1
|
Gadomski SJ, Mui BW, Gorodetsky R, Paravastu SS, Featherall J, Li L, Haffey A, Kim JC, Kuznetsov SA, Futrega K, Lazmi-Hailu A, Merling RK, Martin D, McCaskie AW, Robey PG. Time- and cell-specific activation of BMP signaling restrains chondrocyte hypertrophy. iScience 2024; 27:110537. [PMID: 39193188 PMCID: PMC11347861 DOI: 10.1016/j.isci.2024.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Stem cell therapies for degenerative cartilage disease are limited by an incomplete understanding of hyaline cartilage formation and maintenance. Human bone marrow stromal cells/skeletal stem cells (hBMSCs/SSCs) produce stable hyaline cartilage when attached to hyaluronic acid-coated fibrin microbeads (HyA-FMBs), yet the mechanism remains unclear. In vitro, hBMSC/SSC/HyA-FMB organoids exhibited reduced BMP signaling early in chondrogenic differentiation, followed by restoration of BMP signaling in chondrogenic IGFBP5 + /MGP + cells. Subsequently, human-induced pluripotent stem cell (hiPSC)-derived sclerotome cells were established (BMP inhibition) and then treated with transforming growth factor β (TGF-β) -/+ BMP2 and growth differentiation factor 5 (GDF5) (BMP signaling activation). TGF-β alone elicited a weak chondrogenic response, but TGF-β/BMP2/GDF5 led to delamination of SOX9 + aggregates (chondrospheroids) with high expression of COL2A1, ACAN, and PRG4 and minimal expression of COL10A1 and ALP in vitro. While transplanted hBMSCs/SSCs/HyA-FMBs did not heal articular cartilage defects in immunocompromised rodents, chondrospheroid-derived cells/HyA-FMBs formed non-hypertrophic cartilage that persisted until at least 5 months in vivo.
Collapse
Affiliation(s)
- Stephen J. Gadomski
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- NIH Oxford-Cambridge Scholars Program in Partnership with Medical University of South Carolina, Charleston, SC 29425, USA
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Byron W.H. Mui
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- NIH Oxford-Cambridge Scholars Program in Partnership with Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- NIH Medical Research Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raphael Gorodetsky
- Lab of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sriram S. Paravastu
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- NIH Medical Research Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Featherall
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- NIH Medical Research Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Li
- National Institute of Dental and Craniofacial Research Imaging Core, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abigail Haffey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- National Institute of Dental and Craniofacial Research Summer Internship Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jae-Chun Kim
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- National Institute of Dental and Craniofacial Research Summer Dental Student Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergei A. Kuznetsov
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Kathryn Futrega
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Astar Lazmi-Hailu
- Lab of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Randall K. Merling
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - NIDCD/NIDCR Genomics and Computational Biology Core,
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Room 1F-103, Bethesda, MD 20892, USA
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Room 1F-103, Bethesda, MD 20892, USA
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew W. McCaskie
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Mack KL, Square TA, Zhao B, Miller CT, Fraser HB. Evolution of Spatial and Temporal cis-Regulatory Divergence in Sticklebacks. Mol Biol Evol 2023; 40:7048494. [PMID: 36805962 PMCID: PMC10015619 DOI: 10.1093/molbev/msad034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Cis-regulatory changes are thought to play a major role in adaptation. Threespine sticklebacks have repeatedly colonized freshwater habitats in the Northern Hemisphere, where they have evolved a suite of phenotypes that distinguish them from marine populations, including changes in physiology, behavior, and morphology. To understand the role of gene regulatory evolution in adaptive divergence, here we investigate cis-regulatory changes in gene expression between marine and freshwater ecotypes through allele-specific expression (ASE) in F1 hybrids. Surveying seven ecologically relevant tissues, including three sampled across two developmental stages, we identified cis-regulatory divergence affecting a third of genes, nearly half of which were tissue-specific. Next, we compared allele-specific expression in dental tissues at two timepoints to characterize cis-regulatory changes during development between marine and freshwater fish. Applying a genome-wide test for selection on cis-regulatory changes, we find evidence for lineage-specific selection on several processes between ecotypes, including the Wnt signaling pathway in dental tissues. Finally, we show that genes with ASE, particularly those that are tissue-specific, are strongly enriched in genomic regions of repeated marine-freshwater divergence, supporting an important role for these cis-regulatory differences in parallel adaptive evolution of sticklebacks to freshwater habitats. Altogether, our results provide insight into the cis-regulatory landscape of divergence between stickleback ecotypes across tissues and during development, and support a fundamental role for tissue-specific cis-regulatory changes in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Katya L Mack
- Department of Biology, Stanford University, Stanford, CA
| | - Tyler A Square
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Bin Zhao
- Department of Biology, Stanford University, Stanford, CA
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | | |
Collapse
|
3
|
Shvalb NF. SHORT Syndrome: an Update on Pathogenesis and Clinical Spectrum. Curr Diab Rep 2022; 22:571-577. [PMID: 36401775 DOI: 10.1007/s11892-022-01495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW This review describes the unique pathogenesis of SHORT syndrome, a rare genetic form of insulin resistance syndrome, and recent advances in understanding the underlying mechanisms. SHORT syndrome results from dysfunction of PI3K, but the mechanisms behind the clinical manifestations are not entirely understood. Elucidating these mechanisms may contribute to the understanding of the roles of insulin signaling and PI3K signaling in humans. There are paucity of data on treatment and outcomes. RECENT FINDINGS The clinical spectrum of the disorder appears wider than previously understood, and overlaps with other clinical syndromes. PI3K malfunction is associated with insulin resistance, decreased lipogenesis, increased energy expenditure, and possible IGF1 resistance. SHORT syndrome may be underdiagnosed, and should be considered in individuals with growth failure, craniofacial dysmorphism, and lipodystrophy. Much is still unknown about the optimal management and long-term outcomes.
Collapse
Affiliation(s)
- Naama Fisch Shvalb
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan St, 49202-35, Petah Tikva, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Cho S, Choi H, Jeong H, Kwon SY, Roh EJ, Jeong KH, Baek I, Kim BJ, Lee SH, Han I, Cha JM. Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion. Stem Cells Transl Med 2022; 11:1072-1088. [PMID: 36180050 PMCID: PMC9585955 DOI: 10.1093/stcltm/szac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Collapse
Affiliation(s)
- Sumin Cho
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyundoo Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hun Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Inho Baek
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byoung Ju Kim
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
5
|
Patel B, Kleeman SO, Neavin D, Powell J, Baskozos G, Ng M, Ahmed WUR, Bennett DL, Schmid AB, Furniss D, Wiberg A. Shared genetic susceptibility between trigger finger and carpal tunnel syndrome: a genome-wide association study. THE LANCET. RHEUMATOLOGY 2022; 4:e556-e565. [PMID: 36043126 PMCID: PMC7613465 DOI: 10.1016/s2665-9913(22)00180-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Trigger finger and carpal tunnel syndrome are the two most common non-traumatic connective tissue disorders of the hand. Both of these conditions frequently co-occur, often in patients with rheumatoid arthritis. However, this phenotypic association is poorly understood. Hypothesising that the co-occurrence of trigger finger and carpal tunnel syndrome might be explained by shared germline predisposition, we aimed to identify a specific genetic locus associated with both diseases. Methods In this genome-wide association study (GWAS), we identified 2908 patients with trigger finger and 436579 controls from the UK Biobank prospective cohort. We conducted a case-control GWAS for trigger finger, followed by co-localisation analyses with carpal tunnel syndrome summary statistics. To identify putative causal variants and establish their biological relevance, we did fine-mapping analyses and expression quantitative trait loci (eQTL) analyses, using fibroblasts from healthy donors (n=79) and tenosynovium samples from patients with carpal tunnel syndrome (n=77). We conducted a Cox regression for time to trigger finger and carpal tunnel syndrome diagnosis against plasma IGF-1 concentrations in the UK Biobank cohort. Findings Phenome-wide analyses confirmed a marked association between carpal tunnel syndrome and trigger finger in the participants from UK Biobank (odds ratio [OR] 11·97, 95% CI 11·1-13·0; p<1 × 10-300). GWAS for trigger finger identified five independent loci, including one locus, DIRC3, that was co-localised with carpal tunnel syndrome and could be fine-mapped to rs62175241 (0·76, 0·68-0·84; p=5·03 × 10-13). eQTL analyses found a fibroblast-specific association between the protective T allele of rs62175241 and increased DIRC3 and IGFBP5 expression. Increased plasma IGF-1 concentrations were associated with both carpal tunnel syndrome and trigger finger in participants from UK Biobank (hazard ratio >1·04, p<0·02). Interpretation In this GWAS, the DIRC3 locus on chromosome 2 was significantly associated with both carpal tunnel syndrome and trigger finger, possibly explaining their co-occurrence. The disease-protective allele of rs62175241 was associated with increased expression of long non-coding RNA DIRC3 and its transcriptional target, IGBP5, an antagonist of IGF-1 signalling. These findings suggest a model in which IGF-1 is a driver of both carpal tunnel syndrome and trigger finger, and in which the DIRC3-IGFBP5 axis directly antagonises fibroblastic IGF-1 signalling. Funding Wellcome Trust, National Institute for Health Research, Medical Research Council.
