/17/2023] Open
Abstract
The autoimmune pathogenesis of type 1 diabetes (T1D) involves cellular infiltration from innate and adaptive immune subsets into the islets of Langerhans within the pancreas; however, the direct cytotoxic killing of insulin-producing β-cells is thought to be mediated primarily by antigen-specific CD8+ T cells. Despite this direct pathogenic role, key aspects of their receptor specificity and function remain uncharacterized, in part, due to their low precursor frequency in peripheral blood. The concept of engineering human T cell specificity, using T cell receptor (TCR) and chimeric antigen receptor (CAR)-based approaches, has been demonstrated to improve adoptive cell therapies for cancer, but has yet to be extensively employed for modeling and treating autoimmunity. To address this limitation, we sought to combine targeted genome editing of the endogenous TCRα chain gene (TRAC) via CRISPR/Cas9 in combination with lentiviral vector (LV)-mediated TCR gene transfer into primary human CD8+ T cells. We observed that knockout (KO) of endogenous TRAC enhanced de novo TCR pairing, which permitted increased peptide:MHC-dextramer staining. Moreover, TRAC KO and TCR gene transfer increased markers of activation and effector function following activation, including granzyme B and interferon-γ production. Importantly, we observed increased cytotoxicity toward an HLA-A*0201+ human β-cell line by HLA-A*02:01 restricted CD8+ T cells engineered to recognize islet-specific glucose-6-phosphatase catalytic subunit (IGRP). These data support the notion of altering the specificity of primary human T cells for mechanistic analyses of autoreactive antigen-specific CD8+ T cells and are expected to facilitate downstream cellular therapeutics to achieve tolerance induction through the generation of antigen-specific regulatory T cells.
Collapse
Affiliation(s)
- Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Wen-I Yeh
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Juan M. Arnoletti
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Root-Bernstein R, Chiles K, Huber J, Ziehl A, Turke M, Pietrowicz M. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098336. [PMID: 37176044 PMCID: PMC10179352 DOI: 10.3390/ijms24098336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
What triggers type 1 diabetes mellitus (T1DM)? One common assumption is that triggers are individual microbes that mimic autoantibody targets such as insulin (INS). However, most microbes highly associated with T1DM pathogenesis, such as coxsackieviruses (COX), lack INS mimicry and have failed to induce T1DM in animal models. Using proteomic similarity search techniques, we found that COX actually mimicked the INS receptor (INSR). Clostridia were the best mimics of INS. Clostridia antibodies cross-reacted with INS in ELISA experiments, confirming mimicry. COX antibodies cross-reacted with INSR. Clostridia antibodies further bound to COX antibodies as idiotype-anti-idiotype pairs conserving INS-INSR complementarity. Ultraviolet spectrometry studies demonstrated that INS-like Clostridia peptides bound to INSR-like COX peptides. These complementary peptides were also recognized as antigens by T cell receptor sequences derived from T1DM patients. Finally, most sera from T1DM patients bound strongly to inactivated Clostridium sporogenes, while most sera from healthy individuals did not; T1DM sera also exhibited evidence of anti-idiotype antibodies against idiotypic INS, glutamic acid decarboxylase, and protein tyrosine phosphatase non-receptor (islet antigen-2) antibodies. These results suggest that T1DM is triggered by combined enterovirus-Clostridium (and possibly combined Epstein-Barr-virus-Streptococcal) infections, and the probable rate of such co-infections approximates the rate of new T1DM diagnoses.
