1
|
Zapata Bustos R, Coletta DK, Galons JP, Davidson LB, Langlais PR, Funk JL, Willis WT, Mandarino LJ. Nonequilibrium thermodynamics and mitochondrial protein content predict insulin sensitivity and fuel selection during exercise in human skeletal muscle. Front Physiol 2023; 14:1208186. [PMID: 37485059 PMCID: PMC10361819 DOI: 10.3389/fphys.2023.1208186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Many investigators have attempted to define the molecular nature of changes responsible for insulin resistance in muscle, but a molecular approach may not consider the overall physiological context of muscle. Because the energetic state of ATP (ΔGATP) could affect the rate of insulin-stimulated, energy-consuming processes, the present study was undertaken to determine whether the thermodynamic state of skeletal muscle can partially explain insulin sensitivity and fuel selection independently of molecular changes. Methods: 31P-MRS was used with glucose clamps, exercise studies, muscle biopsies and proteomics to measure insulin sensitivity, thermodynamic variables, mitochondrial protein content, and aerobic capacity in 16 volunteers. Results: After showing calibrated 31P-MRS measurements conformed to a linear electrical circuit model of muscle nonequilibrium thermodynamics, we used these measurements in multiple stepwise regression against rates of insulin-stimulated glucose disposal and fuel oxidation. Multiple linear regression analyses showed 53% of the variance in insulin sensitivity was explained by 1) VO2max (p = 0.001) and the 2) slope of the relationship of ΔGATP with the rate of oxidative phosphorylation (p = 0.007). This slope represents conductance in the linear model (functional content of mitochondria). Mitochondrial protein content from proteomics was an independent predictor of fractional fat oxidation during mild exercise (R2 = 0.55, p = 0.001). Conclusion: Higher mitochondrial functional content is related to the ability of skeletal muscle to maintain a greater ΔGATP, which may lead to faster rates of insulin-stimulated processes. Mitochondrial protein content per se can explain fractional fat oxidation during mild exercise.
Collapse
Affiliation(s)
- Rocio Zapata Bustos
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
- Department of Physiology, The University of Arizona, Tucson, AZ, United States
| | - Jean-Philippe Galons
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States
| | - Lisa B. Davidson
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Janet L. Funk
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Wayne T. Willis
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Lawrence J. Mandarino
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Potentiation of incretin hormones and modulation of metabolic enzymes as possible mechanisms behind the insulin sensitizing effects of cabbage-metformin treatment. Transl Res 2021; 230:44-54. [PMID: 33115637 DOI: 10.1016/j.trsl.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
In our study, we treated high fructose diet-induced insulin resistance in rats with any of metformin, cabbage (80%w/w) or combined metformin and cabbage (MetCabb), and observed the activities of glycolysis and gluconeogenesis regulatory enzymes, incretin hormones and other hormones affecting glucose homeostasis. Comparisons were made with normoglycemic noninsulin resistance rats (control) and insulin-resistant untreated rats (INres). Baseline analysis showing elevated fasting blood sugar (>250 mg/dl), insulin (>25 µIU/ml) and HOMA-IR (>10) satisfied the criteria for recruitment into the insulin-resistant groups. Treatment lasted for 12 weeks. HOMA-IR values significantly (P < 0.05) decreased from 24.7 to 5.5 and 10.6 respectively with MetCabb treatment. MetCabb normalized HOMA-IR values and mean β-cell responsiveness of the INres. Cabbage and metCabb normalized the leptin levels relative to control. The mean fasting blood sugar, insulin, and c-peptide levels with MetCabb treatment reverted to control levels. We found a strong positive linear correlation between the glucagon levels (r = 0.9145) and increasing HOMA-IR values while both incretin hormones; GLP-1 and GIP negatively regressed (r = -0.8084 and -0.8488). MetCab treatment produced comparable values of GLP-1 and GIP to the control. A strong positive correlation was found between the HOMA-IR values and the PEPCK (r = 0.9065), F-1,6-BPase (r = 0.7951), and G-6-Pase (r = 0.7893). The hexokinase (r = -0.807), PFK (r = -0.9151), and PK (r = -0.7448) levels regressed as HOMA-IR values increased. The glycolytic and gluconeogenic enzymes except PEPCK reverted to control levels with MetCabb treatment. Combination of metformin and cabbage was more effective than individual treatments.
Collapse
|
3
|
Biensø RS, Olesen J, Gliemann L, Schmidt JF, Matzen MS, Wojtaszewski JFP, Hellsten Y, Pilegaard H. Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. J Gerontol A Biol Sci Med Sci 2015; 70:866-72. [PMID: 25991826 DOI: 10.1093/gerona/glv012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The aim was to investigate the molecular mechanisms behind exercise training-induced improvements in glucose regulation in aged subjects. METHODS Twelve elderly male subjects completed 8 weeks of exercise training. Before and after the training period, the subjects completed an oral glucose tolerance test (OGTT) and a muscle biopsy was obtained from the vastus lateralis before and 45 minutes into the OGTT. Blood samples were collected before and up to 120 minutes after glucose intake. RESULTS Exercise training increased Hexokinase II, GLUT4, Akt2, glycogen synthase (GS), pyruvate dehydrogenase (PDH)-E1α, PDK2 protein, and glycogen content in skeletal muscle. Furthermore, in response to glucose, GS activity was increased and the dephosphorylation of GS site 2 + 2a and 3a was enhanced after the training intervention. The glucose-mediated insulin stimulation of TBC1D4 Thr(642) phosphorylation was increased after exercise training. In the trained state, the PDHa activity was reduced following glucose intake and without changes in phosphorylation level of PDH-E1α. CONCLUSIONS The present results suggest that exercise training improves glucose regulation in elderly subjects by enhancing the capacity and acute regulation of glucose uptake and by enhancing intracellular glucose removal to glycogen synthesis rather than glucose oxidation.