Collapse
Affiliation(s)
- Benjamin Patel
- Department of Plastic and Reconstructive Surgery, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | | | - Drew Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joseph Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; UNSW Cellular Genomics Futures Institute, University of New South Wales, NSW, Australia
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Waheed-Ul-Rahman Ahmed
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Huang HB, Luo HT, Wei NN, Liu ML, He F, Yang W, Dong J, Yang XF, Li FR. Integrative analysis reveals a lineage-specific circular RNA landscape for adipo-osteogenesis of human mesenchymal stem cells. Stem Cell Res Ther 2022; 13:106. [PMID: 35279206 PMCID: PMC8917624 DOI: 10.1186/s13287-022-02792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background The balance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) is critical to skeletal development and diseases. As a research hotspot, circular RNAs (circRNAs) have expanded our understanding of a hidden layer of the transcriptome. Yet, their roles during adipo-osteogenesis remain poorly described. Methods The identity of human MSCs derived from bone marrow and adipose were first determined by flow cytometry, cellular staining, and quantitative polymerase chain reaction (qPCR). Multi-strategic RNA-sequencing was performed using Poly A, RiboMinus and RiboMinus/RNase R methods. Integrative analysis was performed to identify lineage-specific expressed circRNAs. The structural and expressional characteristics were identified by Sanger sequencing and qPCR, respectively. The regulatory effects of adipogenesis-specific circ-CRLF1 were confirmed using siRNA transcfection and qPCR. Results We generated a whole transcriptome map during adipo-osteogenesis based on 10 Poly A, 20 RiboMinus and 20 RiboMinus/ RNase R datasets. A total of 31,326 circRNAs were identified and quantified from ~ 3.4 billion paired-end reads. Furthermore, the integrative analysis revealed that 1166 circRNA genes exhibited strong lineage-specific expression patterns. Their host genes were enriched in distinct biological functions, such as cell adhesion, cytokine signaling, and cell division. We randomly selected and validated the back-spliced junction sites and expression patterns of 12 lineage-specific circRNAs. Functional analysis indicated that circ-CRLF1 negatively regulated adipogenesis. Conclusions Our integrative analysis reveals an accurate and generally applicable lineage-specific circRNA landscape for adipo-osteogenesis of MSCs and provides a potential therapeutic target, circ-CRLF1, for the treatment of skeleton-related disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02792-5.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hai-Tao Luo
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na-Na Wei
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Miao-Ling Liu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Wei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China. .,Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China. .,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
7
|
Wilson RJ, Lyons SP, Koves TR, Bryson VG, Zhang H, Li T, Crown SB, Ding JD, Grimsrud PA, Rosenberg PB, Muoio DM. Disruption of STIM1-mediated Ca 2+ sensing and energy metabolism in adult skeletal muscle compromises exercise tolerance, proteostasis, and lean mass. Mol Metab 2022; 57:101429. [PMID: 34979330 PMCID: PMC8814391 DOI: 10.1016/j.molmet.2021.101429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane endoplasmic/sarcoplasmic reticulum (E/SR) protein recognized for its role in a store operated Ca2+ entry (SOCE), an ancient and ubiquitous signaling pathway. Whereas STIM1 is known to be indispensable during development, its biological and metabolic functions in mature muscles remain unclear. METHODS Conditional and tamoxifen inducible muscle STIM1 knock-out mouse models were coupled with multi-omics tools and comprehensive physiology to understand the role of STIM1 in regulating SOCE, mitochondrial quality and bioenergetics, and whole-body energy homeostasis. RESULTS This study shows that STIM1 is abundant in adult skeletal muscle, upregulated by exercise, and is present at SR-mitochondria interfaces. Inducible tissue-specific deletion of STIM1 (iSTIM1 KO) in adult muscle led to diminished lean mass, reduced exercise capacity, and perturbed fuel selection in the settings of energetic stress, without affecting whole-body glucose tolerance. Proteomics and phospho-proteomics analyses of iSTIM1 KO muscles revealed molecular signatures of low-grade E/SR stress and broad activation of processes and signaling networks involved in proteostasis. CONCLUSION These results show that STIM1 regulates cellular and mitochondrial Ca2+ dynamics, energy metabolism and proteostasis in adult skeletal muscles. Furthermore, these findings provide insight into the pathophysiology of muscle diseases linked to disturbances in STIM1-dependent Ca2+ handling.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Scott P Lyons
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Geriatrics, Duke University School of Medicine, Durham, NC 27705, USA
| | - Victoria G Bryson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Hengtao Zhang
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - TianYu Li
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Jin-Dong Ding
- Department of Medicine, Division of Ophthalmology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul B Rosenberg
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
8
|
Tonk CH, Shoushrah SH, Babczyk P, El Khaldi-Hansen B, Schulze M, Herten M, Tobiasch E. Therapeutic Treatments for Osteoporosis-Which Combination of Pills Is the Best among the Bad? Int J Mol Sci 2022; 23:1393. [PMID: 35163315 PMCID: PMC8836178 DOI: 10.3390/ijms23031393] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronical, systemic skeletal disorder characterized by an increase in bone resorption, which leads to reduced bone density. The reduction in bone mineral density and therefore low bone mass results in an increased risk of fractures. Osteoporosis is caused by an imbalance in the normally strictly regulated bone homeostasis. This imbalance is caused by overactive bone-resorbing osteoclasts, while bone-synthesizing osteoblasts do not compensate for this. In this review, the mechanism is presented, underlined by in vitro and animal models to investigate this imbalance as well as the current status of clinical trials. Furthermore, new therapeutic strategies for osteoporosis are presented, such as anabolic treatments and catabolic treatments and treatments using biomaterials and biomolecules. Another focus is on new combination therapies with multiple drugs which are currently considered more beneficial for the treatment of osteoporosis than monotherapies. Taken together, this review starts with an overview and ends with the newest approaches for osteoporosis therapies and a future perspective not presented so far.
Collapse
Affiliation(s)
- Christian Horst Tonk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Basma El Khaldi-Hansen
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| |
Collapse
|
9
|
Recombinant IGF-1 Induces Sex-Specific Changes in Bone Composition and Remodeling in Adult Mice with Pappa2 Deficiency. Int J Mol Sci 2021; 22:ijms22084048. [PMID: 33919940 PMCID: PMC8070906 DOI: 10.3390/ijms22084048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Deficiency of pregnancy-associated plasma protein-A2 (PAPP-A2), an IGF-1 availability regulator, causes postnatal growth failure and dysregulation of bone size and density. The present study aimed to determine the effects of recombinant murine IGF-1 (rmIGF-1) on bone composition and remodeling in constitutive Pappa2 knock-out (ko/ko) mice. To address this challenge, X-ray diffraction (XRD), attenuated total reflection-fourier transform infra-red (ATR-FTIR) spectroscopy and gene expression analysis of members of the IGF-1 system and bone resorption/formation were performed. Pappa2ko/ko mice (both sexes) had reduced body and bone length. Male Pappa2ko/ko mice had specific alterations in bone composition (mineral-to-matrix ratio, carbonate substitution and mineral crystallinity), but not in bone remodeling. In contrast, decreases in collagen maturity and increases in Igfbp3, osteopontin (resorption) and osteocalcin (formation) characterized the bone of Pappa2ko/ko females. A single rmIGF-1 administration (0.3 mg/kg) induced short-term changes in bone composition in Pappa2ko/ko mice (both sexes). rmIGF-1 treatment in Pappa2ko/ko females also increased collagen maturity, and Igfbp3, Igfbp5, Col1a1 and osteopontin expression. In summary, acute IGF-1 treatment modifies bone composition and local IGF-1 response to bone remodeling in mice with Pappa2 deficiency. These effects depend on sex and provide important insights into potential IGF-1 therapy for growth failure and bone loss and repair.
