1
|
Chachlaki K, Duc KL, Storme L, Prévot V. Novel insights into minipuberty and GnRH: Implications on neurodevelopment, cognition, and COVID-19 therapeutics. J Neuroendocrinol 2024; 36:e13387. [PMID: 38565500 PMCID: PMC7616535 DOI: 10.1111/jne.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
In humans, the first 1000 days of life are pivotal for brain and organism development. Shortly after birth, gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus are activated, a phenomenon known as minipuberty. This phenomenon, observed in all mammals studied, influences the postnatal development of the hypothalamic-pituitary-gonadal (HPG) axis and reproductive function. This review will put into perspective the results of recent studies showing that the impact of minipuberty extends beyond reproductive function, influencing sensory and cognitive maturation. Studies in mice have revealed the role of nitric oxide (NO) in regulating minipuberty amplitude, with NO deficiency linked to cognitive and olfactory deficits. Additionally, findings indicate that cognitive and sensory defects in adulthood in a mouse model of Down syndrome are associated with an age-dependent decline of GnRH production, whose origin can be traced back to minipuberty, and point to the potential therapeutic role of pulsatile GnRH administration in cognitive disorders. Furthermore, this review delves into the repercussions of COVID-19 on GnRH production, emphasizing potential consequences for neurodevelopment and cognitive function in infected individuals. Notably, GnRH neurons appear susceptible to SARS-CoV-2 infection, raising concerns about potential long-term effects on brain development and function. In conclusion, the intricate interplay between GnRH neurons, GnRH release, and the activity of various extrahypothalamic brain circuits reveals an unexpected role for these neuroendocrine neurons in the development and maintenance of sensory and cognitive functions, supplementing their established function in reproduction. Therapeutic interventions targeting the HPG axis, such as inhaled NO therapy in infancy and pulsatile GnRH administration in adults, emerge as promising approaches for addressing neurodevelopmental cognitive disorders and pathological aging.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
| | - Kevin Le Duc
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
- CHU Lille, Neonatology Department, Jeanne de Flandres Hospital, Lille, France
| | - Laurent Storme
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
- CHU Lille, Neonatology Department, Jeanne de Flandres Hospital, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
| |
Collapse
|
2
|
AlAbdi L, Maddirevula S, Shamseldin HE, Khouj E, Helaby R, Hamid H, Almulhim A, Hashem MO, Abdulwahab F, Abouyousef O, Alqahtani M, Altuwaijri N, Jaafar A, Alshidi T, Alzahrani F, Alkuraya FS. Diagnostic implications of pitfalls in causal variant identification based on 4577 molecularly characterized families. Nat Commun 2023; 14:5269. [PMID: 37644014 PMCID: PMC10465531 DOI: 10.1038/s41467-023-40909-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Despite large sequencing and data sharing efforts, previously characterized pathogenic variants only account for a fraction of Mendelian disease patients, which highlights the need for accurate identification and interpretation of novel variants. In a large Mendelian cohort of 4577 molecularly characterized families, numerous scenarios in which variant identification and interpretation can be challenging are encountered. We describe categories of challenges that cover the phenotype (e.g. novel allelic disorders), pedigree structure (e.g. imprinting disorders masquerading as autosomal recessive phenotypes), positional mapping (e.g. double recombination events abrogating candidate autozygous intervals), gene (e.g. novel gene-disease assertion) and variant (e.g. complex compound inheritance). Overall, we estimate a probability of 34.3% for encountering at least one of these challenges. Importantly, our data show that by only addressing non-sequencing-based challenges, around 71% increase in the diagnostic yield can be expected. Indeed, by applying these lessons to a cohort of 314 cases with negative clinical exome or genome reports, we could identify the likely causal variant in 54.5%. Our work highlights the need to have a thorough approach to undiagnosed diseases by considering a wide range of challenges rather than a narrow focus on sequencing technologies. It is hoped that by sharing this experience, the yield of undiagnosed disease programs globally can be improved.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ebtissal Khouj
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Norah Altuwaijri
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema Alzahrani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Oleari R, Lettieri A, Manzini S, Paganoni A, André V, Grazioli P, Busnelli M, Duminuco P, Vitobello A, Philippe C, Bizaoui V, Storr HL, Amoruso F, Memi F, Vezzoli V, Massa V, Scheiffele P, Howard SR, Cariboni A. Autism-linked NLGN3 is a key regulator of gonadotropin-releasing hormone deficiency. Dis Model Mech 2023; 16:dmm049996. [PMID: 36810932 PMCID: PMC10110398 DOI: 10.1242/dmm.049996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan 20142, Italy
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Valentina André
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Grazioli
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Duminuco
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Italy
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire (FHU) TRANSLAD, CHU Dijon Bourgogne, Dijon 21079, France
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon 21070, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire (FHU) TRANSLAD, CHU Dijon Bourgogne, Dijon 21079, France
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon 21070, France
| | - Varoona Bizaoui
- Genetics and Neurodevelopment, Centre Hospitalier de l'Estran, Pontorson 50170, France
| | - Helen L. Storr
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Royal London Children's Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Fani Memi
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Valeria Vezzoli
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan 20142, Italy
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | | | - Sasha R. Howard
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Royal London Children's Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| |
Collapse
|
4
|
Tanaka S, Zmora N, Levavi-Sivan B, Zohar Y. Chemogenetic Depletion of Hypophysiotropic GnRH Neurons Does Not Affect Fertility in Mature Female Zebrafish. Int J Mol Sci 2022; 23:ijms23105596. [PMID: 35628411 PMCID: PMC9143870 DOI: 10.3390/ijms23105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The hypophysiotropic gonadotropin-releasing hormone (GnRH) and its neurons are crucial for vertebrate reproduction, primarily in regulating luteinizing hormone (LH) secretion and ovulation. However, in zebrafish, which lack GnRH1, and instead possess GnRH3 as the hypophysiotropic form, GnRH3 gene knockout did not affect reproduction. However, early-stage ablation of all GnRH3 neurons causes infertility in females, implicating GnRH3 neurons, rather than GnRH3 peptides in female reproduction. To determine the role of GnRH3 neurons in the reproduction of adult females, a Tg(gnrh3:Gal4ff; UAS:nfsb-mCherry) line was generated to facilitate a chemogenetic conditional ablation of GnRH3 neurons. Following ablation, there was a reduction of preoptic area GnRH3 neurons by an average of 85.3%, which was associated with reduced pituitary projections and gnrh3 mRNA levels. However, plasma LH levels were unaffected, and the ablated females displayed normal reproductive capacity. There was no correlation between the number of remaining GnRH3 neurons and reproductive performance. Though it is possible that the few remaining GnRH3 neurons can still induce an LH surge, our findings are consistent with the idea that GnRH and its neurons are likely dispensable for LH surge in zebrafish. Altogether, our results resurrected questions regarding the functional homology of the hypophysiotropic GnRH1 and GnRH3 in controlling ovulation.
Collapse
Affiliation(s)
- Sakura Tanaka
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
- Correspondence:
| |
Collapse
|
5
|
Duittoz AH, Forni PE, Giacobini P, Golan M, Mollard P, Negrón AL, Radovick S, Wray S. Development of the gonadotropin-releasing hormone system. J Neuroendocrinol 2022; 34:e13087. [PMID: 35067985 PMCID: PMC9286803 DOI: 10.1111/jne.13087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
This review summarizes the current understanding of the development of the neuroendocrine gonadotropin-releasing hormone (GnRH) system, including discussion on open questions regarding (1) transcriptional regulation of the Gnrh1 gene; (2) prenatal development of the GnRH1 system in rodents and humans; and (3) paracrine and synaptic communication during migration of the GnRH cells.
