1
|
Paw M, Wnuk D, Madeja Z, Michalik M. PPARδ Agonist GW501516 Suppresses the TGF-β-Induced Profibrotic Response of Human Bronchial Fibroblasts from Asthmatic Patients. Int J Mol Sci 2023; 24:ijms24097721. [PMID: 37175437 PMCID: PMC10178673 DOI: 10.3390/ijms24097721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The airway wall remodeling observed in asthma is associated with subepithelial fibrosis and enhanced activation of human bronchial fibroblasts (HBFs) in the fibroblast to myofibroblast transition (FMT), induced mainly by transforming growth factor-β (TGF-β). The relationships between asthma severity, obesity, and hyperlipidemia suggest the involvement of peroxisome proliferator-activated receptors (PPARs) in the remodeling of asthmatic bronchi. In this study, we investigated the effect of PPARδ ligands (GW501516 as an agonist, and GSK0660 as an antagonist) on the FMT potential of HBFs derived from asthmatic patients cultured in vitro. This report shows, for the first time, the inhibitory effect of a PPARδ agonist on the number of myofibroblasts and the expression of myofibroblast-related markers-α-smooth muscle actin, collagen 1, tenascin C, and connexin 43-in asthma-related TGF-β-treated HBF populations. We suggest that actin cytoskeleton reorganization and Smad2 transcriptional activity altered by GW501516 lead to the attenuation of the FMT in HBF populations derived from asthmatics. In conclusion, our data demonstrate that a PPARδ agonist stimulates antifibrotic effects in an in vitro model of bronchial subepithelial fibrosis. This suggests its potential role in the development of a possible novel therapeutic approach for the treatment of subepithelial fibrosis during asthma.
Collapse
Affiliation(s)
- Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
2
|
Capozzi ME, Savage SR, McCollum GW, Hammer SS, Ramos CJ, Yang R, Bretz CA, Penn JS. The peroxisome proliferator-activated receptor-β/δ antagonist GSK0660 mitigates retinal cell inflammation and leukostasis. Exp Eye Res 2020; 190:107885. [PMID: 31758977 PMCID: PMC7426872 DOI: 10.1016/j.exer.2019.107885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy (DR) is triggered by retinal cell damage stimulated by the diabetic milieu, including increased levels of intraocular free fatty acids. Free fatty acids may serve as an initiator of inflammatory cytokine release from Müller cells, and the resulting cytokines are potent stimulators of retinal endothelial pathology, such as leukostasis, vascular permeability, and basement membrane thickening. Our previous studies have elucidated a role for peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in promoting several steps in the pathologic cascade in DR, including angiogenesis and expression of inflammatory mediators. Furthermore, PPARβ/δ is a known target of lipid signaling, suggesting a potential role for this transcription factor in fatty acid-induced retinal inflammation. Therefore, we hypothesized that PPARβ/δ stimulates both the induction of inflammatory mediators by Müller cells as well the paracrine induction of leukostasis in endothelial cells (EC) by Müller cell inflammatory products. To test this, we used the PPARβ/δ inhibitor, GSK0660, in primary human Müller cells (HMC), human retinal microvascular endothelial cells (HRMEC) and mouse retina. We found that palmitic acid (PA) activation of PPARβ/δ in HMC leads to the production of pro-angiogenic and/or inflammatory cytokines that may constitute DR-relevant upstream paracrine inflammatory signals to EC and other retinal cells. Downstream, EC transduce these signals and increase their synthesis and release of chemokines such as CCL8 and CXCL10 that regulate leukostasis and other cellular events related to vascular inflammation in DR. Our results indicate that PPARβ/δ inhibition mitigates these upstream (MC) as well as downstream (EC) inflammatory signaling events elicited by metabolic stimuli and inflammatory cytokines. Therefore, our data suggest that PPARβ/δ inhibition is a potential therapeutic strategy against early DR pathology.
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA.
| | - Sara R Savage
- Department of Pharmacology, Vanderbilt University, USA
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA
| | - Sandra S Hammer
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA
| | - Rong Yang
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA
| | - Colin A Bretz
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - John S Penn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA; Department of Pharmacology, Vanderbilt University, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA; Department of Cell and Developmental Biology, Vanderbilt University, USA
| |
Collapse
|
3
|
Shahoei SH, Nelson ER. Nuclear receptors, cholesterol homeostasis and the immune system. J Steroid Biochem Mol Biol 2019; 191:105364. [PMID: 31002862 PMCID: PMC6589364 DOI: 10.1016/j.jsbmb.2019.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Cholesterol is essential for maintaining membrane fluidity in eukaryotes. Additionally, the synthetic cascade of cholesterol results in precursor molecules important for cellular function such as lipid raft formation and protein prenylation. As such, cholesterol homeostasis is tightly regulated. Interestingly, it is now known that some cholesterol precursors and many metabolites serve as active signaling molecules, binding to different classes of receptors including the nuclear receptors. Furthermore, many cholesterol metabolites or their nuclear receptors have been implicated in the regulation of the immune system in normal physiology and disease. Therefore, in this focused review, cholesterol homeostasis and nuclear receptors involved in this regulation will be discussed, with particular emphasis on how these cascades influence the immune system.
