1
|
Giri D, Govindaraj V, Kumar S, Ungati H, Mugesh G. A Highly Selective Fluorescent Probe for Monitoring the Thyroid Hormone Transporter Activity in Mammalian Cells. Chemistry 2024; 30:e202401719. [PMID: 38995511 DOI: 10.1002/chem.202401719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/13/2024]
Abstract
Monocarboxylate transporter 8 (MCT8) is a trans-membrane transporter, which mediates the cellular delivery of thyroid hormones, L-thyroxine (T4) and 3,5,3'-triiodo-L-thyronine (T3). In humans, the MCT8 protein is encoded by the SLC16A2 gene and mutations in the transporter cause a genetic neurological disorder known as Allan-Herndon-Dudley Syndrome (AHDS). MCT8 deficiency leads to impaired transport of thyroid hormones in the brain. Radiolabelled T4 and T3 or LC/MS-MS methods have been used to monitor the thyroid hormone uptake through MCT8. Herein, we developed a fluorescent based assay to monitor the thyroid hormone uptake through MCT8. A dansyl-based fluorescent probe having L-thyroxine moiety is found to be highly selective towards MCT8 in living cells. The high selectivity of the probe towards MCT8 can be attributed to the halogen bond-mediated recognition by the transporter protein. The presence of a free carboxylic acid group is essential for the specificity of the probe towards MCT8. Additionally, the selectivity of the probe for MCT8 is abolished upon esterification of the carboxylic group. Similarly, MCT8 does not recognize the probe when it contains a free amine group.
Collapse
Affiliation(s)
- Debasish Giri
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Vijayakumar Govindaraj
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
| | - Sagar Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Harinarayana Ungati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Liu Y, Ng L, Liu H, Heuer H, Forrest D. Cone photoreceptor differentiation regulated by thyroid hormone transporter MCT8 in the retinal pigment epithelium. Proc Natl Acad Sci U S A 2024; 121:e2402560121. [PMID: 39018199 PMCID: PMC11287251 DOI: 10.1073/pnas.2402560121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
The key role of a thyroid hormone receptor in determining the maturation and diversity of cone photoreceptors reflects a profound influence of endocrine signaling on the cells that mediate color vision. However, the route by which hormone reaches cones remains enigmatic as cones reside in the retinal photoreceptor layer, shielded by the blood-retina barrier. Using genetic approaches, we report that cone differentiation is regulated by a membrane transporter for thyroid hormone, MCT8 (SLC16A2), in the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier. Mct8-deficient mice display hypothyroid-like cone gene expression and compromised electroretinogram responses. Mammalian color vision is typically facilitated by cone types that detect medium-long (M) and short (S) wavelengths of light but Mct8-deficient mice have a partial shift of M to S cone identity, resembling the phenotype of thyroid hormone receptor deficiency. RPE-specific ablation of Mct8 results in similar shifts in cone identity and hypothyroid-like gene expression whereas reexpression of MCT8 in the RPE in Mct8-deficient mice partly restores M cone identity, consistent with paracrine-like control of thyroid hormone signaling by the RPE. Our findings suggest that in addition to transport of essential solutes and homeostatic support for photoreceptors, the RPE regulates the thyroid hormone signal that promotes cone-mediated vision.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen45147, Germany
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
3
|
Sriram S, Shahid N, Mysliwiec D D, Lichter-Konecki U, Yatsenko SA, Garibaldi LR. Late diagnosis of the X-linked MCT8 deficiency (Allan-Herndon-Dudley syndrome) in a teenage girl with primary ovarian insufficiency. J Pediatr Endocrinol Metab 2024; 37:371-374. [PMID: 38345890 DOI: 10.1515/jpem-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/27/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVES To report an unusual case of MCT8 deficiency (Allan-Herndon-Dudley syndrome), an X-linked condition caused by pathogenic variants in the SLC16A2 gene. Defective transport of thyroid hormones (THs) in this condition leads to severe neurodevelopmental impairment in males, while heterozygous females are usually asymptomatic or have mild TH abnormalities. CASE PRESENTATION A girl with profound developmental delay, epilepsy, primary amenorrhea, elevated T3, low T4 and free T4 levels was diagnosed with MCT8-deficiency at age 17 years, during evaluation for primary ovarian insufficiency (POI). Cytogenetic analysis demonstrated balanced t(X;16)(q13.2;q12.1) translocation with a breakpoint disrupting SLC16A2. X-chromosome inactivation studies revealed a skewed inactivation of the normal X chromosome. CONCLUSIONS MCT8-deficiency can manifest clinically and phenotypically in women with SLC16A2 aberrations when nonrandom X inactivation occurs, while lack of X chromosome integrity due to translocation can cause POI.
Collapse
Affiliation(s)
- Swetha Sriram
- Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nabiha Shahid
- Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diana Mysliwiec D
- Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uta Lichter-Konecki
- Division of Genetics and Inborn Errors of Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luigi R Garibaldi
- Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Salas-Lucia F, Escamilla S, Bianco AC, Dumitrescu A, Refetoff S. Impaired T3 uptake and action in MCT8-deficient cerebral organoids underlie Allan-Herndon-Dudley syndrome. JCI Insight 2024; 9:e174645. [PMID: 38376950 PMCID: PMC11128209 DOI: 10.1172/jci.insight.174645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Patients with mutations in the thyroid hormone (TH) cell transporter monocarboxylate transporter 8 (MCT8) gene develop severe neuropsychomotor retardation known as Allan-Herndon-Dudley syndrome (AHDS). It is assumed that this is caused by a reduction in TH signaling in the developing brain during both intrauterine and postnatal developmental stages, and treatment remains understandably challenging. Given species differences in brain TH transporters and the limitations of studies in mice, we generated cerebral organoids (COs) using human induced pluripotent stem cells (iPSCs) from MCT8-deficient patients. MCT8-deficient COs exhibited (i) altered early neurodevelopment, resulting in smaller neural rosettes with thinner cortical units, (ii) impaired triiodothyronine (T3) transport in developing neural cells, as assessed through deiodinase-3-mediated T3 catabolism, (iii) reduced expression of genes involved in cerebral cortex development, and (iv) reduced T3 inducibility of TH-regulated genes. In contrast, the TH analogs 3,5-diiodothyropropionic acid and 3,3',5-triiodothyroacetic acid triggered normal responses (induction/repression of T3-responsive genes) in MCT8-deficient COs, constituting proof of concept that lack of T3 transport underlies the pathophysiology of AHDS and demonstrating the clinical potential for TH analogs to be used in treating patients with AHDS. MCT8-deficient COs represent a species-specific relevant preclinical model that can be utilized to screen drugs with potential benefits as personalized therapeutics for patients with AHDS.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Sergio Escamilla