Collapse
Affiliation(s)
| | - Paolo E. Forni
- Department of Biological SciencesUniversity at AlbanyAlbanyNYUSA
- The RNA InstituteUniversity at AlbanyAlbanyNYUSA
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Postnatal BrainLille Neuroscience & Cognition, UMR‐S1172, Inserm, CHU LilleUniversity of LilleLilleFrance
| | - Matan Golan
- Institute of Animal SciencesAgricultural Research Organization – Volcani CenterRishon LetziyonIsrael
| | - Patrice Mollard
- Institute of Functional GenomicsCNRS, InsermMontpellier UniversityMontpellierFrance
| | - Ariel L. Negrón
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Sally Radovick
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Susan Wray
- Cellular and Developmental Neurobiology SectionNational Institute of Neurological Disorders and Stroke/National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
6
|
Chandra K, Banerjee A, Das M. Epigenetic and transcriptional regulation of GnRH gene under altered metabolism and ageing. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Stegemiller MR, Murdoch GK, Rowan TN, Davenport KM, Becker GM, Hall JB, Murdoch BM. Genome-Wide Association Analyses of Fertility Traits in Beef Heifers. Genes (Basel) 2021; 12:genes12020217. [PMID: 33540904 PMCID: PMC7913221 DOI: 10.3390/genes12020217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of livestock to reproduce efficiently is critical to the sustainability of animal agriculture. Antral follicle count (AFC) and reproductive tract scores (RTS) can be used to estimate fertility in beef heifers, but the genetic mechanisms influencing variation in these measures are not well understood. Two genome-wide association studies (GWAS) were conducted to identify the significant loci associated with these traits. In total, 293 crossbred beef heifers were genotyped on the Bovine GGP 50K chip and genotypes were imputed to 836,121 markers. A GWAS was performed with the AFC phenotype for 217 heifers with a multi-locus mixed model, conducted using the year, age at time of sampling and principal component analysis groupings as the covariates. The RTS GWAS was performed with 289 heifers using an additive correlation/trend test comparing prepubertal to pubertal heifers. The loci on chromosomes 2, 3 and 23 were significant in the AFC GWAS and the loci on chromosomes 2, 8, 10 and 11 were significant in the RTS GWAS. The significant region on chromosome 2 was similar between both analyses. These regions contained genes associated with cell proliferation, transcription, apoptosis and development. This study proposes candidate genes for beef cattle fertility, although future research is needed to elucidate the precise mechanisms.
Collapse
Affiliation(s)
- Morgan R. Stegemiller
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
| | - Gordon K. Murdoch
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Troy N. Rowan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Kimberly M. Davenport
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
| | - Gabrielle M. Becker
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
| | - John B. Hall
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
- Nancy M. Cummings Research, Education, and Extension Center, University of Idaho, Carmen, ID 83462, USA
- Correspondence: (J.B.H.); (B.M.M.); Tel.: +1-208-756-2749 (J.B.H.); +1-208-885-2088 (B.M.M.)
| | - Brenda M. Murdoch
- Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83843, USA; (M.R.S.); (G.K.M.); (K.M.D.); (G.M.B.)
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
- Correspondence: (J.B.H.); (B.M.M.); Tel.: +1-208-756-2749 (J.B.H.); +1-208-885-2088 (B.M.M.)
| |
Collapse
|
8
|
Zhao Z, Zou X, Lu T, Deng M, Li Y, Guo Y, Sun B, Liu G, Liu D. Identification of mRNAs and lncRNAs Involved in the Regulation of Follicle Development in Goat. Front Genet 2020; 11:589076. [PMID: 33391342 PMCID: PMC7773919 DOI: 10.3389/fgene.2020.589076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Follicular development and maturation has a significant impact on goat reproductive performance, and it is therefore important to understand the molecular basis of this process. The importance of long non-coding RNAs (lncRNAs) in mammalian reproduction has been established, but little is known about the roles of lncRNAs in different follicular stages, especially in goats. In this study, RNA sequencing (RNA-seq) of large follicles (>10 mm) and small follicles (<3 mm) of Chuanzhong black goats was performed to investigate the regulatory mechanisms of lncRNAs and mRNAs in follicular development and maturation. A total of 8 differentially expressed lncRNAs (DElncRNAs) and 1,799 DEmRNAs were identified, and the majority of these were upregulated in small follicles. MRO, TC2N, CDO1, and NTRK1 were potentially associated with follicular maturation. KEGG pathway analysis showed that the DEmRNAs involved in ovarian steroidogenesis (BMP6, CYP11A1, CYP19A1, 3BHSD, STAR, LHCGR, and CYP51A1) and cAMP signaling play roles in regulating follicular maturation and developmental inhibition respectively. Five target pairs of DElncRNA-DEmRNA, namely, ENSCHIT00000001255-OTX2, ENSCHIT00000006005-PEG3, ENSCHIT00000009455-PIWIL3, ENSCHIT00000007977-POMP, and ENSCHIT00000000834-ACTR3 in co-expression analysis provide a clue in follicular development and maturation of lncRNA-mRNA interaction. Our findings provide a valuable resource for lncRNA studies, and could potentially provide a deeper understanding of the genetic basis and molecular mechanisms of goat follicular development and maturation.
Collapse
Affiliation(s)
- Zhifeng Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tingting Lu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 2020; 140:77-111. [PMID: 32200437 DOI: 10.1007/s00439-020-02147-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the "pilot light" of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype-phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome-KS), other genes can be associated with both nCHH and KS-sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.
Collapse
Affiliation(s)
- Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy.,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Richard Quinton
- Endocrine Unit, Royal Victoria Infirmary, Department of Endocrinology, Diabetes and Metabolism, Newcastle-Upon-Tyne Hospitals, Newcastle-Upon-Tyne, NE1 4LP, UK. .,Translational and Clinical Research Institute, University of Newcastle-Upon-Tyne, Newcastle-Upon-Tyne, UK.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy. .,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| |
Collapse
|
10
|
The Homeodomain Transcription Factors Vax1 and Six6 Are Required for SCN Development and Function. Mol Neurobiol 2019; 57:1217-1232. [PMID: 31705443 DOI: 10.1007/s12035-019-01781-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
The brain's primary circadian pacemaker, the suprachiasmatic nucleus (SCN), is required to translate day-length and circadian rhythms into neuronal, hormonal, and behavioral rhythms. Here, we identify the homeodomain transcription factor ventral anterior homeobox 1 (Vax1) as required for SCN development, vasoactive intestinal peptide expression, and SCN output. Previous work has shown that VAX1 is required for gonadotropin-releasing hormone (GnRH/LHRH) neuron development, a neuronal population controlling reproductive status. Surprisingly, the ectopic expression of a Gnrh-Cre allele (Gnrhcre) in the SCN confirmed the requirement of both VAX1 (Vax1flox/flox:Gnrhcre, Vax1Gnrh-cre) and sine oculis homeobox protein 6 (Six6flox/flox:Gnrhcre, Six6Gnrh-cre) in SCN function in adulthood. To dissociate the role of Vax1 and Six6 in GnRH neuron and SCN function, we used another Gnrh-cre allele that targets GnRH neurons, but not the SCN (Lhrhcre). Both Six6Lhrh-cre and Vax1Lhrh-cre were infertile, and in contrast to Vax1Gnrh-cre and Six6Gnrh-cre mice, Six6Lhrh-cre and Vax1Lhrh-cre had normal circadian behavior. Unexpectedly, ~ 1/4 of the Six6Gnrh-cre mice were unable to entrain to light, showing that ectopic expression of Gnrhcre impaired function of the retino-hypothalamic tract that relays light information to the brain. This study identifies VAX1, and confirms SIX6, as transcription factors required for SCN development and function and demonstrates the importance of understanding how ectopic CRE expression can impact the results.