Collapse
Affiliation(s)
| | - Kaylie Chiles
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jack Huber
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Alison Ziehl
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Miah Turke
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Maja Pietrowicz
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Ghalwash M, Anand V, Lou O, Martin F, Rewers M, Ziegler AG, Toppari J, Hagopian WA, Veijola R. Islet autoantibody screening in at-risk adolescents to predict type 1 diabetes until young adulthood: a prospective cohort study. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:261-268. [PMID: 36681087 PMCID: PMC10038928 DOI: 10.1016/s2352-4642(22)00350-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Screening for islet autoantibodies in children and adolescents identifies individuals who will later develop type 1 diabetes, allowing patient and family education to prevent diabetic ketoacidosis at onset and to enable consideration of preventive therapies. We aimed to assess whether islet autoantibody screening is effective for predicting type 1 diabetes in adolescents aged 10-18 years with an increased risk of developing type 1 diabetes. METHODS Data were harmonised from prospective studies from Finland (the Diabetes Prediction and Prevention study), Germany (the BABYDIAB study), and the USA (Diabetes Autoimmunity Study in the Young and the Diabetes Evaluation in Washington study). Autoantibodies against insulin, glutamic acid decarboxylase, and insulinoma-associated protein 2 were measured at each follow-up visit. Children who were lost to follow-up or diagnosed with type 1 diabetes before 10 years of age were excluded. Inverse probability censoring weighting was used to include data from remaining participants. Sensitivity and the positive predictive value of these autoantibodies, tested at one or two ages, to predict type 1 diabetes by the age of 18 years were the main outcomes. FINDINGS Of 20 303 children with an increased type 1 diabetes risk, 8682 were included for the analysis with inverse probability censoring weighting. 1890 were followed up to 18 years of age or developed type 1 diabetes between the ages of 10 years and 18 years, and their median follow-up was 18·3 years (IQR 14·5-20·3). 442 (23·4%) of 1890 adolescents were positive for at least one islet autoantibody, and 262 (13·9%) developed type 1 diabetes. Time from seroconversion to diabetes diagnosis increased by 0·64 years (95% CI 0·34-0·95) for each 1-year increment of diagnosis age (Pearson's correlation coefficient 0·88, 95% CI 0·50-0·97, p=0·0020). The median interval between the last prediagnostic sample and diagnosis was 0·3 years (IQR 0·1-1·3) in the 227 participants who were autoantibody positive and 6·8 years (1·6-9·9) for the 35 who were autoantibody negative. Single screening at the age of 10 years was 90% (95% CI 86-95) sensitive, with a positive predictive value of 66% (60-72) for clinical diabetes. Screening at two ages (10 years and 14 years) increased sensitivity to 93% (95% CI 89-97) but lowered the positive predictive value to 55% (49-60). INTERPRETATION Screening of adolescents at risk for type 1 diabetes only once at 10 years of age for islet autoantibodies was highly effective to detect type 1 diabetes by the age of 18 years, which in turn could enable prevention of diabetic ketoacidosis and participation in secondary prevention trials. FUNDING JDRF International.
Collapse
Affiliation(s)
- Mohamed Ghalwash
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA; Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Vibha Anand
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | | | | | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Denver, CO, USA
| | - Anette-G Ziegler
- Forschergruppe Diabetes and Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany der TU München, Munich, Germany
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland; Department of Pediatrics, Turku University Hospital, Turku, Finland
| | | | - Riitta Veijola
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
11
|
Mistry S, Gouripeddi R, Raman V, Facelli JC. Stratifying risk for onset of type 1 diabetes using islet autoantibody trajectory clustering. Diabetologia 2023; 66:520-534. [PMID: 36446887 PMCID: PMC10097474 DOI: 10.1007/s00125-022-05843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022]
Abstract
AIMS/HYPOTHESIS Islet autoantibodies can be detected prior to the onset of type 1 diabetes and are important tools for aetiologic studies, prevention trials and disease screening. Current risk stratification models rely on the positivity status of islet autoantibodies alone, but additional autoantibody characteristics may be important for understanding disease onset. This work aimed to determine if a data-driven model incorporating characteristics of islet autoantibody development, including timing, type and titre, could stratify risk for type 1 diabetes onset. METHODS Data on autoantibodies against GAD (GADA), tyrosine phosphatase islet antigen-2 (IA-2A) and insulin (IAA) were obtained for 1,415 children enrolled in The Environmental Determinants of Diabetes in the Young study with at least one positive autoantibody measurement from years 1 to 12 of life. Unsupervised machine learning algorithms were trained to identify clusters of autoantibody development based on islet autoantibody timing, type and titre. Risk for type 1 diabetes across each identified cluster was evaluated using time-to-event analysis. RESULTS We identified 2-4 clusters in each year cohort that differed by autoantibody timing, titre and type. During the first 3 years of life, risk for type 1 diabetes onset was driven by membership in clusters with high titres of all three autoantibodies (1-year risk: 20.87-56.25%, 5-year risk: 67.73-69.19%). Type 1 diabetes risk transitioned to type-specific titres during ages 4 to 8, as clusters with high titres of IA-2A (1-year risk: 20.88-28.93%, 5-year risk: 62.73-78.78%) showed faster progression to diabetes compared with high titres of GADA (1-year risk: 4.38-6.11%, 5-year risk: 25.06-31.44%). The importance of high GADA titres decreased during ages 9 to 12, with clusters containing high titres of IA-2A alone (1-year risk: 14.82-30.93%) or both GADA and IA-2A (1-year risk: 8.27-25.00%) demonstrating increased risk. CONCLUSIONS/INTERPRETATION This unsupervised machine learning approach provides a novel tool for stratifying risk for type 1 diabetes onset using multiple autoantibody characteristics. These findings suggest that age-dependent changes in IA-2A titres modulate risk for type 1 diabetes onset across 12 years of life. Overall, this work supports incorporation of islet autoantibody timing, type and titre in risk stratification models for aetiologic studies, prevention trials and disease screening.
