1
|
Astafev AA, Mezhnina V, Poe A, Jiang P, Kondratov RV. Sexual dimorphism of circadian liver transcriptome. iScience 2024; 27:109483. [PMID: 38550984 PMCID: PMC10973666 DOI: 10.1016/j.isci.2024.109483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 03/08/2024] [Indexed: 11/12/2024] Open
Abstract
Sexual dimorphism affects various aspects of physiology, metabolism and longevity. Circadian clock is a master regulator of metabolism. Anti-aging dietary interventions reprogram circadian transcriptome in the liver and other tissues, but little is known about sexual dimorphism of circadian transcriptome. We compared circadian transcriptomes in the liver of male and female mice on ad libitum (AL) and 30% caloric restriction (CR) diets. We found that AL female mice had a larger number of oscillating genes than male mice, and the portion of the transcriptome with sex-specific rhythms displayed phase difference. We found that CR increased the number of oscillating genes in both sexes and strongly synchronized the transcriptome without complete elimination of sex dimorphism in rhythms. Sex also had an effect on the response of the rhythms to CR. Gene ontology analysis revealed sex-specific signatures in metabolic pathways, which suggests a complex interaction of sex, circadian rhythms, and diet.
Collapse
Affiliation(s)
- Artem A. Astafev
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Volha Mezhnina
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Allan Poe
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Peng Jiang
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
- Center for Applied Data Analysis and Modeling (ADAM), Cleveland State University, Cleveland, OH 44115, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Roman V. Kondratov
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
2
|
Zhuang Y, Sun X, Deng S, Wen Y, Xu Q, Guan Q. In vivo effects of low dose prenatal bisphenol A exposure on adiposity in male and female ICR offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114946. [PMID: 37105096 DOI: 10.1016/j.ecoenv.2023.114946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is known to exhibit endocrine disrupting activities and is associated with adiposity. We examined the obesogenic effect of prenatal BPA exposure in the present study. METHODS Pregnant ICR mice were exposed to vehicle or BPA via the drinking water at a dose of 0.5 μg/kg·d throughout the gestation. Obesity-related indexes were investigated in the 12-wk-old offspring. Primary mouse embryonic fibroblasts (MEFs) collected from treated embryos were used to test effects of BPA on adipocyte differentiation. RESULTS Offspring presented a significantly higher rate of weight gain than the control, with impaired insulin sensitivity and increased adipocyte size. Differentiation of MEFs from BPA-treated mice showed a higher propensity for the adipocyte commitment as well as up-regulation of genes enriched in lipid biosynthesis. TGF-β signaling pathway was found to modulate obesogenic effect of BPA in MEF model, but estrogen signaling pathway had no effect. CONCLUSIONS The present study provides strong evidence of the association between prenatal exposure to low dose of BPA and a significant increase in body weight in the offspring mice with a critical role played by TGF-β signaling pathway. The potential interactions modulating the binding of BPA and TGF-β that activate its obesogenic effects need to be examined.
Collapse
Affiliation(s)
- Yin Zhuang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiangying Sun
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siting Deng
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ya Wen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiujin Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Science, Beijing 100012, China.
| | - Quanquan Guan
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Berasain C, Arechederra M, Argemí J, Fernández-Barrena MG, Avila MA. Loss of liver function in chronic liver disease: An identity crisis. J Hepatol 2023; 78:401-414. [PMID: 36115636 DOI: 10.1016/j.jhep.2022.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Adult hepatocyte identity is constructed throughout embryonic development and fine-tuned after birth. A multinodular network of transcription factors, along with pre-mRNA splicing regulators, define the transcriptome, which encodes the proteins needed to perform the complex metabolic and secretory functions of the mature liver. Transient hepatocellular dedifferentiation can occur as part of the regenerative mechanisms triggered in response to acute liver injury. However, persistent downregulation of key identity genes is now accepted as a strong determinant of organ dysfunction in chronic liver disease, a major global health burden. Therefore, the identification of core transcription factors and splicing regulators that preserve hepatocellular phenotype, and a thorough understanding of how these networks become disrupted in diseased hepatocytes, is of high clinical relevance. In this context, we review the key players in liver differentiation and discuss in detail critical factors, such as HNF4α, whose impairment mediates the breakdown of liver function. Moreover, we present compelling experimental evidence demonstrating that restoration of core transcription factor expression in a chronically injured liver can reset hepatocellular identity, improve function and ameliorate structural abnormalities. The possibility of correcting the phenotype of severely damaged and malfunctional livers may reveal new therapeutic opportunities for individuals with cirrhosis and advanced liver disease.
