1
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
2
|
Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes (Basel) 2021; 12:genes12081200. [PMID: 34440374 PMCID: PMC8394456 DOI: 10.3390/genes12081200] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication of diabetes and a leading cause of blindness in the industrialized world. Traditional risk factors, such as glycemic control and duration of diabetes, are unable to explain why some individuals remain protected while others progress to a more severe form of the disease. Differences are also observed in DR heritability as well as the response to anti-vascular endothelial growth factor (VEGF) treatment. This review discusses various aspects of genetics in DR to shed light on DR pathogenesis and treatment. First, we discuss the global burden of DR followed by a discussion on disease pathogenesis as well as the role genetics plays in the prevalence and progression of DR. Subsequently, we provide a review of studies related to DR’s genetic contribution, such as candidate gene studies, linkage studies, and genome-wide association studies (GWAS) as well as other clinical and meta-analysis studies that have identified putative candidate genes. With the advent of newer cutting-edge technologies, identifying the genetic components in DR has played an important role in understanding DR incidence, progression, and response to treatment, thereby developing newer therapeutic targets and therapies.
Collapse
|
3
|
Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front Endocrinol (Lausanne) 2021; 12:636267. [PMID: 33776930 PMCID: PMC7992003 DOI: 10.3389/fendo.2021.636267] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Hashemi-Soteh MB, Ahmadzadeh Amiri A, Sheikh Rezaee MR, Ahmadzadeh Amiri A, Olfat S, Ahmadzadeh Amiri A. Aldose reductase (AC)n gene polymorphism in Iranian patients with type 2 diabetic microangiopathy; a case-control study. Diabetol Int 2020; 12:101-107. [PMID: 33479585 DOI: 10.1007/s13340-020-00446-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
Aim (AC)n promoter region of the aldose reductase (ALR) genes polymorphism has been associated with diabetic microvascular complications (MVCs). The aim of this study was to find the relationship between dinucleotide repeat (AC)n polymorphisms of the ALR gene and the occurrence of MVCs, such as diabetic retinopathy, neuropathy, and nephropathy in Iranian type 2 diabetic (T2D) patients. Methods This prospective case-control study was performed on T2D patients who were categorized into two groups based on the presence or absence of diabetic microangiopathy. All patients were provided informed consent. After extracting genomic DNA, the (AC)n of the ALR gene was determined using Polymerase chain reaction (PCR). Results Thirteen alleles of the (AC)n gene polymorphism were detected including Z + 16, Z + 14, Z + 8, Z + 6, Z + 4, Z + 2, Z, Z - 2, Z - 4, Z - 6, Z - 8, Z - 10, and Z - 12. The frequency of the Z - 4 allele was significantly higher in patients with retinopathy, nephropathy, and autonomic neuropathy compared with those with long-term uncomplicated diabetes (P < 0.001, P < 0.001, P = 0.031, respectively). After controlling for baseline risk factors, we found that the carrier of the Z - 4 allele of ALR (AC)n polymorphism had a higher risk of diabetic retinopathy and diabetic nephropathy (P < 0.001). The homozygosity for the Z - 4 allele was found to be associated with diabetic microangiopathy. Conclusion Our results showed that ALR (AC)n gene polymorphism in Iranian patients with type 2 diabetes independently, predispose retinal, renal and neural microvascular to diabetic complications.