Collapse
|
11
|
Pandolfi EC, Tonsfeldt KJ, Hoffmann HM, Mellon PL. Deletion of the Homeodomain Protein Six6 From GnRH Neurons Decreases GnRH Gene Expression, Resulting in Infertility. Endocrinology 2019; 160:2151-2164. [PMID: 31211355 PMCID: PMC6821215 DOI: 10.1210/en.2019-00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
Hypothalamic GnRH (luteinizing hormone-releasing hormone) neurons are crucial for the hypothalamic-pituitary-gonadal (HPG) axis, which regulates mammalian fertility. Insufficient GnRH disrupts the HPG axis and is often associated with the genetic condition idiopathic hypogonadotropic hypogonadism (IHH). The homeodomain protein sine oculis-related homeobox 6 (Six6) is required for the development of GnRH neurons. Although it is known that Six6 is specifically expressed within a more mature GnRH neuronal cell line and that overexpression of Six6 induces GnRH transcription in these cells, the direct role of Six6 within the GnRH neuron in vivo is unknown. Here we find that global Six6 knockout (KO) embryos show apoptosis of GnRH neurons beginning at embryonic day 14.5 with 90% loss of GnRH neurons by postnatal day 1. We sought to determine whether the hypogonadism and infertility reported in the Six6KO mice are generated via actions within the GnRH neuron in vivo by creating a Six6-flox mouse and crossing it with the LHRHcre mouse. Loss of Six6 specifically within the GnRH neuron abolished GnRH expression in ∼0% of GnRH neurons. We further demonstrated that deletion of Six6 only within the GnRH neuron leads to infertility, hypogonadism, hypogonadotropism, and delayed puberty. We conclude that Six6 plays distinct roles in maintaining fertility in the GnRH neuron vs in the migratory environment of the GnRH neuron by maintaining expression of GnRH and survival of GnRH neurons, respectively. These results increase knowledge of the role of Six6 in the brain and may offer insight into the mechanism of IHH.
Collapse
Affiliation(s)
- Erica C Pandolfi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
| | - Hanne M Hoffmann
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Tonsfeldt KJ, Schoeller EL, Brusman LE, Cui LJ, Lee J, Mellon PL. The Contribution of the Circadian Gene Bmal1 to Female Fertility and the Generation of the Preovulatory Luteinizing Hormone Surge. J Endocr Soc 2019; 3:716-733. [PMID: 30906911 PMCID: PMC6425515 DOI: 10.1210/js.2018-00228] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
In rodents, the preovulatory LH surge is temporally gated, but the timing cue is unknown. Estrogen primes neurons in the anteroventral periventricular nucleus (AVPV) to secrete kisspeptin, which potently activates GnRH neurons to release GnRH, eliciting a surge of LH to induce ovulation. Deletion of the circadian clock gene Bmal1 results in infertility. Previous studies have found that Bmal1 knockout (KO) females do not display an LH surge at any time of day. We sought to determine whether neuroendocrine disruption contributes to the absence of the LH surge. Because Kiss1 expression in the AVPV is critical for regulating ovulation, we hypothesized that this population is disrupted in Bmal1 KO females. However, we found an appropriate rise in AVPV Kiss1 and Fos mRNA at the time of lights out in ovariectomized estrogen-treated animals, despite the absence of a measureable increase in LH. Furthermore, Bmal1 KO females have significantly increased LH response to kiss-10 administration, although the LH response to GnRH was unchanged. We then created Kiss1- and GnRH-specific Bmal1 KO mice to examine whether Bmal1 expression is necessary within either kisspeptin or GnRH neurons. We detected no significant differences in any measured reproductive parameter. Our results indicate that disruption of the hypothalamic regulation of fertility in the Bmal1 KO females is not dependent on endogenous clocks within either the GnRH or kisspeptin neurons.
Collapse
Affiliation(s)
- Karen J Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| | - Erica L Schoeller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| | - Liza E Brusman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| | - Laura J Cui
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| | - Jinkwon Lee
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
13
|
Li Z, Guo R, Gu Z, Wang X, Wang Y, Xu H, Wang C, Liu X. Identification of a promoter element mediating kisspeptin-induced increases in GnRH gene expression in sheep. Gene 2019; 699:1-7. [PMID: 30853631 DOI: 10.1016/j.gene.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays an important role in regulating the activities of other components downstream of the hypothalamic-pituitary-gonadal (HPG) axis and maintaining the normal reproductive cycle of animals. However, the molecular mechanisms by which GnRH synthesis and secretion are regulated in sheep remains unclear. In this study, a series of eight recombinant vectors with deletion fragments were constructed and cotransfected with pGL3-Basic and pRL-SV40 into sheep hypothalamic neuronal cells. After treatment with 1 nM kisspeptin, the core promoter of the sheep GnRH gene was identified to be in the region of -1912 bp to -1461 bp by dual-luciferase reporter assay. Bioinformatics analysis showed that there was a binding site for the transcription factor Otx-2 in the core promoter region (-1786 to -1770 bp) that was highly conserved among different species. The expression patterns of Kiss-1, Otx-2 and GnRH in the sheep hypothalamus were the same, and the expression of Kiss-1, Otx-2 and GnRH was significantly higher in the breeding season than in nonbreeding season (P < 0.01). In addition, when hypothalamic neurons were cultured in vitro with kisspeptin, kisspeptin induced the expression of GnRH and Otx-2. In conclusion, these results provide evidence that the core promoter region (-1786 to -1770 bp) of the GnRH gene is involved in the regulation of hypothalamic activity by kisspeptin and that binding of the transcription factor Otx-2 mediates this activation.
Collapse
Affiliation(s)
- Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruoting Guo
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China; Center for Animal Disease Control and Prevention, Changji 831100, Xinjiang, China
| | - Zhenzhen Gu
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Xinjiang Academy of Animal Science, Urumqi 830026, Xinjiang, China
| | - Xiangnan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongcai Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Huifen Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunxiu Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
14
|
Hoffmann HM, Larder R, Lee JS, Hu RJ, Trang C, Devries BM, Clark DD, Mellon PL. Differential CRE Expression in Lhrh-cre and GnRH-cre Alleles and the Impact on Fertility in Otx2-Flox Mice. Neuroendocrinology 2019; 108:328-342. [PMID: 30739114 PMCID: PMC6753941 DOI: 10.1159/000497791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
There is an increasing trend in studies utilizing cell-specific deletion of genes through conditional gene deletion by CRE recombination. Despite numerous advantages, this strategy also has limitations such as ectopic CRE-expression and germline recombination. Two commonly used gonadotropin-releasing hormone (Gnrh)-driven CRE-expressing mice both target GnRH neurons. However, a direct comparison of the cells targeted and their phenotypic outcome have not yet been presented. To compare where recombination takes place, we crossed the Gnrh-cre and Lhrh-cre lines with the Rosa26-LacZ reporter mouse. Lhrh-cre allowed recombination of the Rosa26-LacZ gene in ∼700 cells, which is comparable to the GnRH neuronal population. Surprisingly, there were > 20 times more LacZ expressing cells in the adult Gnrh-cre:Rosa26-LacZ than the Lhrh-cre:Rosa26-LacZ brain. The greatest differences in targeting of the Gnrh-cre and Lhrh-cre lines were found in the septum, the suprachiasmatic nucleus, and the septohypothalamic area. This difference in cells targeted was present from embryonic day 12. A prior study using the Gnrh-cre to delete the transcription factor Otx2 found fewer GnRH neurons, leading to male and female subfertility. To recapitulate this study, we performed a fertility assay in Otx2:Lhrh-cre mice. We confirmed the requirement for Otx2 in GnRH neuron development, fertility and correct gonadotropin hormone release in Otx2:Lhrh-cre males, but the subfertility was more modest than in Otx2:Gnrh-cre and absent in female Otx2:Lhrh-cre. This suggests that ectopic expression of Gnrh-cre contributes to the reproductive phenotype observed. Finally, the Cre alleles caused germline recombination of the flox allele when transmitted from either parent, generating embryonic lethal knock-out offspring, producing smaller live litters.