- Instituto de Neurociencias de Alicante, Miguel Hernández-CSIC University, Sant Joan d’Alacant, Alicante, Spain
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Alexandra Dumitrescu
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Committee on Molecular Metabolism and Nutrition
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, and Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Valcárcel-Hernández V, Guillén-Yunta M, Bueno-Arribas M, Montero-Pedrazuela A, Grijota-Martínez C, Markossian S, García-Aldea Á, Flamant F, Bárez-López S, Guadaño-Ferraz A. A CRISPR/Cas9-engineered avatar mouse model of monocarboxylate transporter 8 deficiency displays distinct neurological alterations. Neurobiol Dis 2022; 174:105896. [DOI: 10.1016/j.nbd.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022] Open
|
6
|
Braun D, Bohleber S, Vatine GD, Svendsen CN, Schweizer U. Sodium Phenylbutyrate Rescues Thyroid Hormone Transport in Brain Endothelial-Like Cells. Thyroid 2022; 32:860-870. [PMID: 35357974 DOI: 10.1089/thy.2021.0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Monocarboxylate transporter 8 (MCT8) deficiency is a rare genetic disease leading to a severe developmental delay due to a lack of thyroid hormones (THs) during critical stages of human brain development. Some MCT8-deficient patients are not as severely affected as others. Previously, we hypothesized that these patients' mutations do not affect the functionality but destabilize the MCT8 protein, leading to a diminished number of functional MCT8 molecules at the cell surface. Methods: We have already demonstrated that the chemical chaperone sodium phenylbutyrate (NaPB) rescues the function of these mutants by stabilizing their protein expression in an overexpressing cell system. Here, we expanded our previous work and used iPSC (induced pluripotent stem cell)-derived brain microvascular endothelial-like cells (iBMECs) as a physiologically relevant cell model of human origin to test for NaPB responsiveness. The effects on mutant MCT8 expression and function were tested by Western blotting and radioactive uptake assays. Results: We found that NaPB rescues decreased mutant MCT8 expression and restores transport function in iBMECs carrying patient's mutation MCT8-P321L. Further, we identified MCT10 as an alternative TH transporter in iBMECs that contributes to triiodothyronine uptake, the biological active TH. Our results indicate an upregulation of MCT10 after NaPB treatment. In addition, we detected an increase in thyroxine (T4) uptake after NaPB treatment that was not mediated by rescued MCT8 but an unidentified T4 transporter. Conclusions: We demonstrate that NaPB is suitable to stabilize a pathogenic missense mutation in a human-derived cell model. Further, it activates TH transport independent of MCT8. Both options fuel future studies to investigate repurposing the Food and Drug Administration-approved drug NaPB in selected cases of MCT8 deficiency.
Collapse
Affiliation(s)
- Doreen Braun
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, The Regenerative Medicine and Stem Cell (RMSC) Research Center and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
7
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
8
|
Olivati C, Favilla BP, Freitas EL, Santos B, Melaragno MI, Meloni VA, Piazzon F. Allan-Herndon-Dudley syndrome in a female patient and related mechanisms. Mol Genet Metab Rep 2022; 31:100879. [PMID: 35782622 PMCID: PMC9248228 DOI: 10.1016/j.ymgmr.2022.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is characterized by neuropsychomotor developmental delay/intellectual disability, neurological impairment with a movement disorder, and an abnormal thyroid hormone profile. This disease is an X-linked disorder that mainly affects men. We described a female patient with a de novo variant in the SLC16A2 gene, a milder AHDS phenotype, and a skewed X chromosome inactivation profile. We discuss the mechanisms associated with the expression of the phenotypic characteristics in female patients, including SLC16A2 gene variants and cytogenomic alterations, as well as preferential inactivation of the normal X chromosome.
Collapse
Affiliation(s)
- Caroline Olivati
- Rare Rosy Clinic, São Paulo, Brazil
- Fleury Medicina e Saúde, São Paulo, Brazil
- Corresponding author at: Rare Rosy Clinic, Rua Borges Lagoa, 1080, CEP 04038-020 São Paulo, SP, Brazil.
| | - Bianca Pereira Favilla
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Rare Rosy Clinic, São Paulo, Brazil
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Flavia Piazzon
- Rare Rosy Clinic, São Paulo, Brazil
- Neuromuscular Reference Center, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
- Neurometabolic Unit, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Han JY, Lee S, Woo H, Kim SY, Kim H, Lim BC, Hwang H, Choi J, Kim KJ, Chae JH. Heterogeneous Clinical Characteristics of Allan-Herndon-Dudley Syndrome with SLC16A2 Mutations. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2021.00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose: The purpose of this study was to expand our understanding of phenotypic and genetic variation in Allan-Herndon-Dudley syndrome (AHDS), which is a rare X-linked mental retardation syndrome characterized by hypotonia, generalized spasticity, and moderate-to-severe psychomotor retardation. AHDS is caused by a mutation of solute carrier family 16 member 2 (SLC16A2), which encodes monocarboxylate transporter 8 (MCT8), the transporter of triiodothyronine (T3) into neurons. Methods: We enrolled nine patients with AHDS from unrelated families, except for two patients who were cousins, through a retrospective chart review. Clinical features, brain imaging, electroencephalograms, thyroid hormone profiles, and genetic data were reviewed retrospectively and compared with previously reported cases. Results: We found three novel and five previously reported pathogenic variants in nine patients from eight families. All patients presented with hypotonia, spasticity, severe developmental delay, and elevated serum T3 levels. Cataplexy, which is a previously unreported phenotype, was found in two patients with the same mutation. In our cohort, seizures were uncommon (n=1) but intractable. Conclusion: This study broadens the known phenotypic variations of AHDS, ranging from relatively mild global developmental delay to a severe form of encephalopathy with hypotonia, spasticity, and no acquisition of independent sitting. The syndromic classification or genetic etiology of global developmental delay is extremely heterogeneous; therefore, early clinical suspicion is challenging for clinicians. However, severe mental retardation with hypotonia, spasticity, and elevated serum T3 levels in male patients is a highly suspicious clinical clue for the early diagnosis of AHDS.
