1
|
Shen Z, Zhang S, Gao Z, Yu X, Wang J, Pan S, Kang N, Liu N, Xu H, Liu M, Yang Y, Deng Q, Liu J, Xie Y, Zhang J. Intrahepatic homeobox protein MSX-1 is a novel host restriction factor of hepatitis B virus. J Virol 2024; 98:e0134523. [PMID: 38226815 PMCID: PMC10878074 DOI: 10.1128/jvi.01345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection (CHB) is a risk factor for the development of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Covalently closed circular DNA serves as the sole transcription template for all viral RNAs and viral transcription is driven and enhanced by viral promoter and enhancer elements, respectively. Interactions between transcription factors and these cis-elements regulate their activities and change the production levels of viral RNAs. Here, we report the identification of homeobox protein MSX-1 (MSX1) as a novel host restriction factor of HBV in liver. In both HBV-transfected and HBV-infected cells, MSX1 suppresses viral gene expression and genome replication. Mechanistically, MSX1 downregulates enhancer II/core promoter (EnII/Cp) activity via direct binding to an MSX1 responsive element within EnII/Cp, and such binding competes with hepatocyte nuclear factor 4α binding to EnII/Cp due to partial overlap between their respective binding sites. Furthermore, CHB patients in immune active phase express higher levels of intrahepatic MSX1 but relatively lower levels of serum and intrahepatic HBV markers compared to those in immune tolerant phase. Finally, MSX1 was demonstrated to induce viral clearance in two mouse models of HBV persistence, suggesting possible therapeutic potential for CHB.IMPORTANCECovalently closed circular DNA plays a key role for the persistence of hepatitis B virus (HBV) since it serves as the template for viral transcription. Identification of transcription factors that regulate HBV transcription not only provides insights into molecular mechanisms of viral life cycle regulation but may also provide potential antiviral targets. In this work, we identified host MSX1 as a novel restriction factor of HBV transcription. Meanwhile, we observed higher intrahepatic MSX1 expression in chronic hepatitis B virus (CHB) patients in immune active phase compared to those in immune tolerant phase, suggesting possible involvement of MSX1 in the regulation of HBV activity by the host. Lastly, intrahepatic overexpression of MSX1 delivered by recombinant adenoviruses into two mouse models of HBV persistence demonstrated MSX1-mediated repression of HBV in vivo, and MSX1-induced clearance of intrahepatic HBV DNA in treated mice suggested its potential as a therapeutic target for the treatment of CHB.
Collapse
Affiliation(s)
- Zhongliang Shen
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueping Yu
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaokun Pan
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Kang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijun Xu
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mu Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Children’s Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Eppich S, Kuhn C, Schmoeckel E, Mayr D, Mahner S, Jeschke U, Gallwas J, Heidegger HH. MSX1-expression during the different phases in healthy human endometrium. Arch Gynecol Obstet 2023; 308:273-279. [PMID: 37101223 DOI: 10.1007/s00404-023-07033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE The human endometrium consists of different layers (basalis and functionalis) and undergoes different phases throughout the menstrual cycle. In a former paper, our research group was able to describe MSX1 as a positive prognosticator in endometrial carcinomas. The aim of this study was to examine the MSX1 expression in healthy endometrial tissue throughout the different phases to gain more insight on the mechanics of MSX-regulation in the female reproductive system. MATERIALS AND METHODS In this retrospective study, we investigated a total of 17 normal endometrial tissues (six during proliferative phase and five during early and six during late secretory phase). We used immunohistochemical staining and an immunoreactive score (IRS) to evaluate MSX1 expression. We also investigated correlations with other proteins, that have already been examined in our research group using the same patient collective. RESULTS MSX1 is expressed in glandular cells during the proliferative phase and downregulated at early and late secretory phase (p = 0.011). Also, a positive correlation between MSX1 and the progesterone-receptor A (PR-A) (correlation coefficient (cc) = 0.0671; p = 0.024), and the progesterone receptor B (PR-B) (cc = 0.0691; p = 0.018) was found. A trend towards negative correlation was recognized between MSX1 and Inhibin Beta-C-expression in glandular cells (cc = - 0.583; p-value = 0.060). CONCLUSION MSX1 is known as a member of the muscle segment homeobox gene family. MSX1 is a p53-interacting protein and overexpression of homeobox MSX1 induced apoptosis of cancer cells. Here we show that MSX1 is expressed especially in the proliferative phase of glandular epithelial tissue of the normal endometrium. The found positive correlation between MSX1 and progesterone receptors A and B confirms the results of a previous study on cancer tissue by our research group. Because MSX1 is known to be downregulated by progesterone, the found correlation of MSX1 and both PR-A and -B may represent a direct regulation of the MSX1 gene by a PR-response element. Here further investigation would be of interest.