Collapse
Affiliation(s)
- Rasmus Sjørup Biensø
- Centre of Inflammation and Metabolism, The August Krogh Centre, Department of Biology, and
| | - Jesper Olesen
- Centre of Inflammation and Metabolism, The August Krogh Centre, Department of Biology, and
| | - Lasse Gliemann
- The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jakob Friis Schmidt
- The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Mikkel Sillesen Matzen
- Centre of Inflammation and Metabolism, The August Krogh Centre, Department of Biology, and
| | - Jørgen F P Wojtaszewski
- The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Ylva Hellsten
- The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Henriette Pilegaard
- Centre of Inflammation and Metabolism, The August Krogh Centre, Department of Biology, and
| |
Collapse
|
4
|
Vind BF, Birk JB, Vienberg SG, Andersen B, Beck-Nielsen H, Wojtaszewski JFP, Højlund K. Hyperglycaemia normalises insulin action on glucose metabolism but not the impaired activation of AKT and glycogen synthase in the skeletal muscle of patients with type 2 diabetes. Diabetologia 2012; 55:1435-45. [PMID: 22322917 DOI: 10.1007/s00125-012-2482-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
AIMS/HYPOTHESIS In type 2 diabetes, reduced insulin-stimulated glucose disposal, primarily glycogen synthesis, is associated with defective insulin activation of glycogen synthase (GS) in skeletal muscle. Hyperglycaemia may compensate for these defects, but to what extent it involves improved insulin signalling to glycogen synthesis remains to be clarified. METHODS Whole-body glucose metabolism was studied in 12 patients with type 2 diabetes, and 10 lean and 10 obese non-diabetic controls by means of indirect calorimetry and tracers during a euglycaemic-hyperinsulinaemic clamp. The diabetic patients underwent a second isoglycaemic-hyperinsulinaemic clamp maintaining fasting hyperglycaemia. Muscle biopsies from m. vastus lateralis were obtained before and after the clamp for examination of GS and relevant insulin signalling components. RESULTS During euglycaemia, insulin-stimulated glucose disposal, glucose oxidation and non-oxidative glucose metabolism were reduced in the diabetic group compared with both control groups (p < 0.05). This was associated with impaired insulin-stimulated GS and AKT2 activity, deficient dephosphorylation at GS sites 2 + 2a, and reduced Thr308 and Ser473 phosphorylation of AKT. When studied under hyperglycaemia, all variables of insulin-stimulated glucose metabolism were normalised compared with the weight-matched controls. However, insulin activation and dephosphorylation (site 2 + 2a) of GS as well as activation of AKT2 and phosphorylation at Thr308 and Ser473 remained impaired (p < 0.05). CONCLUSIONS/INTERPRETATIONS These data confirm that hyperglycaemia compensates for decreased whole-body glucose disposal in type 2 diabetes. In contrast to previous less well-controlled studies, we provide evidence that the compensatory effect of hyperglycaemia in patients with type 2 diabetes does not involve normalisation of insulin action on GS or upstream signalling in skeletal muscle.
Collapse
Affiliation(s)
- B F Vind
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | | | | | | | | | | | | |
Collapse
|
5
|
Kiilerich K, Gudmundsson M, Birk JB, Lundby C, Taudorf S, Plomgaard P, Saltin B, Pedersen PA, Wojtaszewski JFP, Pilegaard H. Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle. Diabetes 2010; 59:26-32. [PMID: 19833896 PMCID: PMC2797931 DOI: 10.2337/db09-1032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To test the hypothesis that free fatty acid (FFA) and muscle glycogen modify exercise-induced regulation of PDH (pyruvate dehydrogenase) in human skeletal muscle through regulation of PDK4 expression. RESEARCH DESIGN AND METHODS On two occasions, healthy male subjects lowered (by exercise) muscle glycogen in one leg (LOW) relative to the contra-lateral leg (CON) the day before the experimental day. On the experimental days, plasma FFA was ensured normal or remained elevated by consuming breakfast rich (low FFA) or poor (high FFA) in carbohydrate, 2 h before performing 20 min of two-legged knee extensor exercise. Vastus lateralis biopsies were obtained before and after exercise. RESULTS PDK4 protein content was approximately 2.2- and approximately 1.5-fold higher in LOW than CON leg in high FFA and low FFA, respectively, and the PDK4 protein content in the CON leg was approximately twofold higher in high FFA than in low FFA. In all conditions, exercise increased PDHa (PDH in the active form) activity, resulting in similar levels in LOW leg in both trials and CON leg in high FFA, but higher level in CON leg in low FFA. PDHa activity was closely associated with the PDH-E1alpha phosphorylation level. CONCLUSIONS Muscle glycogen and plasma FFA attenuate exercise-induced PDH regulation in human skeletal muscle in a nonadditive manner. This might be through regulation of PDK4 expression. The activation of PDH by exercise independent of changes in muscle glycogen or plasma FFA suggests that exercise overrules FFA-mediated inhibition of PDH (i.e., carbohydrate oxidation), and this may thus be one mechanism behind the health-promoting effects of exercise.
Collapse
Affiliation(s)
- Kristian Kiilerich
- Copenhagen Muscle Research Centre, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pilegaard H, Birk JB, Sacchetti M, Mourtzakis M, Hardie DG, Stewart G, Neufer PD, Saltin B, van Hall G, Wojtaszewski JFP. PDH-E1alpha dephosphorylation and activation in human skeletal muscle during exercise: effect of intralipid infusion. Diabetes 2006; 55:3020-7. [PMID: 17065338 DOI: 10.2337/db06-0152] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate pyruvate dehydrogenase (PDH)-E1alpha subunit phosphorylation and whether free fatty acids (FFAs) regulate PDH activity, seven subjects completed two trials: saline (control) and intralipid/heparin (intralipid). Each infusion trial consisted of a 4-h rest followed by a 3-h two-legged knee extensor exercise at moderate intensity. During the 4-h resting period, activity of PDH in the active form (PDHa) did not change in either trial, yet phosphorylation of PDH-E1alpha site 1 (PDH-P1) and site 2 (PDH-P2) was elevated in the intralipid compared with the control trial. PDHa activity increased during exercise similarly in the two trials. After 3 h of exercise, PDHa activity remained elevated in the intralipid trial but returned to resting levels in the control trial. Accordingly, in both trials PDH-P1 and PDH-P2 decreased during exercise, and the decrease was more marked during intralipid infusion. Phosphorylation had returned to resting levels at 3 h of exercise only in the control trial. Thus, an inverse association between PDH-E1alpha phosphorylation and PDHa activity exists. Short-term elevation in plasma FFA at rest increases PDH-E1alpha phosphorylation, but exercise overrules this effect of FFA on PDH-E1alpha phosphorylation leading to even greater dephosphorylation during exercise with intralipid infusion than with saline.