Collapse
Affiliation(s)
- Sejal Mistry
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Ramkiran Gouripeddi
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
- Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA
| | - Vandana Raman
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Julio C Facelli
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
- Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
Ng K, Anand V, Stavropoulos H, Veijola R, Toppari J, Maziarz M, Lundgren M, Waugh K, Frohnert BI, Martin F, Lou O, Hagopian W, Achenbach P. Quantifying the utility of islet autoantibody levels in the prediction of type 1 diabetes in children. Diabetologia 2023; 66:93-104. [PMID: 36195673 PMCID: PMC9729160 DOI: 10.1007/s00125-022-05799-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to explore the utility of islet autoantibody (IAb) levels for the prediction of type 1 diabetes in autoantibody-positive children. METHODS Prospective cohort studies in Finland, Germany, Sweden and the USA followed 24,662 children at increased genetic or familial risk of developing islet autoimmunity and diabetes. For the 1403 who developed IAbs (523 of whom developed diabetes), levels of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA) and insulinoma-associated antigen-2 (IA-2A) were harmonised for analysis. Diabetes prediction models using multivariate logistic regression with inverse probability censored weighting (IPCW) were trained using 10-fold cross-validation. Discriminative power for disease was estimated using the IPCW concordance index (C index) with 95% CI estimated via bootstrap. RESULTS A baseline model with covariates for data source, sex, diabetes family history, HLA risk group and age at seroconversion with a 10-year follow-up period yielded a C index of 0.61 (95% CI 0.58, 0.63). The performance improved after adding the IAb positivity status for IAA, GADA and IA-2A at seroconversion: C index 0.72 (95% CI 0.71, 0.74). Using the IAb levels instead of positivity indicators resulted in even better performance: C index 0.76 (95% CI 0.74, 0.77). The predictive power was maintained when using the IAb levels alone: C index 0.76 (95% CI 0.75, 0.76). The prediction was better for shorter follow-up periods, with a C index of 0.82 (95% CI 0.81, 0.83) at 2 years, and remained reasonable for longer follow-up periods, with a C index of 0.76 (95% CI 0.75, 0.76) at 11 years. Inclusion of the results of a third IAb test added to the predictive power, and a suitable interval between seroconversion and the third test was approximately 1.5 years, with a C index of 0.78 (95% CI 0.77, 0.78) at 10 years follow-up. CONCLUSIONS/INTERPRETATION Consideration of quantitative patterns of IAb levels improved the predictive power for type 1 diabetes in IAb-positive children beyond qualitative IAb positivity status.
Collapse
Affiliation(s)
| | | | | | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jorma Toppari
- Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Marlena Maziarz
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Markus Lundgren
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - Kathy Waugh
- Barbara Davis Center for Diabetes, University of Colorado, Denver, CO, USA
| | | | | | | | | | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
| |
Collapse
|
13
|
Kwon BC, Achenbach P, Anand V, Frohnert BI, Hagopian W, Hu J, Koski E, Lernmark Å, Lou O, Martin F, Ng K, Toppari J, Veijola R. Islet Autoantibody Levels Differentiate Progression Trajectories in Individuals With Presymptomatic Type 1 Diabetes. Diabetes 2022; 71:2632-2641. [PMID: 36112006 PMCID: PMC9750947 DOI: 10.2337/db22-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 01/24/2023]
Abstract
In our previous data-driven analysis of evolving patterns of islet autoantibodies (IAb) against insulin (IAA), GAD (GADA), and islet antigen 2 (IA-2A), we discovered three trajectories, characterized according to multiple IAb (TR1), IAA (TR2), or GADA (TR3) as the first appearing autoantibodies. Here we examined the evolution of IAb levels within these trajectories in 2,145 IAb-positive participants followed from early life and compared those who progressed to type 1 diabetes (n = 643) with those remaining undiagnosed (n = 1,502). With use of thresholds determined by 5-year diabetes risk, four levels were defined for each IAb and overlaid onto each visit. In diagnosed participants, high IAA levels were seen in TR1 and TR2 at ages <3 years, whereas IAA remained at lower levels in the undiagnosed. Proportions of dwell times (total duration of follow-up at a given level) at the four IAb levels differed between the diagnosed and undiagnosed for GADA and IA-2A in all three trajectories (P < 0.001), but for IAA dwell times differed only within TR2 (P < 0.05). Overall, undiagnosed participants more frequently had low IAb levels and later appearance of IAb than diagnosed participants. In conclusion, while it has long been appreciated that the number of autoantibodies is an important predictor of type 1 diabetes, consideration of autoantibody levels within the three autoimmune trajectories improved differentiation of IAb-positive children who progressed to type 1 diabetes from those who did not.