Collapse
|
10
|
Graffunder AS, Paisdzior S, Opitz R, Renko K, Kühnen P, Biebermann H. Design and Characterization of a Fluorescent Reporter Enabling Live-cell Monitoring of MCT8 Expression. Exp Clin Endocrinol Diabetes 2021; 130:134-140. [PMID: 34352913 DOI: 10.1055/a-1522-8535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The monocarboxylate transporter 8 (MCT8) is a specific thyroid hormone transporter and plays an essential role in fetal development. Inactivating mutations in the MCT8 encoding gene SLC16A2 (solute carrier family 16, member 2) lead to the Allan-Herndon-Dudley syndrome, a condition presenting with severe endocrinological and neurological phenotypes. However, the cellular distribution pattern and dynamic expression profile are still not well known for early human neural development. OBJECTIVE Development and characterization of fluorescent MCT8 reporters that would permit live-cell monitoring of MCT8 protein expression in vitro in human induced pluripotent stem cell (hiPSC)-derived cell culture models. METHODS A tetracysteine (TC) motif was introduced into the human MCT8 sequence at four different positions as binding sites for fluorescent biarsenical dyes. Human Embryonic Kidney 293 cells were transfected and stained with fluorescein-arsenical hairpin-binder (FlAsH). Counterstaining with specific MCT8 antibody was performed. Triiodothyronine (T3) uptake was indirectly measured with a T3 responsive luciferase-based reporter gene assay in Madin-Darby Canine Kidney 1 cells for functional characterization. RESULTS FlAsH staining and antibody counterstaining of all four constructs showed cell membrane expression of all MCT8 constructs. The construct with the tag after the first start codon demonstrated comparable T3 uptake to the MCT8 wildtype. CONCLUSION Our data indicate that introduction of a TC-tag directly after the first start codon generates a MCT8 reporter with suitable characteristics for live-cell monitoring of MCT8 expression. One promising future application will be generation of stable hiPSC MCT8 reporter lines to characterize MCT8 expression patterns during in vitro neuronal development.
Collapse
Affiliation(s)
- Adina Sophie Graffunder
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| | - Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| | - Robert Opitz
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Peter Kühnen
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health
| |
Collapse
|
11
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Stohn JP, Martinez ME, St Germain DL, Hernandez A. Adult onset of type 3 deiodinase deficiency in mice alters brain gene expression and increases locomotor activity. Psychoneuroendocrinology 2019; 110:104439. [PMID: 31561084 PMCID: PMC7259167 DOI: 10.1016/j.psyneuen.2019.104439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Constitutive loss of the type 3 deiodinase (DIO3) causes abnormally increased levels of thyroid hormone action in the developing and adult brain, leading to an array of behavioral abnormalities. To determine to what extent those phenotypes derive from a lack of DIO3 in the adult brain, versus developmental consequences, we created a mouse model of conditional DIO3 inactivation. Mice carrying "floxed" Dio3 alleles and a tamoxifen-inducible cre transgene were injected with tamoxifen at two months of age. Compared to oil-injected controls, the brain tissue of these mice showed a 75-80% decrease in DIO3 activity and 85-95% Dio3 mRNA was expressed from recombinant alleles. Mice with adult DIO3 deficiency did not show significant differences in growth, serum thyroid hormone parameters or behaviors related to anxiety and depression. However, female mice exhibited elevated locomotor activity and increased marble-burying behavior. They also manifested relatively modest alterations in the expression of T3-dependent genes and genes related to hyperactivity in a sex- and region-specific manner. Upon thyroid hormone treatment, the expression response of T3-regulated genes was generally more pronounced in DIO3-deficient female mice than in female controls, while the opposite effect of altered genotype was noticed in males. The extent of the molecular and behavioral phenotypes of adult-onset DIO3 deficiency suggests that a substantial proportion of the neurological abnormalities caused by constitutive DIO3 deficiency has a developmental origin. However, our results show that DIO3 in the adult brain also influences behavior and sensitivity to thyroid hormone action in a sexually dimorphic fashion.
Collapse
Affiliation(s)
- J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - M Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - Donald L St Germain
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA; Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Braun D, Reuter U, Schweizer U. Modeling the Biochemical Phenotype of MCT8 Mutations In Vitro: Resolving a Troubling Inconsistency. Endocrinology 2019; 160:1536-1546. [PMID: 31127274 DOI: 10.1210/en.2019-00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is a severe genetic disease caused by mutations in the monocarboxylate transporter 8 (MCT8) gene. MCT8 mediates transport of thyroid hormones in and out of cells, which is thought to play a pivotal role for embryonic and postnatal development of the human brain. Disconcertingly, MCT8R271H leads to a severe form of AHDS but shows residual transport activity when expressed in several types of cultured cells. Here we try to determine the mechanism behind the transport function of MCT8R271H found in overexpressing cell systems. Mutations of Arg271 were introduced into human MCT8 and stably transfected into Madin-Darby canine kidney cells and the human-derived cell line JEG1. Radioactive thyroid hormone-uptake experiments were performed to analyze the pH-dependent effect of the mutation on transport activity. Arg271His transports thyroid hormones in and out of cells in a pH-dependent manner. Its transport activity increases below pH 7.3 and is clearly diminished at physiological pH. The Michaelis constant of the mutant is unaltered, whereas the maximum velocity is reduced. The expression of Arg271His in JEG1 cells leads to an almost nonfunctional transporter at physiological pH replicating the human phenotype for this mutant in vitro and demonstrates, again, that mutant MCT8 activity depends on cellular background. The protonation of His271 at acidic pH restores activity of the mutant protein, which is not active in its deprotonated form at physiological pH. Thus, experimental parameters must be controlled carefully when modeling MCT8 deficiency in cells.