Collapse
MESH Headings
- Adult
- DNA, Complementary/genetics
- Enzyme Activation
- Exercise/physiology
- Fat Emulsions, Intravenous/administration & dosage
- Fat Emulsions, Intravenous/pharmacology
- Fatty Acids, Nonesterified/blood
- Glycogen/metabolism
- Humans
- Infusions, Intravenous
- Knee Joint
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/enzymology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/physiology
- Phosphorylation
- Pyruvate Dehydrogenase (Lipoamide)/genetics
- Pyruvate Dehydrogenase (Lipoamide)/metabolism
- RNA/genetics
- RNA/isolation & purification
- Rest
Collapse
|
7
|
Abstract
Type 2 diabetes is a complex disorder with diminished insulin secretion and insulin action contributing to the hyperglycemia and wide range of metabolic defects that underlie the disease. The contribution of glucose metabolic pathways per se in the pathogenesis of the disease remains unclear. The cellular fate of glucose begins with glucose transport and phosphorylation. Subsequent pathways of glucose utilization include aerobic and anaerobic glycolysis, glycogen formation, and conversion to other intermediates in the hexose phosphate or hexosamine biosynthesis pathways. Abnormalities in each pathway may occur in diabetic subjects; however, it is unclear whether perturbations in these may lead to diabetes or are a consequence of the multiple metabolic abnormalities found in the disease. This review is focused on the cellular fate of glucose and relevance to human type 2 diabetes.
Collapse
Affiliation(s)
- Clara Bouché
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
8
|
Bebernitz GR, Aicher TD, Stanton JL, Gao J, Shetty SS, Knorr DC, Strohschein RJ, Tan J, Brand LJ, Liu C, Wang WH, Vinluan CC, Kaplan EL, Dragland CJ, DelGrande D, Islam A, Lozito RJ, Liu X, Maniara WM, Mann WR. Anilides of (R)-trifluoro-2-hydroxy-2-methylpropionic acid as inhibitors of pyruvate dehydrogenase kinase. J Med Chem 2000; 43:2248-57. [PMID: 10841803 DOI: 10.1021/jm0000923] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The optimization of a series of anilide derivatives of (R)-3,3, 3-trifluoro-2-hydroxy-2-methylpropionic acid as inhibitors of pyruvate dehydrogenase kinase (PDHK) is described that started from N-phenyl-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide 1 (IC(50) = 35 +/- 1.4 microM). It was found that small electron-withdrawing groups on the ortho position of the anilide, i.e., chloro, acetyl, or bromo, increased potency 20-40-fold. The oral bioavailability of the compounds in this series is optimal (as measured by AUC) when the anilide is substituted at the 4-position with an electron-withdrawing group (i.e., carboxyl, carboxyamide, and sulfoxyamide). N-(2-Chloro-4-isobutylsulfamoylphenyl)-(R)-3,3, 3-trifluoro-2-hydroxy-2-methylpropionamide (10a) inhibits PDHK in the primary enzymatic assay with an IC(50) of 13 +/- 1.5 nM, enhances the oxidation of [(14)C]lactate into (14)CO(2) in human fibroblasts, lowers blood lactate levels significantly 2.5 and 5 h after oral doses as low as 30 micromol/kg, and increases the ex vivo activity of PDH in muscle, kidney, liver, and heart tissues. However, in contrast to sodium dichloroacetate (DCA), these PDHK inhibitors did not lower blood glucose levels. Nevertheless, they are effective at increasing the utilization and disposal of lactate and could be of utility to ameliorate conditions of inappropriate blood lactate elevation.
Collapse
Affiliation(s)
- G R Bebernitz
- Metabolic and Cardiovascular Disease Research, Novartis Institute for Biomedical Research, Summit, New Jersey 07901, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Aicher TD, Anderson RC, Gao J, Shetty SS, Coppola GM, Stanton JL, Knorr DC, Sperbeck DM, Brand LJ, Vinluan CC, Kaplan EL, Dragland CJ, Tomaselli HC, Islam A, Lozito RJ, Liu X, Maniara WM, Fillers WS, DelGrande D, Walter RE, Mann WR. Secondary amides of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid as inhibitors of pyruvate dehydrogenase kinase. J Med Chem 2000; 43:236-49. [PMID: 10649979 DOI: 10.1021/jm990358+] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N'-methyl-N-(4-tert-butyl-1,2,5,6-tetrahydropyridine)thiourea, SDZ048-619 (1), is a modest inhibitor (IC(50) = 180 microM) of pyruvate dehydrogenase kinase (PDHK). In an optimization of the N-methylcarbothioamide moiety of 1, it was discovered that amides with a small acyl group, in particular appropriately substituted amides of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid, are inhibitors of PDHK. Utilizing this acyl moiety, herein is reported the rationale leading to the optimization of a series of acylated piperazine derivatives. Methyl substitution of the piperazine at the 2- and 5-positions (with S and R absolute stereochemistry) markedly increased the potency of the lead compound (>1,000-fold). Oral bioavailability of the compounds in this series is good and is optimal (as measured by AUC) when the 4-position of the piperazine is substituted with an electron-poor benzoyl moiety. (+)-1-N-[2,5-(S, R)-Dimethyl-4-N-(4-cyanobenzoyl)piperazine]-(R)-3,3, 3-trifluoro-2-hydroxy-2-methylpropanamide (14e) inhibits PDHK in the primary enzymatic assay with an IC(50) of 16 +/- 2 nM, enhances the oxidation of [(14)C]lactate into (14)CO(2) in human fibroblasts with an EC(50) of 57 +/- 13 nM, diminishes lactate significantly 2.5 h post-oral-dose at doses as low as 1 micromol/kg, and increases the ex vivo activity of PDH in muscle, liver, and fat tissues in normal Sprague-Dawley rats. These PDHK inhibitors, however, do not lower glucose in diabetic animal models.