Collapse
Affiliation(s)
- Bum Chul Kwon
- Center for Computational Health, IBM Research, Cambridge, MA
- Corresponding author: Bum Chul Kwon,
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München—German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Vibha Anand
- Center for Computational Health, IBM Research, Cambridge, MA
| | | | | | - Jianying Hu
- Center for Computational Health, IBM Research, Yorktown Heights, NY
| | - Eileen Koski
- Center for Computational Health, IBM Research, Yorktown Heights, NY
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | | | | | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA
| | - Jorma Toppari
- Institute of Biomedicine and Centre for Population Health Research, University of Turku, and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Medical Research Center, PEDEGO Research Unit, Department of Pediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
14
|
Krischer JP, Liu X, Lernmark Å, Hagopian WA, Rewers MJ, She JX, Toppari J, Ziegler AG, Akolkar B. Predictors of the Initiation of Islet Autoimmunity and Progression to Multiple Autoantibodies and Clinical Diabetes: The TEDDY Study. Diabetes Care 2022; 45:2271-2281. [PMID: 36150053 PMCID: PMC9643148 DOI: 10.2337/dc21-2612] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/16/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To distinguish among predictors of seroconversion, progression to multiple autoantibodies and from multiple autoantibodies to type 1 diabetes in young children. RESEARCH DESIGN AND METHODS Genetically high-risk newborns (n = 8,502) were followed for a median of 11.2 years (interquartile range 9.3-12.6); 835 (9.8%) developed islet autoantibodies and 283 (3.3%) were diagnosed with type 1 diabetes. Predictors were examined using Cox proportional hazards models. RESULTS Predictors of seroconversion and progression differed, depending on the type of first appearing autoantibody. Male sex, Finnish residence, having a sibling with type 1 diabetes, the HLA DR4 allele, probiotic use before age 28 days, and single nucleotide polymorphism (SNP) rs689_A (INS) predicted seroconversion to IAA-first (having islet autoantibody to insulin as the first appearing autoantibody). Increased weight at 12 months and SNPs rs12708716_G (CLEC16A) and rs2292239_T (ERBB3) predicted GADA-first (autoantibody to GAD as the first appearing). For those having a father with type 1 diabetes, the SNPs rs2476601_A (PTPN22) and rs3184504_T (SH2B3) predicted both. Younger age at seroconversion predicted progression from single to multiple autoantibodies as well as progression to diabetes, except for those presenting with GADA-first. Family history of type 1 diabetes and the HLA DR4 allele predicted progression to multiple autoantibodies but not diabetes. Sex did not predict progression to multiple autoantibodies, but males progressed more slowly than females from multiple autoantibodies to diabetes. SKAP2 and MIR3681HG SNPs are newly reported to be significantly associated with progression from multiple autoantibodies to type 1 diabetes. CONCLUSIONS Predictors of IAA-first versus GADA-first autoimmunity differ from each other and from the predictors of progression to diabetes.