Collapse
|
10
|
Hong M, Chen D, Hong Z, Tang K, Yao Y, Chen L, Ye T, Qian J, Du Y, Sun R. Ex vivo and in vivo chemoprotective activity and potential mechanism of Martynoside against 5-fluorouracil-induced bone marrow cytotoxicity. Biomed Pharmacother 2021; 138:111501. [PMID: 33765584 DOI: 10.1016/j.biopha.2021.111501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Martynoside (MAR) is a bioactive glycoside of Rehmannia glutinosa, a traditional Chinese herb frequently prescribed for treating chemotherapy-induced pancytopenia. Despite its clinical usage in China for thousands of years, the mechanism of MAR's hematopoietic activity and its impact on chemotherapy-induced antitumor activity are still unclear. Here, we showed that MAR protected ex vivo bone marrow cells from 5-fluorouracil (5-FU)-induced cell death and inflammation response by down-regulating the TNF signaling pathway, in which II1b was the most regulatory gene. Besides, using mouse models with melanoma and colon cancer, we further demonstrated that MAR had protective effects against 5-FU-induced myelosuppression in mice without compromising its antitumor activity. Our results showed that MAR increased the number of bone marrow nucleated cells (BMNCs) and the percentage of leukocyte and granulocytic populations in 5-FU-induced myelosuppressive mice, accompanied by an increase in numbers of circulating white blood cells and platelets. The transcriptome profile of BMNCs further showed that the mode of action of MAR might be associated with the increased survival of BMNCs and the improvement of the bone marrow microenvironment. In summary, we revealed the potential molecular mechanism of MAR to counteract 5-FU-induced bone marrow cytotoxicity both ex vivo and in vivo, and highlighted its potential clinical usage in cancer patients experiencing chemotherapy-induced multi-lineage myelosuppression.
Collapse
Affiliation(s)
- Mengying Hong
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Dongdong Chen
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhuping Hong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Kejun Tang
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuanyuan Yao
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Liubo Chen
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Tingting Ye
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yushen Du
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ren Sun
- Cancer Institute, The Second Affiliated Hospital, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Bashir NZ. The role of insulin-like growth factors in modulating the activity of dental mesenchymal stem cells. Arch Oral Biol 2020; 122:104993. [PMID: 33259987 DOI: 10.1016/j.archoralbio.2020.104993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
Regenerative treatment protocols are an exciting prospect in the management of oral pathology, as they allow for tissues to be restored to their original form and function, as compared to the reparative healing mechanisms which currently govern the outcomes of the majority of dental treatment. Stem cell therapy presents with a great deal of untapped potential in this pursuit of tissue regeneration, and, in particular, mesenchymal stem cells (MSCs) derived from dental tissues are of specific relevance with regards to their applications in engineering craniofacial tissues. A number of mediatory factors are involved in modulating the actions of dental MSCs, and, of these, insulin like growth factors (IGFs) are known to have potent effects in governing the behavior of these cells. The IGF family comprises a number of primary ligands, receptors, and binding proteins which are known to modulate the key properties of dental MSCs, such as their proliferation rates, differentiation potential, and mineralisation. The aims of this review are three-fold: (i) to present an overview of dental MSCs and the role of growth factors in modulating their characteristics, (ii) to discuss in greater detail the specific role of IGFs and the benefits they may convey for tissue engineering, and (iii) to provide a summary of potential for in vivo clinical translation of the current in vitro body of evidence.
Collapse
|
12
|
Duan C, Allard JB. Insulin-Like Growth Factor Binding Protein-5 in Physiology and Disease. Front Endocrinol (Lausanne) 2020; 11:100. [PMID: 32194505 PMCID: PMC7063065 DOI: 10.3389/fendo.2020.00100] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is regulated by a conserved family of IGF binding proteins (IGFBPs) in vertebrates. Among the six distinct types of IGFBPs, IGFBP-5 is the most highly conserved across species and has the broadest range of biological activities. IGFBP-5 is expressed in diverse cell types, and its expression level is regulated by a variety of signaling pathways in different contexts. IGFBP-5 can exert a range of biological actions including prolonging the half-life of IGFs in the circulation, inhibition of IGF signaling by competing with the IGF-1 receptor for ligand binding, concentrating IGFs in certain cells and tissues, and potentiation of IGF signaling by delivery of IGFs to the IGF-1 receptor. IGFBP-5 also has IGF-independent activities and is even detected in the nucleus. Its broad biological activities make IGFBP-5 an excellent representative for understanding IGFBP functions. Despite its evolutionary conservation and numerous biological activities, knockout of IGFBP-5 in mice produced only a negligible phenotype. Recent research has begun to explain this paradox by demonstrating cell type-specific and physiological/pathological context-dependent roles for IGFBP-5. In this review, we survey and discuss what is currently known about IGFBP-5 in normal physiology and human disease. Based on recent in vivo genetic evidence, we suggest that IGFBP-5 is a multifunctional protein with the ability to act as a molecular switch to conditionally regulate IGF signaling.
Collapse
|
13
|
Isali I, Al-Sadawi MAA, Qureshi A, Khalifa AO, Agrawal MK, Shukla S. Growth factors involve in cellular proliferation, differentiation and migration during prostate cancer metastasis. INTERNATIONAL JOURNAL OF CELL BIOLOGY AND PHYSIOLOGY 2019; 2:1-13. [PMID: 32259163 PMCID: PMC7133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Growth factors play active role in cells proliferation, embryonic development regulation and cellular differentiation. Altered level growth factors promote malignant transformation of normal cells. There has been significant progress made in form of drugs, inhibitors and monoclonal antibodies against altered growth factor to treat the malignant form of cancer. Moreover, these altered growth factors in prostate cancer increases steroidal hormone levels, which promotes progression. Though this review we are highlighting the majorly involved growth factors in prostate carcinogenesis, this will enable to better design the therapeutic strategies to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Arshna Qureshi
- Department of Anesthesiology, Case Western Reserve University, Cleveland, OH
| | - Ahmad O. Khalifa
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Urology, Menofia University, Shebin Al kom, Egypt
| | | | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
14
|
Le PM, Andreeff M, Battula VL. Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica 2018; 103:1945-1955. [PMID: 30337364 PMCID: PMC6269284 DOI: 10.3324/haematol.2018.197004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
The bone marrow microenvironment, also known as the bone marrow niche, is a complex network of cell types and acellular factors that supports normal hematopoiesis. For many years, leukemia was believed to be caused by a series of genetic hits to hematopoietic stem and progenitor cells, which transform them to preleukemic, and eventually to leukemic, cells. Recent discoveries suggest that genetic alterations in bone marrow niche cells, particularly in osteogenic cells, may also cause myeloid leukemia in mouse models. The osteogenic niche, which consists of osteoprogenitors, preosteoblasts, mature osteoblasts, osteocytes and osteoclasts, has been shown to play a critical role in the maintenance and expansion of hematopoietic stem and progenitor cells as well as in their oncogenic transformation into leukemia stem/initiating cells. We have recently shown that acute myeloid leukemia cells induce osteogenic differentiation in mesenchymal stromal cells to gain a growth advantage. In this review, we discuss the role of the osteogenic niche in the maintenance of hematopoietic stem and progenitor cells, as well as in their transformation into leukemia cells. We also discuss the signaling pathways that regulate osteogenic niche-hematopoietic stem and progenitor cells or osteogenic niche-leukemic stem/initiating cell interactions in the bone marrow, together with novel approaches for therapeutically targeting these interactions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX .,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Al-Khafaji H, Noer PR, Alkharobi H, Alhodhodi A, Meade J, El-Gendy R, Oxvig C, Beattie J. A characteristic signature of insulin-like growth factor (IGF) axis expression during osteogenic differentiation of human dental pulp cells (hDPCs): Potential co-ordinated regulation of IGF action. Growth Horm IGF Res 2018; 42-43:14-21. [PMID: 30071469 PMCID: PMC6259625 DOI: 10.1016/j.ghir.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/09/2023]
Abstract
The IGF axis is represented by two growth factors (IGF1 and IGF2), two cognate cell surface receptors (IGF1R and IGF2R), six soluble high affinity IGF binding proteins (IGFBP1-6) and several IGFBP proteases. IGF1 and IGF2 are present at high concentrations in bone and play a crucial role in the maintenance and differentiation of both foetal and adult skeleton. In order to understand the role of the IGF axis in bone and other tissues it is necessary to profile the expression and activity of all genes in the axis together with the activity of relevant ancillary proteins (including IGFBP proteases). In the current report we used differentiating human dental pulp cells (hDPC) to examine the expression and activity of the IGF axis during osteogenic differentiation of these cells. We found that, with the exception of IGF1 and IGFBP1, all components of the IGF axis are expressed in hDPCs. IGFBP-4 is the most abundantly expressed IGFBP species at both mRNA and protein levels under both basal and osteogenic conditions. Although we found no difference in IGFBP-4 expression under osteogenic conditions, we report increased expression and activity of pregnancy associated plasma protein-A (PAPP-A - an IGFBP-4 proteinase) leading to increased IGFBP-4 proteolysis in differentiating cell cultures. Further to this we report increased expression of IGF-2 (an activator of PAPP-A), and decreased expression of stanniocalcin-2 (STC2- a recently discovered inhibitor of PAPP-A) under osteogenic conditions. We also demonstrate that STC2 and PAPP-A are able to form complexes in hDPC conditioned medium indicating the potential for regulation of IGFBP-4 proteolysis through this mechanism. We suggest that these changes in the expression and activity of the IGF axis may represent part of an osteogenic signature characteristic of differentiating hDPCs.