Collapse
Affiliation(s)
- Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana Champaign, Urbana, IL, United States.
| |
Collapse
|
4
|
Hall JM, Powell HR, Rajic L, Korach KS. The Role of Dietary Phytoestrogens and the Nuclear Receptor PPARγ in Adipogenesis: An in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:37007. [PMID: 30920877 PMCID: PMC6768326 DOI: 10.1289/ehp3444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Phytoestrogens, naturally occurring plant chemicals, have long been thought to confer beneficial effects on human cardiovascular and metabolic health. However, recent epidemiological studies, have yielded conflicting outcomes, in which phytoestrogen consumption was both positively and negatively correlated with adiposity. Interestingly, several dietary phytoestrogens are known to stimulate or inhibit the activity of the peroxisome proliferator-activated receptor gamma (PPARγ), a key physiological regulator of adipogenesis. OBJECTIVE The objective of this study was to test the hypothesis that the pro- or anti-adipogenic activity of phytoestrogen chemicals is related to the ability to activate PPARγ in adipocytes. METHODS The effects of resveratrol and the soy isoflavones genistein and daidzein on adipogenesis were examined in cell-based assays using the 3T3-L1 cell model. In parallel, ligand-mediated alterations in PPARγ target gene expression were measured by quantitative polymerase chain reaction. The agonist/antagonist activities of phytoestrogens on PPARγ were further assessed by quantifying their ability to affect recruitment of transcriptional cofactors to the receptor. RESULTS Resveratrol displayed significant anti-adipogenic activities as exhibited by the ability to antagonize PPARγ-dependent adipocyte differentiation, down-regulate genes involved in lipid metabolism, block cofactor recruitment to PPARγ, and antagonize the effects of the PPARγ agonist rosiglitazone. In contrast, genistein and daidzein functioned as PPARγ agonists while also displaying pro-adipogenic activities. CONCLUSIONS These data provide biological evidence that the pro- or anti-obesity effects of phytoestrogens are related to their relative agonist/antagonist activity on PPARγ. Thus, PPARγ-activation assays may enable the screening of dietary components and identification of agents with adipogenic activities. https://doi.org/10.1289/EHP3444.
Collapse
Affiliation(s)
- Julie M. Hall
- Department of Medical Sciences, Frank H. Netter MD School of Medicine NH-MED, Quinnipiac University, North Haven, Connecticut, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Heather R. Powell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Lara Rajic
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Kenneth S. Korach
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Pomatto V, Cottone E, Cocci P, Mozzicafreddo M, Mosconi G, Nelson ER, Palermo FA, Bovolin P. Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells. J Steroid Biochem Mol Biol 2018; 178:322-332. [PMID: 29410257 PMCID: PMC5993210 DOI: 10.1016/j.jsbmb.2018.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that exposure to some plasticizers, such as Bisphenol A (BPA), play a role in endocrine/metabolic dispruption and can affect lipid accumulation in adipocytes. Here, we investigated the adipogenic activity and nuclear receptor interactions of four plasticizers approved for the manufacturing of food-contact materials (FCMs) and currently considered safer alternatives. Differentiating 3T3-L1 mouse preadipocytes were exposed to scalar concentrations (0.01-25 μM) of DiNP (Di-iso-nonyl-phthalate), DiDP (Di-iso-decyl-phthalate), DEGDB (Diethylene glycol dibenzoate), or TMCP (Tri-m-cresyl phosphate). Rosiglitazone, a well-known pro-adipogenic peroxisome proliferator activated receptor gamma (PPARγ) agonist, and the plasticizer BPA were included as reference compounds. All concentrations of plasticizers were able to enhance lipid accumulation, with TMCP being the most effective one. Accordingly, when comparing in silico the ligand binding efficiencies to the nuclear receptors PPARγ and retinoid-X-receptor-alpha (RXRα), TMPC displayed the highest affinity to both receptors. Differently from BPA, the four plasticizers were most effective in enhancing lipid accumulation when added in the mid-late phase of differentiation, thus suggesting the involvement of different intracellular signalling pathways. In line with this, TMCP, DiDP, DiNP and DEGDB were able to activate PPARγ in transient transfection assays, while previous studies demonstrated that BPA acts mainly through other nuclear receptors. qRT-PCR studies showed that all plasticizers were able to increase the expression of CCAAT/enhancer binding protein β (Cebpβ) in the early steps of adipogenesis, and the adipogenesis master gene Pparγ2 in the middle phase, with very similar efficacy to that of Rosiglitazone. In addition, TMCP was able to modulate the expression of both Fatty Acid Binding Protein 4/Adipocyte Protein 2 (Fabp4/Ap2) and Lipoprotein Lipase (Lpl) transcripts in the late phase of adipogenesis. DEGDB increased the expression of Lpl only, while the phthalate DiDP did not change the expression of either late-phase marker genes Fabp4 and Lpl. Taken together, our results suggest that exposure to low, environmentally relevant doses of the plasticizers DiNP, DiDP, DEGDB and TMCP increase lipid accumulation in 3T3-L1 adipocytes, an effect likely mediated through activation of PPARγ and interference at different levels with the transcriptional cascade driving adipogenesis.
Collapse
Affiliation(s)
- Valentina Pomatto
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicines, University of Camerino, 62032 Camerino, Italy
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicines, University of Camerino, 62032 Camerino, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicines, University of Camerino, 62032 Camerino, Italy
| | - Erik Russel Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy.