Collapse
Affiliation(s)
- Simon Eppich
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Str. 56, 80337, Munich, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, Thalkirchner Str. 56, 80337, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany.
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Julia Gallwas
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
- Department of Gynecology and Obstetrics, Georg August University Göttingen, University Medicine, Göttingen, Germany
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
3
|
Zhang D, Hugo W, Redublo P, Miao H, Bergsneider M, Wang MB, Kim W, Yong WH, Heaney AP. A human ACTH-secreting corticotroph tumoroid model: Novel Human ACTH-Secreting Tumor Cell in vitro Model. EBioMedicine 2021; 66:103294. [PMID: 33773184 PMCID: PMC8024915 DOI: 10.1016/j.ebiom.2021.103294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cushing disease (CD), although rare, is a life-threatening disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma, which leads to excess adrenal-derived cortisol. Efficacious and safe medical therapies that control both hormonal hypersecretion and pituitary corticotroph tumor growth remain an unmet need in the management of CD. Translational research in pituitary tumors has been significantly hampered by limited quantities of surgically resected tissue for ex vivo studies, and unavailability of human pituitary tumor cell models. METHODS To characterize human corticotroph tumors at the cellular level, we employed single cell RNA-sequencing (scRNA-seq) to study 4 surgically resected tumors. We also used microarrays to compare individualized paired consecutive culture passages to understand transcriptional shifts as in vitro cultures lost ACTH secretion. Based on these findings, we then modified our in vitro culture methods to develop sustained ACTH-secreting human corticotroph tumoroid cultures. FINDINGS scRNA-seq identified 4 major cell populations, namely corticotroph tumor (73.6%), stromal (11.2%), progenitor (8.3%), and immune cells (6.8%). Microarray analysis revealed striking changes in extracellular matrix, cell adhesion and motility-related genes concordant with loss of ACTH secretion during conventional 2D culture. Based on these findings, we subsequently defined a series of crucial culture nutrients and scaffold modifications that provided a more favorable trophic and structural environment that could maintain ACTH secretion in in vitro human corticotroph tumor cultures for up to 4 months. INTERPRETATION Our human corticotroph tumoroid model is a significant advance in the field of pituitary tumors and will further enable translational research studies to identify critically needed therapies for CD. FUNDING This work was partly funded by NCI P50-CA211015 and the Warley Trust Foundation.
Collapse
Affiliation(s)
- Dongyun Zhang
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Willy Hugo
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Peter Redublo
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Hui Miao
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marvin Bergsneider
- Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marilene B Wang
- Departments of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Won Kim
- Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - William H Yong
- Departments of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Anthony P Heaney
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States; Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
4
|
Bonczek O, Krejci P, Izakovicova-Holla L, Cernochova P, Kiss I, Vojtesek B. Tooth agenesis: What do we know and is there a connection to cancer? Clin Genet 2021; 99:493-502. [PMID: 33249565 DOI: 10.1111/cge.13892] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
Like all developmental processes, odontogenesis is highly complex and dynamically regulated, with hundreds of genes co-expressed in reciprocal networks. Tooth agenesis (missing one or more/all teeth) is a common human craniofacial anomaly and may be caused by genetic variations and/or environmental factors. Variants in PAX9, MSX1, AXIN2, EDA, EDAR, and WNT10A genes are associated with tooth agenesis. Currently, variants in ATF1, DUSP10, CASC8, IRF6, KDF1, GREM2, LTBP3, and components and regulators of WNT signaling WNT10B, LRP6, DKK, and KREMEN1 are at the forefront of interest. Due to the interconnectedness of the signaling pathways of carcinogenesis and odontogenesis, tooth agenesis could be a suitable marker for early detection of cancer predisposition. Variants in genes associated with tooth agenesis could serve as prognostic or therapeutic targets in cancer. This review aims to summarize existing knowledge of development and clinical genetics of teeth. Concurrently, the review proposes possible approaches for future research in this area, with particular attention to roles in monitoring, early diagnosis and therapy of tumors associated with defective tooth development.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Premysl Krejci
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lydie Izakovicova-Holla
- Department of Stomatology, Institution shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavlina Cernochova