Collapse
Affiliation(s)
- Hasanain Al-Khafaji
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Pernille R Noer
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Hanna Alkharobi
- Department of Oral Biology, Dental College, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Aishah Alhodhodi
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Josephine Meade
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom; Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - James Beattie
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom.
| |
Collapse
|
16
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Yang J, Zhao Q, Wang K, Ma C, Liu H, Liu Y, Guan W. Isolation, culture and biological characteristics of multipotent porcine tendon-derived stem cells. Int J Mol Med 2018; 41:3611-3619. [PMID: 29512747 DOI: 10.3892/ijmm.2018.3545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/24/2018] [Indexed: 12/23/2022] Open
Abstract
Tendon-derived stem cells (TDSCs), a postulated multi-potential stem cell population, play significant role in the postnatal replenishment of tendon injuries. However, the majority of experimental materials were obtained from horse, rat, human and rabbit, but rarely from pig. In this research, 1‑day‑old pig was chosen as experimental sample source to isolate and culture TDSCs in vitro. Specific markers of TDSCs were then characterized by immunofluorescence and reverse transcription polymerase chain reaction (RT‑PCR) assays. The results showed that TDSCs could be expanded for 11 passages in vitro. The expression of specific markers, such as collagen Ⅰ, collagen Ⅲ, α‑smooth muscle actin (α‑SMA), CD105 and CD90 were observed by immunofluorescence and RT‑PCR. TDSCs were induced to differentiate into adipocytes, osteoblasts and chondrocytes, respectively. These results suggest that TDSCs isolated from porcine tendon exhibit the characteristics of multipotent stem cells. TDSCs, therefore, may be potential candidates for cellular transplantation therapy and tissue engineering in tendon injuries.
Collapse
Affiliation(s)
- Jinjuan Yang
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qianjun Zhao
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kunfu Wang
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Caiyun Ma
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hao Liu
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Yingjie Liu
- Institute of Physical Education, University of Jimei, Xiamen, Fujian 361021, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources (AnGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
18
|
Beattie J, Al-Khafaji H, Noer PR, Alkharobi HE, Alhodhodi A, Meade J, El-Gendy R, Oxvig C. Insulin- like Growth Factor-Binding Protein Action in Bone Tissue: A Key Role for Pregnancy- Associated Plasma Protein-A. Front Endocrinol (Lausanne) 2018; 9:31. [PMID: 29503631 PMCID: PMC5820303 DOI: 10.3389/fendo.2018.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.
Collapse
Affiliation(s)
- James Beattie
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
- *Correspondence: James Beattie,
| | - Hasanain Al-Khafaji
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Pernille R. Noer
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hanaa Esa Alkharobi
- Department of Oral Biology, Dental College, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Aishah Alhodhodi
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Josephine Meade
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, University of Leeds, St James University Hospital, Leeds, United Kingdom
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
The Wilms tumor protein WT1 stimulates transcription of the gene encoding insulin-like growth factor binding protein 5 (IGFBP5). Gene 2017; 619:21-29. [DOI: 10.1016/j.gene.2017.03.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/02/2017] [Accepted: 03/25/2017] [Indexed: 11/24/2022]
|
20
|
Gross SM, Rotwein P. Quantification of growth factor signaling and pathway cross talk by live-cell imaging. Am J Physiol Cell Physiol 2017; 312:C328-C340. [PMID: 28100485 DOI: 10.1152/ajpcell.00312.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/20/2023]
Abstract
Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor-receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras-Raf-Mek-ERK and phosphatidylinositol (PI) 3-kinase-Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas
| |
Collapse
|
21
|
Xing W, Aghajanian P, Goodluck H, Kesavan C, Cheng S, Pourteymoor S, Watt H, Alarcon C, Mohan S. Thyroid hormone receptor-β1 signaling is critically involved in regulating secondary ossification via promoting transcription of the Ihh gene in the epiphysis. Am J Physiol Endocrinol Metab 2016; 310:E846-54. [PMID: 27026086 PMCID: PMC4895449 DOI: 10.1152/ajpendo.00541.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) action is mediated through two nuclear TH receptors, THRα and THRβ. Although the role of THRα is well established in bone, less is known about the relevance of THRβ-mediated signaling in bone development. On ther basis of our recent finding that TH signaling is essential for initiation and formation of secondary ossification center, we evaluated the role of THRs in mediating TH effects on epiphysial bone formation. Two-day treatment of TH-deficient Tshr(-/-) mice with TH increased THRβ1 mRNA level 3.4-fold at day 7 but had no effect on THRα1 mRNA level at the proximal tibia epiphysis. Treatment of serum-free cultures of tibias from 3-day-old mice with T3 increased THRβ1 expression 2.1- and 13-fold, respectively, at 24 and 72 h. Ten-day treatment of Tshr(-/-) newborns (days 5-14) with THRβ1 agonist GC1 at 0.2 or 2.0 μg/day increased BV/TV at day 21 by 225 and 263%, respectively, compared with vehicle treatment. Two-day treatment with GC1 (0.2 μg/day) increased expression levels of Indian hedgehog (Ihh) 100-fold, osterix 15-fold, and osteocalcin 59-fold compared with vehicle at day 7 in the proximal tibia epiphysis. Gel mobility shift assay demonstrated that a putative TH response element in the distal promoter of mouse Ihh gene interacted with THRβ1. GC1 treatment (1 nM) increased Ihh distal promoter activity 20-fold after 48 h in chondroctyes. Our data suggest a novel role for THRβ1 in secondary ossification at the epiphysis that involves transcriptional upregulation of Ihh gene.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Helen Goodluck
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Heather Watt
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Catrina Alarcon
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California; Department of Medicine, Loma Linda University, Loma Linda, California; Department of Orthopedics, Loma Linda University, Loma Linda, California; and Department of Biochemistry, Loma Linda University, Loma Linda, California
| |
Collapse
|
22
|
Gross SM, Rotwein P. Mapping growth-factor-modulated Akt signaling dynamics. J Cell Sci 2016; 129:2052-63. [PMID: 27044757 DOI: 10.1242/jcs.183764] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Growth factors alter cellular behavior through shared signaling cascades, raising the question of how specificity is achieved. Here, we have determined how growth factor actions are encoded into Akt signaling dynamics by real-time tracking of a fluorescent sensor. In individual cells, Akt activity was encoded in an analog pattern, with similar latencies (∼2 min) and half-maximal peak response times (range of 5-8 min). Yet, different growth factors promoted dose-dependent and heterogeneous changes in signaling dynamics. Insulin treatment caused sustained Akt activity, whereas EGF or PDGF-AA promoted transient signaling; PDGF-BB produced sustained responses at higher concentrations, but short-term effects at low doses, actions that were independent of the PDGF-α receptor. Transient responses to EGF were caused by negative feedback at the receptor level, as a second treatment yielded minimal responses, whereas parallel exposure to IGF-I caused full Akt activation. Small-molecule inhibitors reduced PDGF-BB signaling to transient responses, but only decreased the magnitude of IGF-I actions. Our observations reveal distinctions among growth factors that use shared components, and allow us to capture the consequences of receptor-specific regulatory mechanisms on Akt signaling.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
23
|
Barbé C, Kalista S, Loumaye A, Ritvos O, Lause P, Ferracin B, Thissen JP. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 2015. [PMID: 26219865 PMCID: PMC4572457 DOI: 10.1152/ajpendo.00098.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth.
Collapse
Affiliation(s)
- Caroline Barbé
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Stéphanie Kalista
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Audrey Loumaye
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Pascale Lause
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Benjamin Ferracin
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition; Institut de Recherche Expérimentale et Clinique IREC, Université Catholique de Louvain, Brussels, Belgium; and
| |
Collapse
|
24
|
Gardner S, Gross SM, David LL, Klimek JE, Rotwein P. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190. Am J Physiol Cell Physiol 2015; 309:C491-500. [PMID: 26246429 DOI: 10.1152/ajpcell.00184.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 11/22/2022]
Abstract
The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis.