Collapse
Affiliation(s)
- Carmen Berasain
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| | - Maria Arechederra
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Josepmaria Argemí
- Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain; Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Matías A Avila
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
4
|
Bhadouria N, Berman AG, Wallace JM, Holguin N. Raloxifene Stimulates Estrogen Signaling to Protect Against Age- and Sex-Related Intervertebral Disc Degeneration in Mice. Front Bioeng Biotechnol 2022; 10:924918. [PMID: 36032728 PMCID: PMC9404526 DOI: 10.3389/fbioe.2022.924918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogen agonist raloxifene is an FDA-approved treatment of osteoporosis in postmenopausal women, which may also be a promising prophylactic for painful intervertebral disc (IVD) degeneration. Here, we hypothesized that 1) aging and biological sex contribute to IVD degeneration by reducing estrogen signaling and that 2) raloxifene stimulates estrogen signaling to protect against age- and sex-related IVD degeneration in mice. 2.5-month-old (male and female) and 22.5-month-old (female) C57Bl/6J mice were subcutaneously injected with raloxifene hydrochloride 5x/week for 6 weeks (n = 7-9/grp). Next, female mice were ovariectomized (OVX) or sham operated at 4 months of age and tissues harvested at 6 months (n = 5-6/grp). Advanced aging and OVX increased IVD degeneration score, weakened IVD strength, reduced estrogen receptor-α (ER-α) protein expression, and increased neurotransmitter substance P (SP) expression. Similar to aging and compared with male IVDs, female IVDs were more degenerated, mechanically less viscoelastic, and expressed less ER-α protein, but unlike the effect induced by aging or OVX, IVD mechanical force was greater in females than in males. Therapeutically, systemic injection of raloxifene promoted ER-α protein to quell these dysregulations by enlarging IVD height, alleviating IVD degeneration score, increasing the strength and viscoelastic properties of the IVD, and reducing IVD cell expression of SP in young-adult and old female mice. Transcriptionally, injection of raloxifene upregulated the gene expression of ER-α and extracellular matrix-related anabolism in young-adult and old IVD. In vertebra, advanced aging and OVX reduced trabecular BV/TV, whereas injection of raloxifene increased trabecular BV/TV in young-adult and old female mice, but not in young-adult male mice. In vertebra, advanced aging, OVX, and biological sex (females > males) increased the number of SP-expressing osteocytes, whereas injection of raloxifene reduced the number of SP-expressing osteocytes in young-adult female and male mice and old female mice. Overall, injection of estrogen agonist raloxifene in mice normalized dysregulation of IVD structure, IVD mechanics, and pain-related SP expression in IVD cells and osteocytes induced by aging and biological sex. These data suggest that, in addition to bone loss, raloxifene may relieve painful IVD degeneration in postmenopausal women induced by advanced age, biological sex, and estrogen depletion.
Collapse
Affiliation(s)
- Neharika Bhadouria
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States,Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States,Indiana Center of Musculoskeletal Health, Indianapolis, IN, United States
| | - Nilsson Holguin
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States,Indiana Center of Musculoskeletal Health, Indianapolis, IN, United States,Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Nilsson Holguin,
| |
Collapse
|
5
|
Mekbib T, Suen TC, Rollins-Hairston A, Smith K, Armstrong A, Gray C, Owino S, Baba K, Baggs JE, Ehlen JC, Tosini G, DeBruyne JP. "The ubiquitin ligase SIAH2 is a female-specific regulator of circadian rhythms and metabolism". PLoS Genet 2022; 18:e1010305. [PMID: 35789210 PMCID: PMC9286287 DOI: 10.1371/journal.pgen.1010305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Circadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used SIAH2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of SIAH2-deficiency on the regulation of rhythmically expressed genes in the liver. The absence of SIAH2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic transcriptome in the liver by increasing the number of day-time expressed genes, and flipping the rhythmic expression from nighttime expressed genes to the daytime. These effects are not readily explained by effects on known sexually dimorphic pathways in females. Moreover, loss of SIAH2 in females, not males, preferentially altered the expression of transcription factors and genes involved in regulating lipid and lipoprotein metabolism. Consequently, SIAH2-deficient females, but not males, displayed disrupted daily lipid and lipoprotein patterns, increased adiposity and impaired metabolic homeostasis. Overall, these data suggest that SIAH2 may be a key component of a female-specific circadian transcriptional output circuit that directs the circadian timing of gene expression to regulate physiological rhythms, at least in the liver. In turn, our findings imply that sex-specific transcriptional mechanisms may closely interact with the circadian clock to tailor overt rhythms for sex-specific needs.