Collapse
Affiliation(s)
- Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| |
Collapse
|
14
|
Islam MS, Namba N, Ohata Y, Fujiwara M, Nakano C, Takeyari S, Miyata K, Nakano Y, Yamamoto K, Nakayama H, Kitaoka T, Kubota T, Ozono K. Functional analysis of monocarboxylate transporter 8 mutations in Japanese Allan-Herndon-Dudley syndrome patients. Endocr J 2019; 66:19-29. [PMID: 30369548 DOI: 10.1507/endocrj.ej18-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates T3 uptake into cells. Mutations in MCT8 lead to Allan-Herndon-Dudley syndrome (AHDS), which is characterized by severe psychomotor retardation and abnormal thyroid hormone profile. Nine uncharacterized MCT8 mutations in Japanese patients with severe neurocognitive impairment and elevated serum T3 levels were studied regarding the transport of T3. Human MCT8 (hMCT8) function was studied in wild-type (WT) or mutant hMCT8-transfected human placental choriocarcinoma cells (JEG3) by visualizing the locations of the proteins in the cells, detecting specific proteins, and measuring T3 uptake. We identified 6 missense (p.Arg445Ser, p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, and p.Gly312Arg), 2 frameshift (p.Arg355Profs*64 and p.Tyr550Serfs*17), and 1 deletion (p.Pro561del) mutation(s) in the hMCT8 gene. All patients exhibited clinical characteristics of AHDS with high free T3, low-normal free T4, and normal-elevated TSH levels. All tested mutants were expressed at the protein level, except p.Arg355Profs*64 and p.Tyr550Serfs*17, which were truncated, and were inactive in T3 uptake, excluding p.Arg445Ser and p.Pro561del mutants, compared with WT-hMCT8. Immunocytochemistry revealed plasma membrane localization of p.Arg445Ser and p.Pro561del mutants similar with WT-hMCT8. The other mutants failed to localize in significant amount(s) in the plasma membrane and instead localized in the cytoplasm. These data indicate that p.Arg445Ser and p.Pro561del mutants preserve residual function, whereas p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, p.Gly312Arg, p.Arg355Profs*64, and p.Tyr550Serfs*17 mutants lack function. These findings suggest that the mutations in MCT8 cause loss of function by reducing protein expression, impairing trafficking of protein to plasma membrane, and disrupting substrate channel.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Chiho Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kei Miyata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukako Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hirofumi Nakayama
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The Japan Environment and Children's Study, Osaka Unit Center, Suita, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
15
|
Vancamp P, Darras VM. From zebrafish to human: A comparative approach to elucidate the role of the thyroid hormone transporter MCT8 during brain development. Gen Comp Endocrinol 2018; 265:219-229. [PMID: 29183795 DOI: 10.1016/j.ygcen.2017.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates transmembrane transport of thyroid hormones (THs) ensuring their action on gene expression during vertebrate neurodevelopment. A loss of MCT8 in humans results in severe psychomotor deficits associated with the Allan-Herndon-Dudley Syndrome (AHDS). However, where and when exactly a lack of MCT8 causes the neurological manifestations remains unclear because of the varying expression pattern of MCT8 between specific brain regions and cells. Here, we elaborate on the animal models that have been generated to elucidate the mechanisms underlying MCT8-deficient brain development. The absence of a clear neurological phenotype in Mct8 knockout mice made it clear that a single species would not suffice. The evolutionary conservation of TH action on neurodevelopment as well as the components regulating TH signalling however offers the opportunity to answer different aspects of MCT8 function in brain development using different vertebrate species. Moreover, the plethora of tools for genome editing available today facilitates gene silencing in these animals as well. Studies in the recently generated mct8-deficient zebrafish and Mct8/Oatp1c1 double knockout mice have put forward the current paradigm of impaired TH uptake at the level of the blood-brain barrier during peri- and postnatal development as being the main pathophysiological mechanism of AHDS. RNAi vector-based, cell-specific induction of MCT8 knockdown in the chicken embryo points to an additional function of MCT8 at the level of the neural progenitors during early brain development. Future studies including also additional in vivo models like Xenopus or in vitro approaches such as induced pluripotent stem cells will continue to help unravelling the exact role of MCT8 in developmental events. In the end, this multispecies approach will lead to a unifying thesis regarding the cellular and molecular mechanisms responsible for the neurological phenotype in AHDS patients.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium.
| |
Collapse
|
16
|
Groeneweg S, van den Berge A, Meima ME, Peeters RP, Visser TJ, Visser WE. Effects of Chemical Chaperones on Thyroid Hormone Transport by MCT8 Mutants in Patient-Derived Fibroblasts. Endocrinology 2018; 159:1290-1302. [PMID: 29309566 DOI: 10.1210/en.2017-00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/29/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) result in severe intellectual and motor disability. At present, no effective therapy is available to restore TH signaling in MCT8-dependent tissues. Recent in vitro studies in stable overexpression cell models suggested that the function of certain mutant MCT8 proteins, specifically those that affect protein stability and intracellular trafficking (e.g., p.F501del), could be partially recovered by chemical chaperones. However, the effects of chaperones have not been demonstrated in other commonly used models for MCT8 deficiency, including transient overexpression models and patient-derived fibroblasts. Here, we demonstrate that the chemical chaperone 4-phenylbutyric acid (PBA) similarly potentiates the T3 transport function of wild-type and p.F501del mutant MCT8 in transiently transfected COS-1 cells by increasing MCT8 messenger RNA, total protein, and cell surface expression levels. Although PBA also increased the cell surface expression levels of the p.R445L mutant, no functional improvement was observed, which is in line with the proposed important role of Arg445 in substrate translocation. In contrast, PBA showed only minimal effects in ex vivo studies using control or p.F501del patient-derived fibroblasts. Moreover, the MCT8-specific inhibitor silychristin did not change these minimal effects, suggesting that the underlying mechanism is unrelated to the rescue of functional MCT8. Together, these findings indicate that the potency of chaperones to rescue mutant MCT8 function strongly depends on the cellular model and stress the need for further preclinical studies before clinically available chaperones should be considered as a treatment option in patients with MCT8 deficiency.
Collapse
Affiliation(s)
- Stefan Groeneweg
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Amanda van den Berge
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marcel E Meima
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Robin P Peeters
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Theo J Visser
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - W Edward Visser
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
|
18
|
Silva N, Louro B, Trindade M, Power DM, Campinho MA. Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis. Sci Rep 2017; 7:16657. [PMID: 29192226 PMCID: PMC5709499 DOI: 10.1038/s41598-017-16951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.
Collapse
Affiliation(s)
- Nadia Silva
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Bruno Louro
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Marco A Campinho
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
19
|
Kersseboom S, van Gucht ALM, van Mullem A, Brigante G, Farina S, Carlsson B, Donkers JM, van de Graaf SFJ, Peeters RP, Visser TJ. Role of the Bile Acid Transporter SLC10A1 in Liver Targeting of the Lipid-Lowering Thyroid Hormone Analog Eprotirome. Endocrinology 2017; 158:3307-3318. [PMID: 28938430 DOI: 10.1210/en.2017-00433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Abstract
The thyroid hormone (TH) analog eprotirome (KB2115) was developed to lower cholesterol through selective activation of the TH receptor (TR) β1 in the liver. Interestingly, eprotirome shows low uptake in nonhepatic tissues, explaining its lipid-lowering action without adverse extrahepatic thyromimetic effects. Clinical trials have shown marked decreases in serum cholesterol levels. We explored the transport of eprotirome across the plasma membrane by members of three TH transporter families: monocarboxylate transporters MCT8 and MCT10; Na-independent organic anion transporters 1A2, 1B1, 1B3, 1C1, 2A1, and 2B1; and Na-dependent organic anion transporters SLC10A1 to SLC10A7. Cellular transport was studied in transfected COS1 cells using [14C]eprotirome and [125I]TH analogs. Of the 15 transporters tested initially, the liver-specific bile acid transporter SLC10A1 showed the highest eprotirome uptake (greater than a sevenfold induction after 60 minutes) as well as TRβ1-mediated transcriptional activity. Uptake of eprotirome by SLC10A1 was Na+ dependent and saturable with a Michaelis constant of 8 μM. Eprotirome transport was inhibited by known substrates for SLC10A1 (e.g., cholate and taurocholate), and by TH analogs such as triiodothyropropionic acid and triiodothyroacetic acid. However, no significant SLC10A1-mediated transport was observed of these [125I]TH analogs. We also studied the plasma disappearance and biliary excretion of [14C]eprotirome injected in control and Slc10a1 knockout mice. Although eprotirome is also transported by mouse Slc10a1, the pharmacokinetics of eprotirome were not affected by Slc10a1 deficiency. In conclusion, we have demonstrated that the liver-specific bile acid transporter SLC10A1 effectively transports eprotirome. However, Slc10a1 does not appear to be critical for the liver targeting of this TH analog in mice. Therefore, the importance of SLC10A1 for liver uptake of eprotirome in humans remains to be elucidated.