Collapse
Affiliation(s)
- Jeffrey P. Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Xiang Liu
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmo, Sweden
| | | | - Marian J. Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | | | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Centre for Integrated Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| |
Collapse
|
15
|
LeFevre JD, Cyriac SL, Tokmic A, Pitlick JM. Anti-CD3 monoclonal antibodies for the prevention and treatment of type 1 diabetes: A literature review. Am J Health Syst Pharm 2022; 79:2099-2117. [PMID: 36056809 DOI: 10.1093/ajhp/zxac244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DISCLAIMER In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells, resulting in a loss of insulin production. Patients with T1D carry a substantial disease burden as well as substantial short-term and long-term risks associated with inadequate glycemic control. Currently, treatment mainly consists of insulin, which only treats the symptoms of T1D and not the root cause. Thus, disease-modifying agents such as anti-CD3 monoclonal antibodies (mAbs) that target the autoimmune destruction of beta cells in T1D would provide significant relief and health benefits for patients with T1D. This review summarizes the clinical evidence regarding the safety and efficacy of anti-CD3 mAbs in the prevention and treatment of T1D. SUMMARY A total of 27 studies reporting or evaluating data from clinical trials involving otelixizumab and teplizumab were included in the review. Anti-CD3 mAbs have shown significant benefits in both patients at high risk for T1D and those with recent-onset T1D. In high-risk populations, anti-CD3 mAbs delayed time to diagnosis, preserved C-peptide levels, and improved metabolic parameters. In recent-onset T1D, anti-CD3 mAbs preserved C-peptide levels and reduced insulin needs for extended periods. Anti-CD3 mAb therapy appears to be safe, with primarily transient and self-limiting adverse effects and no negative long-term effects. CONCLUSION Anti-CD3 mAbs are promising disease-modifying treatments for T1D. Their role in T1D may introduce short-term and long-term benefits with the potential to mitigate the significant disease burden; however, more evidence is required for an accurate assessment.
Collapse
Affiliation(s)
- James D LeFevre
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Sneha L Cyriac
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Adna Tokmic
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Jamie M Pitlick
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| |
Collapse
|
16
|
Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories. Nat Commun 2022; 13:1514. [PMID: 35314671 PMCID: PMC8938551 DOI: 10.1038/s41467-022-28909-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Development of islet autoimmunity precedes the onset of type 1 diabetes in children, however, the presence of autoantibodies does not necessarily lead to manifest disease and the onset of clinical symptoms is hard to predict. Here we show, by longitudinal sampling of islet autoantibodies (IAb) to insulin, glutamic acid decarboxylase and islet antigen-2 that disease progression follows distinct trajectories. Of the combined Type 1 Data Intelligence cohort of 24662 participants, 2172 individuals fulfill the criteria of two or more follow-up visits and IAb positivity at least once, with 652 progressing to type 1 diabetes during the 15 years course of the study. Our Continuous-Time Hidden Markov Models, that are developed to discover and visualize latent states based on the collected data and clinical characteristics of the patients, show that the health state of participants progresses from 11 distinct latent states as per three trajectories (TR1, TR2 and TR3), with associated 5-year cumulative diabetes-free survival of 40% (95% confidence interval [CI], 35% to 47%), 62% (95% CI, 57% to 67%), and 88% (95% CI, 85% to 91%), respectively (p < 0.0001). Age, sex, and HLA-DR status further refine the progression rates within trajectories, enabling clinically useful prediction of disease onset. Presence of islet autoantibodies precedes the onset of type 1 diabetes but it does not predict whether and how fast symptomatic disease appears. Here authors present a model to predict and visualize progression to diabetes by using a large longitudinal data set on autoantibodies and clinical parameters as input.