Collapse
Affiliation(s)
- Hanne M Hoffmann
- Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, California, USA
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Rachel Larder
- Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, California, USA
| | - Jessica S Lee
- Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, California, USA
| | - Rachael J Hu
- Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, California, USA
| | - Crystal Trang
- Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, California, USA
| | - Brooke M Devries
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Daniel D Clark
- Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, California, USA
| | - Pamela L Mellon
- Department of Obstetrics and Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, California, USA,
| |
Collapse
|
15
|
Pandolfi EC, Hoffmann HM, Schoeller EL, Gorman MR, Mellon PL. Haploinsufficiency of SIX3 Abolishes Male Reproductive Behavior Through Disrupted Olfactory Development, and Impairs Female Fertility Through Disrupted GnRH Neuron Migration. Mol Neurobiol 2018; 55:8709-8727. [PMID: 29589282 PMCID: PMC6156938 DOI: 10.1007/s12035-018-1013-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
Abstract
Mating behavior in males and females is dependent on olfactory cues processed through both the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Signaling through the MOE is critical for the initiation of male mating behavior, and the loss of MOE signaling severely compromises this comportment. Here, we demonstrate that dosage of the homeodomain gene Six3 affects the degree of development of MOE but not the VNO. Anomalous MOE development in Six3 heterozygote mice leads to hyposmia, specifically disrupting male mounting behavior by impairing detection of volatile female estrus pheromones. Six3 is highly expressed in the MOE, main olfactory bulb (MOB), and hypothalamus; all regions essential in the proper migration of the gonadotropin-releasing hormone (GnRH) neurons, a key reproductive neuronal population that migrates along olfactory axons from the developing nose into the brain. Interestingly, we find that the reduction in Six3 expression in Six3 heterozygote mice compromises development of the MOE and MOB, resulting in mis-migration of GnRH neurons due to improper olfactory axon targeting. This reduction in the hypothalamic GnRH neuron population, by 45% in adulthood, leads to female subfertility, but does not impact male hormone levels, suggesting that male infertility is not related to GnRH neuron numbers, but exclusively linked to abnormal olfaction. We here determine that Six3 is haploinsufficient for MOE development, GnRH neuron migration, and fertility, and represents a novel candidate gene for Kallmann syndrome, a form of inherited infertility.
Collapse
Affiliation(s)
- Erica C Pandolfi
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hanne M Hoffmann
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Erica L Schoeller
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael R Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pamela L Mellon
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA.
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Hoffmann HM, Pandolfi EC, Larder R, Mellon PL. Haploinsufficiency of Homeodomain Proteins Six3, Vax1, and Otx2 Causes Subfertility in Mice via Distinct Mechanisms. Neuroendocrinology 2018; 109:200-207. [PMID: 30261489 PMCID: PMC6437011 DOI: 10.1159/000494086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022]
Abstract
Haploinsufficiency occurs when loss of one copy of a diploid gene (hemizygosity) causes a phenotype. It is relatively rare, in that most genes can produce sufficient mRNA and protein from a single copy to prevent any loss of normal activity and function. Reproduction is a complex process relying on migration of GnRH neurons from the olfactory placode to the hypothalamus during development. We have studied 3 different homeodomain genes Otx2, Vax1, and Six3 and found that the deletion of one allele for any of these genes in mice produces subfertility or infertility in one or both sexes, despite the presence of one intact allele. All 3 heterozygous mice have reduced numbers of GnRH neurons, but the mechanisms of subfertility differ significantly. This review compares the subfertility phenotypes and their mechanisms.
Collapse
Affiliation(s)
- Hanne M Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Erica C Pandolfi
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rachel Larder
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA,
| |
Collapse
|
17
|
Hoffmann HM, Gong P, Tamrazian A, Mellon PL. Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Mol Cell Endocrinol 2018; 461:143-154. [PMID: 28890143 PMCID: PMC5756504 DOI: 10.1016/j.mce.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/23/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is required for pubertal onset and reproduction, thus the control of GnRH transcription is tightly regulated during development and adulthood. GnRH neuron development depends on transcription factors of the homeodomain family. For example, Ventral anterior homeobox 1 (Vax1) is necessary to maintain GnRH expression after embryonic day 13 in the mouse. To further our understanding of the mechanisms by which VAX1 regulates GnRH gene expression, we asked whether VAX1 interacts with other transcription factors to modify GnRH expression levels. Using the GnRH cell lines, GN11 and GT1-7, we found that activation of PKC enhances expression of the immediate early gene cFos in both GN11, and GT1-7, and represses expression of Vax1 in GT1-7. Further, VAX1 interacts with cFOS while bound to the GnRH promoter. In immature GN11 cells, VAX1 and cFOS enhance GnRH expression, whereas VAX1 and cFOS have a repressive role in the mature GT1-7 cells.
Collapse
Affiliation(s)
- Hanne M Hoffmann
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Ping Gong
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Anika Tamrazian
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Pamela L Mellon
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Hebbar P, Elkum N, Alkayal F, John SE, Thanaraj TA, Alsmadi O. Genetic risk variants for metabolic traits in Arab populations. Sci Rep 2017; 7:40988. [PMID: 28106113 PMCID: PMC5247683 DOI: 10.1038/srep40988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
Despite a high prevalence of metabolic trait related diseases in Arabian Peninsula, there is a lack of convincingly identified genetic determinants for metabolic traits in this population. Arab populations are underrepresented in global genome-wide association studies. We genotyped 1965 unrelated Arab individuals from Kuwait using Cardio-MetaboChip, and tested SNP associations with 13 metabolic traits. Models based on recessive mode of inheritance identified Chr15:40531386-rs12440118/ZNF106/W->R as a risk variant associated with glycated-hemoglobin at close to ‘genome-wide significant’ p-value and five other risk variants ‘nominally’ associated (p-value ≤ 5.45E-07) with fasting plasma glucose (rs7144734/[OTX2-AS1,RPL3P3]) and triglyceride (rs17501809/PLGRKT; rs11143005/LOC105376072; rs900543/[THSD4,NR2E3]; and Chr12:101494770/IGF1). Furthermore, we identified 33 associations (30 SNPs with 12 traits) with ‘suggestive’ evidence of association (p-value < 1.0E-05); 20 of these operate under recessive mode of inheritance. Two of these ‘suggestive’ associations (rs1800775-CETP/HDL; and rs9326246-BUD13/TGL) showed evidence at genome-wide significance in previous studies on Euro-centric populations. Involvement of many of the identified loci in mediating metabolic traits was supported by literature evidences. The identified loci participate in critical metabolic pathways (such as Ceramide signaling, and Mitogen-Activated Protein Kinase/Extracellular Signal Regulated Kinase signaling). Data from Genotype-Tissue Expression database affirmed that 7 of the identified variants differentially regulate the up/downstream genes that mediate metabolic traits.