| |
Collapse
|
6
|
Choudhary M, Ding JD, Qi X, Boulton ME, Yao PL, Peters JM, Malek G. PPARβ/δ selectively regulates phenotypic features of age-related macular degeneration. Aging (Albany NY) 2017; 8:1952-1978. [PMID: 27622388 PMCID: PMC5076447 DOI: 10.18632/aging.101031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/26/2016] [Indexed: 01/18/2023]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a nuclear receptor that regulates differentiation, inflammation, lipid metabolism, extracellular matrix remodeling, and angiogenesis in multiple tissues. These pathways are also central to the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss globally. With the goal of identifying signaling pathways that may be important in the development of AMD, we investigated the impact of PPARβ/δ activation on ocular tissues affected in the disease. PPARβ/δ is expressed and can be activated in AMD vulnerable cells, including retinal pigment epithelial (RPE) and choroidal endothelial cells. Further, PPARβ/δ knockdown modulates AMD-related pathways selectively. Specifically, genetic ablation of Pparβ/δ in aged mice resulted in exacerbation of several phenotypic features of early dry AMD, but attenuation of experimentally induced choroidal neovascular (CNV) lesions. Antagonizing PPARβ/δ in both in vitro angiogenesis assays and in the in vivo experimentally induced CNV model, inhibited angiogenesis and angiogenic pathways, while ligand activation of PPARβ/δ, in vitro, decreased RPE lipid accumulation, characteristic of dry AMD. This study demonstrates for the first time, selective regulation of a nuclear receptor in the eye and establishes that selective targeting of PPARβ/δ may be a suitable strategy for treatment of different clinical sub-types of AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA
| | - Xiaoping Qi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael E Boulton
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pei-Li Yao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC 27703, USA
| |
Collapse
|
7
|
Gorricho J, Garjón J, Alonso A, Celaya MC, Saiz LC, Erviti J, López A. Use of oral antidiabetic agents and risk of community-acquired pneumonia: a nested case-control study. Br J Clin Pharmacol 2017; 83:2034-2044. [PMID: 28294379 DOI: 10.1111/bcp.13288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
AIMS To evaluate the association between use of different oral antidiabetic agents (OAD) and the risk of community-acquired pneumonia (CAP) in patients with type-2 diabetes (T2DM). METHODS Case-control study nested in a cohort of patients with T2DM and use of OAD between 2002 and 2013, based in a Spanish general practice research database. Cases were people diagnosed with T2DM, aged >18 years and with a validated diagnosis of CAP between 2002 and 2013. Ten controls were matched on age, sex and calendar year. Odds ratio (OR) of CAP was estimated comparing patients treated with: (1) metformin vs. other monotherapies or no antidiabetic treatment; (2) metformin + sulfonylureas vs. other antidiabetic combinations. OR of CAP was also assessed according to antidiabetic treatment duration. RESULTS From a cohort of 76 009 T2DM patients, we identified 1803 cases of CAP. No difference in the incidence of CAP was observed when comparing any OAD in monotherapy with metformin. Compared with current use of metformin + sulfonylurea, thiazolidinediones + metformin was associated with an increased risk of CAP (adjusted OR = 2.48, 95% CI 1.40-4.38). The use of any combination with thiazolidinediones was also associated with higher risk of CAP (adjusted OR = 2.00, 95% CI 1.22-3.28). Current use of DPP-4 inhibitors was not associated with an increased risk of CAP. CONCLUSIONS No differences in the incidence of CAP were observed between the use of OAD in monotherapy vs. metformin. Thiazolidinedione use in combination was associated with an increase in the risk of CAP when compared to metformin + sulfonylureas. The use of DPP-4 inhibitors was not associated with an increased risk of CAP.
Collapse
Affiliation(s)
- Javier Gorricho
- Planning, Evaluation and Management Service, General Directorate of Health, Government of Navarre, Calle Irunlarrea 3 (Pabellón Docencia del Hospital de Navarra), 31008, Pamplona, Navarre, Spain
| | - Javier Garjón
- Subdirectorate of Pharmacy, Navarre Regional Health Service, Plaza de la Paz s/n, 31002, Pamplona, Navarre, Spain
| | - Alvaro Alonso
- Rollins School of Public Health, Emory University, 1518 Clifton Road, NE, Atlanta, GA 30322, USA
| | - María Concepción Celaya
- Subdirectorate of Pharmacy, Navarre Regional Health Service, Plaza de la Paz s/n, 31002, Pamplona, Navarre, Spain
| | - Luis Carlos Saiz
- Subdirectorate of Pharmacy, Navarre Regional Health Service, Plaza de la Paz s/n, 31002, Pamplona, Navarre, Spain
| | - Juan Erviti
- Subdirectorate of Pharmacy, Navarre Regional Health Service, Plaza de la Paz s/n, 31002, Pamplona, Navarre, Spain
| | - Antonio López
- Subdirectorate of Pharmacy, Navarre Regional Health Service, Plaza de la Paz s/n, 31002, Pamplona, Navarre, Spain
| |
Collapse
|
8
|
Ban S, Ueda Y, Ohashi M, Matsuno K, Ikeda M, Kato N, Miyachi H. Peroxisome proliferator-activated receptor delta antagonists inhibit hepatitis C virus RNA replication. Bioorg Med Chem Lett 2013; 23:4774-8. [PMID: 23891183 DOI: 10.1016/j.bmcl.2013.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 12/20/2022]
Abstract
It has been reported that ligand-mediated transcription factor peroxisome proliferator-activated receptor alpha (hPPARα) is involved in hepatitis C virus (HCV) RNA replication, whereas hPPARγ is not, and the effect of hPPARδ is unknown. Here, we show that hPPARδ-selective antagonists effectively inhibit HCV RNA replication. We describe the design, synthesis and pharmacological evaluation of a series of biphenyl-4-carboxylic acid-type hPPARδ antagonists, including previously reported compounds, as candidate anti-HCV agents. A representative compound (4c) dose-dependently inhibited HCV RNA replication (EC50 0.22 μM), while exhibiting relatively weak cytotoxicity to the host cells (CC50 2.5 μM). It also showed an additive and dose-dependent effect on the inhibition of HCV RNA replication by pegylated interferon alpha (Peg-IFNα) alone and by both Peg-IFNα and ribavirin (currently the clinical treatment of choice for HCV infection). Thus, combination of a hPPARδ antagonist with current therapy may improve the efficacy of treatment for HCV infection.