Collapse
Affiliation(s)
| | | | - Majid Reza Sheikh Rezaee
- Department of Ophthalmology, Bu-Ali Sina Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | - Ahmad Ahmadzadeh Amiri
- Department of Ophthalmology, Bu-Ali Sina Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Mi W, Xia Y, Bian Y. Meta-analysis of the association between aldose reductase gene (CA)n microsatellite variants and risk of diabetic retinopathy. Exp Ther Med 2019; 18:4499-4509. [PMID: 31777552 DOI: 10.3892/etm.2019.8086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most severe microvascular complications of diabetes mellitus (DM). The (CA)n microsatellite variation of the aldose reductase (ALR) gene has been indicated to be associated with DR in previous studies; however, the results were inconclusive. To provide a more precise evaluation of the association between the (CA)n variations of ALR and the risk for DR, a meta-analysis was performed in the present study. Relevant articles were retrieved from the PubMed, Embase, Chinese National Knowledge Infrastructure and Cochrane Library databases. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the associations. The present meta-analysis included 17 studies comprising 1,575 DM patients with retinopathy and 1,741 DM patients without retinopathy. The results indicated that the Z-2 allele was a risk factor for DR in Asian (OR=1.82, 95% CI: 1.16-2.86, P=0.009) and Caucasian (OR=2.08, 95% CI: 1.14-3.79, P=0.02) populations, as well as in type 1 diabetes (T1D; OR=3.42, 95% CI: 1.46-8.04, P=0.005) and type 2 diabetes (T2D; OR=1.66, 95% CI: 1.05-2.63, P=0.03). Furthermore, the Z+2 allele was determined to be a protective factor for DR in Caucasian individuals (OR=0.50, 95% CI: 0.34-0.73, P=0.0004) and those with T1D (OR=0.39, 95% CI: 0.27-0.57, P<0.00001). Z+4 was also identified to be a protective factor, reducing the risk of DR in patients with T1D (OR=0.74, 95% CI: 0.57-0.96, P=0.02). Z-4 was revealed to be a risk factor for DR in Asian populations (OR=1.57, 95% CI: 1.22-2.03, P=0.0005) and in individuals with T1D (OR=1.62, 95% CI: 1.27-2.08, P=0.0001). However, no association was detected between the Z, Z+6 and Z-6 alleles and the risk of DR (P>0.05). In conclusion, the present results revealed the following: Z+2 may serve as a protective factor for DR in Caucasian individuals and those with T1D; Z+4 may be a protective factor for DR in patients with T2D; Z-2 may represent a risk factor for DR in all subgroups analyzed; and Z-4 may be a risk factor for DR in Asian populations and patients with T2D.
Collapse
Affiliation(s)
- Wensheng Mi
- Department of Pathophysiology, School of Basic Medical Science, Changsha Medical University, Changsha, Hunan 410219, P.R. China.,Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Yan Xia
- Department of Pathophysiology, School of Basic Medical Science, Changsha Medical University, Changsha, Hunan 410219, P.R. China.,Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Yanhui Bian
- Department of Pathophysiology, School of Basic Medical Science, Changsha Medical University, Changsha, Hunan 410219, P.R. China.,Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| |
Collapse
|
6
|
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease. Patients with diabetic nephropathy have a high cardiovascular risk, comparable to patients with coronary heart disease. Accordingly, identification and management of risk factors for diabetic nephropathy as well as timely diagnosis and prompt management of the condition are of paramount importance for effective treatment. A variety of risk factors promotes the development and progression of diabetic nephropathy, including elevated glucose levels, long duration of diabetes, high blood pressure, obesity, and dyslipidemia. Most of these risk factors are modifiable by antidiabetic, antihypertensive, or lipid-lowering treatment and lifestyle changes. Others such as genetic factors or advanced age cannot be modified. Therefore, the rigorous management of the modifiable risk factors is essential for preventing and delaying the decline in renal function. Early diagnosis of diabetic nephropathy is another essential component in the management of diabetes and its complications such as nephropathy. New markers may allow earlier diagnosis of this common and serious complication, but further studies are needed to clarify their additive predictive value, and to define their cost-benefit ratio. This article reviews the most important risk factors in the development and progression of diabetic nephropathy and summarizes recent developments in the diagnosis of this disease.
