1
|
Nagarajan M, Maadurshni GB, Manivannan J. Exposure to low dose of Bisphenol A (BPA) intensifies kidney oxidative stress, inflammatory factors expression and modulates Angiotensin II signaling under hypertensive milieu. J Biochem Mol Toxicol 2024; 38:e23533. [PMID: 37718616 DOI: 10.1002/jbt.23533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
Humans are constantly exposed to low concentrations of ubiquitous environmental pollutant, Bisphenol A (BPA). Due to the prevalence of hypertension (one of the major risk factors of cardiovascular disease [CVD]) in the population, it is necessary to explore the adverse effect of BPA under hypertension associated pathogenic milieu. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to low dose BPA (50 μg/kg) for 30 days period. In tissue samples immunohistochemistry, real-time quantitative polymerase chain reaction and enzymatic assays were conducted. Moreover, studies on primary kidney cell culture were employed to explore the impact of low dose of BPA exposure at nanomolar level (20-80 nM range) on renal cells through various fluorescence assays. The observed results illustrate that BPA exposure potentiates/aggravates hypertension induced tissue abnormalities (renal fibrosis), oxidative stress (ROS generation), elevated angiotensin-converting enzyme activity, malfunction of the antioxidant and tricarboxylic acid cycle enzymes, tissue lipid abnormalities and inflammatory factor expression (both messenger RNA and protein level of TNF-α and IL-6). Further, in vitro exposure of nM levels of BPA to primary kidney cells modulates oxidative stress (both superoxide and total ROS), mitochondrial physiology (reduced mitochondrial transmembrane potential-∆ψm) and lipid peroxidation in a dose dependent manner. In addition, angiotensin II induced ROS generation was aggravated further by BPA during coexposure in kidney cells. Therefore, during risk assessment, a precise investigation on BPA exposure in hypertensive (CVD vulnerable) populations is highly suggested.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
3
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Nagarajan M, Raja B, Manivannan J. Exposure to a "safe" dose of environmental pollutant bisphenol A elevates oxidative stress and modulates vasoactive system in hypertensive rats. Hum Exp Toxicol 2021; 40:S654-S665. [PMID: 34797181 DOI: 10.1177/09603271211053285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Due to the prevalence of hypertension (one of the major risk factors of CVD) in the population, it is necessary to explore the adverse effects of daily tolerable and "safe" dose of bisphenol A (BPA) under hypertensive conditions. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME, 40 mg/kg b.w/day) induced hypertensive Wistar rats to BPA (50 μg/kg b.w/day) by oral administration along with appropriate controls for 30 days period. The results illustrate that a 'safe' dose of BPA does not influence the systolic blood pressure (SBP) and levels of circulatory biomarkers of tissue damage. On the other hand, BPA exposure significantly (p < 0.05) elevates the thiobarbituric acid reactive substances (TBARS) content in plasma and tissues (heart, aorta, liver and kidney) in hypertensive rats when compared with respective control (BPA alone exposed) rats. Similarly, a significant modulation of ROS generation in RBC, plasma nitric oxide (NO) level and angiotensin-converting enzyme (ACE) activity was observed only under hypertensive milieu. In conclusion, the observed adverse effects during 'safe' dose of BPA exposure are specific to the hypertensive condition. Therefore, a precise investigation to explore the effects of BPA exposure in vulnerable hypertensive populations is highly suggested.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, 364343Bharathiar University, Coimbatore, India
| | - Boobalan Raja
- Cardiovascular Biology Lab, Department of Biochemistry and Biotechnology, Faculty of Science, 364050Annamalai University, Chidambaram, India
| | - Jeganathan Manivannan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, 364343Bharathiar University, Coimbatore, India
| |
Collapse
|
5
|
Tripathy B, Sahoo N, Sahoo SK. Trends in diabetes care with special emphasis to medicinal plants: Advancement and treatment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021; 33:102014. [PMID: 35342487 PMCID: PMC8941016 DOI: 10.1016/j.bcab.2021.102014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
Diabetic mellitus (DM) is a common metabolic disorder prevailing throughout the world. It may affect a child to an older person depending upon the physiology and the factors influencing the internal metabolic system of the body. Several treatments are available in the market ranges from synthetic drugs, insulin therapy, herbal drugs, and transdermal patches. Interestingly, the development of technologies and digital health have proving very helpful in improving the lifestyle of diabetic patients. All treatment approaches have their own advantages and disadvantages in the form of effectiveness and side effects. Medicinal plants have a long history of traditional application in the treatment of diabetes and even the use of plants are growing day-by-day due to the significant results against diseases and fewer side effects as compared to other treatment therapies. The intention behind writing this review is to gather all information and discussed them exhaustively in an article. The novel Coronavirus 2019 (COVID-19) pandemic has affected my lives including diabetic patients. The antidiabetic treatment strategies during this period has also discussed. In this article, we highlighted the molecular mechanism and herbal phytoconstituents that are responsible for lowering blood glucose level. The factors responsible for the progression of metabolic disorders can be controlled with the use of phytoconstituents present in herbal plants to maintain β-cells performance and restore blood glucose level. It can be concluded that medicinal plants are effective and affordable with lesser side effects for treating DM.