Collapse
Affiliation(s)
- Tsedey Mekbib
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ting-Chung Suen
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Aisha Rollins-Hairston
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kiandra Smith
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ariel Armstrong
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Cloe Gray
- Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Sharon Owino
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kenkichi Baba
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Julie E. Baggs
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - J. Christopher Ehlen
- Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Gianluca Tosini
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jason P. DeBruyne
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
6
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
7
|
ESR1 ChIP-Seq Identifies Distinct Ligand-Free ESR1 Genomic Binding Sites in Human Hepatocytes and Liver Tissue. Int J Mol Sci 2021; 22:ijms22031461. [PMID: 33540646 PMCID: PMC7867289 DOI: 10.3390/ijms22031461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/11/2023] Open
Abstract
The estrogen receptor alpha (ESR1) is an important gene transcriptional regulator, known to mediate the effects of estrogen. Canonically, ESR1 is activated by its ligand estrogen. However, the role of unliganded ESR1 in transcriptional regulation has been gaining attention. We have recently shown that ligand-free ESR1 is a key regulator of several cytochrome P450 (CYP) genes in the liver, however ligand-free ESR1 has not been characterized genome-wide in the human liver. To address this, ESR1 ChIP-Seq was conducted in human liver samples and in hepatocytes with or without 17beta-estradiol (E2) treatment. We identified both ligand-dependent and ligand-independent binding sites throughout the genome. These two ESR1 binding categories showed different genomic localization, pathway enrichment, and cofactor colocalization, indicating different ESR1 regulatory function depending on ligand availability. By analyzing existing ESR1 data from additional human cell lines, we uncovered a potential ligand-independent ESR1 activity, namely its co-enrichment with the zinc finger protein 143 (ZNF143). Furthermore, we identified ESR1 binding sites near many gene loci related to drug therapy, including the CYPs. Overall, this study shows distinct ligand-free and ligand-bound ESR1 chromatin binding profiles in the liver and suggests the potential broad influence of ESR1 in drug metabolism and drug therapy.
Collapse
|
8
|
Buscato M, Davezac M, Zahreddine R, Adlanmerini M, Métivier R, Fillet M, Cobraiville G, Moro C, Foidart JM, Lenfant F, Gourdy P, Arnal JF, Fontaine C. Estetrol prevents Western diet-induced obesity and atheroma independently of hepatic estrogen receptor α. Am J Physiol Endocrinol Metab 2021; 320:E19-E29. [PMID: 33135461 DOI: 10.1152/ajpendo.00211.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estetrol (E4), a natural estrogen synthesized by the human fetal liver, is currently evaluated in phase III clinical studies as a new menopause hormone therapy. Indeed, E4 significantly improves vasomotor and genito-urinary menopausal symptoms and prevents bone demineralization. Compared with other estrogens, E4 was found to have limited effects on coagulation factors in the liver of women allowing to expect less thrombotic events. To fully delineate its clinical potential, the aim of this study was to assess the effect of E4 on metabolic disorders. Here, we studied the pathophysiological consequences of a Western diet (42% kcal fat, 0.2% cholesterol) in ovariectomized female mice under chronic E4 treatment. We showed that E4 reduces body weight gain and improves glucose tolerance in both C57Bl/6 and LDLR-/- mice. To evaluate the role of hepatic estrogen receptor (ER) α in the preventive effect of E4 against obesity and associated disorders such as atherosclerosis and steatosis, mice harboring a hepatocyte-specific ERα deletion (LERKO) were crossed with LDLR-/- mice. Our results demonstrated that, whereas liver ERα is dispensable for the E4 beneficial actions on obesity and atheroma, it is necessary to prevent steatosis in mice. Overall, these findings suggest that E4 could prevent metabolic, hepatic, and vascular disorders occurring at menopause, extending the potential medical interest of this natural estrogen as a new hormonal treatment.NEW & NOTEWORTHY Estetrol prevents obesity, steatosis, and atherosclerosis in mice fed a Western diet. Hepatic ERα is necessary for the prevention of steatosis, but not of obesity and atherosclerosis.
Collapse
Affiliation(s)
- Mélissa Buscato
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Morgane Davezac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Rana Zahreddine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Raphaël Métivier
- CNRS, Univ Rennes, IGDR (Institut de Génétique De Rennes), Rennes, France
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Liege, Belgium
| | - Gael Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Liege, Belgium
| | - Cedric Moro
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgique
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
- Département de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| |
Collapse
|
9
|
Muhammad JS, Bajbouj K, Shafarin J, Hamad M. Estrogen-induced epigenetic silencing of FTH1 and TFRC genes reduces liver cancer cell growth and survival. Epigenetics 2020; 15:1302-1318. [PMID: 32476555 PMCID: PMC7678938 DOI: 10.1080/15592294.2020.1770917] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen (E2) regulates hundreds of genes involved in cell metabolism and disrupts iron homoeostasis in various cell types. Herein, we addressed whether E2-induced epigenetic modifications are involved in modulating the expression of iron-regulatory genes. Epigenetic status of FTH1 and TFRC genes was assessed in E2-treated cancer cells. E2-induced DNA methylation was associated with decreased FTH1 and TFRC expression in Hep-G2 and Huh7 cells, but not in AGS or MCF7 cells. Demethylation with 5-Aza-2-deoxycytidine upregulated the expression of both these genes in Hep-G2 cells. The expression of DNMT3B, PRMT5, and H4R3me2s increased in E2-treated cells. Chromatin immunoprecipitation showed that E2 treatment recruited PRMT5 and H4R3me2s on FTH1 but not on TFRC. Knockdown of PRMT5, DNMT3B, and Estrogen-receptor alpha rescued FTH1 from E2-induced silencing. However, knockdown of DNMT3B alone blocked the inhibitory effects of E2 on TFRC. Analysis of human liver tissues in publicly available datasets showed that FTH1 and TFRC are highly expressed in primary liver tumours, but a lower expression is associated with better survival. Interestingly, we showed that the silencing of FTH1 and/or TFRC inhibited carcinogenesis in Hep-G2 cells. For the first time, our findings uncovered the novel signalling pathway involved in the protective effects of E2 against liver cancer.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells 2020; 9:cells9102185. [PMID: 32998360 PMCID: PMC7600215 DOI: 10.3390/cells9102185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor family whose expression and activities are restricted to a limited number of organs including the liver and gastrointestinal tract. In this review, we present robust evidence pointing to HNF4 as a master regulator of cellular differentiation during development and a safekeeper of acquired cell identity in adult organs. Importantly, we discuss that transient loss of HNF4 may represent a protective mechanism upon acute organ injury, while prolonged impairment of HNF4 activities could contribute to organ dysfunction. In this context, we describe in detail mechanisms involved in the pathophysiological control of cell identity by HNF4, including how HNF4 works as part of cell-specific TF networks and how its expression/activities are disrupted in injured organs.