Collapse
Affiliation(s)
- Samantha Gardner
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - John E Klimek
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| |
Collapse
|
25
|
Gross SM, Rotwein P. Akt signaling dynamics in individual cells. J Cell Sci 2015; 128:2509-19. [PMID: 26040286 DOI: 10.1242/jcs.168773] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/28/2015] [Indexed: 12/30/2022] Open
Abstract
The protein kinase Akt (for which there are three isoforms) is a key intracellular mediator of many biological processes, yet knowledge of Akt signaling dynamics is limited. Here, we have constructed a fluorescent reporter molecule in a lentiviral delivery system to assess Akt kinase activity at the single cell level. The reporter, a fusion between a modified FoxO1 transcription factor and clover, a green fluorescent protein, rapidly translocates from the nucleus to the cytoplasm in response to Akt stimulation. Because of its long half-life and the intensity of clover fluorescence, the sensor provides a robust readout that can be tracked for days under a range of biological conditions. Using this reporter, we find that stimulation of Akt activity by IGF-I is encoded into stable and reproducible analog responses at the population level, but that single cell signaling outcomes are variable. This reporter, which provides a simple and dynamic measure of Akt activity, should be compatible with many cell types and experimental platforms, and thus opens the door to new insights into how Akt regulates its biological responses.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
26
|
Xing W, Cheng S, Wergedal J, Mohan S. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling. J Bone Miner Res 2014; 29:2262-75. [PMID: 24753031 PMCID: PMC4487616 DOI: 10.1002/jbmr.2256] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 01/05/2023]
Abstract
Thyroid hormones (THs) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC) because the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, micro-computed tomography (µCT) evaluation of femurs and tibias at day 21 in TH-deficient and control mice revealed that endochondral ossification of SOCs is severely compromised owing to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that whereas all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH-deficient mice. Immunohistochemistry studies revealed that TH treatment of thyroid stimulating hormone receptor mutant (Tshr(-/-) ) mice induced expression of Indian hedgehog (Ihh) and Osx in type 2 collagen (Col2)-expressing chondrocytes in the SOC at day 7, which subsequently differentiate into type 10 collagen (Col10)/osteocalcin-expressing chondro/osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3-day-old mice with 10 ng/mL TH increased expression of Osx, Col10, alkaline phosphatase (ALP), and osteocalcin in the epiphysis by sixfold to 60-fold. Furthermore, knockdown of the TH-induced increase in Osx expression using lentiviral small hairpin RNA (shRNA) significantly blocked TH-induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro/osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix-producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - Jon Wergedal
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
27
|
Mukherjee A, Larson EA, Klein RF, Rotwein P. Distinct actions of akt1 on skeletal architecture and function. PLoS One 2014; 9:e93040. [PMID: 24663486 PMCID: PMC3963959 DOI: 10.1371/journal.pone.0093040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/28/2014] [Indexed: 11/24/2022] Open
Abstract
Skeletal integrity is dependent on the coordinated actions of bone-forming osteoblasts and bone-resorbing osteoclasts, which recognize and respond to multiple environmental inputs. Here we have studied the roles in bone development and growth of Akt1 and Akt2, two closely related signaling proteins, by evaluating mice lacking either of these enzymes. Global deficiency of Akt1 but not Akt2 caused a reduction in whole body and femoral bone mineral density, in femoral cortical thickness and volume, and in trabecular thickness in both males and females when measured at 20-weeks of age, which was reflected in diminished femoral resistance to fracture. Haplo-deficiency of Akt1 in male mice also decreased femoral cortical and trabecular skeletal parameters, and reduced bone strength. Cell-based studies showed that genetic Akt1 deficiency diminished the rate of proliferation of osteoblast progenitors and impaired osteoclast differentiation in primary culture but that loss of Akt2 did not. Our results demonstrate differential effects of Akt1 and Akt2 on skeletal maturation and architecture through actions on both osteoblast and osteoclast precursors.
Collapse
Affiliation(s)
- Aditi Mukherjee
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Emily A. Larson
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert F. Klein
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Affairs Medical Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kjaer-Sorensen K, Engholm DH, Jepsen MR, Morch MG, Weyer K, Hefting LL, Skov LL, Laursen LS, Oxvig C. Pregnancy-associated plasma protein-A2 modulates development of cranial cartilage and angiogenesis in zebrafish embryos. J Cell Sci 2014; 127:5027-37. [DOI: 10.1242/jcs.152587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Pregnancy-associated plasma protein-A2 (PAPP-A2, pappalysin-2) is a large metalloproteinase, known to be required for normal postnatal growth and bone development in mice. We here report the detection of zebrafish papp-a2 mRNA in chordamesoderm, notochord, and lower jaw of zebrafish (Danio rerio) embryos, and that papp-a2 knockdown embryos display broadened axial mesoderm, notochord bends, and severely reduced cranial cartilages. Genetic data link these phenotypes to insulin-like growth factor binding protein-3 (Igfbp-3) and Bmp signaling, and biochemical analysis show specific Igfbp-3 proteolysis by Papp-a2, implicating Papp-a2 in the modulation of Bmp signaling by Igfbp-3 proteolysis. Knockdown of papp-a2 additionally resulted in angiogenesis defects, strikingly similar to previous observations in embryos with mutations in components of the Notch system. Concordantly, we find that Notch signaling is modulated by Papp-a2 in vivo, and, furthermore, that PAPP-A2 is capable of modulating Notch signaling independently of its proteolytic activity in cell culture. Based on these results, we conclude that Papp-a2 modulates Bmp and Notch signaling by independent mechanisms in zebrafish embryos. In conclusion, these data link pappalysin function in zebrafish to two different signaling pathways outside the IGF system.
Collapse
|
29
|
Investigation of sequential growth factor delivery during cuprizone challenge in mice aimed to enhance oligodendrogliogenesis and myelin repair. PLoS One 2013; 8:e63415. [PMID: 23650566 PMCID: PMC3641124 DOI: 10.1371/journal.pone.0063415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/03/2013] [Indexed: 12/16/2022] Open
Abstract
Repair in multiple sclerosis involves remyelination, a process in which axons are provided with a new myelin sheath by new oligodendrocytes. Bone morphogenic proteins (BMPs) are a family of growth factors that have been shown to influence the response of oligodendrocyte progenitor cells (OPCs) in vivo during demyelination and remyelination in the adult brain. We have previously shown that BMP4 infusion increases numbers of OPCs during cuprizone-induced demyelination, while infusion of Noggin, an endogenenous antagonist of BMP4 increases numbers of mature oligodendrocytes and remyelinated axons following recovery. Additional studies have shown that insulin-like growth factor-1 (IGF-1) promotes the survival of OPCs during cuprizone-induced demyelination. Based on these data, we investigated whether myelin repair could be further enhanced by sequential infusion of these agents firstly, BMP4 to increase OPC numbers, followed by either Noggin or IGF-1 to increase the differentiation and survival of the newly generated OPCs. We identified that sequential delivery of BMP4 and IGF-1 during cuprizone challenge increased the number of mature oligodendrocytes and decreased astrocyte numbers following recovery compared with vehicle infused mice, but did not alter remyelination. However, sequential delivery of BMP4 and Noggin during cuprizone challenge did not alter numbers of oligodendrocytes or astrocytes in the corpus callosum compared with vehicle infused mice. Furthermore, electron microscopy analysis revealed no change in average myelin thickness in the corpus callosum between vehicle infused and BMP4-Noggin infused mice. Our results suggest that while single delivery of Noggin or IGF-1 increased the production of mature oligodendrocytes in vivo in the context of demyelination, only Noggin infusion promoted remyelination. Thus, sequential delivery of BMP4 and Noggin or IGF-1 does not further enhance myelin repair above what occurs with delivery of Noggin alone.
Collapse
|
30
|
Liu J, Chen L, Tao X, Tang K. Phosphoinositide 3-kinase/Akt signaling is essential for prostaglandin E2-induced osteogenic differentiation of rat tendon stem cells. Biochem Biophys Res Commun 2012. [PMID: 23206708 DOI: 10.1016/j.bbrc.2012.11.083] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tissue calcification is a typical histopathological feature of tendinopathy. The osteogenic differentiation of tendon stem cells (TSCs) induced by inflammatory mediators is believed to play a key role in this process. Previous studies showed that the major inflammatory mediator prostaglandin E2 (PGE2) induced osteogenic differentiation of TSCs via bone morphogenetic protein (BMP)-2 production. Using a rat TSC culture model, we showed that PGE2 induced BMP-2 production through up-regulation of BMP-2 mRNA expression. PGE2 activated Akt, but not extracellular-signal-regulated kinase, in TSCs. Increased BMP-2 mRNA expression mediated by PGE2 was prevented by phosphoinositide 3-kinase (PI3K) and Akt inhibitors, but not by a MEK inhibitor. Furthermore, in the presence of exogenous BMP-2, PI3K and Akt inhibitors blocked Runx2 and osteocalcin expression, although BMP-2 did not activate Akt. BMP-2-induced alkaline phosphatase activity and mineralization were also inhibited by PI3K and Akt inhibitors. However, these inhibitors did not block activation of Smad, implying that Akt was involved downstream of Smad. Taken together, these results indicate that the PI3K-Akt signaling cascade is essential for PGE2-induced BMP-2 production and BMP-2-mediated osteogenic differentiation, suggesting that PI3-kinase-Akt signaling contributes to the formation of calcified tissues in tendinopathy.