Collapse
Affiliation(s)
| | - Nityananda Sahoo
- Centurion University of Technology & Management, Odisha, 752050, India
| | - Sudhir Kumar Sahoo
- Royal College of Pharmacy and Health Sciences, Berhampur, Odisha, 759024, India
| |
Collapse
|
6
|
Marroqui L, Martinez-Pinna J, Castellano-Muñoz M, Dos Santos RS, Medina-Gali RM, Soriano S, Quesada I, Gustafsson JA, Encinar JA, Nadal A. Bisphenol-S and Bisphenol-F alter mouse pancreatic β-cell ion channel expression and activity and insulin release through an estrogen receptor ERβ mediated pathway. CHEMOSPHERE 2021; 265:129051. [PMID: 33250229 DOI: 10.1016/j.chemosphere.2020.129051] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol-S (BPS) and Bisphenol-F (BPF) are current Bisphenol-A (BPA) substitutes. Here we used pancreatic β-cells from wild type (WT) and estrogen receptor β (ERβ) knockout (BERKO) mice to investigate the effects of BPS and BPF on insulin secretion, and the expression and activity of ion channels involved in β-cell function. BPS or BPF rapidly increased insulin release and diminished ATP-sensitive K+ (KATP) channel activity. Similarly, 48 h treatment with BPS or BPF enhanced insulin release and decreased the expression of several ion channel subunits in β-cells from WT mice, yet no effects were observed in cells from BERKO mice. PaPE-1, a ligand designed to preferentially trigger extranuclear-initiated ER pathways, mimicked the effects of bisphenols, suggesting the involvement of extranuclear-initiated ERβ pathways. Molecular dynamics simulations indicated differences in ERβ ligand-binding domain dimer stabilization and solvation free energy among different bisphenols and PaPE-1. Our data suggest a mode of action involving ERβ whose activation alters three key cellular events in β-cell, namely ion channel expression and activity, and insulin release. These results may help to improve the hazard identification of bisphenols.
Collapse
Affiliation(s)
- Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Juan Martinez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Manuel Castellano-Muñoz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - José A Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
7
|
Hagobian TA, Brunner-Gaydos H, Seal A, Schaffner A, Kitts C, Hubbard R, Malin SK, La Frano MR, Bennion KA, Phelan S. Rationale and design of a randomized controlled trial examining oral administration of bisphenol A on hepatic glucose production and skeletal muscle insulin sensitivity in adults. Contemp Clin Trials Commun 2020; 17:100549. [PMID: 32154432 PMCID: PMC7052501 DOI: 10.1016/j.conctc.2020.100549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 01/15/2023] Open
Abstract
Previous observational studies have shown that the endocrine disrupting chemical bisphenol A (BPA) is associated with type 2 diabetes, but few studies have examined direct effects of BPA on human health. The purpose of this study is to determine whether orally administered BPA at the US Environmental Protection Agency (EPA) safe dose of 50 μg/kg body weight has an adverse effect on hepatic glucose production and skeletal muscle insulin sensitivity. Forty, non-habitually active, healthy adults of normal weight will be enrolled. Participants will begin with a 2-day baseline energy balance diet low in bisphenols in which urine and blood will be collected, and standard tests performed to assess the primary outcome measures of hepatic glucose production (via [6,6-2H] glucose infusion) and skeletal muscle insulin sensitivity (via euglycemic hyperinsulinemic clamp technique). Secondary outcome measures are fasting hormones/endocrine factors (insulin, glucose, C-peptide, Pro-insulin, adiponectin, 17-beta-estradiol, free fatty acids) related to the pathogenesis of type 2 diabetes. Participants will then be randomly assigned to a 4-day energy balance diet plus oral administration of BPA at 50 μg/kg body weight (Diet + BPA) or 4-day energy balance diet plus oral administration of placebo (Diet + No BPA); all outcome measures will be reassessed after 4 days. Findings from this study will provide a framework for other studies in this area, and provide much needed experimental evidence using gold standard measures as to whether oral BPA administration over several days poses any risk of type 2 diabetes. Bisphenol A is associated with type 2 diabetes. Few studies have examined oral bisphenol A administration on the pathogenesis of type 2 diabetes. This study will examine oral bisphenol A administration on hepatic glucose [6,6-2H] suppression. This study will examine insulin sensitivity (euglycemic hyperinsulinemic clamp technique).