Collapse
Affiliation(s)
- Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Vasilios G Athyros
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
7
|
Hashimoto Y, Yamagishi SI, Mizukami H, Yabe-Nishimura C, Lim SW, Kwon HM, Yagihashi S. Polyol pathway and diabetic nephropathy revisited: Early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase. J Diabetes Investig 2014; 2:111-22. [PMID: 24843470 PMCID: PMC4015536 DOI: 10.1111/j.2040-1124.2010.00071.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Aims/Introduction: The polyol pathway has long been involved in the pathogenesis of diabetic nephropathy. It remains still unclear, however, how the polyol pathway is implicated in this process. We explored the effects of the enhanced polyol pathway on renocortical tubular cells and glomeruli in experimentally-induced diabetes. MATERIALS AND METHODS Transgenic mice (Tg) overexpressing human aldose reductase were made diabetic by streptozotocin and followed for 8 weeks. Renocortical pathology, expressions of tonicity-responsive enhancer binding protein (TonEBP) and carboxymethyllysine of advanced glycation end-products, were examined. Wild-type non-transgenic mice (Wt) were also made diabetic and served as controls. RESULTS Diabetic Tg showed augmented expression of TonEBP in renocortical tubular cells with vacuolated degenerative changes. These structural changes were associated with pronounced deposition of carboxymethyllysine. There was a significant increase in kidney weight, glomerular size, and mesangial area in diabetic animals and there was a trend for more severe changes in these measures in diabetic transgenic mice compared with those in control diabetic mice. Treatment with aldose reductase inhibitor significantly prevented polyol accumulation, mesangial expansion and expressions of TonEBP and carboxymethyllysine in diabetic Tg, but its effects on the renal structure were equivocal in control diabetic Wt. CONCLUSIONS Our findings suggest that tubuloglomerular change might contribute to early diabetic nephropathy under the influence of the enhanced polyol pathway. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00071.x, 2010).
Collapse
Affiliation(s)
- Yasuhiro Hashimoto
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Shin-Ichiro Yamagishi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki
| | | | - Sun Woo Lim
- Department of Medicine and Physiology, University of Maryland, Baltimore, MD, USA
| | - H Moo Kwon
- Department of Medicine and Physiology, University of Maryland, Baltimore, MD, USA
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki
| |
Collapse
|
8
|
Liu H, Luo Y, Zhang T, Zhang Y, Wu Q, Yuan L, Chung SSM, Oates PJ, Yang JY. Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice. Diabetologia 2011; 54:1242-51. [PMID: 21267539 PMCID: PMC3071933 DOI: 10.1007/s00125-011-2045-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/10/2010] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS The aim of the study was to investigate the effects of genetic deficiency of aldose reductase in mice on the development of key endpoints of diabetic nephropathy. METHODS A line of Ar (also known as Akr1b3)-knockout (KO) mice, a line of Ar-bitransgenic mice and control C57BL/6 mice were used in the study. The KO and bitransgenic mice were deficient for Ar in the renal glomeruli and all other tissues, with the exception of, in the bitransgenic mice, a human AR cDNA knockin-transgene that directed collecting-tubule epithelial-cell-specific AR expression. Diabetes was induced in 8-week-old male mice with streptozotocin. Mice were further maintained for 17 weeks then killed. A number of serum and urinary variables were determined for these 25-week-old mice. Periodic acid-Schiff staining, western blots, immunohistochemistry and protein kinase C (PKC) activity assays were performed for histological analyses, and to determine the levels of collagen IV and TGF-β1 and PKC activities in renal cortical tissues. RESULTS Diabetes-induced extracellular matrix accumulation and collagen IV overproduction were completely prevented in diabetic Ar-KO and bitransgenic mice. Ar deficiency also completely or partially prevented diabetes-induced activation of renal cortical PKC, TGF-β1 and glomerular hypertrophy. Loss of Ar results in a 43% reduction in urine albumin excretion in the diabetic Ar-KO mice and a 48% reduction in the diabetic bitransgenic mice (p < 0.01). CONCLUSIONS/INTERPRETATION Genetic deficiency of Ar significantly ameliorated development of key endpoints linked with early diabetic nephropathy in vivo. Robust and specific inhibition of aldose reductase might be an effective strategy for the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- H. Liu
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Y. Luo
- School of Nursing, The Third Military Medical University, Chongqing, People’s Republic of China
| | - T. Zhang
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Y. Zhang
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Q. Wu
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - L. Yuan
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - S. S. M. Chung
- Division of Life Sciences, Graduate School in Shenzhen, Tsinghua University, The University Town, Shenzhen, People’s Republic of China
| | - P. J. Oates
- Oates Biomedical Consulting, Gales Ferry, CT USA
| | - J. Y. Yang
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen, 361005 People’s Republic of China
- Fujian Provincial Transgenic Core, Xiamen University Laboratory Animal Centre, Xiamen, People’s Republic of China