Collapse
Affiliation(s)
- Junpeng Liu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|
31
|
Zeng X, Zhang L, Sun L, Zhang D, Zhao H, Jia J, Wang W. Recovery from rat sciatic nerve injury in vivo through the use of differentiated MDSCs in vitro. Exp Ther Med 2012; 5:193-196. [PMID: 23251266 PMCID: PMC3523948 DOI: 10.3892/etm.2012.785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/18/2012] [Indexed: 01/13/2023] Open
Abstract
In this study, muscle-derived stem cells (MDSCs) whose differentiation into neuron-like cells was induced by ciliary neurotrophic factor (CNTF) and Salvia (Salvia miltiorrhiza) in vitro were used to repair rat sciatic nerve injuries in vivo, in order to investigate their multifunctional characteristics as pluripotent stem cells. The sciatic nerve in the right side of the lower limb was exposed under the anesthetized condition of 10% chloral hydrate (0.3 ml/100 g) injection into the abdominal cavity. The tissue which was 0.5 cm above the sciatic nerve bifurcation was broken using a hemostat. After induction, MDSCs were transferred in sodium hyaluronate gel and were placed into the damaged area. An untreated control group was also included in this study. The surgical area was sutured after washing with gentamycin sulfate solution. Sciatic nerve function index (SFI) was calculated, electrophysiological tests were performed and the recovery rate of gastrocnemius muscle wet weight was also calculated. Four weeks post-surgery, the SFI and the recovery rate of gastrocnemius muscle wet weight in the MDSC group were significantly higher than those in the control group (P<0.05). MDSCs whose differentiation is induced by CNTF and Salvia play an active role in the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Xiangyi Zeng
- The Third Affiliated Hospital of Liaoning Medical University
| | | | | | | | | | | | | |
Collapse
|
32
|
Ramajayam G, Vignesh RC, Karthikeyan S, Senthil Kumar K, Karthikeyan GD, Veni S, Sridhar M, Arunakaran J, Michael Aruldhas M, Srinivasan N. Regulation of insulin-like growth factors and their binding proteins by thyroid stimulating hormone in human osteoblast-like (SaOS2) cells. Mol Cell Biochem 2012; 368:77-88. [DOI: 10.1007/s11010-012-1345-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/16/2012] [Indexed: 11/25/2022]
|
33
|
Mukherjee A, Larson EA, Carlos AS, Belknap JK, Rotwein P, Klein RF. Congenic mice provide in vivo evidence for a genetic locus that modulates intrinsic transforming growth factor β1-mediated signaling and bone acquisition. J Bone Miner Res 2012; 27:1345-56. [PMID: 22407846 PMCID: PMC4729561 DOI: 10.1002/jbmr.1590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoporosis, the most common skeletal disorder, is characterized by low bone mineral density (BMD) and an increased risk of fragility fractures. BMD is the best clinical predictor of future osteoporotic fracture risk, but is a complex trait controlled by multiple environmental and genetic determinants with individually modest effects. Quantitative trait locus (QTL) mapping is a powerful method for identifying chromosomal regions encompassing genes involved in shaping complex phenotypes, such as BMD. Here we have applied QTL analysis to male and female genetically-heterogeneous F(2) mice derived from a cross between C57BL/6 and DBA/2 strains, and have identified 11 loci contributing to femoral BMD. Further analysis of a QTL on mouse chromosome 7 following the generation of reciprocal congenic strains has allowed us to determine that the high BMD trait, which tracks with the DBA/2 chromosome and exerts equivalent effects on male and female mice, is manifested by enhanced osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro and by increased growth of metatarsal bones in short-term primary culture. An insertion/deletion DNA polymorphism in Ltbp4 exon 12 that causes the in-frame removal of 12 codons in the DBA/2-derived gene maps within 0.6 Mb of the marker most tightly linked to the QTL. LTBP4, one of four paralogous mouse proteins that modify the bioavailability of the transforming growth factor β (TGF-β) family of growth factors, is expressed in differentiating MSC-derived osteoblasts and in long bones, and reduced responsiveness to TGF-β1 is observed in MSCs of mice homozygous for the DBA/2 chromosome 7. Taken together, our results identify a potential genetic and biochemical relationship between decreased TGF-β1-mediated signaling and enhanced femoral BMD that may be regulated by a variant LTBP4 molecule.
Collapse
Affiliation(s)
- Aditi Mukherjee
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, United States
| | - Emily A. Larson
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Amy S. Carlos
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - John K. Belknap
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Portland Veterans Affairs Medical Center, Portland, OR, United States
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, United States
| | - Robert F. Klein
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
- Portland Veterans Affairs Medical Center, Portland, OR, United States
| |
Collapse
|
34
|
Peruzzi B, Cappariello A, Del Fattore A, Rucci N, De Benedetti F, Teti A. c-Src and IL-6 inhibit osteoblast differentiation and integrate IGFBP5 signalling. Nat Commun 2012; 3:630. [DOI: 10.1038/ncomms1651] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/16/2011] [Indexed: 11/09/2022] Open
|
35
|
Nili M, Mukherjee A, Shinde U, David L, Rotwein P. Defining the disulfide bonds of insulin-like growth factor-binding protein-5 by tandem mass spectrometry with electron transfer dissociation and collision-induced dissociation. J Biol Chem 2011; 287:1510-9. [PMID: 22117064 DOI: 10.1074/jbc.m111.285528] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The six high-affinity insulin-like growth factor-binding proteins (IGFBPs) comprise a conserved family of secreted molecules that modulate IGF actions by regulating their half-life and access to signaling receptors, and also exert biological effects that are independent of IGF binding. IGFBPs are composed of cysteine-rich amino- (N-) and carboxyl- (C-) terminal domains, along with a cysteine-poor central linker segment. IGFBP-5 is the most conserved IGFBP, and contains 18 cysteines, but only 2 of 9 putative disulfide bonds have been mapped to date. Using a mass spectrometry (MS)-based strategy combining sequential electron transfer dissociation (ETD) and collision-induced dissociation (CID) steps, in which ETD fragmentation preferentially induces cleavage of disulfide bonds, and CID provides exact disulfide linkage assignments between liberated peptides, we now have definitively mapped 5 disulfide bonds in IGFBP-5. In addition, in conjunction with ab initio molecular modeling we are able to assign the other 4 disulfide linkages to within a GCGCCXXC motif that is conserved in five IGFBPs. Because of the nature of ETD fragmentation MS experiments were performed without chemical reduction of IGFBP-5. Our results not only establish a disulfide bond map of IGFBP-5 but also define a general approach that takes advantage of the specificity of ETD and the scalability of tandem MS, and the predictive power of ab initio molecular modeling to characterize unknown disulfide linkages in proteins.
Collapse
Affiliation(s)
- Mahta Nili
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | |
Collapse
|
36
|
Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development. Mol Cell Biol 2011; 32:490-500. [PMID: 22064480 DOI: 10.1128/mcb.06361-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maintaining optimal bone integrity, mass, and strength throughout adult life requires ongoing bone remodeling, which involves coordinated activity between actions of bone-resorbing osteoclasts and bone forming-osteoblasts. Osteoporosis is a disorder of remodeling in which bone resorption outstrips deposition, leading to diminished bone mass and an increased risk of fractures. Here we identify Akt1 as a unique signaling intermediate in osteoblasts that can control both osteoblast and osteoclast differentiation. Targeted knockdown of Akt1 in mouse primary bone marrow stromal cells or in a mesenchymal stem cell line or genetic knockout of Akt1 stimulated osteoblast differentiation secondary to increased expression of the osteogenic transcription factor Runx2. Despite enhanced osteoblast differentiation, coupled osteoclastogenesis in Akt1 deficiency was markedly inhibited, with reduced accumulation of specific osteoclast mRNAs and proteins and impaired fusion to form multinucleated osteoclasts, defects secondary to diminished production of receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (m-CSF), critical osteoblast-derived osteoclast differentiation factors. Delivery of recombinant lentiviruses encoding Akt1 but not Akt2 to Akt1-deficient osteoblast progenitors reversed the increased osteoblast differentiation and, by boosting accumulation of RANKL and m-CSF, restored normal osteoclastogenesis, as did the addition of recombinant RANKL to conditioned culture medium from Akt1-deficient osteoblasts. Our results support the idea that targeted inhibition of Akt1 could lead to therapeutically useful net bone acquisition, and they indicate that closely related Akt1 and Akt2 exert distinct effects on cellular differentiation pathways.