Collapse
Affiliation(s)
- Simone Kersseboom
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Anja L M van Gucht
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Alies van Mullem
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Giulia Brigante
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Stefania Farina
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Bo Carlsson
- Karo Bio AB, Novum Research Park, Huddinge S-141 57, Sweden
| | - Joanne M Donkers
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
20
|
Groeneweg S, Lima de Souza EC, Meima ME, Peeters RP, Visser WE, Visser TJ. Outward-Open Model of Thyroid Hormone Transporter Monocarboxylate Transporter 8 Provides Novel Structural and Functional Insights. Endocrinology 2017; 158:3292-3306. [PMID: 28977587 DOI: 10.1210/en.2017-00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates cellular uptake and efflux of thyroid hormone (TH). Mutations in MCT8 result in severe intellectual and motor disability known as the Allan-Herndon-Dudley syndrome (AHDS). Previous studies have provided valuable insights into the putative mechanism of substrate binding in the inward-open conformation, required for TH efflux. The current study aims to delineate the mechanism of substrate binding in the outward-open conformation, required for TH uptake. Extensive chemical modification and site-directed mutagenesis studies were used to guide protein homology modeling of MCT8 in the outward-open conformation. Arg271 and Arg445 were modified by phenylglyoxal, which was partially prevented in the presence of substrate. Substrate docking in our outward-open model suggested an important role for His192 and Arg445 in substrate binding. Interestingly, mutations affecting these residues have been identified in patients who have AHDS. In addition, our outward-open model predicted the location of Phe189, Met227, Phe279, Gly282, Phe287, and Phe501 at the substrate-binding center, and their Ala substitution differentially affected the apparent Vmax and Km of T3 transport, with F189A, F279A, and F287A showing the highest impact. Thus, here we present an MCT8 homology model in the outward-open conformation, which supports the important role of His192 and Arg445 in substrate docking and identifies critical residues at the putative substrate-binding center. Our findings provide insights into MCT8 structure and function, which add to our understanding of the pathogenic mechanism of mutations found in patients who have AHDS and can be used to screen for novel substrates and inhibitors.
Collapse
Affiliation(s)
- Stefan Groeneweg
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Elaine C Lima de Souza
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Marcel E Meima
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Robin P Peeters
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - W Edward Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Theo J Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Beukhof CM, van Doorn L, Visser TJ, Bins S, Visser WE, van Heerebeek R, van Kemenade FJ, de Rijke YB, de Herder WW, Chaker L, Mathijssen RH, Peeters RP. Sorafenib-Induced Changes in Thyroid Hormone Levels in Patients Treated for Hepatocellular Carcinoma. J Clin Endocrinol Metab 2017; 102:2922-2929. [PMID: 28575418 DOI: 10.1210/jc.2016-4025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 02/13/2023]
Abstract
CONTEXT The pathogenesis of tyrosine kinase inhibitor-induced thyroid hormone (TH) alterations are still a matter of debate. OBJECTIVE The objective of this study was to determine the effects of sorafenib on TH levels in patients with hepatocellular carcinoma (HCC) and to evaluate possible mechanisms. DESIGN We performed a prospective cohort study between 2009 and 2016. SETTING This study was conducted at a tertiary referral center. PATIENTS This study included 57 consecutive patients with HCC who were treated with sorafenib. MAIN OUTCOME MEASURE Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels were measured every 6 weeks, and extensive thyroid function tests (TFTs) were measured before treatment (t0), after 6 weeks (t6), and at the end of therapy. The effect of sorafenib on TH transport by monocarboxylate transporter (MCT)8 or MCT10 was tested in transfected COS1 cells. RESULTS Four patients (7%) developed thyroiditis. Among the other patients, 30% had elevation of TSH or FT4 above the normal range. Overall, between t0 and t6, mean TSH increased from 1.28 to 1.57 mU/L (P < 0.001) and mean FT4 from 18.4 to 21.2 pmol/L (P < 0.001). Simultaneously, the serum triiodothyronine (T3)/reverse triiodothyronine ratio and the (T3/thyroxine) ×100 ratio decreased. Sorafenib decreased cellular T3 uptake by MCT8 and to a lesser extent by MCT10. CONCLUSIONS These in vivo data suggest that sorafenib affects TFTs on multiple levels. Our in vitro experiments suggest a possible role of sorafenib-induced inhibition of T3 transport into the cell by MCT8 and MCT10.
Collapse
Affiliation(s)
- Carolien M Beukhof
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Leni van Doorn
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Theo J Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Sander Bins
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Ramona van Heerebeek
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Folkert J van Kemenade
- Department of Pathology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Wouter W de Herder
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Layal Chaker
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Ron H Mathijssen
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| |
Collapse
|
22
|
Vatine GD, Al-Ahmad A, Barriga BK, Svendsen S, Salim A, Garcia L, Garcia VJ, Ho R, Yucer N, Qian T, Lim RG, Wu J, Thompson LM, Spivia WR, Chen Z, Van Eyk J, Palecek SP, Refetoff S, Shusta EV, Svendsen CN. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell 2017; 20:831-843.e5. [PMID: 28526555 PMCID: PMC6659720 DOI: 10.1016/j.stem.2017.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/29/2016] [Accepted: 04/07/2017] [Indexed: 12/27/2022]
Abstract
Inactivating mutations in the thyroid hormone (TH) transporter Monocarboxylate transporter 8 (MCT8) cause severe psychomotor retardation in children. Animal models do not reflect the biology of the human disease. Using patient-specific induced pluripotent stem cells (iPSCs), we generated MCT8-deficient neural cells that showed normal TH-dependent neuronal properties and maturation. However, the blood-brain barrier (BBB) controls TH entry into the brain, and reduced TH availability to neural cells could instead underlie the diseased phenotype. To test potential BBB involvement, we generated an iPSC-based BBB model of MCT8 deficiency, and we found that MCT8 was necessary for polarized influx of the active form of TH across the BBB. We also found that a candidate drug did not appreciably cross the mutant BBB. Our results therefore clarify the underlying physiological basis of this disorder, and they suggest that circumventing the diseased BBB to deliver active TH to the brain could be a viable therapeutic strategy.