| |
Collapse
|
9
|
Abstract
In the past years aldose reductase (AKR1B1; AR) is thought to be involved in the pathogenesis of secondary diabetic complications such as retinopathy, neuropathy, nephropathy and cataractogenesis. Subsequently, a number of AR inhibitors have been developed and tested for diabetic complications. Although, these inhibitors have found to be safe for human use, they have not been successful at the clinical studies because of limited efficacy. Recently, the potential physiological role of AR has been reassessed from a different point of view. Diverse groups suggested that AR besides reducing glucose, also efficiently reduces oxidative stress-generated lipid peroxidation-derived aldehydes and their glutathione conjugates. Since lipid aldehydes alter cellular signals by regulating the activation of transcription factors such as NF-kB and AP1, inhibition of AR could inhibit such events. Indeed, a wide array of recent experimental evidence indicates that the inhibition of AR prevents oxidative stress-induced activation of NF-kB and AP1 signals that lead to cell death or growth. Further, AR inhibitors have been shown to prevent inflammatory complications such as sepsis, asthma, colon cancer and uveitis in rodent animal models. The new experimental in-vitro and in-vivo data has provided a basis for investigating the clinical efficacy of AR inhibitors in preventing other inflammatory complications than diabetes. This review describes how the recent studies have identified novel plethoric physiological and pathophysiological significance of AR in mediating inflammatory complications, and how the discovery of such new insights for this old enzyme could have considerable importance in envisioning potential new therapeutic strategies for the prevention or treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
10
|
Ramasamy R, Goldberg IJ. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res 2010; 106:1449-58. [PMID: 20466987 DOI: 10.1161/circresaha.109.213447] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperglycemia and reduced insulin actions affect many biological processes. One theory is that aberrant metabolism of glucose via several pathways including the polyol pathway causes cellular toxicity. Aldose reductase (AR) is a multifunctional enzyme that reduces aldehydes. Under diabetic conditions AR converts glucose into sorbitol, which is then converted to fructose. This article reviews the biology and pathobiology of AR actions. AR expression varies considerably among species. In humans and rats, the higher level of AR expression is associated with toxicity. Flux via AR is increased by ischemia and its inhibition during ischemia reperfusion reduces injury. However, similar pharmacological effects are not observed in mice unless they express a human AR transgene. This is because mice have much lower levels of AR expression, probably insufficient to generate toxic byproducts. Human AR expression in LDL receptor knockout mice exacerbates vascular disease, but only under diabetic conditions. In contrast, a recent report suggests that genetic ablation of AR increased atherosclerosis and increased hydroxynonenal in arteries. It was hypothesized that AR knockout prevented reduction of toxic aldehydes. Like many in vivo effects found in genetically manipulated animals, interpretation requires the reproduction of human-like physiology. For AR, this will require tissue specific expression of AR in sites and at levels that approximate those in humans.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
11
|
Quinn AM, Harvey RG, Penning TM. Oxidation of PAH trans-dihydrodiols by human aldo-keto reductase AKR1B10. Chem Res Toxicol 2009; 21:2207-15. [PMID: 18788756 DOI: 10.1021/tx8002005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AKR1B10 has been identified as a potential biomarker for human nonsmall cell lung carcinoma and as a tobacco exposure and response gene. AKR1B10 functions as an efficient retinal reductase in vitro and may regulate retinoic acid homeostasis. However, the possibility that this enzyme is able to activate polycyclic aromatic hydrocarbon (PAH) trans-dihydrodiols to form reactive and redox-active o-quinones has not been investigated to date. AKR1B10 was found to oxidize a wide range of PAH trans-dihydrodiol substrates in vitro to yield PAH o-quinones. Reactions of AKR1B10 proceeded with improper stereochemistry, since it was specific for the minor (+)-benzo[a]pyrene-7S,8S-dihydrodiol diastereomer formed in vivo. However, AKR1B10 displayed reasonable activity in the oxidation of both the (-)-R,R and (+)-S,S stereoisomers of benzo[g]chrysene-11,12-dihydrodiol and oxidized the potentially relevant, albeit minor, (+)-benz[a]anthracene-3S,4S-dihydrodiol metabolite. We find that AKR1B10 is therefore likely to play a contributing role in the activation of PAH trans-dihydrodiols in human lung. AKR1B10 retinal reductase activity was confirmed in vitro and found to be 5- to 150-fold greater than the oxidation of PAH trans-dihydrodiols examined. AKR1B10 was highly expressed at the mRNA and protein levels in human lung adenocarcinoma A549 cells, and robust retinal reductase activity was measured in lysates of these cells. The much greater catalytic efficiency of retinal reduction compared to PAH trans-dihydrodiol metabolism suggests AKR1B10 may play a greater role in lung carcinogenesis through dysregulation of retinoic acid homeostasis than through oxidation of PAH trans-dihydrodiols.