Collapse
|
37
|
Qiu J, Ma XL, Wang X, Chen H, Huang BR. Insulin-like growth factor binding protein-6 interacts with the thyroid hormone receptor α1 and modulates the thyroid hormone-response in osteoblastic differentiation. Mol Cell Biochem 2011; 361:197-208. [PMID: 21997736 DOI: 10.1007/s11010-011-1104-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/28/2011] [Indexed: 02/04/2023]
Abstract
Insulin-like growth factor binding protein-6 (IGFBP-6) is a member of the insulin-like growth factor binding protein family, which has both Insulin-like growth factor-dependent and independent effects on cell growth. In previous studies, we have shown that recombinant IGFBP-6 could be translocated into the cell nucleus. But the effect in the nucleus of IGFBP-6 is not clear. In the present study, we use multiple methodologies including Glutathione S-transferase pull-down assay, co-immunoprecipitation, fluorescence resonance energy transfer to demonstrate that IGFBP-6 can directly interact with thyroid hormone receptor alpha 1 (TRα1) in vitro and in vivo. We also demonstrate that the DNA-binding domains and Ligand-binding domains of TRα1 and N-terminal domains and C-terminal domains of IGFBP-6 are involved in the interaction. This interaction also can block the formation of TR: retinoid X receptor heterodimers. Furthermore, immunofluorescence co-localization studies show IGFBP-6 and TRα1 could co-localize in the nucleus of the cells. Reporter gene experiment shows that IGFBP-6 negatively regulates the growth hormone promoter activity induced by ligand activated TRα1. Moreover, real-time RT-PCR demonstrates that IGFBP-6 could inhibit the osteocalcin mRNA transcription induced by Triiodothyronine (3,3',5-Triiodo-L-thyronine, T3) in osteoblastic cells. Finally, alkaline phosphatase activity was significantly decreased in osteoblastic cells when the cells were transfected with IGFBP-6 in the presence of T3. In conclusion, these studies provide evidence that overexpression of IGFBP-6 suppresses osteoblastic differentiation regulated by TR in the present of T3.
Collapse
Affiliation(s)
- Jia Qiu
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
38
|
Zhong Y, Lu L, Zhou J, Li Y, Liu Y, Clemmons DR, Duan C. IGF binding protein 3 exerts its ligand-independent action by antagonizing BMP in zebrafish embryos. J Cell Sci 2011; 124:1925-35. [DOI: 10.1242/jcs.082644] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IGFBP3 is a multi-functional protein that has IGF-dependent and IGF-independent actions in cultured cells. Here we show that the IGF binding domain (IBD), nuclear localization signal (NLS) and transactivation domain (TA) are conserved and functional in zebrafish Igfbp3. The in vivo roles of these domains were investigated by expression of Igfbp3 and its mutants in zebrafish embryos. Igfbp3, and its NLS and TA mutants had equally strong dorsalizing effects. Human IGFBP3 had similar dorsalizing effects in zebrafish embryos. The activities of IBD and IBD+NLS mutants were lower, but they still caused dorsalization. Thus, the IGF-independent action of Igfbp3 is not related to NLS or TA in this in vivo model. We next tested the hypothesis that Igfbp3 exerts its IGF-independent action by affecting Bmp signaling. Co-expression of Igfbp3 with Bmp2b abolished Bmp2b-induced gene expression and inhibited its ventralizing activity. Biochemical assays and in vitro experiments revealed that IGFBP3 bound BMP2 and inhibited BMP2-induced Smad signaling in cultured human cells. In vivo expression of Igfbp3 increased chordin expression in zebrafish embryos by alleviating the negative regulation of Bmp2. The elevated level of Chordin acted together with Igfbp3 to inhibit the actions of Bmp2. Knockdown of Igfbp3 enhanced the ventralized phenotype caused by chordin knockdown. These results suggest that Igfbp3 exerts its IGF-independent actions by antagonizing Bmp signaling and that this mechanism is conserved.
Collapse
Affiliation(s)
- Yingbin Zhong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - David R. Clemmons
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Luo W, Friedman MS, Hankenson KD, Woolf PJ. Time series gene expression profiling and temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization. BMC SYSTEMS BIOLOGY 2011; 5:82. [PMID: 21605425 PMCID: PMC3126716 DOI: 10.1186/1752-0509-5-82] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/23/2011] [Indexed: 12/27/2022]
Abstract
Background BMP6 mediated osteoblast differentiation plays a key role in skeletal development and bone disease. Unfortunately, the signaling pathways regulated by BMP6 are largely uncharacterized due to both a lack of data and the complexity of the response. Results To better characterize the signaling pathways responsive to BMP6, we conducted a time series microarray study to track BMP6 induced osteoblast differentiation and mineralization. These temporal data were analyzed using a customized gene set analysis approach to identify temporally coherent sets of genes that act downstream of BMP6. Our analysis identified BMP6 regulation of previously reported pathways, such as the TGF-beta pathway. We also identified previously unknown connections between BMP6 and pathways such as Notch signaling and the MYB and BAF57 regulatory modules. In addition, we identify a super-network of pathways that are sequentially activated following BMP6 induction. Conclusion In this work, we carried out a microarray-based temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization using GAGE method. This novel temporal analysis is more informative and powerful than the classical static pathway analysis in that: (1) it captures the interconnections between signaling pathways or functional modules and demonstrates the even higher level organization of molecular biological systems; (2) it describes the temporal perturbation patterns of each pathway or module and their dynamic roles in osteoblast differentiation. The same set of experimental and computational strategies employed in our work could be useful for studying other complex biological processes.
Collapse
Affiliation(s)
- Weijun Luo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
40
|
Comparison with human amniotic membrane- and adipose tissue-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2011. [DOI: 10.5468/kjog.2011.54.11.674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Notarnicola A, Tamma R, Moretti L, Panella A, Dell'endice S, Zallone A, Moretti B. Effect of shock wave treatment on platelet-rich plasma added to osteoblast cultures. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:160-168. [PMID: 21084153 DOI: 10.1016/j.ultrasmedbio.2010.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/07/2010] [Accepted: 10/14/2010] [Indexed: 05/30/2023]
Abstract
The aim of this study was to verify the effects on osteoblast cultures of adding a platelet-rich plasma (PRP) concentrate pretreated with 500 shock wave (SW) at an energy flow density of 0.17 mJ/mm(2), emitted by an electromagnetic generator Minilith SL1 (STORZ, Germany), reproducing the conditions of our previous study in which we apply SW directly on osteoblasts. Real-time PCR showed that in osteoblast cultures with added PRP pretreated with SW, there was an increased expression at 48 h of insulin-like growth factor binding protein 3 (IGFBP-3) and runt-related transcription factor 2 (RUNX2) and at 72 h, of collagen type I, osteocalcin, insulin-like growth factor 1 (IGF-1) as well as IGFBP-3. Western blotting confirmed the increased protein synthesis of IGFBP-3. This experience suggests that extracorporeal shock wave treatment (ESWT) should stimulate osteogenesis also by indirect platelets-mediated network. It therefore seems possible that combining the two methods, ESWT and bioengineering procedures to infiltrate PRP and growth factors, could be a successful approach.
Collapse
Affiliation(s)
- Angela Notarnicola
- Department of Clinical Methodology and Surgical Techniques, Orthopedics Section, Faculty of Medicine and Surgery of University of Bari, General Hospital, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Li Y, Geng YJ. A potential role for insulin-like growth factor signaling in induction of pluripotent stem cell formation. Growth Horm IGF Res 2010; 20:391-398. [PMID: 20956084 DOI: 10.1016/j.ghir.2010.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 12/11/2022]
Abstract
Recent success in reprogramming somatic cells into induced pluripotent stem cells (iPS cells) with a cluster of nuclear transcription factors, such as Oct4, Sox2, Klf4, and c-myc, opens up a new era in regenerative medicine. However, reportedly poor efficiency and slow kinetics of the reprogramming process by viral transfection of the nuclear factors may create an obstacle that hampers clinical application of the iPS cell technology. Furthermore, the viral transfection may induce mutagenesis and raises the risk for cancer development. Hence, generation of iPS cells using a non-viral approach appears to be an important prerequisite for iPS cell-based regenerative medicine. Through its receptor/phosphoinositide 3-kinase (PI3-K) signaling pathway, insulin-like growth factor (IGF) plays a critical role in promotion of survival and proliferation in a diversity of cell types, including both embryonic and adult stem cells. In addition, IGF may enhance expression of reprogramming or surviving factors in reprogramming somatic cells. This review summarizes recent advances in IGF research and discusses the potential for IGF to act as a co-stimulatory factor for somatic cell reprogramming and iPS cell development. Currently available evidence from experimental animal and human studies highly suggests that IGF may contribute to reprogramming of somatic cells into iPS cell generation, and enhancement of iPS cell survival and growth, which will be instrumental in regenerative medicine.