Collapse
|
17
|
Krischer JP, Liu X, Lernmark Å, Hagopian WA, Rewers MJ, She JX, Toppari J, Ziegler AG, Akolkar B. Characteristics of children diagnosed with type 1 diabetes before vs after 6 years of age in the TEDDY cohort study. Diabetologia 2021; 64:2247-2257. [PMID: 34291312 PMCID: PMC8429233 DOI: 10.1007/s00125-021-05514-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Prognostic factors and characteristics of children diagnosed with type 1 diabetes before 6 years of age were compared with those diagnosed at 6-13 years of age in the TEDDY study. METHODS Genetically high-risk children (n = 8502) were followed from birth for a median of 9.9 years; 328 (3.9%) were diagnosed with type 1 diabetes. Cox proportional hazard model was used to assess the association of prognostic factors with the risk of type 1 diabetes in the two age groups. RESULTS Children in the younger group tended to develop autoantibodies earlier than those in the older group did (mean age 1.5 vs 3.5 years), especially insulin autoantibodies (IAA), which developed earlier than GAD autoantibodies (GADA). Children in the younger group also progressed to diabetes more rapidly than the children in the older group did (mean duration 1.9 vs 5.4 years). Children with autoantibodies first appearing against insulinoma antigen-2 (IA-2A) were found only in the older group. The significant diabetes risk associated with the country of origin in the younger group was no longer significant in the older group. Conversely, the diabetes risk associated with HLA genotypes was statistically significant also in the older group. Initial seroconversion after and before 2 years of age was associated with decreased risk for diabetes diagnosis in children positive for multiple autoantibodies, but the diabetes risk did not decrease further with increasing age if initial seroconversion occurred after age 2. Diabetes risk associated with the minor alleles of rs1004446 (INS) was decreased in both the younger and older groups compared with other genotypes (HR 0.67). Diabetes risk was significantly increased with the minor alleles of rs2476601 (PTPN22) (HR 2.04 and 1.72), rs428595 (PPIL2) (HR 2.13 and 2.10), rs113306148 (PLEKHA1) (HR 2.34 and 2.21) and rs73043122 (RNASET2) (HR 2.31 and 2.54) (HR values represent the younger and older groups, respectively). CONCLUSIONS/INTERPRETATIONS Diabetes at an early age is likely to be preceded by IAA autoantibodies and is a more aggressive form of the disease. Among older children, once multiple autoantibodies have been observed there does not seem to be any association between progression to diabetes and the age of the child or family history. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00279318.
Collapse
Affiliation(s)
- Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Xiang Liu
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | | | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, and Population Research Centre, University of Turku, Turku, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V, Neuherberg, Germany
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
18
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
19
|
Bauer W, Gyenesei A, Krętowski A. The Multifactorial Progression from the Islet Autoimmunity to Type 1 Diabetes in Children. Int J Mol Sci 2021; 22:7493. [PMID: 34299114 PMCID: PMC8305179 DOI: 10.3390/ijms22147493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 Diabetes (T1D) results from autoimmune destruction of insulin producing pancreatic ß-cells. This disease, with a peak incidence in childhood, causes the lifelong need for insulin injections and necessitates careful monitoring of blood glucose levels. However, despite the current insulin therapies, it still shortens life expectancy due to complications affecting multiple organs. Recently, the incidence of T1D in childhood has increased by 3-5% per year in most developed Western countries. The heterogeneity of the disease process is supported by the findings of follow-up studies started early in infancy. The development of T1D is usually preceded by the appearance of autoantibodies targeted against antigens expressed in the pancreatic islets. The risk of T1D increases significantly with an increasing number of positive autoantibodies. The order of autoantibody appearance affects the disease risk. Genetic susceptibility, mainly defined by the human leukocyte antigen (HLA) class II gene region and environmental factors, is important in the development of islet autoimmunity and T1D. Environmental factors, mainly those linked to the changes in the gut microbiome as well as several pathogens, especially viruses, and diet are key modulators of T1D. The aim of this paper is to expand the understanding of the aetiology and pathogenesis of T1D in childhood by detailed description and comparison of factors affecting the progression from the islet autoimmunity to T1D in children.
Collapse
Affiliation(s)
- Witold Bauer
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
| | - Attila Gyenesei
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (A.G.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
20
|
Salami F, N.Tamura R, Elding Larsson H, Lernmark Å, Törn C. Complete blood counts with red blood cell determinants associate with reduced beta-cell function in seroconverted Swedish TEDDY children. Endocrinol Diabetes Metab 2021; 4:e00251. [PMID: 34277975 PMCID: PMC8279594 DOI: 10.1002/edm2.251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To investigate whether changes in complete blood count (CBC) in islet autoantibody positive children with increased genetic risk for type 1 diabetes are associated with oral glucose tolerance tests (OGTT) and HbA1c over time. METHODS The Environmental Determinants of Diabetes in the Young (TEDDY) study follows children with increased risk for type 1 diabetes in the United States, Germany, Sweden and Finland. In the current study, 89 Swedish TEDDY children (median age 8.8 years) positive for one or multiple islet autoantibodies were followed up to 5 (median 2.3) years for CBC, OGTT and HbA1c. A statistical mixed effect model was used to investigate the association between CBC and OGTT or HbA1c. RESULTS HbA1c over time increased by the number of autoantibodies (p < .001). Reduction in mean corpuscular haemoglobin (MCH) and mean cell volume (MCV) was both associated with an increase in HbA1c (p < .001). A reduction in red blood cell (RBC) counts (p = .003), haemoglobin (p = .002) and haematocrit (p = .006) levels was associated with increased fasting glucose. Increased red blood cells, haemoglobin, haematocrit and MCH but decreased levels of red blood cell distribution widths (RDW) were all associated with increased fasting insulin. CONCLUSIONS The decrease in RBC indices with increasing HbA1c and the decrease in RBC and its parameters with increasing fasting glucose in seroconverted children may reflect an insidious deterioration in glucose metabolism associated with islet beta-cell autoimmunity.