Collapse
Affiliation(s)
- Shintaro Ban
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Kim YW, Bae SM, Kim YW, Park DC, Lee KH, Liu HB, Kim IW, Jang CK, Ahn WS. Target-based molecular signature characteristics of cervical adenocarcinoma and squamous cell carcinoma. Int J Oncol 2013; 43:539-47. [PMID: 23707988 DOI: 10.3892/ijo.2013.1961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/15/2012] [Indexed: 11/05/2022] Open
Abstract
There is an urgent need for molecular marker studies of adenocarcinoma (AC) and squamous cell carcinoma (SCC) of the uterine cervix. This study utilized oligomicroarray and pathway analyses to characterize a transcriptomic signature with molecular networks associated with AC and SCC. A 10K oligomicroarray was used to identify potential transcripts that were differentially expressed in cervical cancers from 28 patients and common reference RNAs from 17 different normal cervixes. Molecular networks were correlated using genomics tools to globally explore cellular pathways. Gene expression levels of 46 transcripts separated cancer samples into AC and SCC groups. Genes including: KRT17, IGFBP2, CALCA and VIPR1 were differentially expressed in AC and SCC. In addition, we identified a transcriptomic signature that predicted tumor classification and progression based upon its cellular processes. The downregulated signatures for SCC were cell death of pheochromocytoma cells (P=0.0037), apoptosis of neurons (P=0.009) and damage to DNA (P=0.0038). By contrast, the upregulated molecular signatures in AC were immunological disorder (P=0.006), splenomegaly (P=0.0053) and hepatic system disorder (P=0.006). The G2/M DNA damage checkpoint regulation pathway (P=0.05) was found to be significantly linked to IGF1R as a new regulatory component of a putative cytoplasmic signaling cascade in SCC. By contrast, the antigen presenting canonical pathway (P=0.038) appeared to be linked to PPARγ in AC. Taken together, these experiments provide important new information regarding the role of molecular networks in mediating SCC and AC, possibly through two independent pathways, and contribute to provide new targets for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Yong-Wan Kim
- Catholic Research Institutes of Medical Science, Catholic University of Korea, Incheon St. Mary's Hospital, Incheon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Idealized PPARγ-Based Therapies: Lessons from Bench and Bedside. PPAR Res 2012; 2012:978687. [PMID: 22745632 PMCID: PMC3382399 DOI: 10.1155/2012/978687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/23/2012] [Indexed: 01/07/2023] Open
Abstract
The incidence of type 2 (T2D) diabetes and other chronic conditions associated with insulin resistance is increasing at an alarming rate, underscoring the need for effective and safe therapeutic strategies. Peroxisome-proliferator-activated receptor gamma (PPARγ) has emerged as a critical regulator of glucose homeostasis, lipid homeostasis, and vascular inflammation. Currently marketed drugs targeting this receptor, the thiazolidinediones (TZDs), have proven benefits on insulin resistance and hyperglycemia associated with T2D. Unfortunately, they have been associated with long-term unfavorable effects on health, such as weight gain, plasma volume expansion, bone loss, cardiovascular toxicity, and possibly cancer, and these safety concerns have led to reduced interest for many PPARγ ligands. However, over the last years, data from human genetic studies, animal models, and studies with ligands have increased our understanding of PPARγ's actions and provided important insights into how ligand development strategies could be optimized to increase effectiveness and safety of PPARγ-based therapies.
Collapse
|
11
|
Hack K, Reilly L, Palmer C, Read KD, Norval S, Kime R, Booth K, Foerster J. Skin-targeted inhibition of PPAR β/δ by selective antagonists to treat PPAR β/δ-mediated psoriasis-like skin disease in vivo. PLoS One 2012; 7:e37097. [PMID: 22606335 PMCID: PMC3351437 DOI: 10.1371/journal.pone.0037097] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 04/18/2012] [Indexed: 12/11/2022] Open
Abstract
We have previously shown that peroxisome proliferator activating receptor ß/δ (PPAR β/δ is overexpressed in psoriasis. PPAR β/δ is not present in adult epidermis of mice. Targeted expression of PPAR β/δ and activation by a selective synthetic agonist is sufficient to induce an inflammatory skin disease resembling psoriasis. Several signalling pathways dysregulated in psoriasis are replicated in this model, suggesting that PPAR β/δ activation contributes to psoriasis pathogenesis. Thus, inhibition of PPAR β/δ might harbour therapeutical potential. Since PPAR β/δ has pleiotropic functions in metabolism, skin-targeted inhibition offer the potential of reducing systemic adverse effects. Here, we report that three selective PPAR β/δ antagonists, GSK0660, compound 3 h, and GSK3787 can be formulated for topical application to the skin and that their skin concentration can be accurately quantified using ultra-high performance liquid chromatography (UPLC)/mass spectrometry. These antagonists show efficacy in our transgenic mouse model in reducing psoriasis-like changes triggered by activation of PPAR β/δ. PPAR β/δ antagonists GSK0660 and compound 3 do not exhibit systemic drug accumulation after prolonged application to the skin, nor do they induce inflammatory or irritant changes. Significantly, the irreversible PPAR β/δ antagonist (GSK3787) retains efficacy when applied topically only three times per week which could be of practical clinical usefulness. Our data suggest that topical inhibition of PPAR β/δ to treat psoriasis may warrant further exploration.
Collapse
Affiliation(s)
- Katrin Hack
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - Louise Reilly
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - Colin Palmer
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - Kevin D. Read
- Biological Chemistry and Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Suzanne Norval
- Biological Chemistry and Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Robert Kime
- Biological Chemistry and Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Kally Booth
- Medical School Biological Resource Unit, College of Medicine, Dentistry, and Nursing
| | - John Foerster
- Department of Dermatology, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Education Division, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| |
Collapse
|
12
|
Jakobsson T, Treuter E, Gustafsson JÅ, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 2012; 33:394-404. [PMID: 22541735 DOI: 10.1016/j.tips.2012.03.013] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/05/2012] [Accepted: 03/26/2012] [Indexed: 01/12/2023]
Abstract
Nuclear receptors (NRs) are master regulators of transcriptional programs that integrate the homeostatic control of almost all biological processes. Their direct mode of ligand regulation and genome interaction is at the core of modern pharmacology. The two liver X receptors LXRα and LXRβ are among the emerging newer drug targets within the NR family. LXRs are best known as nuclear oxysterol receptors and physiological regulators of lipid and cholesterol metabolism that also act in an anti-inflammatory way. Because LXRs control diverse pathways in development, reproduction, metabolism, immunity and inflammation, they have potential as therapeutic targets for diseases as diverse as lipid disorders, atherosclerosis, chronic inflammation, autoimmunity, cancer and neurodegenerative diseases. Recent insights into LXR signaling suggest future targeting strategies aiming at increasing LXR subtype and pathway selectivity. This review discusses the current status of our understanding of LXR biology and pharmacology, with an emphasis on the molecular aspects of LXR signaling that constitute the potential of LXRs as drug targets.