Collapse
Affiliation(s)
- Amy M Quinn
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | |
Collapse
|
12
|
So WY, Wang Y, Ng MCY, Yang X, Ma RCW, Lam V, Kong APS, Tong PCY, Chan JCN. Aldose reductase genotypes and cardiorenal complications: an 8-year prospective analysis of 1,074 type 2 diabetic patients. Diabetes Care 2008; 31:2148-53. [PMID: 18716049 PMCID: PMC2571065 DOI: 10.2337/dc08-0712] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We report the independent risk association of type 2 diabetic nephropathy with the z-2 allele of the 5'-(CA)(n) microsatellite and C-106T promoter polymorphisms of the aldose reductase gene (ALR2) using a case-control design. In this expanded cohort, we examined their predictive roles on new onset of cardiorenal complications using a prospective design. RESEARCH DESIGN AND METHODS In this 8-year prospective cohort of 1,074 type 2 diabetic patients (59% male, median age 61 years; disease duration 7 years) with an observation period of 8,592 person-years, none had clinical evidence of coronary heart disease (CHD) or chronic kidney disease at recruitment. The renal end point was defined as new onset of estimated glomerular filtration rate <60 ml/min per 1.72 m(2) or hospitalizations with dialysis or death due to renal disease, and CHD was defined as hospitalizations with myocardial infarction, ischemic heart disease, or related deaths. RESULTS After controlling for baseline risk factors and use of medications, we found that the ALR2 z-2 allele of (CA)(n) microsatellite carriers had increased risk of renal (hazard ratio 1.53 [95% CI 1.14-2.05], P = 0.005) or combined cardiorenal (1.31 [1.01-1.72], P = 0.047) end points. Carriers of the ALR2 C-106T polymorphism also had increased risk of renal (1.54 [1.15-2.07], P = 0.004) and cardiorenal (1.49 [1.14-1.95], P = 0.004) end points. Compared with noncarriers, patients with two risk-conferring genotypes had a twofold increased risk of renal (2.41 [1.57-3.70], P < 0.001) and cardiorenal (1.94 [1.29-2.91], P = 0.002) end points. CONCLUSIONS In Chinese type 2 diabetic patients, genetic polymorphisms of ALR2 independently predicted new onset of renal and cardiorenal end points, with the latter being largely mediated through renal disease.
Collapse
Affiliation(s)
- Wing-Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. EXPERIMENTAL DIABETES RESEARCH 2007; 2007:61038. [PMID: 18224243 PMCID: PMC1950230 DOI: 10.1155/2007/61038] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 04/24/2007] [Indexed: 12/22/2022]
Abstract
The polyol pathway is a two-step metabolic pathway in which glucose is reduced to sorbitol, which is then converted to fructose. It is one of the most attractive candidate mechanisms to explain, at least in part, the cellular toxicity of diabetic hyperglycemia because (i) it becomes active when intracellular glucose concentrations are elevated, (ii) the two enzymes are present in human tissues and organs that are sites of diabetic complications, and (iii) the products of the pathway and the altered balance of cofactors generate the types of cellular stress that occur at the sites of diabetic complications. Inhibition (or ablation) of aldose reductase, the first and rate-limiting enzyme in the pathway, reproducibly prevents diabetic retinopathy in diabetic rodent models, but the results of a major clinical trial have been disappointing. Since then, it has become evident that truly informative indicators of polyol pathway activity and/or inhibition are elusive, but are likely to be other than sorbitol levels if meant to predict accurately tissue consequences. The spectrum of abnormalities known to occur in human diabetic retinopathy has enlarged to include glial and neuronal abnormalities, which in experimental animals are mediated by the polyol pathway. The endothelial cells of human retinal vessels have been noted to have aldose reductase. Specific polymorphisms in the promoter region of the aldose reductase gene have been found associated with susceptibility or progression of diabetic retinopathy. This new knowledge has rekindled interest in a possible role of the polyol pathway in diabetic retinopathy and in methodological investigation that may prepare new clinical trials. Only new drugs that inhibit aldose reductase with higher efficacy and safety than older drugs will make possible to learn if the resilience of the polyol pathway means that it has a role in human diabetic retinopathy that should not have gone undiscovered.