Collapse
Affiliation(s)
- T D Aicher
- Novartis Institute for Biomedical Research, 556 Morris Avenue, Summit, New Jersey 07901, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aicher TD, Damon RE, Koletar J, Vinluan CC, Brand LJ, Gao J, Shetty SS, Kaplan EL, Mann WR. Triterpene and diterpene inhibitors of pyruvate dehydrogenase kinase (PDK). Bioorg Med Chem Lett 1999; 9:2223-8. [PMID: 10465550 DOI: 10.1016/s0960-894x(99)00380-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several oximes of triterpenes with a 17-beta hydroxyl and abietane derivatives are inhibitors of pyruvate dehydrogenase kinase (PDK) activity. The oxime 12 and dehydroabietyl amine 2 exhibit a blood glucose lowering effect in the diabetic ob/ob mouse after a single oral dose of 100 micromol/kg. However, the mechanism of the blood glucose lowering effect is likely unrelated to PDK inhibition.
Collapse
Affiliation(s)
- T D Aicher
- Metabolic & Cardiovascular Diesases Research, Novartis Institute for Biomedical Research, Summit, NJ 07901, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aicher TD, Anderson RC, Bebernitz GR, Coppola GM, Jewell CF, Knorr DC, Liu C, Sperbeck DM, Brand LJ, Strohschein RJ, Gao J, Vinluan CC, Shetty SS, Dragland C, Kaplan EL, DelGrande D, Islam A, Liu X, Lozito RJ, Maniara WM, Walter RE, Mann WR. (R)-3,3,3-Trifluoro-2-hydroxy-2-methylpropionamides are orally active inhibitors of pyruvate dehydrogenase kinase. J Med Chem 1999; 42:2741-6. [PMID: 10425084 DOI: 10.1021/jm9902584] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T D Aicher
- Novartis Institute for Biomedical Research, 556 Morris Avenue, Summit, New Jersey 07901, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
García-Estévez DA, Araújo-Vilar D, Cabezas-Cerrato J. Non-insulin-mediated glucose uptake in several insulin-resistant states in the postabsortive period. Diabetes Res Clin Pract 1998; 39:107-13. [PMID: 9597380 DOI: 10.1016/s0168-8227(97)00124-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of our work was to study non-insulin-mediated glucose uptake (NIMGU), in the postabsorptive state, in several pathologies characterized by peripheral insulin resistance, namely, obesity (n = 10), NIDDM (n = 7), acromegaly (n = 7) and Cushing's disease (n = 6). These groups were compared with a group of 16 healthy subjects. To estimate peripheral insulin sensitivity (SI) and glucose effectiveness (SG), we used the minimal model of glucose metabolism. Although all of these pathologies showed severe insulin resistance (control: 6.44 +/- 2.63, obesity: 2.84 +/- 1.57, NIDDM: 1.71 +/- 0.77, acromegaly: 1.88 +/- 1.23, Cushing's disease: 1.87 +/- 0.66 x 10(-4) min-1 (microU/ml)-1, P < 0.01), fasting insulin-mediated glucose uptake (IMGU) did not differ significantly among the five groups, because reactive hyperinsulinaemia was present in all of these states. The contribution of NIMGU to whole-body glucose uptake did not differ significantly among the five groups (control: 77 +/- 8%; obesity: 77 +/- 9%; acromegaly: 82 +/- 8%; Cushing's disease: 83 +/- 8%; NIDDM: 84 +/- 7%). In conclusion, our data show that, in the postabsorptive period, non-insulin mediated glucose uptake is a major determinant of glucose disposal and is similar in the different pathologies studied; on the other hand, although absolute rates of basal insulin-mediated glucose uptake are reduced in insulin-resistant states, they did not achieve statistical value compared with control subjects because of compensatory hyperinsulinaemia.
Collapse
Affiliation(s)
- D A García-Estévez
- Departamento de Medicina, Complejo Hospitalario Universitario de Santiago de Compostela (Hospital Xeral de Galicia), Facultad de Medicina, Spain
| | | | | |
Collapse
|
13
|
Vestergaard H, Bjørbaek C, Hansen T, Larsen FS, Granner DK, Pedersen O. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J Clin Invest 1995; 96:2639-45. [PMID: 8675629 PMCID: PMC185969 DOI: 10.1172/jci118329] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
After entering the muscle cell, glucose is immediately and irreversibly phosphorylated to glucose-6-phosphate by hexokinases (HK) I and II. Previous studies in rodents have shown that HKII may be the dominant HK in skeletal muscle. Reduced insulin-stimulated glucose uptake and reduced glucose-6-phosphate concentrations in muscle have been found in non-insulin-dependent diabetes mellitus (NIDDM) patients when examined during a hyperglycemic hyperinsulinemic clamp. These findings [correction of finding] are consistent with a defect in glucose transport and/or phosphorylation. In the present study comprising 29 NIDDM patients and 25 matched controls, we tested the hypothesis that HKII activity and gene expression are impaired in vastus lateralis muscle of NIDDM patients when examined in the fasting state. HKII activity in a supernatant of muscle extract accounted for 28 +/- 5% in NIDDM patients and 40 +/- 5% in controls (P = 0.08) of total muscle HK activity when measured at a glucose media of 0.11 mmol/liter and 31 +/- 4 and 47 +/- 7% (P = 0.02) when measured at 0.11 mmol/liter of glucose. HKII mRNA, HKII immunoreactive protein level, and HKII activity were significantly decreased in NIDDM patients (P < 0.0001, P = 0.03, and P = 0.02, respectively) together with significantly decreased glycogen synthase mRNA level and total glycogen synthase activity (P = 0.02 and P = 0.02, respectively). In the entire study population HKII activity estimated at 0.11 and 11.0 mM glucose was inversely correlated with fasting plasma glucose concentrations (r = -0.45, P = 0.004; r = -0.54, P < 0.0001, respectively) and fasting plasma nonesterified fatty acid concentrations (r = -0.46, P = 0.003; r = -0.37, P = 0.02, respectively). In conclusion, NIDDM patients are characterized by a reduced activity and a reduced gene expression of HKII in muscle which may be secondary to the metabolic peturbations. HKII contributes with about one-third of total HK activity in a supernatant of human vastus lateralis muscle.