Collapse
Affiliation(s)
| | - Naser Elkum
- Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fadi Alkayal
- Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Sumi Elsa John
- Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | | | - Osama Alsmadi
- Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
19
|
Deletion of Vax1 from Gonadotropin-Releasing Hormone (GnRH) Neurons Abolishes GnRH Expression and Leads to Hypogonadism and Infertility. J Neurosci 2016; 36:3506-18. [PMID: 27013679 DOI: 10.1523/jneurosci.2723-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates mammalian fertility. Herein we demonstrate a critical role for the homeodomain transcription factor ventral anterior homeobox 1 (VAX1) in GnRH neuron maturation and show that Vax1 deletion from GnRH neurons leads to complete infertility in males and females. Specifically, global Vax1 knock-out embryos had normal numbers of GnRH neurons at 13 d of gestation, but no GnRH staining was detected by embryonic day 17. To identify the role of VAX1 specifically in GnRH neuron development,Vax1(flox)mice were generated and lineage tracing performed in Vax1(flox/flox):GnRH(cre):RosaLacZ mice. This identified VAX1 as essential for maintaining expression of Gnrh1 The absence of GnRH staining in adult Vax1(flox/flox):GnRH(cre)mice led to delayed puberty, hypogonadism, and infertility. To address the mechanism by which VAX1 maintains Gnrh1 transcription, the capacity of VAX1 to regulate Gnrh1 transcription was evaluated in the GnRH cell lines GN11 and GT1-7. As determined by luciferase and electrophoretic mobility shift assays, we found VAX1 to be a direct activator of the GnRH promoter through binding to four ATTA sites in the GnRH enhancer (E1) and proximal promoter (P), and able to compete with the homeoprotein SIX6 for occupation of the identified ATTA sites in the GnRH promoter. We conclude that VAX1 is expressed in GnRH neurons where it is required for GnRH neuron expression of GnRH and maintenance of fertility in mice. SIGNIFICANCE STATEMENT Infertility classified as idiopathic hypogonadotropic hypogonadism (IHH) is characterized by delayed or absent sexual maturation and low sex steroid levels due to alterations in neuroendocrine control of the hypothalamic-pituitary-gonadal axis. The incidence of IHH is 1-10 cases per 100,000 births. Although extensive efforts have been invested in identifying genes giving rise to IHH, >50% of cases have unknown genetic origins. We recently showed that haploinsufficiency of ventral anterior homeobox 1 (Vax1) leads to subfertility, making it a candidate in polygenic IHH. In this study, we investigate the mechanism by which VAX1 controls fertility finding that VAX1 is required for maintenance of Gnrh1 gene expression and deletion of Vax1 from GnRH neurons leads to complete infertility.
Collapse
|
20
|
Hoffmann HM, Mellon PL. A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance. NEUROSCIENCE COMMUNICATIONS 2016; 2:e1373. [PMID: 28164172 PMCID: PMC5287408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 (Vax1) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1flox mice and crossed them with Gnrhcre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1flox/flox:GnRHcre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1flox/flox:GnRHcre:RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and GT1-7, we show that VAX1 is a direct regulator of Gnrh1 transcription by binding key ATTA sites within the Gnrh1 promoter. This study identifies VAX1 as a key transcription factor regulating GnRH expression and establishes VAX1 as a novel candidate gene implicated in heritable infertility.
Collapse
|
21
|
Kaugars KE, Rivers CI, Saha MS, Heideman PD. Genetic variation in total number and locations of GnRH neurons identified using in situ hybridization in a wild-source population. ACTA ACUST UNITED AC 2015; 325:106-15. [PMID: 26699837 DOI: 10.1002/jez.2000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/29/2022]
Abstract
The evolution of brain function in the regulation of physiology may depend in part upon the numbers and locations of neurons. Wild populations of rodents contain natural genetic variation in the inhibition of reproduction by winter-like short photoperiod, and it has been hypothesized that this functional variation might be due in part to heritable variation in the numbers or location of gonadotropin releasing hormone (GnRH) neurons. A naturally variable wild-source population of white-footed mice was used to develop lines artificially selected for or against mature gonads in short, winter-like photoperiods. We compared a selection line that is reproductively inhibited in short photoperiod (Responsive) to a line that is weakly inhibited by short photoperiod (Nonresponsive) for differences in counts of neurons identified using in situ hybridization for GnRH mRNA. There was no effect of photoperiod, but there were 60% more GnRH neurons in total in the Nonresponsive selection line than the Responsive selection line. The lines differed specifically in numbers of GnRH neurons in more anterior regions, whereas numbers of GnRH neurons in posterior areas were not statistically different between lines. We compare these results to those of an earlier study that used immunohistochemical labeling for GnRH neurons. The results are consistent with the hypothesis that the selection lines and natural source population contain significant genetic variation in the number and location of GnRH neurons. The variation in GnRH neurons may contribute to functional variation in fertility that occurs in short photoperiods in the laboratory and in the wild source population in winter.
Collapse
Affiliation(s)
| | - Charlotte I Rivers
- Department of Biology, College of William and Mary, Williamsburg, Virginia
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, Virginia
| | - Paul D Heideman
- Department of Biology, College of William and Mary, Williamsburg, Virginia
| |
Collapse
|
22
|
Li R, Diao H, Zhao F, Xiao S, El Zowalaty AE, Dudley EA, Mattson MP, Ye X. Olfactomedin 1 Deficiency Leads to Defective Olfaction and Impaired Female Fertility. Endocrinology 2015; 156:3344-57. [PMID: 26107991 PMCID: PMC4541623 DOI: 10.1210/en.2015-1389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Olfactomedin 1 (OLFM1) is a glycoprotein highly expressed in the brain. Olfm1(-/-) female mice were previously reported to have reduced fertility. Previous microarray analysis revealed Olfm1 among the most highly upregulated genes in the uterine luminal epithelium upon embryo implantation, which was confirmed by in situ hybridization. We hypothesized that Olfm1 deficiency led to defective embryo implantation and thus impaired fertility. Indeed, Olfm1(-/-) females had defective embryo implantation. However, Olfm1(-/-) females rarely mated and those that mated rarely became pregnant. Ovarian histology indicated the absence of corpora lutea in Olfm1(-/-) females, indicating defective ovulation. Superovulation using equine chorionic gonadotropin-human chorionic gonadotropin rescued mating, ovulation, and pregnancy, and equine chorionic gonadotropin alone rescued ovulation in Olfm1(-/-) females. Olfm1(-/-) females had a 13% reduction of hypothalamic GnRH neurons but comparable basal serum LH levels and GnRH-induced LH levels compared with wild-type controls. These results indicated no obvious local defects in the female reproductive system and a functional hypothalamic-pituitary-gonadal axis. Olfm1(-/-) females were unresponsive to the effects of male bedding stimulation on pubertal development and estrous cycle. There were 41% fewer cFos-positive cells in the mitral cell layer of accessory olfactory bulb upon male urine stimulation for 90 minutes. OLFM1 was expressed in the main and accessory olfactory systems including main olfactory epithelium, vomeronasal organ, main olfactory bulb, and accessory olfactory bulb, with the highest expression detected in the axon bundles of olfactory sensory neurons. These data demonstrate that defective fertility in Olfm1(-/-) females is most likely a secondary effect of defective olfaction.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Honglu Diao
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Fei Zhao
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Shuo Xiao
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Ahmed E El Zowalaty
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Elizabeth A Dudley
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Mark P Mattson
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| |
Collapse
|
23
|
Novaira HJ, Sonko ML, Radovick S. Kisspeptin Induces Dynamic Chromatin Modifications to Control GnRH Gene Expression. Mol Neurobiol 2015; 53:3315-3325. [PMID: 26081144 DOI: 10.1007/s12035-015-9269-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/28/2015] [Indexed: 12/27/2022]
Abstract
In vitro studies have demonstrated an increase in GnRH gene expression associated with an elevated secretory response to kisspeptin administration, suggesting that kisspeptin mediates GnRH expression at both the secretory and pretranslational levels. However, the kisspeptin-mediated intracellular mechanisms associated with the dynamic chromatin modifications modulating GnRH gene expression are unclear. The studies in this manuscript describe specific histone modifications on the enhancer and promoter of the mouse GnRH (mGnRH) gene induced by kisspeptin in GnRH neuronal cell lines (GT1-7 cells). ChIP assays followed by quantitative real-time PCR (qPCR) demonstrate that 15 and 45 min of 10(-9) M kisspeptin significantly increased histone 3 acetylation (H3Ac) at the kisspeptin response element (KsRE) contained between -3446 and -2806 bp of the mGnRH enhancer (GnRHen) in GT1-7 cells, while no changes were observed in the downstream neuron-specific element (NSE). Moreover, kisspeptin specifically induced acetylation of H3AcK14 and K27 and trimethylation of H3 lysine 4 at the KsRE (markers of active chromatin) and no changes in dimethylation of H3K9 (a marker associated with gene repression). Occupancy of RNA Pol II (RNAPII) and a differential carboxyl-terminal domain (CTD) phosphorylation pattern was observed. An interaction between the NSE and the KsRE via a chromatin loop in the mGnRH gene by kisspeptin was detected by the chromosome conformation capture assay (3C). In conclusion, these results demonstrate that kisspeptin induces histone acetylation/methylation and consequently enhances the formation of a chromatin loop in the mGnRH gene which results in known increase in kisspeptin-dependent mGnRH expression.