Collapse
Affiliation(s)
- Falastin Salami
- Department of Clinical SciencesClinical Research CentreLund UniversitySkåne University HospitalMalmöSweden
| | - Roy N.Tamura
- Health Informatics InstituteDepartment of PediatricsUniversity of South FloridaTampaFloridaUSA
| | - Helena Elding Larsson
- Department of Clinical SciencesClinical Research CentreLund UniversitySkåne University HospitalMalmöSweden
| | - Åke Lernmark
- Department of Clinical SciencesClinical Research CentreLund UniversitySkåne University HospitalMalmöSweden
| | - Carina Törn
- Department of Clinical SciencesClinical Research CentreLund UniversitySkåne University HospitalMalmöSweden
| | | |
Collapse
|
21
|
Pöllänen PM, Ryhänen SJ, Toppari J, Ilonen J, Vähäsalo P, Veijola R, Siljander H, Knip M. Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years. J Clin Endocrinol Metab 2020; 105:5901133. [PMID: 32882033 PMCID: PMC7686032 DOI: 10.1210/clinem/dgaa624] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 01/23/2023]
Abstract
CONTEXT We set out to characterize the dynamics of islet autoantibodies over the first 15 years of life in children carrying genetic susceptibility to type 1 diabetes (T1D). We also assessed systematically the role of zinc transporter 8 autoantibodies (ZnT8A) in this context. DESIGN HLA-predisposed children (N = 1006, 53.0% boys) recruited from the general population during 1994 to 1997 were observed from birth over a median time of 14.9 years (range, 1.9-15.5 years) for ZnT8A, islet cell (ICA), insulin (IAA), glutamate decarboxylase (GADA), and islet antigen-2 (IA-2A) antibodies, and for T1D. RESULTS By age 15.5 years, 35 (3.5%) children had progressed to T1D. Islet autoimmunity developed in 275 (27.3%) children at a median age of 7.4 years (range, 0.3-15.1 years). The ICA seroconversion rate increased toward puberty, but the biochemically defined autoantibodies peaked at a young age. Before age 2 years, ZnT8A and IAA appeared commonly as the first autoantibody, but in the preschool years IA-2A- and especially GADA-initiated autoimmunity increased. Thereafter, GADA-positive seroconversions continued to appear steadily until ages 10 to 15 years. Inverse IAA seroconversions occurred frequently (49.3% turned negative) and marked a prolonged delay from seroconversion to diagnosis compared to persistent IAA (8.2 vs 3.4 years; P = .01). CONCLUSIONS In HLA-predisposed children, the primary autoantibody is characteristic of age and might reflect the events driving the disease process toward clinical T1D. Autoantibody persistence affects the risk of T1D. These findings provide a framework for identifying disease subpopulations and for personalizing the efforts to predict and prevent T1D.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samppa J Ryhänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Heli Siljander
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Correspondence and Reprint Requests: Mikael Knip, MD, PhD, Children’s Hospital, University of Helsinki, P.O. Box 22 (Stenbäckinkatu 11), FI-00014 Helsinki, Finland. E-mail:
| |
Collapse
|
22
|
Mikk ML, Pfeiffer S, Kiviniemi M, Laine AP, Lempainen J, Härkönen T, Toppari J, Veijola R, Knip M, Ilonen J. HLA-DR-DQ haplotypes and specificity of the initial autoantibody in islet specific autoimmunity. Pediatr Diabetes 2020; 21:1218-1226. [PMID: 32613719 DOI: 10.1111/pedi.13073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We aimed to clarify the association of various HLA risk alleles with different types of autoantibodies initiating islet specific autoimmunity. METHODS Follow-up cohorts from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study and children diagnosed with type 1 diabetes (T1D) from the Finnish Pediatric Diabetes Register (FPDR) were analyzed for the presence of autoantibodies to insulin (IAA), glutamic acid decarboxylase (GADA), IA-2 antigen (IA-2A), and zinc transporter 8 (ZnT8A); and genotyped for HLA DR/DQ alleles. In the DIPP study, autoantibodies were regularly analyzed from birth up to 15 years of age. RESULTS In the DIPP cohort, 621 children developed one single persistent autoantibody, GADA in 284, IAA in 268, and IA-2A in 40 cases. Highly significant differences in the specificity of the first autoantibody were observed between HLA