Collapse
Affiliation(s)
- Tomas Jakobsson
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, S-14183 Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
NO-Donating NSAIDs, PPARdelta, and Cancer: Does PPARdelta Contribute to Colon Carcinogenesis? PPAR Res 2011; 2008:919572. [PMID: 18528523 PMCID: PMC2408682 DOI: 10.1155/2008/919572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 04/25/2008] [Accepted: 05/06/2008] [Indexed: 12/30/2022] Open
Abstract
The chemopreventive NO-donating NSAIDs (NO-NSAIDs; NSAIDs with an NO-releasing moiety) modulate PPARδ and offer the opportunity to revisit the controversial role of PPARδ in carcinogenesis (several papers report that PPARδ either promotes or inhibits cancer). This review summarizes the pharmacology of NO-NSAIDs, PPARδ cancer biology, and the relationship between the two. In particular, a study of the chemopreventive effect of two isomers of NO-aspirin on intestinal neoplasia in Min mice showed that, compared to wild-type controls, PPARδ is overexpressed in the intestinal mucosa of Min mice; PPARδ responds to
m- and p-NO-ASA proportionally to their antitumor effect (p- > m-). This effect is accompanied by the induction of epithelial cell death, which correlates with the antineoplastic effect of NO-aspirin; and NO-aspirin's effect on PPARδ is specific (no changes in PPARα or PPARγ). Although these data support the notion that PPARδ promotes intestinal carcinogenesis and its inhibition could be therapeutically useful, more work is needed before a firm conclusion is reached.
Collapse
|
14
|
Peroxisome proliferator-activated receptors in lung cancer. PPAR Res 2011; 2007:90289. [PMID: 18274632 PMCID: PMC2220082 DOI: 10.1155/2007/90289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/03/2007] [Indexed: 01/11/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Their discovery in the 1990s provided insights into the cellular mechanisms involved in the control of energy homeostasis; the regulation of cell differentiation, proliferation, and apoptosis; and the modulation of important biological and pathological processes related to inflammation, among others. Since then, PPARs have become an exciting therapeutic target for several diseases. PPARs are expressed by many tumors including lung carcinoma cells, and their function has been linked to the process of carcinogenesis in lung. Consequently, intense research is being conducted in this area with the hope of discovering new PPAR-related therapeutic targets for the treatment of lung cancer. This review summarizes the research being conducted in this area and focuses on the mechanisms by which PPARs are believed to affect lung tumor cell biology.
Collapse
|
15
|
Esposito E, Cuzzocrea S. Targeting the peroxisome proliferator-activated receptors (PPARs) in spinal cord injury. Expert Opin Ther Targets 2011; 15:943-59. [DOI: 10.1517/14728222.2011.581231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Chan DT, Watts GF, Irish AB, Dogra GK. Rosiglitazone does not improve vascular function in subjects with chronic kidney disease. Nephrol Dial Transplant 2011; 26:3543-9. [PMID: 21378155 DOI: 10.1093/ndt/gfr049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Thiazolidinediones such as rosiglitazone (RSG) are insulin-sensitizing agents, which may improve inflammation and vascular function, and thus potentially lower cardiovascular risk in patients with chronic kidney disease (CKD). However, there is growing concern about the adverse cardiovascular effects of RSG in diabetic patients without CKD, and the data in patients with CKD remain conflicting. This study examines the effect of RSG on vascular function in patients with CKD. METHODS A randomized, double-blind placebo-controlled study comparing RSG 4 mg daily (n = 35) with placebo (n = 35) for 8 weeks was performed in CKD subjects. Primary outcome measures were flow-mediated dilatation (FMD), systemic arterial compliance (SAC) and augmentation index (AIx). Secondary outcomes included glyceryl trinitrate-mediated dilatation (GTN-MD), pulse-wave velocity (PWV), lipids, blood pressure, homoeostasis model assessment (HOMA), adiponectin, high-sensitivity C-reactive protein (hs-CRP) and high-sensitivity interleukin 6 (hs-IL-6) and in vivo marker of endothelial function [von Willebrand Factor (vWF)]. RESULTS RSG lowered HOMA score [RSG geometric mean 1.7 (95% confidence interval 1.3-2.3); placebo 1.9 (1.4-2.5), P = 0.04], hs-CRP [RSG 1.2 (0.9-1.7) mg/L; placebo 1.6 (1.2-2.3), P = 0.04] and vWF [RSG mean 126.1 ± SD 45.7%; placebo 132.7 ± 41.7, P = 0.01] but not hs-IL-6. RSG did not significantly change arterial function (FMD, GTN-MD, SAC), arterial stiffness (AIx, PWV) or blood pressure. RSG increased triglyceride concentration [RSG 1.8 (1.3-1.9) mmol/L; placebo 1.5 (1.3-1.9), P = 0.01] without affecting other lipid and lipoprotein concentrations. CONCLUSION Short-term RSG therapy reduced insulin resistance, in vivo markers of inflammation and abnormal endothelial function but had no effect on arterial function and stiffness in patients with CKD.
Collapse
Affiliation(s)
- Doris T Chan
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Australia.
| | | | | | | |
Collapse
|
17
|
Peroxisome-proliferator-activated receptor gamma (PPARγ) is required for modulating endothelial inflammatory response through a nongenomic mechanism. Eur J Cell Biol 2010; 89:645-53. [DOI: 10.1016/j.ejcb.2010.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/24/2010] [Accepted: 04/07/2010] [Indexed: 02/03/2023] Open
|
18
|
Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2,4-diones as PPARgamma ligands. Bioorg Med Chem 2010; 18:3805-11. [PMID: 20471839 DOI: 10.1016/j.bmc.2010.04.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/14/2010] [Accepted: 04/16/2010] [Indexed: 11/24/2022]
Abstract
Eight new 5-arylidene-3-benzyl-thiazolidine-2,4-diones with halide groups on their benzyl rings were synthesized and assayed in vivo to investigate their anti-inflammatory activities. These compounds showed considerable biological efficacy when compared to rosiglitazone, a potent and well-known agonist of PPARgamma, which was used as a reference drug. This suggests that the substituted 5-arylidene and 3-benzylidene groups play important roles in the anti-inflammatory properties of this class of compounds. Docking studies with these compounds indicated that they exhibit specific interactions with key residues located in the site of the PPARgamma structure, which corroborates the hypothesis that these molecules are potential ligands of PPARgamma. In addition, competition binding assays showed that four of these compounds bound directly to the ligand-binding domain of PPARgamma, with reduced affinity when compared to rosiglitazone. An important trend was observed between the docking scores and the anti-inflammatory activities of this set of molecules. The analysis of the docking results, which takes into account the hydrophilic and hydrophobic interactions between the ligands and the target, explained why the 3-(2-bromo-benzyl)-5-(4-methanesulfonyl-benzylidene)-thiazolidine-2,4-dione compound had the best activity and the best docking score. Almost all of the stronger hydrophilic interactions occurred between the substituted 5-arylidene group of this compound and the residues of the binding site.