Collapse
Affiliation(s)
- H J Novaira
- Department of Pediatrics, Division of Endocrinology, Johns Hopkins University School of Medicine, 600 North Wolfe St, Baltimore, MD, 21287, USA.
| | - M L Sonko
- Department of Pediatrics, Division of Endocrinology, Johns Hopkins University School of Medicine, 600 North Wolfe St, Baltimore, MD, 21287, USA
| | - S Radovick
- Department of Pediatrics, Division of Endocrinology, Johns Hopkins University School of Medicine, 600 North Wolfe St, Baltimore, MD, 21287, USA
| |
Collapse
|
24
|
Quaynor SD, Ko EK, Chorich LP, Sullivan ME, Demir D, Waller JL, Kim HG, Cameron RS, Layman LC. NELF knockout is associated with impaired pubertal development and subfertility. Mol Cell Endocrinol 2015; 407:26-36. [PMID: 25731822 PMCID: PMC4429764 DOI: 10.1016/j.mce.2015.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/14/2015] [Accepted: 02/14/2015] [Indexed: 11/17/2022]
Abstract
Puberty and reproduction require proper signaling of the hypothalamic-pituitary-gonadal axis controlled by gonadotropin-releasing hormone (GnRH) neurons, which arise in the olfactory placode region and migrate along olfactory axons to the hypothalamus. Factors adversely affecting GnRH neuron specification, migration, and function lead to delayed puberty and infertility. Nasal embryonic luteinizing hormone-releasing factor (NELF) is a predominantly nuclear protein. NELF mutations have been demonstrated in patients with hypogonadotropic hypogonadism, but biallelic mutations are rare and heterozygous NELF mutations typically co-exist with mutations in another gene. Our previous studies in immortalized GnRH neurons supported a role for NELF in GnRH neuron migration. To better understand the physiology of NELF, a homozygous Nelf knockout (KO) mouse model was generated. Our findings indicate that female Nelf KO mice have delayed vaginal opening but no delay in time to first estrus, decreased uterine weight, and reduced GnRH neuron number. In contrast, male mice were normal at puberty. Both sexes of mice had impaired fertility manifested as reduced mean litter size. These data support that NELF has important reproductive functions. The milder than expected phenotype of KO mice also recapitulates the human phenotype since heterozygous NELF mutations usually require an additional mutation in a second gene to result in hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Samuel D Quaynor
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology; Department of Physiology; Georgia Regents University, Augusta, GA 30912, USA
| | - Eun Kyung Ko
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology; Department of Physiology; Georgia Regents University, Augusta, GA 30912, USA
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology; Department of Physiology; Georgia Regents University, Augusta, GA 30912, USA
| | - Megan E Sullivan
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology; Department of Physiology; Georgia Regents University, Augusta, GA 30912, USA
| | - Durkadin Demir
- Department of Medical Biology and Genetics, Akdeniz University, Antalya 07058, Turkey
| | - Jennifer L Waller
- Department of Biostatistics & Epidemiology, Georgia Regents University, Augusta, GA 30912, USA
| | - Hyung-Goo Kim
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology; Department of Physiology; Georgia Regents University, Augusta, GA 30912, USA; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Richard S Cameron
- Department of Medicine, Georgia Regents University, Augusta, GA 30912, USA; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology; Department of Physiology; Georgia Regents University, Augusta, GA 30912, USA; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA 30912, USA; Department of Physiology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
25
|
Bedont JL, Newman EA, Blackshaw S. Patterning, specification, and differentiation in the developing hypothalamus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:445-68. [PMID: 25820448 DOI: 10.1002/wdev.187] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/21/2022]
Abstract
Owing to its complex structure and highly diverse cell populations, the study of hypothalamic development has historically lagged behind that of other brain regions. However, in recent years, a greatly expanded understanding of hypothalamic gene expression during development has opened up new avenues of investigation. In this review, we synthesize existing work to present a holistic picture of hypothalamic development from early induction and patterning through nuclear specification and differentiation, with a particular emphasis on determination of cell fate. We will also touch on special topics in the field including the prosomere model, adult neurogenesis, and integration of migratory cells originating outside the hypothalamic neuroepithelium, and how these topics relate to our broader theme.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Newman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Mortensen AH, Schade V, Lamonerie T, Camper SA. Deletion of OTX2 in neural ectoderm delays anterior pituitary development. Hum Mol Genet 2014; 24:939-53. [PMID: 25315894 DOI: 10.1093/hmg/ddu506] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OTX2 is a homeodomain transcription factor that is necessary for normal head development in mouse and man. Heterozygosity for loss-of-function alleles causes an incompletely penetrant, haploinsufficiency disorder. Affected individuals exhibit a spectrum of features that range from developmental defects in eye and/or pituitary development to acephaly. To investigate the mechanism underlying the pituitary defects, we used different cre lines to inactivate Otx2 in early head development and in the prospective anterior and posterior lobes. Mice homozygous for Otx2 deficiency in early head development and pituitary oral ectoderm exhibit craniofacial defects and pituitary gland dysmorphology, but normal pituitary cell specification. The morphological defects mimic those observed in humans and mice with OTX2 heterozygous mutations. Mice homozygous for Otx2 deficiency in the pituitary neural ectoderm exhibited altered patterning of gene expression and ablation of FGF signaling. The posterior pituitary lobe and stalk, which normally arise from neural ectoderm, were extremely hypoplastic. Otx2 expression was intact in Rathke's pouch, the precursor to the anterior lobe, but the anterior lobe was hypoplastic. The lack of FGF signaling from the neural ectoderm was sufficient to impair anterior lobe growth, but not the differentiation of hormone-producing cells. This study demonstrates that Otx2 expression in the neural ectoderm is important intrinsically for the development of the posterior lobe and pituitary stalk, and it has significant extrinsic effects on anterior pituitary growth. Otx2 expression early in head development is important for establishing normal craniofacial features including development of the brain, eyes and pituitary gland.
Collapse
Affiliation(s)
- Amanda H Mortensen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA and
| | - Vanessa Schade
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA and
| | - Thomas Lamonerie
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice 06108, France
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA and
| |
Collapse
|
27
|
Wolfe A, Divall S, Wu S. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1). Front Neuroendocrinol 2014; 35:558-72. [PMID: 24929098 PMCID: PMC4175134 DOI: 10.1016/j.yfrne.2014.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/01/2014] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Andrew Wolfe
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States.
| | - Sara Divall
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States
| | - Sheng Wu
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States
| |
Collapse
|
28
|
Novaira HJ, Sonko ML, Hoffman G, Koo Y, Ko C, Wolfe A, Radovick S. Disrupted kisspeptin signaling in GnRH neurons leads to hypogonadotrophic hypogonadism. Mol Endocrinol 2014; 28:225-38. [PMID: 24422632 DOI: 10.1210/me.2013-1319] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Landmark studies have shown that mutations in kisspeptin and the kisspeptin receptor (Kiss1r) result in reproductive dysfunction in humans and genetically altered mouse models. However, because kisspeptin and its receptor are present in target cells of the central and peripheral reproductive axis, the precise location(s) for the pathogenic signal is unknown. The study described herein shows that the kisspeptin-Kiss1r signaling pathway in the GnRH neuron is singularly critical for both the onset of puberty as well as the attainment of normal reproductive function. In this study, we directly test the hypothesis that kisspeptin neurons regulate GnRH secretion through the activation of Kiss1r on the plasma membrane of GnRH neurons. A GnRH neuron-specific Kiss1r knockout mouse model (GKirKO) was generated, and reproductive development and phenotype were assessed. Both female and male GKirKO mice were infertile, having low serum LH and FSH levels. External abnormalities such as microphallus and decreased anogenital distance associated with failure of preputial gland separation were present in GKirKO males. A delay in pubertal onset and abnormal estrous cyclicity were observed in female GKirKO mice. Taken together, these data provide in vivo evidence that Kiss1r in GnRH neurons is critical for reproductive development and fertility.