Collapse
|
14
|
Vestergaard H, Skøtt P, Steffensen R, Wroblewski H, Pedersen O, Kastrup J. Insulin-resistant glucose metabolism in patients with microvascular angina--syndrome X. Metabolism 1995; 44:876-82. [PMID: 7616846 DOI: 10.1016/0026-0495(95)90240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Studies in patients with microvascular angina (MA) or the cardiologic syndrome X have shown a hyperinsulinemic response to an oral glucose challenge, suggesting insulin resistance and a role for increased serum insulin in coronary microvascular dysfunction. The aim of the present study was to examine whether patients with MA are insulin-resistant. Nine patients with MA and seven control subjects were studied. All were sedentary and glucose-tolerant. Coronary arteriography was normal in all participants, and exercise-induced coronary ischemia was demonstrated in all MA patients. A euglycemic, hyperinsulinemic clamp was performed in combination with indirect calorimetry. Biopsy of vastus lateralis muscle was taken in the basal state and after 4 hours of euglycemia and hyperinsulinemia (2 mU.kg-1.min-1). The fasting level of "true" serum insulin was significantly higher (43 +/- 6 v 22 +/- 3 pmol/L, P < .02) and the rate of insulin-stimulated glucose disposal to peripheral tissues was lower in patients with MA (13.4 +/- 1.0 v 18.2 +/- 1.4 mg.kg fat-free mass [FFM]-1.min-1, P < .02) due to a decrease in nonoxidative glucose metabolism (8.4 +/- 0.9 v 12.5 +/- 1.3 mg.kg FFM-1.min-1, P < .02). No difference was found in glucose or lipid oxidation rates between the two groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
15
|
Abstract
Cats are one of the few species that develop a form of diabetes mellitus that is clinically and histologically analogous to human type 2 diabetes mellitus. Figure 9 summarizes the etiologic factors thought to be involved in the development of feline and human type 2 diabetes. The main metabolic characteristics of type 2 diabetes mellitus are impaired insulin secretion and resistance to the action of insulin in its target tissues. Impaired beta cell function occurs before histologic changes become evident. The characteristic histologic finding in cats with type 2 diabetes is deposition of amyloid in pancreatic islets. Amyloid deposition occurs before the onset of clinical signs, but does not seem to be the primary defect. Pancreatic amyloid is derived form the recently discovered pancreatic hormone amylin. Amylin is synthesized in pancreatic beta cells, and is co-stored and co-secreted with insulin. Amylin has been postulated to be involved in the pathogenesis of feline diabetes mellitus both through its metabolic effects, which include inhibition of insulin secretion and induction of insulin resistance, and via progressive amyloid deposition and beta cell degeneration. Increased amylin concentration has been documented intracellularly in cats with impaired glucose tolerance and in the plasma of diabetic cats, and supports the hypothesis that amylin is involved in the pathogenesis of type 2 diabetes. Obesity is a common finding in diabetic felines and is a contributing factor to the insulin resistance present in type 2 diabetes. Clinical signs of diabetes develop once total insulin secretion decreases to 20% to 25% of normal levels. Many diabetic cats have been treated successfully with oral hypoglycemics, but 50% to 70% of diabetic cats are insulin dependent. Based on histologic evidence, this is the result of extensive amyloid deposition and subsequent beta cell degeneration, rather than autoimmune destruction of pancreatic beta cells associated with type 1 diabetes. Alternative ways of treating type 2 diabetes currently are being investigated. Amylin antagonists recently have been proposed as a novel treatment to reverse the deleterious effects of excessive amylin concentrations. The gastrointestinal hormone glucagon-like peptide-1 may also prove useful in treating diabetic cats, because of its stimulatory effect on insulin secretion and synthesis, and the absence of significant hypoglycemic effect.