- Department of Stomatology, Institution shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Kiss
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
5
|
Coppola U, Kamal AK, Stolfi A, Ristoratore F. The Cis-Regulatory Code for Kelch-like 21/30 Specific Expression in Ciona robusta Sensory Organs. Front Cell Dev Biol 2020; 8:569601. [PMID: 33043001 PMCID: PMC7517041 DOI: 10.3389/fcell.2020.569601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
The tunicate Ciona robusta is an emerging model system to study the evolution of the nervous system. Due to their small embryos and compact genomes, tunicates, like Ciona robusta, have great potential to comprehend genetic circuitry underlying cell specific gene repertoire, among different neuronal cells. Their simple larvae possess a sensory vesicle comprising two pigmented sensory organs, the ocellus and the otolith. We focused here on Klhl21/30, a gene belonging to Kelch family, that, in Ciona robusta, starts to be expressed in pigmented cell precursors, becoming specifically maintained in the otolith precursor during embryogenesis. Evolutionary analyses demonstrated the conservation of Klhl21/30 in all the chordates. Cis-regulatory analyses and CRISPR/Cas9 mutagenesis of potential upstream factors, revealed that Klhl21/30 expression is controlled by the combined action of three transcription factors, Mitf, Dmrt, and Msx, which are downstream of FGF signaling. The central role of Mitf is consistent with its function as a fundamental regulator of vertebrate pigment cell development. Moreover, our results unraveled a new function for Dmrt and Msx as transcriptional co-activators in the context of the Ciona otolith.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ashwani Kumar Kamal
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
6
|
Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol 2018; 60:R131-R155. [PMID: 29437880 PMCID: PMC5851872 DOI: 10.1530/jme-17-0308] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. The hormone-specific FSHβ-subunit is non-covalently associated with the common α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted by thyrotrophs. Several decades of research led to the purification, structural characterization and physiological regulation of FSH in a variety of species including humans. With the advent of molecular tools, availability of immortalized gonadotroph cell lines and genetically modified mouse models, our knowledge on molecular mechanisms of FSH regulation has tremendously expanded. Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting. Novel post-transcriptional and post-translational regulatory mechanisms have also been identified that provide additional layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs hold promise for a variety of clinical applications, whereas blocking antibodies against FSH may prove efficacious for preventing age-dependent bone loss and adiposity. It is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.
Collapse
Affiliation(s)
- Nandana Das
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Author for Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Associate Vice-Chair of Research, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Mail Stop 8613, Research Complex 2, Room # 15-3000B, 12700 E. 19th Avenue, Aurora, CO 80045, USA, Tel: 303-724-8689,
| |
Collapse
|
7
|
Jonak CR, Lainez NM, Boehm U, Coss D. GnRH Receptor Expression and Reproductive Function Depend on JUN in GnRH Receptor‒Expressing Cells. Endocrinology 2018; 159:1496-1510. [PMID: 29409045 PMCID: PMC5839737 DOI: 10.1210/en.2017-00844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) from the hypothalamus regulates synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary gonadotropes. LH and FSH are heterodimers composed of a common α-subunit and unique β-subunits, which provide biological specificity and are limiting components of mature hormone synthesis. Gonadotrope cells respond to GnRH via specific expression of the GnRH receptor (Gnrhr). GnRH induces the expression of gonadotropin genes and of the Gnrhr by activation of specific transcription factors. The JUN (c-Jun) transcription factor binds to AP-1 sites in the promoters of target genes and mediates induction of the FSHβ gene and of the Gnrhr in gonadotrope-derived cell lines. To analyze the role of JUN in reproductive function in vivo, we generated a mouse model that lacks JUN specifically in GnRH receptor‒expressing cells (conditional JUN knockout; JUN-cKO). JUN-cKO mice displayed profound reproductive anomalies such as reduced LH levels resulting in lower gonadal steroid levels, longer estrous cycles in females, and diminished sperm numbers in males. Unexpectedly, FSH levels were unchanged in these animals, whereas Gnrhr expression in the pituitary was reduced. Steroidogenic enzyme expression was reduced in the gonads of JUN-cKO mice, likely as a consequence of reduced LH levels. GnRH receptor‒driven Cre activity was detected in the hypothalamus but not in the GnRH neuron. Female, but not male, JUN-cKO mice exhibited reduced GnRH expression. Taken together, our results demonstrate that GnRH receptor‒expression levels depend on JUN and are critical for reproductive function.