Collapse
Affiliation(s)
- Horacio J Novaira
- Department of Pediatrics (H.J.N., M.L.S., A.W., S.R.), Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (G.H.), Morgan State University, Baltimore, Maryland 21251; School of Biological Sciences (Y.K.), Inje University, Gimhae, 621-749, South Korea; and University of Illinois at Champaign-Urbana (C.K.), Champaign, Illinois 61820
| | | | | | | | | | | | | |
Collapse
|
29
|
McCabe MJ, Dattani MT. Genetic aspects of hypothalamic and pituitary gland development. HANDBOOK OF CLINICAL NEUROLOGY 2014; 124:3-15. [DOI: 10.1016/b978-0-444-59602-4.00001-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Larder R, Kimura I, Meadows J, Clark DD, Mayo S, Mellon PL. Gene dosage of Otx2 is important for fertility in male mice. Mol Cell Endocrinol 2013; 377:16-22. [PMID: 23811236 PMCID: PMC3771655 DOI: 10.1016/j.mce.2013.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
Together, the hypothalamus, pituitary and gonads direct the development and regulation of reproductive function in mammals. Gonadotropin-releasing hormone (GnRH) expression is limited to ∼800 neurons that originate in the olfactory placode then migrate to the hypothalamus. Coordination of the hypothalamic-pituitary-gonadal (HPG) axis is dependent upon correct neuronal migration of GnRH neurons into the hypothalamus followed by proper synthesis and pulsatile secretion of GnRH. Defects in any one of these processes causes infertility. Otx2, the vertebrate homologue of Drosophila orthodenticle, is a transcription factor that has been shown to be critical for normal brain and eye development and is expressed in both the developing GnRH neurons and the pituitary, suggesting that this gene may play a critical role in development of the HPG axis. As Otx2-null mice are embryonic lethal, we have analyzed the reproductive capacity of heterozygous Otx2 mice to determine the contribution of Otx2 gene dosage to normal HPG axis function. Our data reveal that correct dosage of Otx2 is critical for normal fertility as loss of one allele of Otx2 leads to a discernible reproductive phenotype in male mice due to disruption of the migration of GnRH neurons during development.
Collapse
Affiliation(s)
- Rachel Larder
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674
| | - Ikuo Kimura
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674
- Department of Genomic Drug Discovery Science, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jason Meadows
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674
| | - Daniel. D. Clark
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674
| | - Susan Mayo
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674
| | - Pamela L. Mellon
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674
- To whom correspondence should be addressed, , Telephone: 1-858-534-1312, Fax: 1-858-534-1438
| |
Collapse
|
31
|
Abstract
Kisspeptins (Kiss) have been shown to be key components in the regulation of gonadotropin-releasing hormone (GnRH) secretion. In vitro studies have demonstrated an increase in GnRH gene expression by Kiss suggesting regulation of GnRH at both the secretory and pretranslational levels. Here, we define genetic mechanisms that mediate Kiss action on target gene expression. In vitro, sequential deletions of the mouse GnRH (mGnRH) gene promoter fused to the luciferase (LUC) reporter gene localized at kisspeptin-response element (KsRE) between -3446 and -2806 bp of the mGnRH gene. In vivo, transgenic mice bearing sequential deletions of the mGnRH gene promoter linked to the LUC reporter localized an identical KsRE. To define the mechanism of regulation, Kiss was first shown to induce nucleosome-depleted DNA within the KsRE, and a potential binding site for the transcription factor, Otx-2, was revealed. Furthermore, increased Otx-2 mRNA, protein, and binding to the KsRE after Kiss treatment were demonstrated. In conclusion, this work identified elements in GnRH-neuronal cell lines and in transgenic mice that mediate positive regulation of GnRH by Kiss. In addition, we show for the first time that Otx-2 is regulated by Kiss, and plays a role in mediating the transcriptional response of mGnRH gene.
Collapse
|
32
|
Johansson PA, Irmler M, Acampora D, Beckers J, Simeone A, Götz M. The transcription factor Otx2 regulates choroid plexus development and function. Development 2013; 140:1055-66. [PMID: 23364326 DOI: 10.1242/dev.090860] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The choroid plexuses (ChPs) are the main regulators of cerebrospinal fluid (CSF) composition and thereby also control the composition of a principal source of signaling molecules that is in direct contact with neural stem cells in the developing brain. The regulators of ChP development mediating the acquisition of a fate that differs from the neighboring neuroepithelial cells are poorly understood. Here, we demonstrate in mice a crucial role for the transcription factor Otx2 in the development and maintenance of ChP cells. Deletion of Otx2 by the Otx2-CreERT2 driver line at E9 resulted in a lack of all ChPs, whereas deletion by the Gdf7-Cre driver line affected predominately the hindbrain ChP, which was reduced in size, primarily owing to an increase in apoptosis upon Otx2 deletion. Strikingly, Otx2 was still required for the maintenance of hindbrain ChP cells at later stages when Otx2 deletion was induced at E15, demonstrating a central role of Otx2 in ChP development and maintenance. Moreover, the predominant defects in the hindbrain ChP mediated by Gdf7-Cre deletion of Otx2 revealed its key role in regulating early CSF composition, which was altered in protein content, including the levels of Wnt4 and the Wnt modulator Tgm2. Accordingly, proliferation and Wnt signaling levels were increased in the distant cerebral cortex, suggesting a role of the hindbrain ChP in regulating CSF composition, including key signaling molecules. Thus, Otx2 acts as a master regulator of ChP development, thereby influencing one of the principal sources of signaling in the developing brain, the CSF.
Collapse
Affiliation(s)
- Pia A Johansson
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Stem Cell Research, Neuherberg, 85764 Munich, Germany
| | | | | | | | | | | |
Collapse
|
33
|
de Moraes DC, Vaisman M, Conceição FL, Ortiga-Carvalho TM. Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol 2012; 215:239-45. [PMID: 22872762 DOI: 10.1530/joe-12-0229] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary organogenesis is a highly complex and tightly regulated process that depends on several transcription factors (TFs), such as PROP1, PIT1 (POU1F1), HESX1, LHX3 and LHX4. Normal pituitary development requires the temporally and spatially organised expression of TFs and interactions between different TFs, DNA and TF co-activators. Mutations in these genes result in different combinations of hypopituitarism that can be associated with structural alterations of the central nervous system, causing the congenital form of panhypopituitarism. This review aims to elucidate the complex process of pituitary organogenesis, to clarify the role of the major TFs, and to compile the lessons learned from functional studies of TF mutations in panhypopituitarism patients and TF deletions or mutations in transgenic animals.