Collapse
|
11
|
Adlanmerini M, Fébrissy C, Zahreddine R, Vessières E, Buscato M, Solinhac R, Favre J, Anquetil T, Guihot AL, Boudou F, Raymond-Letron I, Chambon P, Gourdy P, Ohlsson C, Laurell H, Fontaine C, Metivier R, Le Romancer M, Henrion D, Arnal JF, Lenfant F. Mutation of Arginine 264 on ERα (Estrogen Receptor Alpha) Selectively Abrogates the Rapid Signaling of Estradiol in the Endothelium Without Altering Fertility. Arterioscler Thromb Vasc Biol 2020; 40:2143-2158. [PMID: 32640903 DOI: 10.1161/atvbaha.120.314159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17β-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.
Collapse
Affiliation(s)
- Marine Adlanmerini
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Chanaelle Fébrissy
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Rana Zahreddine
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Emilie Vessières
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Mélissa Buscato
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Romain Solinhac
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Julie Favre
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Typhaine Anquetil
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Anne-Laure Guihot
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Frederic Boudou
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Isabelle Raymond-Letron
- Institut National Polytechnique, École Nationale Vétérinaire de Toulouse, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Service 006 (I.R.-L.), Université de Toulouse, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Collège de France, Université de Strasbourg, Illkirch, France (P.C.)
| | - Pierre Gourdy
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden (C.O.)
| | - Henrik Laurell
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Coralie Fontaine
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Raphaël Metivier
- CNRS, Université de Rennes, IGDR (Institut de Génétique De Rennes) - UMR 6290, France (R.M.)
| | - Muriel Le Romancer
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France (M.L.R.)
| | - Daniel Henrion
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Jean-Francois Arnal
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Francoise Lenfant
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| |
Collapse
|
12
|
Jehanno C, Fernandez-Calero T, Habauzit D, Avner S, Percevault F, Jullion E, Le Goff P, Coissieux MM, Muenst S, Marin M, Michel D, Métivier R, Flouriot G. Nuclear accumulation of MKL1 in luminal breast cancer cells impairs genomic activity of ERα and is associated with endocrine resistance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194507. [PMID: 32113984 DOI: 10.1016/j.bbagrm.2020.194507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
Abstract
Estrogen receptor (ERα) is central in driving the development of hormone-dependent breast cancers. A major challenge in treating these cancers is to understand and overcome endocrine resistance. The Megakaryoblastic Leukemia 1 (MKL1, MRTFA) protein is a master regulator of actin dynamic and cellular motile functions, whose nuclear translocation favors epithelial-mesenchymal transition. We previously demonstrated that nuclear accumulation of MKL1 in estrogen-responsive breast cancer cell lines promotes hormonal escape. In the present study, we confirm through tissue microarray analysis that nuclear immunostaining of MKL1 is associated with endocrine resistance in a cohort of breast cancers and we decipher the underlining mechanisms using cell line models. We show through gene expression microarray analysis that the nuclear accumulation of MKL1 induces dedifferentiation leading to a mixed luminal/basal phenotype and suppresses estrogen-mediated control of gene expression. Chromatin immunoprecipitation of DNA coupled to high-throughput sequencing (ChIP-Seq) shows a profound reprogramming in ERα cistrome associated with a massive loss of ERα binding sites (ERBSs) generally associated with lower ERα-binding levels. Novel ERBSs appear to be associated with EGF and RAS signaling pathways. Collectively, these results highlight a major role of MKL1 in the loss of ERα transcriptional activity observed in certain cases of endocrine resistances, thereby contributing to breast tumor cells malignancy.