Collapse
Affiliation(s)
- Mara Lorenzi
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Thamotharampillai K, Chan AKF, Bennetts B, Craig ME, Cusumano J, Silink M, Oates PJ, Donaghue KC. Decline in neurophysiological function after 7 years in an adolescent diabetic cohort and the role of aldose reductase gene polymorphisms. Diabetes Care 2006; 29:2053-7. [PMID: 16936152 DOI: 10.2337/dc06-0678] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This 7-year longitudinal study examines the potential impact of aldose reductase gene (AKR1B1) polymorphisms on the decline of nerve function in an adolescent diabetic cohort. RESEARCH DESIGN AND METHODS Patients with type 1 diabetes (n = 262) were assessed with three cardiovascular autonomic tests (heart rate variation during deep breathing, Valsalva maneuver, and during standing from a lying position) and pupillometry (resting pupil diameter, constriction velocity, and reflex amplitude), thermal, and vibration thresholds on the foot. Genotyping was performed for promoters (C-106T and C-12G), (CA)(n) dinucleotide repeats, and intragenic BamH1 polymorphism. RESULTS Median time between first and last assessment was 7.0 years (interquartile range 5.1-11.1), with a median of five assessments (four to seven) per individual. At first assessment, median age was 12.7 years (11.7-13.9), median duration was 5.3 years (3.4-8.0), and median HbA(1c) was 8.5% (7.8-9.3). All tests declined over time except for two cardiovascular autonomic tests and vibration discrimination. Faster decline in maximum constriction velocity was found to associate with the Z-2 allele (P = 0.045), Z-2/Z-2 (P = 0.026). Slower decline in hot thermal threshold discrimination associated with Z+2 (P = 0.044), Z+2/Z+2 (P < 0.0005), Z+2/T (P = 0.038), and bb (P = 0.0001). CONCLUSIONS Most autonomic and quantitative sensory nerve testings declined over time. AKR1B1 polymorphisms were strongly associated with the rate of decline of these complications.
Collapse
Affiliation(s)
- Keerthi Thamotharampillai
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao HL, Tong PCY, Lai FMM, Tomlinson B, Chan JCN. Association of glomerulopathy with the 5'-end polymorphism of the aldose reductase gene and renal insufficiency in type 2 diabetic patients. Diabetes 2004; 53:2984-91. [PMID: 15504980 DOI: 10.2337/diabetes.53.11.2984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The expression of nephropathy in type 2 diabetes has several levels of abnormalities. To define the primary abnormalities of diabetic nephropathy, we conducted an autopsy study of 186 consecutive patients with type 2 diabetes to determine correlations among the aldose reductase gene, renal histopathologies, extracellular matrix, glomerular function, and clinical characteristics. Compared with cases of near-normal renal structure (n = 51) and atypical diabetic glomerulopathy (n = 75), patients with classic diabetic glomerulopathy (n = 60) had advanced glomerular disease, as reflected by elevated plasma creatinine levels (133.2 +/- 59.8 vs. 166.0 +/- 65.7 vs. 243.8 +/- 82.6 micromol/l; P < 0.001), glomerular matrix fractions (20.8 +/- 6.7 vs. 33.5 +/- 16.8 vs. 39.2 +/- 14.3%; P < 0.001), and risk of renal failure (odds ratio [OR] 1 vs. 3.5 vs. 21.4; P < 0.001). Compared with noncarriers of the aldose reductase z-2 allele (n = 92) and z-2 heterozygotes (n = 77), z-2 homozygotes (n = 17) had elevated plasma creatinine (164.1 +/- 73.7 vs. 190.6 +/- 60.9 vs. 241.1 +/- 86.2 micromol/l; P < 0.001) and an increased risk of classic diabetic glomerulopathy (OR 1 vs. 0.9 vs. 3.3; P = 0.026). Overexpression of transforming growth factor-beta1, mesangial cell transdifferentiation by expression of alpha-smooth muscle actin, and aberrant deposition of collagen type IV, fibronectin, and laminin were found in classic diabetic glomerulopathy. These data suggest genetic, biochemical, pathophysiological, and clinical correlations among the aldose reductase gene, extracellular matrix, classic diabetic glomerulopathy, and renal insufficiency. Gene mutation, cellular transdifferentiation, growth factor upregulation, extracellular matrix expansion, and glomerular filtration impairment are the primary abnormalities in type 2 diabetic patients with nephropathy.