Collapse
Affiliation(s)
- Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Nancy M. Lainez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, 66421 Homburg, Germany
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
- Correspondence: Djurdjica Coss, PhD, Division of Biomedical Sciences, School of Medicine, 303 SOM Research Building, University of California, Riverside, Riverside, California 92521. E-mail:
| |
Collapse
|
8
|
Kim YJ, Osborn DP, Lee JY, Araki M, Araki K, Mohun T, Känsäkoski J, Brandstack N, Kim HT, Miralles F, Kim CH, Brown NA, Kim HG, Martinez-Barbera JP, Ataliotis P, Raivio T, Layman LC, Kim SH. WDR11-mediated Hedgehog signalling defects underlie a new ciliopathy related to Kallmann syndrome. EMBO Rep 2018; 19:269-289. [PMID: 29263200 PMCID: PMC5797970 DOI: 10.15252/embr.201744632] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
WDR11 has been implicated in congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS), human developmental genetic disorders defined by delayed puberty and infertility. However, WDR11's role in development is poorly understood. Here, we report that WDR11 modulates the Hedgehog (Hh) signalling pathway and is essential for ciliogenesis. Disruption of WDR11 expression in mouse and zebrafish results in phenotypic characteristics associated with defective Hh signalling, accompanied by dysgenesis of ciliated tissues. Wdr11-null mice also exhibit early-onset obesity. We find that WDR11 shuttles from the cilium to the nucleus in response to Hh signalling. WDR11 regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotrophin-releasing hormone production. The CHH/KS-associated human mutations result in loss of function of WDR11. Treatment with the Hh agonist purmorphamine partially rescues the WDR11 haploinsufficiency phenotypes. Our study reveals a novel class of ciliopathy caused by WDR11 mutations and suggests that CHH/KS may be a part of the human ciliopathy spectrum.
Collapse
Affiliation(s)
- Yeon-Joo Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Daniel Ps Osborn
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Ji-Young Lee
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | | | | | | | - Hyun-Taek Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Francesc Miralles
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Nigel A Brown
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Hyung-Goo Kim
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Paris Ataliotis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Taneli Raivio
- Helsinki University Central Hospital, Helsinki, Finland
| | | | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| |
Collapse
|
9
|
Feng XY, Wu XS, Wang JS, Zhang CM, Wang SL. Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/β-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage. Eur J Oral Sci 2017; 126:1-12. [PMID: 29148101 DOI: 10.1111/eos.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiao-Yu Feng
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiao-Shan Wu
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jin-Song Wang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chun-Mei Zhang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Song-Lin Wang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Hadziselimovic F, Gegenschatz-Schmid K, Verkauskas G, Docampo-Garcia MJ, Demougin P, Bilius V, Malcius D, Dasevicius D, Stadtler MB. Gene Expression Changes Underlying Idiopathic Central Hypogonadism in Cryptorchidism with Defective Mini-Puberty. Sex Dev 2016; 10:136-46. [PMID: 27561106 DOI: 10.1159/000447762] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 11/19/2022] Open
Abstract
The whole genome RNA profiling of testicular biopsies by DNA strand-specific RNA sequencing was examined to determine a potential causative role of isolated congenital cryptorchidism in azoospermia and/or infertility in the context of our previously published GeneChip data. Cryptorchid patients, aged 7 months to 5 years and otherwise healthy, were enrolled in this prospective study. During surgery, testicular tissue biopsies were obtained for histological examination and RNA sequencing. Fifteen patients were selected based on the histological results and were divided into 2 groups. Seven were classified as belonging to the high infertility risk (HIR) and 8 to the low infertility risk (LIR) group. Cryptorchid boys in the HIR group lacked transformation of gonocytes into Ad spermatogonia due to impaired mini-puberty. This group of patients will be infertile despite successful surgery. The new important finding was a decreased PROK2, CHD7, FGFR1, and SPRY4 gene expression in the HIR group. Furthermore, identification of multiple differences in gene expression between HIR and LIR groups underscores the importance of an intact hypothalamic-pituitary-gonadal axis for fertility development. Our RNA profiling data strongly support the theory that in the HIR group of cryptorchid boys insufficient PROK2/CHD7/FGFR1/SPRY4 gene expression induces deficient LH secretion, resulting in impaired mini-puberty and infertility. We therefore recommend hormonal treatment for this cohort of cryptorchid boys with defective mini-puberty following a seemingly successful orchidopexy.