Collapse
Affiliation(s)
- Charly Jehanno
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France; University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tamara Fernandez-Calero
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay; Departamento de Ciencias Exactas y Naturales, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Denis Habauzit
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephane Avner
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Frederic Percevault
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Emmanuelle Jullion
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Pascale Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | | | - Simone Muenst
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Monica Marin
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Denis Michel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Raphaël Métivier
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Gilles Flouriot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
13
|
Gegenhuber B, Tollkuhn J. Signatures of sex: Sex differences in gene expression in the vertebrate brain. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e348. [PMID: 31106965 PMCID: PMC6864223 DOI: 10.1002/wdev.348] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Women and men differ in disease prevalence, symptoms, and progression rates for many psychiatric and neurological disorders. As more preclinical studies include both sexes in experimental design, an increasing number of sex differences in physiology and behavior have been reported. In the brain, sex-typical behaviors are thought to result from sex-specific patterns of neural activity in response to the same sensory stimulus or context. These differential firing patterns likely arise as a consequence of underlying anatomic or molecular sex differences. Accordingly, gene expression in the brains of females and males has been extensively investigated, with the goal of identifying biological pathways that specify or modulate sex differences in brain function. However, there is surprisingly little consensus on sex-biased genes across studies and only a handful of robust candidates have been pursued in the follow-up experiments. Furthermore, it is not known how or when sex-biased gene expression originates, as few studies have been performed in the developing brain. Here we integrate molecular genetic and neural circuit perspectives to provide a conceptual framework of how sex differences in gene expression can arise in the brain. We detail mechanisms of gene regulation by steroid hormones, highlight landmark studies in rodents and humans, identify emerging themes, and offer recommendations for future research. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Sex Determination.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | |
Collapse
|
14
|
Hewitt SC, Lierz SL, Garcia M, Hamilton KJ, Gruzdev A, Grimm SA, Lydon JP, Demayo FJ, Korach KS. A distal super enhancer mediates estrogen-dependent mouse uterine-specific gene transcription of Igf1 ( insulin-like growth factor 1). J Biol Chem 2019; 294:9746-9759. [PMID: 31073032 PMCID: PMC6597841 DOI: 10.1074/jbc.ra119.008759] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) is primarily synthesized in and secreted from the liver; however, estrogen (E2), through E2 receptor α (ERα), increases uterine Igf1 mRNA levels. Previous ChIP-seq analyses of the murine uterus have revealed a potential enhancer region distal from the Igf1 transcription start site (TSS) with multiple E2-dependent ERα-binding regions. Here, we show E2-dependent super enhancer-associated characteristics and suggest contact between the distal enhancer and the Igf1 TSS. We hypothesized that this distal super-enhancer region controls E2-responsive induction of uterine Igf1 transcripts. We deleted 430 bp, encompassing one of the ERα-binding sites, thereby disrupting interactions of the enhancer with gene-regulatory factors. As a result, E2-mediated induction of mouse uterine Igf1 mRNA is completely eliminated, whereas hepatic Igf1 expression remains unaffected. This highlights the central role of a distal enhancer in the assembly of the factors necessary for E2-dependent interaction with the Igf1 TSS and induction of uterus-specific Igf1 transcription. Of note, loss of the enhancer did not affect fertility or uterine growth responses. Deletion of uterine Igf1 in a PgrCre;Igf1f/f model decreased female fertility but did not impact the E2-induced uterine growth response. Moreover, E2-dependent activation of uterine IGF1 signaling was not impaired by disrupting the distal enhancer or by deleting the coding transcript. This indicated a role for systemic IGF1, suggested that other growth mediators drive uterine response to E2, and suggested that uterine-derived IGF1 is essential for reproductive success. Our findings elucidate the role of a super enhancer in Igf1 regulation and uterine growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara A Grimm
- the Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - John P Lydon
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Francesco J Demayo
- Pregnancy & Female Reproduction Group, Reproductive and Developmental Biology Laboratory and
| | | |
Collapse
|
15
|