Collapse
|
19
|
Romanowska M, Reilly L, Palmer CNA, Gustafsson MCU, Foerster J. Activation of PPARbeta/delta causes a psoriasis-like skin disease in vivo. PLoS One 2010; 5:e9701. [PMID: 20300524 PMCID: PMC2838790 DOI: 10.1371/journal.pone.0009701] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/23/2010] [Indexed: 12/11/2022] Open
Abstract
Background Psoriasis is one of the most frequent skin diseases world-wide. The disease impacts enormously on affected patients and poses a huge financial burden on health care providers. Several lines of evidence suggest that the nuclear hormone receptor peroxisome proliferator activator (PPAR) β/δ, known to regulate epithelial differentiation and wound healing, contributes to psoriasis pathogenesis. It is unclear, however, whether activation of PPARβ/δ is sufficient to trigger psoriasis-like changes in vivo. Methodology/Principal Findings Using immunohistochemistry, we define the distribution of PPARβ/δ in the skin lesions of psoriasis. By expression profiling, we confirm that PPARβ/δ is overexpressed in the vast majority of psoriasis patients. We further establish a transgenic model allowing inducible activation of PPARβ/δ in murine epidermis mimicking its distribution in psoriasis lesions. Upon activation of PPARβ/δ, transgenic mice sustain an inflammatory skin disease strikingly similar to psoriasis, featuring hyperproliferation of keratinocytes, dendritic cell accumulation, and endothelial activation. Development of this phenotype requires the activation of the Th17 subset of T cells, shown previously to be central to psoriasis. Moreover, gene dysregulation in the transgenic mice is highly similar to that in psoriasis. Key transcriptional programs activated in psoriasis, including IL1-related signalling and cholesterol biosynthesis, are replicated in the mouse model, suggesting that PPARβ/δ regulates these transcriptional changes in psoriasis. Finally, we identify phosphorylation of STAT3 as a novel pathway activated by PPARβ/δ and show that inhibition of STAT3 phosphorylation blocks disease development. Conclusions Activation of PPARβ/δ in the epidermis is sufficient to trigger inflammatory changes, immune activation, and signalling, and gene dysregulation characteristic of psoriasis.
Collapse
Affiliation(s)
| | - Louise Reilly
- Division of Experimental Medicine, University of Dundee, Dundee, United Kingdom
| | - Colin N. A. Palmer
- Biomedical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Mattias C. U. Gustafsson
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Lund, Sweden
| | - John Foerster
- Division of Experimental Medicine, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Haas MJ, Mooradian AD. Regulation of high-density lipoprotein by inflammatory cytokines: establishing links between immune dysfunction and cardiovascular disease. Diabetes Metab Res Rev 2010; 26:90-9. [PMID: 20047197 DOI: 10.1002/dmrr.1057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronary artery disease is a primary co-morbidity in metabolic diseases such as metabolic syndrome, diabetes and obesity. One contributing risk factor for coronary artery disease is low high-density lipoprotein-cholesterol (HDLc). Several factors influence steady-state HDLc levels, including diet, genetics and environment. Perhaps more important to coronary artery disease is factors that attribute to the dynamics of reverse cholesterol transport, storage, and excretion of excess cholesterol. HDLc biogenesis, clearance and innate ability to serve as a cholesterol acceptor and transporter all contribute to HDLc's function as a negative regulator of cardiovascular disease. With the recent failure of torcetrapid, focus is being placed on HDLc biology and its role in various metabolic diseases. Low HDLc levels are often associated with an increased state of background inflammation. Recently, several syndromes with clear pro-inflammatory components have been shown to be inversely correlated with low HDLc levels in the absence of obesity, diabetes and metabolic syndrome. Early studies with HDLc during the acute-phase response suggest that HDLc is substantially physically modified during acute infection and sepsis, and recent studies show that HDLc is physically modified by chronic pro-inflammatory disease. In this review, several of these connections are described and cytokine signalling related to HDLc is examined.
Collapse
Affiliation(s)
- Michael J Haas
- Department of Medicine, University of Florida College of Medicine, 653-1 West Eighth Street, Jacksonville, FL 32209, USA.
| | | |
Collapse
|
21
|
Belvisi MG, Mitchell JA. Targeting PPAR receptors in the airway for the treatment of inflammatory lung disease. Br J Pharmacol 2009; 158:994-1003. [PMID: 19703165 DOI: 10.1111/j.1476-5381.2009.00373.x] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. PPARgamma regulates several metabolic pathways by binding to sequence-specific PPAR response elements in the promoter region of genes involved in lipid biosynthesis and glucose metabolism. However, more recently PPARgamma, PPARalpha and PPARbeta/delta agonists have been demonstrated to exhibit anti-inflammatory and immunomodulatory properties thus opening up new avenues for research. The actions of PPARgamma and PPARalpha activation are thought to be due to their ability to down regulate pro-inflammatory gene expression and inflammatory cell functions, and as such makes them an attractive target for novel drug intervention. Interestingly, PPARbeta/delta has been shown to be involved in wound healing, angiogenesis, lipid metabolism and thrombosis. In this review we will focus on the data describing the beneficial effects of these ligands in the airway and in the pulmonary vasculature and in vivo in animal models of allergic and occupational asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. A clinical trial is underway to examine the effect of rosiglitazone in asthma patients and the outcome of this trial is awaited with much anticipation. In conclusion, PPARs are novel targets for lung disease and continued work with these ligands may result in a potential new treatment for chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology Group, National Heart & Lung Institute, Faculty of Medicine, Imperial College, London, UK.