Collapse
|
11
|
Stallings CE, Kapali J, Ellsworth BS. Mouse Models of Gonadotrope Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:1-48. [PMID: 27697200 DOI: 10.1016/bs.pmbts.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotrope is central to reproductive function. Gonadotropes develop in a systematic process dependent on signaling factors secreted from surrounding tissues and those produced within the pituitary gland itself. These signaling pathways are important for stimulating specific transcription factors that ultimately regulate the expression of genes and define gonadotrope identity. Proper gonadotrope development and ultimately gonadotrope function are essential for normal sexual maturation and fertility. Understanding the mechanisms governing differentiation programs of gonadotropes is important to improve treatment and molecular diagnoses for patients with gonadotrope abnormalities. Much of what is known about gonadotrope development has been elucidated from mouse models in which important factors contributing to gonadotrope development and function have been deleted, ectopically expressed, or modified. This chapter will focus on many of these mouse models and their contribution to our current understanding of gonadotrope development.
Collapse
Affiliation(s)
- C E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - J Kapali
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - B S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States.
| |
Collapse
|
12
|
Wang H, Hastings R, Miller WL, Kumar TR. Fshb-iCre mice are efficient and specific Cre deleters for the gonadotrope lineage. Mol Cell Endocrinol 2016; 419:124-38. [PMID: 26472536 PMCID: PMC4684453 DOI: 10.1016/j.mce.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 02/06/2023]
Abstract
Genetic analysis of development and function of the gonadotrope cell lineage within mouse anterior pituitary has been greatly facilitated by at least three currently available Cre strains in which Cre was either knocked into the Gnrhr locus or expressed as a transgene from Cga and Lhb promoters. However, in each case there are some limitations including CRE expression in thyrotropes within pituitary or ectopic expression outside of pituitary, for example in some populations of neurons or gonads. Hence, these Cre strains often pose problems with regard to undesirable deletion of alleles in non-gonadotrope cells, fertility and germline transmission of mutant alleles. Here, we describe generation and characterization of a new Fshb-iCre deleter strain using 4.7 kb of ovine Fshb promoter regulatory sequences driving iCre expression exclusively in the gonadotrope lineage within anterior pituitary. Fshb-iCre mice develop normally, display no ectopic CRE expression in gonads and are fertile. When crossed onto a loxP recombination-mediated red to green color switch reporter mouse genetic background, in vivo CRE recombinase activity is detectable in gonadotropes at more than 95% efficiency and the GFP-tagged gonadotropes readily purified by fluorescence activated cell sorting. We demonstrate the applicability of this Fshb-iCre deleter strain in a mouse model in which Dicer is efficiently and selectively deleted in gonadotropes. We further show that loss of DICER-dependent miRNAs in gonadotropes leads to profound suppression of gonadotropins resulting in male and female infertility. Thus, Fshb-iCre mice serve as a new genetic tool to efficiently manipulate gonadotrope-specific gene expression in vivo.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Molecular and Integrative Physiology
| | | | - William L Miller
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology; Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine; Department of Pathology and Laboratory Medicine; Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
13
|
Park KS, Kim KK, Kim KE. Msx1 homeodomain transcription factor and TATA-binding protein interact to repress the expression of the glycoprotein hormone α subunit gene. Biochem Biophys Res Commun 2015; 468:326-30. [PMID: 26505791 DOI: 10.1016/j.bbrc.2015.10.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Studying the regulatory mechanism of the glycoprotein hormone α subunit (αGSU) gene in thyrotropes is essential for understanding the synthesis of functional thyroid-stimulating hormone (TSH). Here, we investigated the influence of a homeodomain transcription factor Msx1 (Msh homeobox 1) on αGSU expression in thyrotropes. The transient expression of Msx1 inhibited the activity of an αGSU reporter gene, as well as its endogenous mRNA level in thyrotrope-derived αTSH cells. Luciferase reporter assays with serial deletion constructs and a close examination of the sequences revealed that the putative Msx1 binding site (PMS) in the αGSU promoter is not responsible for Msx1-mediated transcriptional repression. We also identified the TATA-box binding protein (TBP) as an interacting protein in thyrotropes. Interaction of TBP with Msx1 attenuates the inhibitory effect of Msx1 on αGSU gene expression in a DNA binding-independent manner. Furthermore, transient transfection studies with mutant Msx1 revealed that the interaction of TBP and Msx1 is critical for Msx1-mediated transcriptional repression of the αGSU. These results suggest that Msx1 functions as a transcriptional repressor of αGSU and that its interaction with TBP is an integral part of the mechanism by which Msx1 regulates the inhibition of αGSU gene expression.