Collapse
Affiliation(s)
- Débora Cristina de Moraes
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Rio de Janeiro, Brasil.
| | | | | | | |
Collapse
|
34
|
Gorbenko Del Blanco D, Romero CJ, Diaczok D, de Graaff LCG, Radovick S, Hokken-Koelega ACS. A novel OTX2 mutation in a patient with combined pituitary hormone deficiency, pituitary malformation, and an underdeveloped left optic nerve. Eur J Endocrinol 2012; 167:441-52. [PMID: 22715480 DOI: 10.1530/eje-12-0333] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Orthodenticle homolog 2 (OTX2) is a homeobox family transcription factor required for brain and eye formation. Various genetic alterations in OTX2 have been described, mostly in patients with severe ocular malformations. In order to expand the knowledge of the spectrum of OTX2 mutation, we performed OTX2 mutation screening in 92 patients with combined pituitary hormone deficiency (CPHD). We directly sequenced the coding regions and exon-intron boundaries of OTX2 in 92 CPHD patients from the Dutch HYPOPIT study in whom mutations in the classical CPHD genes PROP1, POU1F1, HESX1, LHX3, and LHX4 had been ruled out. Among 92 CPHD patients, we identified a novel heterozygous missense mutation c.401C>G (p.Pro134Arg) in a patient with CPHD, pituitary malformation, and an underdeveloped left optic nerve. Binding of both the wild-type and mutant OTX2 proteins to bicoid binding sites was equivalent; however, the mutant OTX2 exhibited decreased transactivation. We describe a novel missense heterozygous OTX2 mutation that acts as a dominant negative inhibitor of target gene expression in a patient with CPHD, pituitary malformation, and optic nerve hypoplasia. We provide an overview of all OTX2 mutations described till date, which show that OTX2 is a promising candidate gene for genetic screening of patients with CPHD or isolated GH deficiency (IGHD). As the majority of the OTX2 mutations found in patients with CPHD, IGHD, or short stature have been found in exon 5, we recommend starting mutational screening in those patients in exon 5 of the gene.
Collapse
|
35
|
Raivio T, Avbelj M, McCabe MJ, Romero CJ, Dwyer AA, Tommiska J, Sykiotis GP, Gregory LC, Diaczok D, Tziaferi V, Elting MW, Padidela R, Plummer L, Martin C, Feng B, Zhang C, Zhou QY, Chen H, Mohammadi M, Quinton R, Sidis Y, Radovick S, Dattani MT, Pitteloud N. Genetic overlap in Kallmann syndrome, combined pituitary hormone deficiency, and septo-optic dysplasia. J Clin Endocrinol Metab 2012; 97:E694-9. [PMID: 22319038 PMCID: PMC3319178 DOI: 10.1210/jc.2011-2938] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Kallmann syndrome (KS), combined pituitary hormone deficiency (CPHD), and septo-optic dysplasia (SOD) all result from development defects of the anterior midline in the human forebrain. OBJECTIVE The objective of the study was to investigate whether KS, CPHD, and SOD have shared genetic origins. DESIGN AND PARTICIPANTS A total of 103 patients with either CPHD (n = 35) or SOD (n = 68) were investigated for mutations in genes implicated in the etiology of KS (FGFR1, FGF8, PROKR2, PROK2, and KAL1). Consequences of identified FGFR1, FGF8, and PROKR2 mutations were investigated in vitro. RESULTS Three patients with SOD had heterozygous mutations in FGFR1; these were either shown to alter receptor signaling (p.S450F, p.P483S) or predicted to affect splicing (c.336C>T, p.T112T). One patient had a synonymous change in FGF8 (c.216G>A, p.T72T) that was shown to affect splicing and ligand signaling activity. Four patients with CPHD/SOD were found to harbor heterozygous rare loss-of-function variants in PROKR2 (p.R85G, p.R85H, p.R268C). CONCLUSIONS Mutations in FGFR1/FGF8/PROKR2 contributed to 7.8% of our patients with CPHD/SOD. These data suggest a significant genetic overlap between conditions affecting the development of anterior midline in the human forebrain.
Collapse
Affiliation(s)
- Taneli Raivio
- Children's Hospital, Helsinki University Central Hospital, Institute of Biomedicine/Physiology, University of Helsinki 00290 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sabado V, Barraud P, Baker CVH, Streit A. Specification of GnRH-1 neurons by antagonistic FGF and retinoic acid signaling. Dev Biol 2012; 362:254-62. [PMID: 22200593 PMCID: PMC4561506 DOI: 10.1016/j.ydbio.2011.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/25/2022]
Abstract
A small population of neuroendocrine cells in the rostral hypothalamus and basal forebrain is the key regulator of vertebrate reproduction. They secrete gonadotropin-releasing hormone (GnRH-1), communicate with many areas of the brain and integrate multiple inputs to control gonad maturation, puberty and sexual behavior. In humans, disruption of the GnRH-1 system leads to hypogonadotropic gonadism and Kallmann syndrome. Unlike other neurons in the central nervous system, GnRH-1 neurons arise in the periphery, however their embryonic origin is controversial, and the molecular mechanisms that control their initial specification are not clear. Here, we provide evidence that in chick GnRH-1 neurons originate in the olfactory placode, where they are specified shortly after olfactory sensory neurons. FGF signaling is required and sufficient to induce GnRH-1 neurons, while retinoic acid represses their formation. Both pathways regulate and antagonize each other and our results suggest that the timing of signaling is critical for normal GnRH-1 neuron formation. While Kallmann's syndrome has generally been attributed to a failure of GnRH-1 neuron migration due to impaired FGF signaling, our findings suggest that in at least some Kallmann patients these neurons may never be specified. In addition, this study highlights the intimate embryonic relationship between GnRH-1 neurons and their targets and modulators in the adult.
Collapse
Affiliation(s)
- Virginie Sabado
- Department of Craniofacial Development, King’s College London, Guy’s Campus, London, SE1 9RT, UK
| | - Perrine Barraud
- Department of Physiology, Development & Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Clare V. H. Baker
- Department of Physiology, Development & Neuroscience, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Andrea Streit
- Department of Craniofacial Development, King’s College London, Guy’s Campus, London, SE1 9RT, UK
| |
Collapse
|
37
|
Gan L, Ni PY, Ge Y, Xiao YF, Sun CY, Deng L, Zhang W, Wu SS, Liu Y, Jiang W, Xin HB. Histone deacetylases regulate gonadotropin-releasing hormone I gene expression via modulating Otx2-driven transcriptional activity. PLoS One 2012; 7:e39770. [PMID: 22761896 PMCID: PMC3382570 DOI: 10.1371/journal.pone.0039770] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/30/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Precise coordination of the hypothalamic-pituitary-gonadal axis orchestrates the normal reproductive function. As a central regulator, the appropriate synthesis and secretion of gonadotropin-releasing hormone I (GnRH-I) from the hypothalamus is essential for the coordination. Recently, emerging evidence indicates that histone deacetylases (HDACs) play an important role in maintaining normal reproductive function. In this study, we identify the potential effects of HDACs on Gnrh1 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS Inhibition of HDACs activities by trichostatin A (TSA) and valproic acid (VPA) promptly and dramatically repressed transcription of Gnrh1 gene in the mouse immortalized mature GnRH neuronal cells GT1-7. The suppression was connected with a specific region of Gnrh1 gene promoter, which contains two consensus Otx2 binding sites. Otx2 has been known to activate the basal and also enhancer-driven transcription of Gnrh1 gene. The transcriptional activity of Otx2 is negatively modulated by Grg4, a member of the Groucho-related-gene (Grg) family. In the present study, the expression of Otx2 was downregulated by TSA and VPA in GT1-7 cells, accompanied with the opposite changes of Grg4 expression. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that the DNA-binding activity of Otx2 to Gnrh1 gene was suppressed by TSA and VPA. Overexpression of Otx2 partly abolished the TSA- and VPA-induced downregulation of Gnrh1 gene expression. CONCLUSIONS/SIGNIFICANCE Our data indicate that HDAC inhibitors downregulate Gnrh1 gene expression via repressing Otx2-driven transcriptional activity. This study should provide an insight for our understanding on the effects of HDACs in the reproductive system and suggests that HDACs could be potential novel targets for the therapy of GnRH-related diseases.
Collapse
Affiliation(s)
- Lu Gan
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Pei-Yan Ni
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yan Ge
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun-Fei Xiao
- Institute of Translational Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Chang-Yan Sun
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lin Deng
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wei Zhang
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Si-Si Wu
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ying Liu
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wei Jiang
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hong-Bo Xin
- Laboratory of Cardiovascular Diseases and Laboratory of Cellular and Molecular Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Institute of Translational Medicine, Nanchang University, Nanchang, People's Republic of China
- * E-mail:
| |
Collapse
|