Collapse
Affiliation(s)
- Gad D Vatine
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Abraham Al-Ahmad
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bianca K Barriga
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Soshana Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ariel Salim
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leslie Garcia
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Veronica J Garcia
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nur Yucer
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tongcheng Qian
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan G Lim
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI), Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, University of California, Irvine (UCI), Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Weston R Spivia
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhaohui Chen
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel Refetoff
- Department of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
23
|
Novara F, Groeneweg S, Freri E, Estienne M, Reho P, Matricardi S, Castellotti B, Visser WE, Zuffardi O, Visser TJ. Clinical and Molecular Characteristics of SLC16A2 (MCT8) Mutations in Three Families with the Allan-Herndon-Dudley Syndrome. Hum Mutat 2017; 38:260-264. [PMID: 27805744 DOI: 10.1002/humu.23140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/11/2022]
Abstract
Mutations in the thyroid hormone transporter SLC16A2 (MCT8) cause the Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and peripheral thyrotoxicosis. Here, we report three newly identified AHDS patients. Previously documented mutations were identified in probands 1 (p.R271H) and 2 (p.G564R), resulting in a severe clinical phenotype. A novel mutation (p.G564E) was identified in proband 3, affecting the same Gly564 residue, but resulting in a relatively mild clinical phenotype. Functional analysis in transiently transfected COS-1 and JEG-3 cells showed a near-complete inactivation of TH transport for p.G564R, whereas considerable cell-type-dependent residual transport activity was observed for p.G564E. Both mutants showed a strong decrease in protein expression levels, but differentially affected Vmax and Km values of T3 transport. Our findings illustrate that different mutations affecting the same residue may have a differential impact on SLC16A2 transporter function, which translates into differences in severity of the clinical phenotype.
Collapse
Affiliation(s)
- Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefan Groeneweg
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elena Freri
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Margherita Estienne
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Paolo Reho
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sara Matricardi
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy.,Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Barbara Castellotti
- SOSD Genetica delle Malattie Neurodegenerative e Metaboliche, U.O Patologia Clinica, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - W Edward Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Zwanziger D, Schmidt M, Fischer J, Kleinau G, Braun D, Schweizer U, Moeller LC, Biebermann H, Fuehrer D. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity. Mol Cell Endocrinol 2016; 434:278-87. [PMID: 27222294 DOI: 10.1016/j.mce.2016.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 04/19/2016] [Accepted: 05/20/2016] [Indexed: 11/24/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known. We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells). MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown. Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity.
Collapse
Affiliation(s)
- Denise Zwanziger
- University of Duisburg-Essen, Department of Endocrinology and Metabolism and Division of Laboratory Research, Hufelandstraße 55, 45147 Essen, Germany.
| | - Mathias Schmidt
- University of Duisburg-Essen, Department of Endocrinology and Metabolism and Division of Laboratory Research, Hufelandstraße 55, 45147 Essen, Germany.
| | - Jana Fischer
- Charitè-Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburgerplatz 1, 13353 Berlin, Germany.
| | - Gunnar Kleinau
- Charitè-Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburgerplatz 1, 13353 Berlin, Germany.
| | - Doreen Braun
- Rheinische Friedrich-Wilhelms Universität Bonn, Institut für Biochemie und Molekularbiologie, Nussallee 11, 53115 Bonn, Germany.
| | - Ulrich Schweizer
- Rheinische Friedrich-Wilhelms Universität Bonn, Institut für Biochemie und Molekularbiologie, Nussallee 11, 53115 Bonn, Germany.
| | - Lars Christian Moeller
- University of Duisburg-Essen, Department of Endocrinology and Metabolism and Division of Laboratory Research, Hufelandstraße 55, 45147 Essen, Germany.
| | - Heike Biebermann
- Charitè-Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburgerplatz 1, 13353 Berlin, Germany.
| | - Dagmar Fuehrer
- University of Duisburg-Essen, Department of Endocrinology and Metabolism and Division of Laboratory Research, Hufelandstraße 55, 45147 Essen, Germany.
| |
Collapse
|
25
|
Bourgeois NMA, Van Herck SLJ, Vancamp P, Delbaere J, Zevenbergen C, Kersseboom S, Darras VM, Visser TJ. Characterization of Chicken Thyroid Hormone Transporters. Endocrinology 2016; 157:2560-74. [PMID: 27070099 DOI: 10.1210/en.2015-2025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (TH) transmembrane transporters are key regulators of TH availability in target cells where correct TH signaling is essential for normal development. Although the chicken embryo is a valuable model for developmental studies, the only functionally characterized chicken TH transporter so far is the organic anion transporting polypeptide 1C1 (OATP1C1). We therefore cloned the chicken L-type amino acid transporter 1 (LAT1) and the monocarboxylate transporters 8 (MCT8) and 10 (MCT10), and functionally characterized them, together with OATP1C1, in JEG3, COS1, and DF-1 cells. In addition, we used in situ hybridization to study their mRNA expression pattern during development. MCT8 and OATP1C1 are both high affinity transporters for the prohormone T4, whereas receptor-active T3 is preferably transported by MCT8 and MCT10. The latter one shows lower affinity but has a high Vmax and seems to be especially good at T3 export. Also, LAT1 has a lower affinity for its preferred substrate 3,3'-diiodothyronine. Reverse T3 is transported by all 4 TH transporters and is a good export product for OATP1C1. TH transporters are strongly expressed in eye (LAT1, MCT8, MCT10), pancreas (LAT1, MCT10), kidney, and testis (MCT8). Their extensive expression in the central nervous system, especially at the brain barriers, indicates an important role in brain development. In conclusion, we show TH transport by chicken MCT8, MCT10, and LAT1. Together with OATP1C1, these transporters have functional characteristics similar to their mammalian orthologs and are interesting target genes to further elucidate the role of THs during embryonic development.