| | | |
Collapse
|
22
|
Abstract
Dyslipidaemias, particularly those characterized by the 'atherogenic profile' of high low-density lipoprotein-cholesterol and triglycerides and low high-density lipoprotein-cholesterol, are the major modifiable risk factor for atherosclerosis. The search for drugs to favourably alter such lipid profiles, reducing the associated morbidity and mortality, remains a major research focus. Niacin (nicotinic acid) is the most effective agent available for increasing high-density lipoprotein-cholesterol, but its use is associated with side effects that negatively affect patient compliance: these appear to arise largely as a result of production of prostaglandin D(2) and its subsequent activation of the DP(1) receptor. Desire to reduce the side effects (and improve pharmacokinetic parameters) has led to the development of a number of agonists that have differing effects, both in terms of clinical potency and the severity of adverse effects. The recent discovery of the niacin G-protein-coupled receptor HM74A (GPR109A) has clarified the distinction between the mechanism whereby niacin exerts its therapeutic effects and the mechanisms responsible for the generation of side effects. This has allowed the development of new drugs that show great potential for the treatment of dyslipidaemia. However, recent advances in understanding of the contribution of prostaglandin metabolism to vascular wall health suggest that some of the beneficial effects of niacin may well result from activation of the same pathways responsible for the adverse reactions. The purpose of this review is to emphasize that the search for agonists that show higher tolerability must take into account all aspects of signalling through this receptor.
Collapse
Affiliation(s)
- Helen Vosper
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, UK.
| |
Collapse
|
23
|
Ramirez SPB, Albert JM, Blayney MJ, Tentori F, Goodkin DA, Wolfe RA, Young EW, Bailie GR, Pisoni RL, Port FK. Rosiglitazone is associated with mortality in chronic hemodialysis patients. J Am Soc Nephrol 2009; 20:1094-101. [PMID: 19357257 PMCID: PMC2678036 DOI: 10.1681/asn.2008060579] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 12/03/2008] [Indexed: 12/13/2022] Open
Abstract
Recent studies have associated rosiglitazone, a thiazolidinedione drug, with adverse cardiovascular outcomes in the general population with diabetes. Using data from the Dialysis Outcomes and Practice Patterns Study in the United States, we examined cardiovascular hospitalization and mortality associated with prescription of rosiglitazone, compared with other oral hypoglycemic agents, among 2393 long-term hemodialysis patients who were followed for a median of 1.1 yr. We assessed mortality risk using Cox models in patient-level and dialysis facility-level analyses that used the facility proportion of patients on rosiglitazone as the predictor (instrumental variable approach) and adjusted the models for demographics, comorbid conditions, laboratory values, and achieved dialysis dosage. Compared with patients prescribed other oral hypoglycemic agents, patients prescribed rosiglitazone had significantly higher all-cause (hazard ratio [HR] 1.38; 95% confidence interval [CI] 1.05 to 1.82) and cardiovascular (HR 1.59; 95% CI 1.14 to 2.22) mortality, and their adjusted HR for hospitalization with myocardial infarction was 3.5-fold higher (P = 0.02). We did not observe similar associations in a secondary analysis evaluating pioglitazone. By the instrumental variable approach, facilities with more than the median adjusted percentage (6.2%) of patients who had diabetes and were prescribed rosiglitazone had significantly higher all-cause mortality (HR 1.36; 95% CI 1.15 to 1.62) and cardiovascular mortality (HR 1.42; 95% CI 1.07 to 1.88) than facilities with less than the median expected percentage prescribed rosiglitazone. Our practice-based findings suggest significant associations of rosiglitazone use with higher cardiovascular and all-cause mortality among hemodialysis patients with diabetes.
Collapse
Affiliation(s)
- Sylvia P B Ramirez
- Arbor Research Collaborative for Health, 315 W. Huron, Ann Arbor, MI 48103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Kovach A, Suino-Powell K, Martynowski D, Xu HE. Structural and biochemical basis for the binding selectivity of peroxisome proliferator-activated receptor gamma to PGC-1alpha. J Biol Chem 2008; 283:19132-9. [PMID: 18469005 DOI: 10.1074/jbc.m802040200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The functional interaction between the peroxisome proliferator-activated receptor gamma (PPARgamma) and its coactivator PGC-1alpha is crucial for the normal physiology of PPARgamma and its pharmacological response to antidiabetic treatment with rosiglitazone. Here we report the crystal structure of the PPARgamma ligand-binding domain bound to rosiglitazone and to a large PGC-1alpha fragment that contains two LXXLL-related motifs. The structure reveals critical contacts mediated through the first LXXLL motif of PGC-1alpha and the PPARgamma coactivator binding site. Through a combination of biochemical and structural studies, we demonstrate that the first LXXLL motif is the most potent among all nuclear receptor coactivator motifs tested, and only this motif of the two LXXLL-related motifs in PGC-1alpha is capable of binding to PPARgamma. Our studies reveal that the strong interaction of PGC-1alpha and PPARgamma is mediated through both hydrophobic and specific polar interactions. Mutations within the context of the full-length PGC-1alpha indicate that the first PGC-1alpha motif is necessary and sufficient for PGC-1alpha to coactivate PPARgamma in the presence or absence of rosiglitazone. These results provide a molecular basis for specific recruitment and functional interplay between PPARgamma and PGC-1alpha in glucose homeostasis and adipocyte differentiation.