Collapse
Affiliation(s)
- T A Lutz
- Institute of Veterinary Physiology, University of Zůrich, Switzerland
| | | |
Collapse
|
16
|
Bryson JM, Cooney GJ, Wensley VR, Phuyal JL, Caterson ID. Tissue differences in the response of the pyruvate dehydrogenase complex to a glucose load during the development of obesity in gold-thioglucose-obese mice. Biochem J 1995; 305 ( Pt 3):811-6. [PMID: 7848280 PMCID: PMC1136331 DOI: 10.1042/bj3050811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The activity of pyruvate dehydrogenase (PDHC), a key enzyme complex in the oxidative disposal of glucose, was measured after an oral glucose load in the heart, liver, quadriceps muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) of gold-thioglucose (GTG)-obese mice at different stages during the development of obesity and in age-matched controls. Significant responses to the glucose load were seen 30 min post-gavage in heart, WAT and BAT of control mice but no change was observed in quadriceps muscle. The increase in activity of the active form of PDHC (PDHCa) in response to glucose in heart was reduced 2 weeks after the induction of GTG-obesity with no response in 5 or 10 week obese mice. A 2-3-fold increase in the PDHCa response in both WAT and BAT of 2 week obese mice was absent in 5 and 10 week obese animals. Basal PDHCa activity in quadriceps muscle was increased in 2 week obese mice but subsequently returned to control levels as obesity progressed. The glucose load produced no change in the activity of PDHCa in quadriceps muscle of obese mice. These results demonstrate that changes in the capacity for oxidative glucose disposal in different tissues, as indicated by changes in PDHCa activity, may contribute to glucose-intolerance and insulin-resistance in GTG-obese mice and that the response of the PDHC to insulin during the development of obesity varies in different tissues.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/enzymology
- Adipose Tissue/ultrastructure
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/enzymology
- Adipose Tissue, Brown/ultrastructure
- Animals
- Aurothioglucose
- Blood Glucose/metabolism
- Glucose/pharmacology
- Insulin/blood
- Kinetics
- Male
- Mice
- Mice, Inbred CBA
- Mitochondria/enzymology
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/enzymology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/ultrastructure
- Obesity/chemically induced
- Obesity/enzymology
- Pyruvate Dehydrogenase Complex/metabolism
Collapse
Affiliation(s)
- J M Bryson
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, N.S.W., Australia
| | | | | | | | | |
Collapse
|
17
|
Alzaid AA, Dinneen SF, Turk DJ, Caumo A, Cobelli C, Rizza RA. Assessment of insulin action and glucose effectiveness in diabetic and nondiabetic humans. J Clin Invest 1994; 94:2341-8. [PMID: 7989590 PMCID: PMC330063 DOI: 10.1172/jci117599] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Insulin concentrations in humans continuously change and typically increase only when glucose also increases such as with eating. In this setting, it is not known whether the severity of hepatic and extrahepatic insulin resistance is comparable and whether the ability of glucose to regulate its own uptake and release is defective in non-insulin-dependent diabetes mellitus (NIDDM). To address this question, NIDDM and nondiabetic subjects were studied when glucose concentrations were clamped at either 5 mM (euglycemia) or varied so as to mimic the glucose concentrations observed in nondiabetic humans after food ingestion (hyperglycemia). Insulin was infused so as to simulate a "nondiabetic" postprandial profile. During euglycemia, insulin increased glucose disposal in nondiabetic but not diabetic subjects indicating marked extrahepatic resistance. In contrast, insulin-induced suppression of glucose release was only minimally less (P < 0.05) in diabetic than nondiabetic subjects (-1.06 +/- 0.09 vs. -1.47 +/- 0.21 nmol.kg-1 per 4 h). Hyperglycemia substantially enhanced disposal in both groups. Glucose effectiveness measured as the magnitude of enhancement of disposal (0.59 +/- 0.18 vs. 0.62 +/- 0.17 nmollkg-1 per 4 h) and suppression of release (-0.36 +/- 0.12 vs. -0.14 +/- 0.12 nmol.kg-1 per 4 h) did not differ in the diabetic and nondiabetic subjects. In conclusion, when assessed in the presence of a physiological insulin profile, people with NIDDM demonstrate: (a) profound extrahepatic insulin resistance, (b) modest hepatic insulin resistance, and (c) normal ability of glucose to stimulate its own uptake and suppress its own release.
Collapse
Affiliation(s)
- A A Alzaid
- Department of Electronics and Informatics, University of Padua, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Pedersen O, Hansen L, Bak JF. Impaired glycogen synthesis of skeletal muscle in patients with insulin-resistant diabetes mellitus. J Diabetes Complications 1994; 8:213-20. [PMID: 7833496 DOI: 10.1016/1056-8727(94)90046-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- O Pedersen
- Steno Diabetes Center, Copenhagen, Denmark
| | | | | |
Collapse
|
19
|
Henriksen JE, Alford F, Handberg A, Vaag A, Ward GM, Kalfas A, Beck-Nielsen H. Increased glucose effectiveness in normoglycemic but insulin-resistant relatives of patients with non-insulin-dependent diabetes mellitus. A novel compensatory mechanism. J Clin Invest 1994; 94:1196-204. [PMID: 8083360 PMCID: PMC295197 DOI: 10.1172/jci117436] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
20 normoglycemic first degree relatives of non-insulin-dependent diabetes mellitus (NIDDM) patients were compared with 20 matched subjects without any family history of diabetes using the intravenous glucose tolerance test with minimal model analysis of glucose disappearance and insulin kinetics. Intravenous glucose tolerance index (Kg) was similar in both groups (1.60 +/- 0.14 vs 1.59 +/- 0.18, x 10(-2) min-1, NS). However, insulin sensitivity (Si) was reduced (3.49 +/- 0.43 vs 4.80 +/- 0.61, x 10(-4) min-1 per mU/liter, P = 0.05), whereas glucose effectiveness (Sg) was increased (1.93 +/- 0.14 vs 1.52 +/- 0.16, x 10(-2) min-1, P < 0.05) in the relatives. Despite insulin resistance neither fasting plasma insulin concentration (7.63 +/- 0.48 vs 6.88 +/- 0.45, mU/liter, NS) nor first phase insulin responsiveness (Phi1) (3.56 +/- 0.53 vs 4.13 +/- 0.62, mU/liter min-1 per mg/dl, NS) were increased in the relatives. Phi1 was reduced for the degree of insulin resistance in the relatives so that the Phi1 x Si index was lower in the relatives (11.5 +/- 2.2 vs 16.7 +/- 2.0, x 10(-4) min-2 per mg/dl, P < 0.05). Importantly, glucose effectiveness correlated with Kg and with basal glucose oxidation but not with total glucose transporter 4 (GLUT4) content in a basal muscle biopsy. In conclusion we confirm the presence of insulin resistance in first degree relatives of NIDDM patients. However, insulin secretion was altered and reduced for the degree of insulin resistance in the relatives, whereas glucose effectiveness was increased. We hypothesize that increased glucose effectiveness maintains glucose tolerance within normal limits in these "normoinsulinemic" relatives of NIDDM patients.