Collapse
Affiliation(s)
- Nele M A Bourgeois
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Stijn L J Van Herck
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Joke Delbaere
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Chantal Zevenbergen
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Simone Kersseboom
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Theo J Visser
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
26
|
Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and Dysfunction of the Blood-Brain Barrier. Cell 2016; 163:1064-1078. [PMID: 26590417 DOI: 10.1016/j.cell.2015.10.067] [Citation(s) in RCA: 1078] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 12/11/2022]
Abstract
Structural and functional brain connectivity, synaptic activity, and information processing require highly coordinated signal transduction between different cell types within the neurovascular unit and intact blood-brain barrier (BBB) functions. Here, we examine the mechanisms regulating the formation and maintenance of the BBB and functions of BBB-associated cell types. Furthermore, we discuss the growing evidence associating BBB breakdown with the pathogenesis of inherited monogenic neurological disorders and complex multifactorial diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Amy R Nelson
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
27
|
Braun D, Schweizer U. Efficient Activation of Pathogenic ΔPhe501 Mutation in Monocarboxylate Transporter 8 by Chemical and Pharmacological Chaperones. Endocrinology 2015; 156:4720-30. [PMID: 26368820 DOI: 10.1210/en.2015-1393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) is a thyroid hormone transmembrane transporter expressed in many cell types, including neurons. Mutations that inactivate transport activity of MCT8 cause severe X-linked psychomotor retardation in male patients, a syndrome originally described as the Allan-Herndon-Dudley syndrome. Treatment options currently explored the focus on finding thyroid hormone-like compounds that bypass MCT8 and enter cells through different transporters. Because MCT8 is a multipass transmembrane protein, some pathogenic mutations affect membrane trafficking while potentially retaining some transporter activity. We explore here the effects of chemical and pharmacological chaperones on the expression and transport activity of the MCT8 mutant ΔPhe501. Dimethylsulfoxide, 4-phenylbutyric acid as well as its sodium salt, and the isoflavone genistein increase T3 uptake into MDCK1 cells stably transfected with mutant MCT8-ΔPhe501. We show that ΔPhe501 represents a temperature-sensitive mutant protein that is stabilized by the proteasome inhibitor MG132. 4-Phenylbutyrate has been used to stabilize ΔPhe508 mutant cystic fibrosis transmembrane conductance regulator protein and is in clinical use in patients with urea cycle defects. Genistein is enriched in soy and available as a nutritional supplement. It is effective in stabilizing MCT8-ΔPhe501 at 100 nM concentration. Expression of the L471P mutant is increased in response to phenylbutyrate, but T3 uptake activity is not induced, supporting the notion that the chaperone specifically increases membrane expression. Our findings suggest that certain pathogenic MCT8 mutants may be responsive to (co-)treatment with readily available compounds, which increase endogenous protein function.
Collapse
Affiliation(s)
- Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| |
Collapse
|
28
|
Armour CM, Kersseboom S, Yoon G, Visser TJ. Further Insights into the Allan-Herndon-Dudley Syndrome: Clinical and Functional Characterization of a Novel MCT8 Mutation. PLoS One 2015; 10:e0139343. [PMID: 26426690 PMCID: PMC4591285 DOI: 10.1371/journal.pone.0139343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Background Mutations in the thyroid hormone (TH) transporter MCT8 have been identified as the cause for Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and altered TH serum levels. Here we report a novel MCT8 mutation identified in 4 generations of one family, and its functional characterization. Methods Proband and family members were screened for 60 genes involved in X-linked cognitive impairment and the MCT8 mutation was confirmed. Functional consequences of MCT8 mutations were studied by analysis of [125I]TH transport in fibroblasts and transiently transfected JEG3 and COS1 cells, and by subcellular localization of the transporter. Results The proband and a male cousin demonstrated clinical findings characteristic of AHDS. Serum analysis showed high T3, low rT3, and normal T4 and TSH levels in the proband. A MCT8 mutation (c.869C>T; p.S290F) was identified in the proband, his cousin, and several female carriers. Functional analysis of the S290F mutant showed decreased TH transport, metabolism and protein expression in the three cell types, whereas the S290A mutation had no effect. Interestingly, both uptake and efflux of T3 and T4 was impaired in fibroblasts of the proband, compared to his healthy brother. However, no effect of the S290F mutation was observed on TH efflux from COS1 and JEG3 cells. Immunocytochemistry showed plasma membrane localization of wild-type MCT8 and the S290A and S290F mutants in JEG3 cells. Conclusions We describe a novel MCT8 mutation (S290F) in 4 generations of a family with Allan-Herndon-Dudley Syndrome. Functional analysis demonstrates loss-of-function of the MCT8 transporter. Furthermore, our results indicate that the function of the S290F mutant is dependent on cell context. Comparison of the S290F and S290A mutants indicates that it is not the loss of Ser but its substitution with Phe, which leads to S290F dysfunction.
Collapse
Affiliation(s)
- Christine M. Armour
- Regional Genetics Program, Children’s Hospital of Eastern Ontario, and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Simone Kersseboom
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Grace Yoon
- Department of Paediatrics, Divisions of Neurology and Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Canada
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Abstract
The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones. Histopathological analysis of brain tissue from patients who have impaired MCT8 function indicates that brain lesions start prenatally, and are most probably the result of cerebral hypothyroidism. A Slc16a2 knockout mouse model has revealed that Mct8 is an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier. However, unlike humans with an MCT8 deficiency, these mice do not have neurological impairment. One explanation for this discrepancy could be differences in expression of the T4 transporter OATP1C1 in the blood-brain barrier; OATP1C1 is more abundant in rodents than in primates and permits the passage of T4 in the absence of T3 transport, thus preventing full cerebral hypothyroidism. In this Review, we discuss the relevance of thyroid hormone transporters in health and disease, with a particular focus on the pathophysiology of MCT8 mutations.
Collapse
Affiliation(s)
- Juan Bernal
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Beatriz Morte
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
30
|
Anık A, Kersseboom S, Demir K, Catlı G, Yiş U, Böber E, van Mullem A, van Herebeek REA, Hız S, Abacı A, Visser TJ. Psychomotor retardation caused by a defective thyroid hormone transporter: report of two families with different MCT8 mutations. Horm Res Paediatr 2015; 82:261-71. [PMID: 25247785 DOI: 10.1159/000365191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Monocarboxylate transporter 8 (MCT8) is essential for thyroid hormone (TH) transport in the brain. Mutations in MCT8 are associated with the Allan-Herndon-Dudley syndrome (AHDS), characterized by severe psychomotor retardation and altered serum thyroid parameters. Here we report two novel mutations in MCT8 and discuss the clinical findings. CASE REPORT AND RESULTS We describe 4 males with AHDS from two unrelated families varying in age from 1.5 to 11 years. All 4 patients presented with typical clinical signs of AHDS, including severe psychomotor retardation, axial hypotonia, lack of speech, diminished muscle mass, increased muscle tone, hyperreflexia, myopathic facies, high T3, low T4 and rT3, and normal/mildly elevated TSH levels. Comparison of patients at different ages suggests the progressive nature of AHDS. Genetic analyses identified a novel missense MCT8 mutation (p.G495A) in family 1 and a 2.8-kb deletion comprising exons 3 and 4 in family 2. Functional analysis of p.G495A revealed impaired TH transport varying from 20 to 85% depending on the cell context. CONCLUSION Here we report 4 AHDS patients in unrelated Turkish families harboring novel MCT8 mutations. Despite the widely different mutations, the clinical phenotypes are very similar and findings support the progressive nature of AHDS.