Collapse
Affiliation(s)
- Todd A Hagobian
- Center for Health Research, California Polytechnic State University, USA.,Department of Kinesiology and Public Health, California Polytechnic State University, USA
| | - Hannah Brunner-Gaydos
- Center for Health Research, California Polytechnic State University, USA.,Department of Kinesiology and Public Health, California Polytechnic State University, USA
| | - Adam Seal
- Center for Health Research, California Polytechnic State University, USA.,Department of Kinesiology and Public Health, California Polytechnic State University, USA
| | - Andrew Schaffner
- Center for Health Research, California Polytechnic State University, USA.,Department of Statistics, California Polytechnic State University, USA
| | - Chris Kitts
- Department of Biology, California Polytechnic State University, USA
| | - Ryan Hubbard
- Campus Health and Wellbeing, California Polytechnic State University, USA
| | | | - Michael R La Frano
- Center for Health Research, California Polytechnic State University, USA.,Department of Food Science and Nutrition, California Polytechnic State University, USA
| | - Kelly A Bennion
- Center for Health Research, California Polytechnic State University, USA.,Department of Psychology and Child Development, California Polytechnic State University, USA
| | - Suzanne Phelan
- Center for Health Research, California Polytechnic State University, USA.,Department of Kinesiology and Public Health, California Polytechnic State University, USA
| |
Collapse
|
8
|
Sargis RM, Simmons RA. Environmental neglect: endocrine disruptors as underappreciated but potentially modifiable diabetes risk factors. Diabetologia 2019; 62:1811-1822. [PMID: 31451869 PMCID: PMC7462102 DOI: 10.1007/s00125-019-4940-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes prevalence is increasing dramatically across the globe, imposing a tremendous toll on individuals and healthcare systems. Reversing these trends requires comprehensive approaches to address both classical and emerging diabetes risk factors. Recently, environmental toxicants acting as endocrine-disrupting chemicals (EDCs) have emerged as novel metabolic disease risk factors. EDCs implicated in diabetes pathogenesis include various inorganic and organic molecules of both natural and synthetic origin, including arsenic, bisphenol A, phthalates, polychlorinated biphenyls and organochlorine pesticides. Indeed, evidence implicates EDC exposures across the lifespan in metabolic dysfunction; moreover, specific developmental windows exhibit enhanced sensitivity to EDC-induced metabolic disruption, with potential impacts across generations. Importantly, differential exposures to diabetogenic EDCs likely also contribute to racial/ethnic and economic disparities. Despite these emerging links, clinical practice guidelines fail to address this underappreciated diabetes risk factor. Comprehensive approaches to stem the tide of diabetes must include efforts to address its environmental drivers.
Collapse
Affiliation(s)
- Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Suite E625; M/C 640, Chicago, IL, 60612, USA.
- ChicAgo Center for Health and EnvironmenT (CACHET), University of Illinois at Chicago, Chicago, IL, USA.
| | - Rebecca A Simmons
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Hagobian T. CLARITY-BPA Program in Rats: Is It Translatable to Humans? J Endocr Soc 2019; 3:1390-1392. [PMID: 31286104 PMCID: PMC6608553 DOI: 10.1210/js.2019-00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
Abstract
The Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA) program was the most comprehensive study to date examining a full range of health effects of varying bisphenol A (BPA) exposure in rats. The major concern of the CLARITY-BPA program that has not previously been discussed is whether exposing rats to varying doses to BPA is translatable to humans, even at the “typical” exposure ranges for humans. This perspective will provide evidence that the vast majority of pharmaceutical drug development and other trials in animals have not been replicated in human randomized studies. Similarly, to truly understand whether BPA exposure affects human health, clinical trials are needed to examine BPA administration in humans in controlled settings.
Collapse
Affiliation(s)
- Todd Hagobian
- Department of Kinesiology and Public Health, Center for Health Research Center, California Polytechnic State University, San Luis Obispo, California
| |
Collapse
|