Collapse
Affiliation(s)
- J E Henriksen
- Department of Endocrinology M, Odense University Hospital, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
Friedman JE, Caro JF, Pories WJ, Azevedo JL, Dohm GL. Glucose metabolism in incubated human muscle: effect of obesity and non-insulin-dependent diabetes mellitus. Metabolism 1994; 43:1047-54. [PMID: 8052146 DOI: 10.1016/0026-0495(94)90188-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Skeletal muscle contributes significantly to reduced insulin-stimulated glucose disposal in patients with obesity and non-insulin-dependent (type II) diabetes mellitus (NIDDM). The biochemical basis for insulin resistance is not known but may involve reduced glucose transport and/or a defect in intracellular pathways for glucose disposal. To address this question, we measured basal and insulin-stimulated glucose oxidation, glycogen formation, and nonoxidative glycolysis (lactate and amino acid release) in an incubated muscle preparation from nonobese and morbidly obese patients with and without NIDDM. Pathways of glucose disposal were also determined in muscle of obese NIDDM patients incubated under hyperglycemic (20 mmol/L) conditions, which increases glucose uptake by mass action. Under basal conditions (no insulin present) there were no significant differences in glycogen formation or glucose oxidation between nonobese control, obese nondiabetic, or obese diabetics. Lactate release was significantly higher in obese controls compared to nonobese controls in the basal state at 5 mmol/L glucose (10.2 +/- 2.8 v 24.7 +/- 3.5 nmol/min/g, P < .05). Under maximal insulin-stimulated conditions, rates of glycogen formation, glucose oxidation, and nonoxidized glycolysis increased 1.9-, 2.3-, and 2.2-fold over basal (P < .05) in nonobese controls. By contrast, insulin was ineffective at stimulating significant increases in any metabolic pathway of glucose disposal in muscle of obese or obese NIDDM patients.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J E Friedman
- Department of Biochemistry, School of Medicine, East Carolina University, Greenville, NC 27858
| | | | | | | | | |
Collapse
|
21
|
Felber JP, Haesler E, Jéquier E. Metabolic origin of insulin resistance in obesity with and without type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1993; 36:1221-9. [PMID: 8307248 DOI: 10.1007/bf00400798] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A metabolic hypothesis is presented for insulin resistance in obesity, in the presence or absence of Type 2 (non-insulin-dependent) diabetes mellitus. It is based on physiological mechanisms including a series of negative feed-back mechanisms, with the inhibition of the function of the glycogen cycle in skeletal muscle as a consequence of decreased glucose utilization resulting from increased lipid oxidation in the obese. It considers the inhibition of glycogen synthase activity together with inhibition of glucose storage and impaired glucose tolerance. The prolonged duration of increased lipid oxidation, considered as the initial cause, may lead to Type 2 diabetes. This hypothesis is compatible with others based on the inhibition of insulin receptor kinase and of glucose transporter activities.
Collapse
Affiliation(s)
- J P Felber
- Institut de Physiologie, Université de Lausanne, Switzerland
| | | | | |
Collapse
|
22
|
Groop LC, Widén E, Ferrannini E. Insulin resistance and insulin deficiency in the pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: errors of metabolism or of methods? Diabetologia 1993; 36:1326-31. [PMID: 8307264 DOI: 10.1007/bf00400814] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L C Groop
- Department of Endocrinology, Malmö General Hospital, University of Lund, Sweden
| | | | | |
Collapse
|
23
|
Lutz TA, Rand JS. A review of new developments in type 2 diabetes in human beings and cats. THE BRITISH VETERINARY JOURNAL 1993; 149:527-36. [PMID: 8111613 DOI: 10.1016/s0007-1935(05)80037-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cats appear to be one of the few non-human species that develop a type of diabetes mellitus analogous to human Type 2, or non-insulin-dependent diabetes mellitus (NIDDM). In this review, some current theories on diabetogenesis are discussed. In both cats and human beings, Type 2 diabetes is characterized by impaired insulin secretion due to a functional defect in pancreatic beta-cells, and insulin resistance. In both species, amyloid deposition occurs in pancreatic islets and is derived from the newly discovered pancreatic hormone islet amyloid polypeptide (IAPP), or amylin. Amylin also reduces insulin secretion and induces insulin resistance. Thus, the hypothesis of amylin being intimately involved in the pathogenesis of human and feline Type 2 diabetes appears justified. Obesity is a frequent concomitant problem in feline and human Type 2 diabetes and contributes to the insulin resistance characteristic of the disease.
Collapse
Affiliation(s)
- T A Lutz
- School of Veterinary Science, University of Queensland, St. Lucia, Brisbane, Australia
| | | |
Collapse
|
24
|
Vestergaard H, Lund S, Larsen FS, Bjerrum OJ, Pedersen O. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1993; 91:2342-50. [PMID: 8514849 PMCID: PMC443291 DOI: 10.1172/jci116466] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In patients with non-insulin-dependent diabetes mellitus (NIDDM) and matched control subjects we examined the interrelationships between in vivo nonoxidative glucose metabolism and glucose oxidation and the muscle activities, as well as the immunoreactive protein and mRNA levels of the rate-limiting enzymes in glycogen synthesis and glycolysis, glycogen synthase (GS) and phosphofructokinase (PFK), respectively. Analysis of biopsies of quadriceps muscle from 19 NIDDM patients and 19 control subjects showed in the basal state a 30% decrease (P < 0.005) in total GS activity and a 38% decrease (P < 0.001) in GS mRNA/microgram DNA in NIDDM patients, whereas the GS protein level was normal. The enzymatic activity and protein and mRNA levels of PFK were all normal in diabetic patients. In subgroups of NIDDM patients and control subjects an insulin-glucose clamp in combination with indirect calorimetry was performed. The rate of insulin-stimulated nonoxidative glucose metabolism was decreased by 47% (P < 0.005) in NIDDM patients, whereas the glucose oxidation rate was normal. The PFK activity, protein level, and mRNA/microgram DNA remained unchanged. The relative activation of GS by glucose-6-phosphate was 33% lower (P < 0.02), whereas GS mRNA/micrograms DNA was 37% lower (P < 0.05) in the diabetic patients after 4 h of hyperinsulinemia. Total GS immunoreactive mass remained normal. In conclusion, qualitative but not quantitative posttranslational abnormalities of the GS protein in muscle determine the reduced insulin-stimulated nonoxidative glucose metabolism in NIDDM.