Collapse
Affiliation(s)
- Yong Li
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.
| | | | | | | | | |
Collapse
|
25
|
15-Deoxy-Delta12,14-prostaglandin J2 induces chemokine expression, oxidative stress and microfilament reorganization in bovine mammary epithelial cells. J DAIRY RES 2008; 75:55-63. [PMID: 18226310 DOI: 10.1017/s0022029907003056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The roles of the pro-adipogenic ligands of the transcription factor Peroxisome Proliferator Activated Receptor gamma (PPARG) in regulating innate immune responses in bovine mammary epithelial cells (bMEC) were investigated using quantitative real-time PCR. The analyses revealed that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) enhanced the expression of Interleukin 8 (IL-8) and Chemokine (C-X-C motif) ligand 6 (CXCL6) in these cells in a dose-dependent manner. 15d-PGJ2 also induced the expression of transcripts encoding proteins involved in oxidative stress, including Ferritin heavy chain and Superoxide dismutase 1, as well as substantial microfilament reorganization. In contrast, synthetic PPARG agonists displayed a different and much smaller range of effects on the cells, causing down-regulation of Interleukin 1-beta, Interleukin 6 and IL-8 and increased expression of Chemokine (C-C motif) ligand 2 (CCL2) and Tumour necrosis factor alpha (TNFalpha). In an independent analysis, the cells were pre-incubated with PPARG agonists followed by lipopolysaccharide stimulation. This study revealed that troglitazone increased the responsiveness of the cells to lipopolysaccharide resulting in up-regulation of Interleukin 1-beta, TNFalpha, IL-8, CCL2 and CXCL6 while 15d-PGJ2 caused down-regulation of TNFalpha, CCL2 and CXCL6. These findings are relevant to understanding the anti-inflammatory potential of the PPARG ligands and underline different mechanisms of action of 15d-PGJ2 and troglitazone in bMEC. Furthermore, the present results demonstrate that the generation of pro-inflammatory mediators can be modulated by currently available therapeutic agents and may therefore be of value in the treatment of mastitis in ruminants.
Collapse
|
26
|
Straus DS, Glass CK. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol 2007; 28:551-8. [PMID: 17981503 DOI: 10.1016/j.it.2007.09.003] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 01/04/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARalpha, -gamma, and -beta/delta) are nuclear receptors with distinct patterns of expression in many cell types both within and outside the immune system. PPAR ligands have anti-inflammatory activity in a variety of mouse models for acute and chronic inflammation. In macrophages, PPARgamma ligands repress expression of a subset of Toll-like receptor (TLR) target genes by a molecular mechanism termed ligand-dependent transrepression. In chronic inflammation, ligand-bound PPARalpha represses production of IFNgamma and IL-17 by CD4(+) T cells, and PPARgamma ligands modulate dendritic cell function to elicit the development of anergic CD4(+) T cells. PPAR ligands also repress expression of cell adhesion molecules on endothelial cells and the secretion of chemokines by epithelial and other cells, decreasing the recruitment of leukocytes to the site of inflammation. The anti-inflammatory activity of PPAR ligands in mouse models suggests their possible use for treating human inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Daniel S Straus
- Biomedical Sciences Division, University of California, Riverside, Riverside, CA 92521-0121, USA.
| | | |
Collapse
|
27
|
Shearer BG, Steger DJ, Way JM, Stanley TB, Lobe DC, Grillot DA, Iannone MA, Lazar MA, Willson TM, Billin AN. Identification and characterization of a selective peroxisome proliferator-activated receptor beta/delta (NR1C2) antagonist. Mol Endocrinol 2007; 22:523-9. [PMID: 17975020 DOI: 10.1210/me.2007-0190] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The identification of small molecule ligands for the peroxisome proliferator-activated receptors (PPARs) has been instrumental in elucidating their biological roles. In particular, agonists have been the focus of much of the research in the field with relatively few antagonists being described and all of those being selective for PPARalpha or PPARgamma. The comparison of these agonist and antagonist ligands in cellular and animal systems has often led to surprising results and new insights into the biology of the PPARs. The PPARbeta/delta receptor is emerging as an important regulator of energy metabolism, inflammation, and cell growth and differentiation; however, only agonist ligands have been described for this receptor thus far. Here we describe the first report of a PPARbeta/delta small molecule antagonist ligand. This antagonist ligand will be a useful tool for elucidating the biological roles of PPARbeta/delta.
Collapse
Affiliation(s)
- Barry G Shearer
- Research and Development, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mettu NB, Stanley TB, Dwyer MA, Jansen MS, Allen JE, Hall JM, McDonnell DP. The Nuclear Receptor-Coactivator Interaction Surface as a Target for Peptide Antagonists of the Peroxisome Proliferator-Activated Receptors. Mol Endocrinol 2007; 21:2361-77. [PMID: 17595321 DOI: 10.1210/me.2007-0201] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe peroxisome proliferator-activated receptors (PPARα, PPARδ, and PPARγ) constitute a family of nuclear receptors that regulates metabolic processes involved in lipid and glucose homeostasis. Although generally considered to function as ligand-regulated receptors, all three PPARs exhibit a high level of constitutive activity that may result from their stimulation by intracellularly produced endogenous ligands. Consequently, complete inhibition of PPAR signaling requires the development of inverse agonists. However, the currently available small molecule antagonists for the PPARs function only as partial agonists, or their efficacy is not sufficient to inhibit the constitutive activity of these receptors. Due to the lack of efficacious antagonists that interact with the ligand-binding domain of the PPARs, we decided to target an interaction that is central to nuclear receptor-mediated gene transcription: the nuclear receptor-coactivator interaction. We utilized phage display technology to identify short LXXLL-containing peptides that bind to the PPARs. Analysis of these peptides revealed a consensus binding motif consisting of HPLLXXLL. Cross-screening of these peptides for binding to other nuclear receptors enabled the identification of a high-affinity PPAR-selective peptide that has the ability to repress PPARγ1-dependent transcription of transfected reporter genes. Most importantly, when introduced into HepG2 cells, the peptide inhibited the expression of endogenous PPARγ1 target genes, adipose differentiation-related protein and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase 2. This work lends support for the rational development of peptidomimetics that block receptor-mediated transcription by targeting the nuclear receptor-coactivator interaction surface.
Collapse
Affiliation(s)
- Niharika B Mettu
- Duke University Medical Center, Department of Pharmacology and Cancer Biology, Box 3813, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|