genotypes. Homozygotes for the DR3-DQ2 haplotype had almost exclusively GADA as the first autoantibody, whereas a more even distribution between GADA and IAA was found in DR3-DQ2/DR4-DQ8 as well as DR3-DQ/x and DR4-DQ8/x genotypes (x referring to neutral haplotypes). In DR4-DQ8 positive genotypes with the DRB1*04:01 allele IAA was more often the first autoantibody than in DRB1*04:04 positive genotypes. Various neutral haplotypes also significantly affected the relative proportions of different initial autoantibodies. These findings were confirmed and expanded in a series of 1591 T1D children under the age of 10 years from FPDR. CONCLUSIONS These results emphasize the importance of HLA class II polymorphisms in the recognition of autoantigen epitopes in the initiation of various pathways of the autoimmune response.
Collapse
Affiliation(s)
- Mari-Liis Mikk
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sophie Pfeiffer
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mikael Knip
- Pediatric Research Center, Children Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | | |
Collapse
|
23
|
Vehik K, Bonifacio E, Lernmark Å, Yu L, Williams A, Schatz D, Rewers M, She JX, Toppari J, Hagopian W, Akolkar B, Ziegler AG, Krischer JP. Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care 2020; 43:2066-2073. [PMID: 32641373 PMCID: PMC7440899 DOI: 10.2337/dc19-2547] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/13/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The first-appearing β-cell autoantibody has been shown to influence risk of type 1 diabetes (T1D). Here, we assessed the risk of autoantibody spreading to the second-appearing autoantibody and further progression to clinical disease in The Environmental Determinants of Diabetes in the Young (TEDDY) study. RESEARCH DESIGN AND METHODS Eligible children with increased HLA-DR-DQ genetic risk for T1D were followed quarterly from age 3 months up to 15 years for development of a single first-appearing autoantibody (GAD antibody [GADA], insulin autoantibody [IAA], or insulinoma antigen-2 autoantibody [IA-2A]) and subsequent development of a single second-appearing autoantibody and progression to T1D. Autoantibody positivity was defined as positivity for a specific autoantibody at two consecutive visits confirmed in two laboratories. Zinc transporter 8 autoantibody (ZnT8A) was measured in children who developed another autoantibody. RESULTS There were 608 children who developed a single first-appearing autoantibody (IAA, n = 282, or GADA, n = 326) with a median follow-up of 12.5 years from birth. The risk of a second-appearing autoantibody was independent of GADA versus IAA as a first-appearing autoantibody (adjusted hazard ratio [HR] 1.12; 95% CI 0.88-1.42; P = 0.36). Second-appearing GADA, IAA, IA-2A, or ZnT8A conferred an increased risk of T1D compared with children who remained positive for a single autoantibody, e.g., IAA or GADA second (adjusted HR 6.44; 95% CI 3.78-10.98), IA-2A second (adjusted HR 16.33; 95% CI 9.10-29.29; P < 0.0001), or ZnT8A second (adjusted HR 5.35; 95% CI 2.61-10.95; P < 0.0001). In children who developed a distinct second autoantibody, IA-2A (adjusted HR 3.08; 95% CI 2.04-4.65; P < 0.0001) conferred a greater risk of progression to T1D as compared with GADA or IAA. Additionally, both a younger initial age at seroconversion and shorter time to the development of the second-appearing autoantibody increased the risk for T1D. CONCLUSIONS The hierarchical order of distinct autoantibody spreading was independent of the first-appearing autoantibody type and was age-dependent and augmented the risk of progression to T1D.
Collapse
Affiliation(s)
- Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ezio Bonifacio
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- DFG Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö, Sweden
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | - Alistair Williams
- Diabetes and Metabolism, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Desmond Schatz
- Diabetes Center of Excellence, University of Florida, Gainesville, FL
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | | | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Anette G Ziegler
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|