Collapse
Affiliation(s)
- Ahmet Anık
- Department of Pediatric Endocrinology, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fischer J, Kleinau G, Müller A, Kühnen P, Zwanziger D, Kinne A, Rehders M, Moeller LC, Führer D, Grüters A, Krude H, Brix K, Biebermann H. Modulation of monocarboxylate transporter 8 oligomerization by specific pathogenic mutations. J Mol Endocrinol 2015; 54:39-50. [PMID: 25527620 DOI: 10.1530/jme-14-0272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The monocarboxylate transporter 8 (MCT8) is a member of the major facilitator superfamily (MFS). These membrane-spanning proteins facilitate translocation of a variety of substrates, MCT8 specifically transports iodothyronines. Mutations in MCT8 are the underlying cause of severe X-linked psychomotor retardation. At the molecular level, such mutations led to deficiencies in substrate translocation due to reduced cell-surface expression, impaired substrate binding, or decreased substrate translocation capabilities. However, the causal relationships between genotypes, molecular features of mutated MCT8, and patient characteristics have not yet been comprehensively deciphered. We investigated the relationship between pathogenic mutants of MCT8 and their capacity to form dimers (presumably oligomeric structures) as a potential regulatory parameter of the transport function of MCT8. Fourteen pathogenic variants of MCT8 were investigated in vitro with respect to their capacity to form oligomers. Particular mutations close to the substrate translocation channel (S194F, A224T, L434W, and R445C) were found to inhibit dimerization of MCT8. This finding is in contrast to those for other transporters or transmembrane proteins, in which substitutions predominantly at the outer-surface inhibit oligomerization. Moreover, specific mutations of MCT8 located in transmembrane helix 2 (del230F, V235M, and ins236V) increased the capacity of MCT8 variants to dimerize. We analyzed the localization of MCT8 dimers in a cellular context, demonstrating differences in MCT8 dimer formation and distribution. In summary, our results add a new link between the functions (substrate transport) and protein organization (dimerization) of MCT8, and might be of relevance for other members of the MFS. Finally, the findings are discussed in relationship to functional data combined with structural-mechanistical insights into MCT8.
Collapse
Affiliation(s)
- Jana Fischer
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Anne Müller
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Peter Kühnen
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Denise Zwanziger
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Anita Kinne
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Maren Rehders
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Lars C Moeller
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Dagmar Führer
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Annette Grüters
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Klaudia Brix
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyLeibniz-Institut für Molekulare PharmakologieBerlin, GermanyUniversitätsklinikum EssenKlinik für Endokrinologie und Stoffwechselerkrankungen, Essen, GermanyJacobs University BremenBremen, Germany
| |
Collapse
|
32
|
Zada D, Tovin A, Lerer-Goldshtein T, Vatine GD, Appelbaum L. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation. PLoS Genet 2014; 10:e1004615. [PMID: 25255244 PMCID: PMC4177677 DOI: 10.1371/journal.pgen.1004615] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022] Open
Abstract
The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS) is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH) parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2) gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8−/−) zebrafish using zinc-finger nuclease (ZFN)-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8−/− larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8−/− larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8−/− larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8−/− larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit assembly, ultimately mediating sensory and motor control of behavioral performance. We also propose that the administration of TH analogs early during embryo development can specifically reduce neurological damage in AHDS patients. In a wide range of brain disorders, mutations in specific genes cause alterations in the development and function of neural circuits that ultimately affect behavior. A major challenge is to uncover the mechanism and provide treatment which is capable of preventing brain damage. Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor retardation characterized by intellectual disabilities, neurological impairment and abnormal thyroid hormone (TH) levels. Mutations in the TH transporter MCT8 are associated with AHDS. Mice that lack the MCT8 protein exhibited impaired TH levels, as is the case in human patients; however, they lack neurological defects. Here, we generated an mct8 mutant (mct8−/−) zebrafish, which exhibited neurological and behavioral deficiencies and mimics pathological conditions of AHDS patients. The zebrafish is a simple transparent vertebrate and its nervous system is conserved with mammals. Time-lapse live imaging of single axons and synapses, and video-tracking of behavior revealed deficiencies in neural circuit assembly, which are associated with disturbed sleep and altered locomotor activity. In addition, since the mct8−/− larvae provides a highthroughput platform for testing therapeutic drugs, we showed that TH analogs can recover neurological deficiencies in an animal model for psychomotor retardation.
Collapse
Affiliation(s)
- David Zada
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Adi Tovin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerer-Goldshtein
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Gad David Vatine
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Lior Appelbaum
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
33
|
Schweizer U, Johannes J, Bayer D, Braun D. Structure and function of thyroid hormone plasma membrane transporters. Eur Thyroid J 2014; 3:143-53. [PMID: 25538896 PMCID: PMC4224232 DOI: 10.1159/000367858] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/26/2014] [Indexed: 01/25/2023] Open
Abstract
Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- *Prof. Dr. Ulrich Schweizer, Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, DE-53115 Bonn (Germany), E-Mail
| | - Jörg Johannes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothea Bayer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
34
|
Fu J, Refetoff S, Dumitrescu AM. Inherited defects of thyroid hormone-cell-membrane transport: review of recent findings. Curr Opin Endocrinol Diabetes Obes 2013; 20:434-40. [PMID: 23974772 PMCID: PMC4061907 DOI: 10.1097/01.med.0000432531.03233.ad] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the most significant findings over the last year regarding human and animal models deficient in thyroid hormone cell-membrane transporters (THCMTs). Although several THCMTs have been modelled in genetically engineered mice, the only THCMT defect known in humans is that caused by mutations in the monocarboxylate transporter 8 (MCT8) gene. RECENT FINDINGS The importance of several amino acid residues has been assessed in vitro to further our understanding on the structure-function of the MCT8. The administration of the thyromimetic compound, diiodothyropropionic acid, has been tested in patients with MCT8 gene mutations, following studies of its use in mice. Another thyroid hormone analogue, 3,3',5,5'-tetraiodothyroacetic acid, was tested in Mct8-deficient mice. The phenotypes of L-type aminoacid transporter 2 and organic anion transporting polypeptide 1C1 deficiencies have been studied in mouse models. Mct8/organic anion transporting polypeptide 1C1 double knockout mice have been shown to manifest neurodevelopmental deficits. Zebrafish is emerging as another vertebrate model that may be useful to study the role of Mct8 in brain development. SUMMARY Studies on the pathogenesis and therapy of MCT8 deficiency are in progress, and new vertebrate models that are suitable to study the neurological consequences of the syndrome are being explored.
Collapse
Affiliation(s)
- Jiao Fu
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics and Genetics, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|