Collapse
Affiliation(s)
- Yangxin Li
- Texas Heart Institute, Houston, TX 77030, USA.
| | | |
Collapse
|
43
|
Chen L, Jiang W, Huang J, He BC, Zuo GW, Zhang W, Luo Q, Shi Q, Zhang BQ, Wagner ER, Luo J, Tang M, Wietholt C, Luo X, Bi Y, Su Y, Liu B, Kim SH, He CJ, Hu Y, Shen J, Rastegar F, Huang E, Gao Y, Gao JL, Zhou JZ, Reid RR, Luu HH, Haydon RC, He TC, Deng ZL. Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J Bone Miner Res 2010; 25:2447-59. [PMID: 20499340 PMCID: PMC3179288 DOI: 10.1002/jbmr.133] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 03/28/2010] [Accepted: 05/05/2010] [Indexed: 12/23/2022]
Abstract
Efficient osteogenic differentiation and bone formation from mesenchymal stem cells (MSCs) should have clinical applications in treating nonunion fracture healing. MSCs are adherent bone marrow stromal cells that can self-renew and differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We have identified bone morphogenetic protein 9 (BMP-9) as one of the most osteogenic BMPs. Here we investigate the effect of insulin-like growth factor 2 (IGF-2) on BMP-9-induced bone formation. We have found that endogenous IGF-2 expression is low in MSCs. Expression of IGF-2 can potentiate BMP-9-induced early osteogenic marker alkaline phosphatase (ALP) activity and the expression of later markers. IGF-2 has been shown to augment BMP-9-induced ectopic bone formation in the stem cell implantation assay. In perinatal limb explant culture assay, IGF-2 enhances BMP-9-induced endochondral ossification, whereas IGF-2 itself can promote the expansion of the hypertropic chondrocyte zone of the cultured limb explants. Expression of the IGF antagonists IGFBP3 and IGFBP4 leads to inhibition of the IGF-2 effect on BMP-9-induced ALP activity and matrix mineralization. Mechanistically, IGF-2 is further shown to enhance the BMP-9-induced BMPR-Smad reporter activity and Smad1/5/8 nuclear translocation. PI3-kinase (PI3K) inhibitor LY294002 abolishes the IGF-2 potentiation effect on BMP-9-mediated osteogenic signaling and can directly inhibit BMP-9 activity. These results demonstrate that BMP-9 crosstalks with IGF-2 through PI3K/AKT signaling pathway during osteogenic differentiation of MSCs. Taken together, our findings suggest that a combination of BMP-9 and IGF-2 may be explored as an effective bone-regeneration agent to treat large segmental bony defects, nonunion fracture, and/or osteoporotic fracture.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Chongqing Medical UniversityChongqing, People's Republic of China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Wei Jiang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Jiayi Huang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Bai-Cheng He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Guo-Wei Zuo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Wenli Zhang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, West China Hospital, Sichuan UniversityChengdu, Sichuan, People's Republic of China
| | - Qing Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Qiong Shi
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Bing-Qiang Zhang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Eric R Wagner
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Jinyong Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Min Tang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | | | - Xiaoji Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Yuxi Su
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Bo Liu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Stephanie H Kim
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Connie J He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Yawen Hu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Jikun Shen
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Farbod Rastegar
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Enyi Huang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- School of Bioengineering, Chongqing UniversityChongqig, People's Republic of China
| | - Yanhong Gao
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Department of Geriatrics, Xinhua Hospital of Shanghai Jiatong UniversityShanghai, People's Republic of China
| | - Jian-Li Gao
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Jian-Zhong Zhou
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| | - Zhong-Liang Deng
- Department of Orthopaedic Surgery, Second Affiliated Hospital, Chongqing Medical UniversityChongqing, People's Republic of China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, IL, USA
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and the Affiliated Hospitals, Chongqing Medical UniversityChongqing, People's Republic of China
| |
Collapse
|
44
|
Saugspier M, Felthaus O, Viale-Bouroncle S, Driemel O, Reichert TE, Schmalz G, Morsczeck C. The Differentiation and Gene Expression Profile of Human Dental Follicle Cells. Stem Cells Dev 2010; 19:707-17. [PMID: 20491563 DOI: 10.1089/scd.2010.0027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Saugspier
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Felthaus
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Viale-Bouroncle
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Driemel
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Gottfried Schmalz
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Christian Morsczeck
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
45
|
Selective signaling by Akt2 promotes bone morphogenetic protein 2-mediated osteoblast differentiation. Mol Cell Biol 2009; 30:1018-27. [PMID: 19995912 DOI: 10.1128/mcb.01401-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mesenchymal stem cells are essential for repair of bone and other supporting tissues. Bone morphogenetic proteins (BMPs) promote commitment of these progenitors toward an osteoblast fate via functional interactions with osteogenic transcription factors, including Dlx3, Dlx5, and Runx2, and also can direct their differentiation into bone-forming cells. BMP-2-stimulated osteoblast differentiation additionally requires continual signaling from insulin-like growth factor (IGF)-activated pathways. Here we identify Akt2 as a critical mediator of IGF-regulated osteogenesis. Targeted knockdown of Akt2 in mouse primary bone marrow stromal cells or in a mesenchymal stem cell line, or genetic knockout of Akt2, did not interfere with BMP-2-mediated signaling but resulted in inhibition of osteoblast differentiation at an early step that preceded production of Runx2. In contrast, Akt1-deficient cells differentiated normally. Complete biochemical and morphological osteoblast differentiation was restored in cells lacking Akt2 by adenoviral delivery of Runx2 or by a recombinant lentivirus encoding wild-type Akt2. In contrast, lentiviral Akt1 was ineffective. Taken together, these observations define a specific role for Akt2 as a gatekeeper of osteogenic differentiation through regulation of Runx2 gene expression and indicate that the closely related Akt1 and Akt2 exert distinct effects on the differentiation of mesenchymal precursors.
Collapse
|
46
|
Mukherjee A, Rotwein P. Akt promotes BMP2-mediated osteoblast differentiation and bone development. J Cell Sci 2009; 122:716-26. [PMID: 19208758 DOI: 10.1242/jcs.042770] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is crucial for normal skeletal development and for bone remodeling. Osteogenesis is primarily regulated by bone morphogenetic proteins (BMPs), which activate gene expression programs driven by bone-specific transcription factors. In a mesenchymal stem cell model of osteoblast commitment and differentiation controlled by BMP2, we show that an inhibitor of PI3-kinase or a dominant-negative Akt were as potent in preventing osteoblast differentiation as the IGF binding protein IGFBP5, whereas a Mek inhibitor was ineffective. Conversely, an adenovirus encoding an inducible-active Akt was able to overcome the blockade of differentiation caused by IGFBP5 or the PI3-kinase inhibitor, and could restore normal osteogenesis. Inhibition of PI3-kinase or Akt did not block BMP2-mediated signaling, because the Smad-responsive genes Sox9 and JunB were induced normally under all experimental conditions. When activated during different stages of osteoblast maturation, dominant-negative Akt prevented accumulation of bone-specific alkaline phosphatase and reduced mineralization, and more significantly inhibited the longitudinal growth of metatarsal bones in primary culture by interfering with both chondrocyte and osteoblast development and function. We conclude that an intact IGF-induced PI3-kinase-Akt signaling cascade is essential for BMP2-activated osteoblast differentiation and maturation, bone development and growth, and suggest that manipulation of this pathway could facilitate bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Aditi Mukherjee
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
47
|
Pérez-Casellas LA, Wang X, Howard KD, Rehage MW, Strong DD, Linkhart TA. Nuclear factor I transcription factors regulate IGF binding protein 5 gene transcription in human osteoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:78-87. [PMID: 18809517 DOI: 10.1016/j.bbagrm.2008.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/11/2008] [Accepted: 08/26/2008] [Indexed: 11/17/2022]
Abstract
Insulin-like growth factor binding protein 5 (IGFBP5) is expressed in many cell types including osteoblasts and modulates IGF activities. IGFBP5 may affect osteoblasts and bone formation, in part by mechanisms independent of binding IGFs. The highly conserved IGFBP5 proximal promoter within 100 nucleotides of the start of transcription contains functional cis regulatory elements for C/EBP, Myb and AP-2. We report evidence for a functional Nuclear Factor I (NFI) cis element that mediates activation or repression of IGFBP5 transcription by the NFI gene family. All four NFI genes were expressed in human osteoblast cultures and osteosarcoma cell lines. Co-transfection with human IGFBP5 promoter luciferase reporter and murine Nfi expression vectors showed that Nfib was the most active in stimulating transcription. Nfix was less active and Nfia and Nfic were inhibitory. Knockdown of NFIB and NFIC expression using siRNA decreased and increased IGFBP5 expression, respectively. Analysis of IGFBP5 promoter deletion and mutation reporter constructs identified a functional NFI cis element. All four NFI proteins bound the NFI site in electrophoretic mobility shift experiments and NFIB bound in chromatin immunoprecipitation assays. Results suggest that NFI proteins are important regulators of IGFBP5 expression in human osteoblasts and thus in modulating IGFBP5 functions in bone.
Collapse
|