Collapse
Affiliation(s)
- Ki-Sun Park
- Department of Biochemistry, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 305-764, Republic of Korea.
| | - Kyoon Eon Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
14
|
Xie H, Hoffmann HM, Meadows JD, Mayo SL, Trang C, Leming SS, Maruggi C, Davis SW, Larder R, Mellon PL. Homeodomain Proteins SIX3 and SIX6 Regulate Gonadotrope-specific Genes During Pituitary Development. Mol Endocrinol 2015; 29:842-55. [PMID: 25915183 PMCID: PMC4447639 DOI: 10.1210/me.2014-1279] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Sine oculis-related homeobox 3 (SIX3) and SIX6, 2 closely related homeodomain transcription factors, are involved in development of the mammalian neuroendocrine system and mutations of Six6 adversely affect fertility in mice. We show that both small interfering RNA knockdown in gonadotrope cell lines and knockout of Six6 in both embryonic and adult male mice (Six6 knockout) support roles for SIX3 and SIX6 in transcriptional regulation in gonadotrope gene expression and that SIX3 and SIX6 can functionally compensate for each other. Six3 and Six6 expression patterns in gonadotrope cell lines reflect the timing of the expression of pituitary markers they regulate. Six3 is expressed in an immature gonadotrope cell line and represses transcription of the early lineage-specific pituitary genes, GnRH receptor (GnRHR) and the common α-subunit (Cga), whereas Six6 is expressed in a mature gonadotrope cell line and represses the specific β-subunits of LH and FSH (LHb and FSHb) that are expressed later in development. We show that SIX6 repression requires interaction with transducin-like enhancer of split corepressor proteins and competition for DNA-binding sites with the transcriptional activator pituitary homeobox 1. Our studies also suggest that estradiol and circadian rhythm regulate pituitary expression of Six6 and Six3 in adult females but not in males. In summary, SIX3 and SIX6 play distinct but compensatory roles in regulating transcription of gonadotrope-specific genes as gonadotrope cells differentiate.
Collapse
Affiliation(s)
- Huimin Xie
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Hanne M Hoffmann
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jason D Meadows
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Susan L Mayo
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Crystal Trang
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sunamita S Leming
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Chiara Maruggi
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Shannon W Davis
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Rachel Larder
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Pamela L Mellon
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Wang H, Graham I, Hastings R, Gunewardena S, Brinkmeier ML, Conn PM, Camper SA, Kumar TR. Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects. J Biol Chem 2014; 290:2699-714. [PMID: 25525274 DOI: 10.1074/jbc.m114.621565] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pituitary gonadotropins follicle-stimulating hormone and luteinizing hormone are heterodimeric glycoproteins expressed in gonadotropes. They act on gonads and promote their development and functions including steroidogenesis and gametogenesis. Although transcriptional regulation of gonadotropin subunits has been well studied, the post-transcriptional regulation of gonadotropin subunits is not well understood. To test if microRNAs regulate the hormone-specific gonadotropin β subunits in vivo, we deleted Dicer in gonadotropes by a Cre-lox genetic approach. We found that many of the DICER-dependent microRNAs, predicted in silico to bind gonadotropin β subunit mRNAs, were suppressed in purified gonadotropes of mutant mice. Loss of DICER-dependent microRNAs in gonadotropes resulted in profound suppression of gonadotropin-β subunit proteins and, consequently, the heterodimeric hormone secretion. In addition to suppression of basal levels, interestingly, the post-gonadectomy-induced rise in pituitary gonadotropin synthesis and secretion were both abolished in mutants, indicating a defective gonadal negative feedback control. Furthermore, mutants lacking Dicer in gonadotropes displayed severely reduced fertility and were rescued with exogenous hormones confirming that the fertility defects were secondary to suppressed gonadotropins. Our studies reveal that DICER-dependent microRNAs are essential for gonadotropin homeostasis and fertility in mice. Our studies also implicate microRNAs in gonadal feedback control of gonadotropin synthesis and secretion. Thus, DICER-dependent microRNAs confer a new layer of transcriptional and post-transcriptional regulation in gonadotropes to orchestrate the hypothalamus-pituitary-gonadal axis physiology.