Guillaume M, Riant E, Fabre A, Raymond-Letron I, Buscato M, Davezac M, Tramunt B, Montagner A, Smati S, Zahreddine R, Palierne G, Valera MC, Guillou H, Lenfant F, Unsicker K, Metivier R, Fontaine C, Arnal JF, Gourdy P. Selective Liver Estrogen Receptor α Modulation Prevents Steatosis, Diabetes, and Obesity Through the Anorectic Growth Differentiation Factor 15 Hepatokine in Mice. Hepatol Commun 2019; 3:908-924. [PMID: 31304450 PMCID: PMC6601326 DOI: 10.1002/hep4.1363] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte estrogen receptor α (ERα) was recently recognized as a relevant molecular target for nonalcoholic fatty liver disease (NAFLD) prevention. The present study defined to what extent hepatocyte ERα could be involved in preserving metabolic homeostasis in response to a full (17β-estradiol [E2]) or selective (selective estrogen receptor modulator [SERM]) activation. Ovariectomized mice harboring a hepatocyte-specific ERα deletion (LERKO mice) and their wild-type (WT) littermates were fed a high-fat diet (HFD) and concomitantly treated with E2, tamoxifen (TAM; the most used SERM), or vehicle. As expected, both E2 and TAM prevented all HFD-induced metabolic disorders in WT mice, and their protective effects against steatosis were abolished in LERKO mice. However, while E2 still prevented obesity and glucose intolerance in LERKO mice, hepatocyte ERα deletion also abrogated TAM-mediated control of food intake as well as its beneficial actions on adiposity, insulin sensitivity, and glucose homeostasis, suggesting a whole-body protective role for liver-derived circulating factors. Moreover, unlike E2, TAM induced a rise in plasma concentration of the anorectic hepatokine growth differentiation factor 15 (Gdf15) through a transcriptional mechanism dependent on hepatocyte ERα activation. Accordingly, ERα was associated with specific binding sites in the Gdf15 regulatory region in hepatocytes from TAM-treated mice but not under E2 treatment due to specific epigenetic modifications. Finally, all the protective effects of TAM were abolished in HFD-fed GDF15-knockout mice. Conclusion: We identified the selective modulation of hepatocyte ERα as a pharmacologic strategy to induce sufficient anorectic hepatokine Gdf15 to prevent experimental obesity, type 2 diabetes, and NAFLD.
Collapse
Affiliation(s)
- Maeva Guillaume
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France.,Service d'Hépato-gastro-entérologie Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - Elodie Riant
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Aurélie Fabre
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Isabelle Raymond-Letron
- STROMALab, Centre National de la Recherche Scientifique ERL5311 Etablissement Français du Sang, Ecole Nationale Vétérinaire de Toulouse, Institut National de la Santé et de le Recherche Médicale (INSERM) U1031, Université de Toulouse III Toulouse France
| | - Melissa Buscato
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Morgane Davezac
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Blandine Tramunt
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Sarra Smati
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France.,Institut National de La Recherche Agronomique Unité Médicale de Recherche 1331, ToxAlim, Université de Toulouse Toulouse France
| | - Rana Zahreddine
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Gaëlle Palierne
- Equipe SP@RTE, Unité Médicale de Recherche 6290, Institut de Genétique et Développement de Rennes Université de Rennes 1 Rennes France
| | - Marie-Cécile Valera
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Hervé Guillou
- Institut National de La Recherche Agronomique Unité Médicale de Recherche 1331, ToxAlim, Université de Toulouse Toulouse France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Klaus Unsicker
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology University of Freiburg Freiburg Germany
| | - Raphaël Metivier
- Equipe SP@RTE, Unité Médicale de Recherche 6290, Institut de Genétique et Développement de Rennes Université de Rennes 1 Rennes France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires Unité Médicale de Recherche 1048, Institut National de la Santé et de le Recherche Médicale (INSERM), Université de Toulouse III Toulouse France.,Service de Diabétologie Maladies Métaboliques et Nutrition, Centre Hospitalier Universitaire de Toulouse Toulouse France
| |
Collapse
|
16
|
Coons LA, Burkholder AB, Hewitt SC, McDonnell DP, Korach KS. Decoding the Inversion Symmetry Underlying Transcription Factor DNA-Binding Specificity and Functionality in the Genome. iScience 2019; 15:552-591. [PMID: 31152742 PMCID: PMC6542189 DOI: 10.1016/j.isci.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding why a transcription factor (TF) binds to a specific DNA element in the genome and whether that binding event affects transcriptional output remains a great challenge. In this study, we demonstrate that TF binding in the genome follows inversion symmetry (IS). In addition, the specific DNA elements where TFs bind in the genome are determined by internal IS within the DNA element. These DNA-binding rules quantitatively define how TFs select the appropriate regulatory targets from a large number of similar DNA elements in the genome to elicit specific transcriptional and cellular responses. Importantly, we also demonstrate that these DNA-binding rules extend to DNA elements that do not support transcriptional activity. That is, the DNA-binding rules are obeyed, but the retention time of the TF at these non-functional DNA elements is not long enough to initiate and/or maintain transcription. We further demonstrate that IS is universal within the genome. Thus, IS is the DNA code that TFs use to interact with the genome and dictates (in conjunction with known DNA sequence constraints) which of those interactions are functionally active.