Collapse
Affiliation(s)
- Hai-Lu Zhao
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | | | | | | | | |
Collapse
|
16
|
Sivenius K, Pihlajamäki J, Partanen J, Niskanen L, Laakso M, Uusitupa M. Aldose reductase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes. Diabetes Care 2004; 27:2021-6. [PMID: 15277434 DOI: 10.2337/diacare.27.8.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We screened the human aldose reductase (ALR) gene for DNA sequence variants in type 2 diabetic and nondiabetic subjects and investigated whether the previously reported and novel polymorphisms were associated with neurophysiologic deterioration and clinical peripheral neuropathy. RESEARCH DESIGN AND METHODS The study population included 85 Finnish type 2 diabetic and 126 nondiabetic subjects. The genetic analyses were performed using the PCR, single-strand conformation polymorphism, restriction fragment-length polymorphism, and automated laser fluorescence scanning analyses. A detailed neurologic examination and neurophysiologic analyses were performed at the time of diagnosis and at the 10-year examination. RESULTS The genetic screening identified four polymorphisms: C-106T, C-11G, A11370G, and C19739A. The C and Z-2 alleles of the C-106T polymorphism and the previously reported (CA)(n) repeat marker were more frequent in type 2 diabetic subjects than in nondiabetic subjects. At baseline, the diabetic subjects with the T allele of the C-106T polymorphism had lower sensory response amplitude values in the peroneal (P = 0.025), sural (P = 0.007), and radial (P = 0.057) nerves and, during follow-up, a greater decrease in the conduction velocity of the motor peroneal nerve than those with the C-106C genotype. No associations were found between the polymorphisms examined and clinical polyneuropathy. CONCLUSIONS The C-106T polymorphism of the ALR gene may contribute to an early development of neurophysiologic deterioration in type 2 diabetic patients.
Collapse
Affiliation(s)
- Katariina Sivenius
- Department of Clinical Nutrition, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
17
|
Hodgkinson AD, Bartlett T, Oates PJ, Millward BA, Demaine AG. The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy. Diabetes 2003; 52:846-51. [PMID: 12606529 DOI: 10.2337/diabetes.52.3.846] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased flux of glucose through the polyol pathway may cause generation of excess reactive oxygen species (ROS), leading to tissue damage. Abnormalities in expression of enzymes that protect against oxidant damage may accentuate the oxidative injury. The expression of catalase (CAT), CuZn superoxide-dismutase (CuZnSOD), glutathione peroxidase (GPX), and Mn superoxide-dismutase (MnSOD) mRNA was quantified in peripheral blood mononuclear cells-obtained from 26 patients with type 1 diabetes and nephropathy, 15 with no microvascular complications after 20 years' duration of diabetes, and 10 normal healthy control subjects-that were exposed in vitro to hyperglycemia (HG) (31 mmol/l D-glucose). Under HG, there was a twofold increase in the expression of CAT, CuZnSOD, and GPX mRNA in the patients without complications and the control subjects versus patients with nephropathy (P < 0.0001), and MnSOD did not change in any of the groups. The aldose reductase inhibitor zopolrestat partially restored the levels of CAT, CuZnSOD, and GPX mRNA in the patients with nephropathy (P < 0.05). There was a highly significant correlation between increased aldose reductase (ALR2) expression, CAT, CuZnSOD, and GPX mRNA levels under HG conditions and polymorphisms of ALR2 in the patients with nephropathy (P < 0.00001). In conclusion, these results suggest that high glucose flux through aldose reductase inhibits the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Andrea D Hodgkinson
- Department of Molecular Medicine, Peninsula Medical School, Tamar Science Park, Plymouth PL6 8BX, U.K
| | | | | | | | | |
Collapse
|