Collapse
Affiliation(s)
- Huizhen Wang
- From the Departments of Molecular and Integrative Physiology
| | - Ian Graham
- From the Departments of Molecular and Integrative Physiology
| | - Richard Hastings
- Flow Cytometry Core Laboratory, University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | - Michelle L Brinkmeier
- Department of Molecular and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - P Michael Conn
- Departments of Internal Medicine, Cell Biology, and Biochemistry, Texas Tech University, Lubbock, Texas 79430
| | - Sally A Camper
- Department of Molecular and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - T Rajendra Kumar
- From the Departments of Molecular and Integrative Physiology, Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, and
| |
Collapse
|
16
|
Nassif A, Senussi I, Meary F, Loiodice S, Hotton D, Robert B, Bensidhoum M, Berdal A, Babajko S. Msx1 role in craniofacial bone morphogenesis. Bone 2014; 66:96-104. [PMID: 24929242 DOI: 10.1016/j.bone.2014.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 01/01/2023]
Abstract
The homeobox gene Msx1 encodes a transcription factor that is highly expressed during embryogenesis and postnatal development in bone. Mutations of the MSX1 gene in humans are associated with cleft palate and (or) tooth agenesis. A similar phenotype is observed in newborn mice invalidated for the Msx1 gene. However, little is known about Msx1 function in osteoblast differentiation and bone mineralization in vivo. In the present study, we aimed to explore the variations of individualized bone shape in a subtle way avoiding the often severe consequences associated with gene mutations. We established transgenic mice that specifically express Msx1 in mineral-matrix-secreting cells under the control of the mouse 2.3kb collagen 1 alpha 1 (Col1α1) promoter, which enabled us to investigate Msx1 function in bone in vivo. Adult transgenic mice (Msx1-Tg) presented altered skull shape and mineralization resulting from increased Msx1 expression during bone development. Serial section analysis of the mandibles showed a high amount of bone matrix in these mice. In addition, osteoblast number, cell proliferation and apoptosis were higher in Msx1-Tg mice than in controls with regional differences that could account for alterations of bone shape. However, Von Kossa staining and μCT analysis showed that bone mineralization was lower in Msx1-Tg mice than in controls due to alteration of osteoblastic differentiation. Msx1 appears to act as a modeling factor for membranous bone; it stimulates trabecular bone metabolism but limits cortical bone growth by promoting apoptosis, and concomitantly controls the collagen-based mineralization process.
Collapse
Affiliation(s)
- Ali Nassif
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Ibtisam Senussi
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Fleur Meary
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Sophia Loiodice
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Dominique Hotton
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Benoît Robert
- Pasteur Institute, URA CNRS 2578, 25 rue du Docteur Roux, Paris, F-75724, France
| | - Morad Bensidhoum
- Lariboisière-Saint-Louis Medical School, 10 Avenue de Verdun, Paris, F-75010, France
| | - Ariane Berdal
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France
| | - Sylvie Babajko
- Cordeliers Research Center, INSERM UMRS 1138, Laboratory of Molecular Oral Pathophysiology, 15 rue de l'école de médecine, Paris, F-75006, France; Paris-Descartes University, Paris, F-75006, France; Pierre and Marie Curie University, Paris, F-75006, France; Paris-Diderot University, UFR Odontology, Paris, F-75006, France.
| |
Collapse
|
17
|
Yoshida S, Higuchi M, Ueharu H, Nishimura N, Tsuda M, Yako H, Chen M, Mitsuishi H, Sano Y, Kato T, Kato Y. Characterization of murine pituitary-derived cell lines Tpit/F1, Tpit/E and TtT/GF. J Reprod Dev 2014; 60:295-303. [PMID: 24881870 PMCID: PMC4139504 DOI: 10.1262/jrd.2014-031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pituitary is an important endocrine tissue of the vertebrate that produces and secretes many hormones. Accumulating data
suggest that several types of cells compose the pituitary, and there is growing interest in elucidating the origin of these cell
types and their roles in pituitary organogenesis. Therein, the histogenous cell line is an extremely valuable experimental tool
for investigating the function of derived tissue. In this study, we compared gene expression profiles by microarray analysis and
real-time PCR for murine pituitary tumor-derived non-hormone-producing cell lines TtT/GF, Tpit/F1 and Tpit/E. Several genes are
characteristically expressed in each cell line: Abcg2, Nestin, Prrx1,
Prrx2, CD34, Eng, Cspg4 (Ng2),
S100β and nNos in TtT/GF; Cxcl12, Raldh1,
Msx1 and Twist1 in Tpit/F1; and Cxadr, Sox9,
Cdh1, EpCAM and Krt8 in Tpit/E. Ultimately, we came to the following conclusions: TtT/GF cells
show the most differentiated state, and may have some properties of the pituitary vascular endothelial cell and/or pericyte.