Collapse
Affiliation(s)
- Laurel A Coons
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA.
| |
Collapse
|
17
|
Neff R, Rush CM, Smith B, Backes FJ, Cohn DE, Goodfellow PJ. Functional characterization of recurrent FOXA2 mutations seen in endometrial cancers. Int J Cancer 2018; 143:2955-2961. [PMID: 30091462 DOI: 10.1002/ijc.31784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
Abstract
FOXA2, a member of the forkhead family of DNA-binding proteins, is frequently mutated in uterine cancers. Most of the mutations observed in uterine cancers are frameshifts and stops. FOXA2 is considered to be a driver gene in uterine cancers, functioning as a haploinsufficient tumor suppressor. The functional consequences of FOXA2 mutations, however, have not yet been determined. We evaluated the effects that frameshift mutations and a recurrent missense mutation have on FOXA2 transcriptional activity. Recurrent N-terminal frameshifts resulted in truncated proteins that failed to translocate to the nucleus and have no transcriptional activity using an E-cadherin/luciferase reporter assay. Protein abundance was reduced for the recurrent p.S169 W mutation, as was transcriptional activity. A C-terminal frameshift mutation had increased FOXA2 levels evidenced by both Western blot and immunofluorescence. Given that FOXA2 is a recognized activator of E-cadherin (CDH1) expression and E-cadherin's potential role in epithelial-to-mesenchymal transition in a wide range of cancer types, we tested the hypothesis that FOXA2 mutations in primary uterine cancer specimens would be associated with reduced CDH1 transcript levels. qRT-PCR revealed significantly lower levels of CDH1 expression in primary tumors with FOXA2 mutations. Our findings in vitro and in vivo suggest that reduced transcriptional activity associated with FOXA2 mutations in uterine cancers is likely to contribute to protumorigenic changes in gene expression.
Collapse
Affiliation(s)
- Robert Neff
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| | - Craig M Rush
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| | - Blair Smith
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH.,University of Missouri-Kansas City School of Medicine, Kansas City, KS
| | - Floor J Backes
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| | - David E Cohn
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| | - Paul J Goodfellow
- Division of Gynecologic Oncology, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH
| |
Collapse
|
18
|
Buscato M, Fontaine C, Fabre A, Vinel A, Valera MC, Noirrit E, Guillaume M, Payrastre B, Métivier R, Arnal JF. The antagonist properties of Bazedoxifene after acute treatment are shifted to stimulatory action after chronic exposure in the liver but not in the uterus. Mol Cell Endocrinol 2018; 472:87-96. [PMID: 29183806 DOI: 10.1016/j.mce.2017.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/25/2017] [Accepted: 11/23/2017] [Indexed: 01/16/2023]
Abstract
A promising alternative to conventional hormone therapy for postmenopausal symptoms is treatment combining Bazedoxifene (BZA), a third-generation selective estrogen receptor modulator (SERM), and conjugated equine estrogen (CE). This combination is also known as a tissue-selective estrogen complex (TSEC). Understanding the tissue-specific actions of SERMs and the TSEC remains a major challenge to try to predict their clinical effects. The aim of this study was to compare acute versus chronic treatment with BZA, CE or CE + BZA in two major targets of estrogens, the uterus and the liver. In these two tissues, acute treatment with CE, but not with BZA, induced similar gene expression change than the most important endogenous estrogen, 17-β estradiol (E2). Acute induction of gene expression by E2 or by CE was antagonized by the addition of BZA. Concomitantly, BZA alone or in combination with E2 or CE induced a partial degradation of ERα protein after acute exposure. In uterus, chronic treatment of BZA alone had no impact on tissue weight gain or on epithelial cell proliferation, and also antagonized CE-effect in uterus, thereby mimicking the acute effect. By contrast, in the liver, chronic BZA and CE + BZA elicited agonistic transcriptional effects similar to those of CE alone. In addition, at variance to BZA acute effect, no change in ERα protein abundance was observed after chronic treatment in this tissue. These experimental in vivo data highlight a new aspect of the time-dependent tissue-specific action of BZA or TSEC, i.e. they can act acutely as antagonists but become agonists after chronic treatment. This shift was observed in liver tissue, but not in proliferative sex target such as the uterus.
Collapse
Affiliation(s)
- Mélissa Buscato
- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse, France
| | - Coralie Fontaine
- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse, France
| | - Aurélie Fabre
- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse, France
| | - Alexia Vinel
- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse, France
| | - Marie-Cécile Valera
- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse, France; Faculté de Chirurgie Dentaire, Université de Toulouse III, Toulouse, France
| | - Emmanuelle Noirrit
- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse, France; Faculté de Chirurgie Dentaire, Université de Toulouse III, Toulouse, France
| | - Maeva Guillaume
- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse, France
| | - Bernard Payrastre
- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse, France; Laboratoire d'Hématologie, Toulouse, France
| | - Raphaël Métivier
- Equipe SPARTE, UMR CNRS 6290, Université de Rennes I, Rennes, France
| | - Jean-François Arnal
- Inserm U1048 (I2MC), CHU de Toulouse and Université Toulouse III, I2MC, Toulouse, France.