Collapse
|
25
|
Munger R, Temler E, Jallut D, Haesler E, Felber JP. Correlations of glycogen synthase and phosphorylase activities with glycogen concentration in human muscle biopsies. Evidence for a double-feedback mechanism regulating glycogen synthesis and breakdown. Metabolism 1993; 42:36-43. [PMID: 8446046 DOI: 10.1016/0026-0495(93)90169-o] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The purpose of this study was to verify in man the relationships of muscle glycogen synthase and phosphorylase activities with glycogen concentration that were reported in animal studies. The upper level of glycogen concentration in muscle is known to be tightly controlled, and glycogen concentration was reported to have an inhibitory effect on synthase activity and a stimulatory effect on phosphorylase activity. Glycogen synthase and phosphorylase activity and glycogen concentration were measured in muscle biopsies in a group of nine normal subjects after stimulating an increase of their muscle glycogen concentration through either an intravenous glucose-insulin infusion to stimulate glycogen synthesis, or an Intralipid (Vitrum, Stockholm, Sweden) infusion in the basal state to inhibit glycogen mobilization by favoring lipid oxidation at the expense of glucose oxidation. Phosphorylase activity increased from 71.3 +/- 21.0 to 152.8 +/- 20.0 nmol/min/mg protein (P < .005) after the glucose-insulin infusion. Phosphorylase activity was positively correlated with glycogen concentration (P = .005 and P = .0001) after the glucose-insulin and Intralipid infusions, respectively. Insulin-stimulated glycogen synthase activity was significantly negatively correlated with glycogen concentration at the end of the Intralipid infusion (P < .005). In conclusion, by demonstrating a negative correlation of glycogen concentration with glycogen synthase and a positive correlation with phosphorylase, this study might confirm in man the double-feedback mechanism by which changes in glycogen concentration regulate glycogen synthase and phosphorylase activities. It suggests that this mechanism might play an important role in the regulation of glucose storage.
Collapse
Affiliation(s)
- R Munger
- Department of Internal Medicine, University Hospital, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Bak JF, Møller N, Schmitz O, Saaek A, Pedersen O. In vivo insulin action and muscle glycogen synthase activity in type 2 (non-insulin-dependent) diabetes mellitus: effects of diet treatment. Diabetologia 1992; 35:777-84. [PMID: 1511806 DOI: 10.1007/bf00429100] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Insulin resistant glucose metabolism is a key element in the pathogenesis of Type 2 (non-insulin-dependent) diabetes mellitus. Insulin resistance may be of both primary (genetic) and secondary (metabolic) origin. Before and after diet-induced improvement of glycaemic control seven obese patients with newly-diagnosed Type 2 diabetes were studied with the euglycaemic clamp technique in combination with indirect calorimetry and forearm glucose balance. Muscle biopsies were obtained in the basal state and again after 3 h of hyperinsulinaemia (200 mU/l) for studies of insulin receptor and glycogen synthase activities. Similar studies were performed in seven matched control subjects. Insulin-stimulated glucose utilization improved from 110 +/- 11 to 183 +/- 23 mg.m-2.min-1 (p less than 0.03); control subjects: 219 +/- 23 mg.m-2.min-1 (p = NS, vs post-diet Type 2 diabetes). Non-oxidative glucose disposal increased from 74 +/- 17 to 138 +/- 19 mg.m-2.min-1 (p less than 0.03), control subjects: 159 +/- 22 mg.m-2.min-1 (p = NS, vs post-diet Type 2 diabetic patients). Forearm blood glucose uptake during hyperinsulinaemia increased from 1.58 +/- 0.54 to 3.35 +/- 0.23 mumol.l-1.min-1 (p less than 0.05), control subjects: 2.99 +/- 0.86 mumol.l-1.min-1 (p = NS, vs post-diet Type 2 diabetes). After diet therapy the increase in insulin sensitivity correlated with reductions in fasting plasma glucose levels (r = 0.97, p less than 0.001), reductions in serum fructosamine (r = 0.77, p less than 0.05), and weight loss (r = 0.78, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J F Bak
- Medical Endocrinological Department C, Aarhus Amtssygehus, Denmark
| | | | | | | | | |
Collapse
|
27
|
Vaag A, Damsbo P, Hother-Nielsen O, Beck-Nielsen H. Hyperglycaemia compensates for the defects in insulin-mediated glucose metabolism and in the activation of glycogen synthase in the skeletal muscle of patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992; 35:80-8. [PMID: 1541385 DOI: 10.1007/bf00400856] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Insulin resistance and a defective insulin activation of the enzyme glycogen synthase in skeletal muscle during euglycaemia may have important pathophysiological implications in Type 2 (non-insulin-dependent) diabetes mellitus. Hyperglycaemia may serve to compensate for these defects in Type 2 diabetes by increasing glucose disposal through a mass action effect. In the present study, rates of whole-body glucose oxidation and glucose storage were measured during fasting hyperglycaemia and isoglycaemic insulin infusion (40 mU.m-2.min-1, 3 h) in 12 patients with Type 2 diabetes. Eleven control subjects were studied during euglycaemia. Biopsies were taken from the vastus lateralis muscle. Fasting and insulin-stimulated glucose oxidation, glucose storage and muscle glycogen synthase activation were all fully compensated (normalized) during hyperglycaemia in the diabetic patients. The insulin-stimulated increase in muscle glycogen content was the same in the diabetic patients and in the control subjects. Besides hyperglycaemia, the diabetic patients had elevated muscle free glucose and glucose 6-phosphate concentrations. A positive correlation was demonstrated between intracellular free glucose concentration and muscle glycogen synthase fractional velocity insulin activation (0.1 mmol/l glucose 6-phosphate: r = 0.65, p less than 0.02 and 0.0 mmol/l glucose 6-phosphate: r = 0.91, p less than 0.0001). In conclusion, this study indicates an important role for hyperglycaemia and elevated muscle free glucose and glucose 6-phosphate concentrations in compensating (normalizing) intracellular glucose metabolism and skeletal muscle glycogen synthase activation in Type 2 diabetes.
Collapse
Affiliation(s)
- A Vaag
- Department of Endocrinology and Internal Medicine M, Odense University Hospital, Denmark
| | | | | | | |
Collapse
|