Tpit/F1 cells show the epithelial and mesenchymal phenotypes with stemness still in a transiting state. Tpit/E cells have a
phenotype of epithelial cells and are the most immature cells in the progression of differentiation or in the initial
endothelial-mesenchymal transition (EMT). Thus, these three cell lines must be useful model cell lines for investigating pituitary
stem/progenitor cells as well as organogenesis.
Collapse
Affiliation(s)
- Saishu Yoshida
- Laboratory of Molecular Biology and Gene Regulation, Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Weltzien FA, Hildahl J, Hodne K, Okubo K, Haug TM. Embryonic development of gonadotrope cells and gonadotropic hormones--lessons from model fish. Mol Cell Endocrinol 2014; 385:18-27. [PMID: 24145126 DOI: 10.1016/j.mce.2013.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023]
Abstract
Pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are key regulators of vertebrate reproduction. The differential regulation of these hormones, however, is poorly understood and little is known about gonadotrope embryonic development. The different cell types in the vertebrate pituitary develop from common progenitor cells just after gastrulation. Proper development and merging of the anterior and posterior pituitary is dependent upon carefully regulated cell-to-cell interactions, and a suite of signaling pathways with precisely organized temporal and spatial expression patterns, which include transcription factors and their co-activators and repressors. Among the pituitary endocrine cell types, the gonadotropes are the last to develop and become functional. Although much progress has been made during the last decade regarding details of gonadotrope development, the coordinated program for their maturation is not well described. FSH and LH form an integral part of the hypothalamo-pituitary-gonad axis, the main regulator of gonad development and reproduction. Besides regulating gonad development, pre- and early post-natal activity in this axis is thought to be essential for proper development, especially of the central nervous system in mammals. As a means to investigate early functions of FSH and LH in more detail, we have developed a stable transgenic line of medaka with the LH beta subunit gene (lhb) promoter driving green fluorescent protein (Gfp) expression to characterize development of lhb-expressing gonadotropes. The lhb gene is maternally expressed early during embryogenesis. lhb-Expressing cells are initially localized outside the primordial pituitary in the developing gut tube as early as 32 hpf. At hatching, lhb-Gfp is clearly detected in the gut epithelium and in the anterior digestive tract. lhb-Gfp expression later consolidates in the developing pituitary by 2 weeks post-fertilization. This review discusses status of knowledge regarding pituitary morphology and development, with emphasis on gonadotrope cells and gonadotropins during early development, comparing main model species like mouse, zebrafish and medaka, including possible developmental functions of the observed extra pituitary expression of lhb in medaka.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jon Hildahl
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Trude M Haug
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Expression stability of reference genes for quantitative RT-PCR of healthy and diseased pituitary tissue samples varies between humans, mice, and dogs. Mol Neurobiol 2013; 49:893-9. [PMID: 24135907 DOI: 10.1007/s12035-013-8567-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
Pituitary surgery generates pituitary tissue for histology, immunohistochemistry, and molecular biological research. In the last decade, the pathogenesis of pituitary adenomas has been extensively studied in humans, and to a lesser degree in dogs, and tumor oncogenesis has been studied in knock-out mice, often by means of quantitative reversed-transcriptase PCR (RT-qPCR). A precondition of such analyses is that so-called reference genes are stably expressed regardless of changes in disease status or treatment. In this study, the expression of six frequently used reference genes, namely, tata box binding protein (tbp), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (ywhaz), hydroxymethylbilane synthase (hmbs), beta-2-microglobulin (b2m), succinate dehydrogenase complex subunit A (sdha), and glyceraldehyde 3 phosphate dehydrogenase 1 (gapdh), was studied in pituitary tissue (normal and adenoma) from three species (humans, mice, and dogs). The stability of expression of these reference genes differed between species and between healthy and diseased tissue within one species. Quantitative analysis based on a single reference gene that is assumed to be stably expressed might lead to wrong conclusions. This cross-species analysis clearly emphasizes the need to evaluate the expression stability of reference genes as a standard and integral aspect of study design and data analysis, in order to improve the validity of the conclusions drawn on the basis of quantitative molecular analyses.
Collapse
|