| |
Collapse
|
19
|
Gourdy P, Guillaume M, Fontaine C, Adlanmerini M, Montagner A, Laurell H, Lenfant F, Arnal JF. Estrogen receptor subcellular localization and cardiometabolism. Mol Metab 2018; 15:56-69. [PMID: 29807870 PMCID: PMC6066739 DOI: 10.1016/j.molmet.2018.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In addition to their crucial role in reproduction, estrogens are key regulators of energy and glucose homeostasis and they also exert several cardiovascular protective effects. These beneficial actions are mainly mediated by estrogen receptor alpha (ERα), which is widely expressed in metabolic and vascular tissues. As a member of the nuclear receptor superfamily, ERα was primarily considered as a transcription factor that controls gene expression through the activation of its two activation functions (ERαAF-1 and ERαAF-2). However, besides these nuclear actions, a pool of ERα is localized in the vicinity of the plasma membrane, where it mediates rapid signaling effects called membrane-initiated steroid signals (MISS) that have been well described in vitro, especially in endothelial cells. SCOPE OF THE REVIEW This review aims to summarize our current knowledge of the mechanisms of nuclear vs membrane ERα activation that contribute to the cardiometabolic protection conferred by estrogens. Indeed, new transgenic mouse models (affecting either DNA binding, activation functions or membrane localization), together with the use of novel pharmacological tools that electively activate membrane ERα effects recently allowed to begin to unravel the different modes of ERα signaling in vivo. CONCLUSION Altogether, available data demonstrate the prominent role of ERα nuclear effects, and, more specifically, of ERαAF-2, in the preventive effects of estrogens against obesity, diabetes, and atheroma. However, membrane ERα signaling selectively mediates some of the estrogen endothelial/vascular effects (NO release, reendothelialization) and could also contribute to the regulation of energy balance, insulin sensitivity, and glucose metabolism. Such a dissection of ERα biological functions related to its subcellular localization will help to understand the mechanism of action of "old" ER modulators and to design new ones with an optimized benefit/risk profile.
Collapse
Affiliation(s)
- Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France.
| | - Maeva Guillaume
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service d'Hépatologie et Gastro-Entérologie, CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Marine Adlanmerini
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| |
Collapse
|
20
|
Coons LA, Hewitt SC, Burkholder AB, McDonnell DP, Korach KS. DNA Sequence Constraints Define Functionally Active Steroid Nuclear Receptor Binding Sites in Chromatin. Endocrinology 2017; 158:3212-3234. [PMID: 28977594 PMCID: PMC5659708 DOI: 10.1210/en.2017-00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
Gene regulatory programs are encoded in the sequence of the DNA. Since the completion of the Human Genome Project, millions of gene regulatory elements have been identified in the human genome. Understanding how each of those sites functionally contributes to gene regulation, however, remains a challenge for nearly every field of biology. Transcription factors influence cell function by interpreting information contained within cis-regulatory elements in chromatin. Whereas chromatin immunoprecipitation-sequencing has been used to identify and map transcription factor-DNA interactions, it has been difficult to assign functionality to the binding sites identified. Thus, in this study, we probed the transcriptional activity, DNA-binding competence, and functional activity of select nuclear receptor mutants in cellular and animal model systems and used this information to define the sequence constraints of functional steroid nuclear receptor cis-regulatory elements. Analysis of the architecture within sNR chromatin interacting sites revealed that only a small fraction of all sNR chromatin-interacting events is associated with transcriptional output and that this functionality is restricted to elements that vary from the consensus palindromic elements by one or two nucleotides. These findings define the transcriptional grammar necessary to predict functionality from regulatory sequences, with a multitude of future implications.
Collapse
Affiliation(s)
- Laurel A Coons
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
21
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
22
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:401-426. [PMID: 29224105 DOI: 10.1007/978-3-319-70178-3_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Estrogen receptor alpha (ERα) has been demonstrated to play a key role in reproduction but also to exert numerous functions in nonreproductive tissues. Accordingly, ERα is now recognized as a key regulator of energy homeostasis and glucose metabolism and mediates the protective effects of estrogens against obesity and type 2 diabetes. This chapter attempts to summarize our current understanding of the mechanisms of ERα activation and their involvement in the modulation of energy balance and glucose metabolism. We first focus on the experimental studies that constitute the basis of the understanding of ERα as a nuclear receptor and more specifically on the key roles played by its two activation functions (AFs). We depict the consequences of the selective inactivation of these AFs in mouse models, which further underline the prominent role of nuclear ERα in the prevention of obesity and diabetes, as on the reproductive tract and the vascular system. Besides these nuclear actions, a fraction of ERα is associated with the plasma membrane and activates nonnuclear signaling from this site. Such rapid effects, called membrane-initiated steroid signals (MISS), have been characterized in a variety of cell lines and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS as well as the generation of mice expressing an ERα protein impeded for membrane localization has just begun to unravel the physiological role of MISS in vivo and their contribution to ERα-mediated metabolic protection. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators.
Collapse
|