1
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
2
|
Neuropilin 1 Mediates Keratinocyte Growth Factor Signaling in Adipose-Derived Stem Cells: Potential Involvement in Adipogenesis. Stem Cells Int 2018. [PMID: 29535768 PMCID: PMC5845512 DOI: 10.1155/2018/1075156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adipogenesis is regulated by a complex network of molecules, including fibroblast growth factors. Keratinocyte growth factor (KGF) has been previously reported to promote proliferation on rat preadipocytes, although the expression of its specific receptor, FGFR2-IIIb/KGFR, is not actually detected in mesenchymal cells. Here, we demonstrate that human adipose-derived stem cells (ASCs) show increased expression of KGF during adipogenic differentiation, especially in the early steps. Moreover, KGF is able to induce transient activation of ERK and p38 MAPK pathways in these cells. Furthermore, KGF promotes ASC differentiation and supports the activation of differentiation pathways, such as those of PI3K/Akt and the retinoblastoma protein (Rb). Notably, we observed only a low amount of FGFR2-IIIb in ASCs, which seems not to be responsible for KGF activity. Here, we demonstrate for the first time that Neuropilin 1 (NRP1), a transmembrane glycoprotein expressed in ASCs acting as a coreceptor for some growth factors, is responsible for KGF-dependent pathway activation in these cells. Our study contributes to clarify the molecular bases of human adipogenesis, demonstrating a role of KGF in the early steps of this process, and points out a role of NRP1 as a previously unknown mediator of KGF action in ASCs.
Collapse
|
3
|
Sun C, Shang J, Yao Y, Yin X, Liu M, Liu H, Zhou Y. O-GlcNAcylation: a bridge between glucose and cell differentiation. J Cell Mol Med 2016; 20:769-81. [PMID: 26929182 PMCID: PMC4831356 DOI: 10.1111/jcmm.12807] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
Glucose is the major energy supply and a critical metabolite for most cells and is especially important when cell is differentiating. High or low concentrations of glucose enhances or inhibits the osteogenic, chondrogenic and adipogenic differentiation of cell via the insulin, transforming growth factor‐β and peroxisome proliferator‐activated receptor γ pathways, among others. New evidence implicates the hexosamine biosynthetic pathway as a mediator of crosstalk between glucose flux, cellular signalling and epigenetic regulation of cell differentiation. Extracellular glucose flux alters intracellular O‐GlcNAcylation levels through the hexosamine biosynthetic pathway. Signalling molecules that are important for cell differentiation, including protein kinase C, extracellular signal‐regulated kinase, Runx2, CCAAT/enhancer‐binding proteins, are modified by O‐GlcNAcylation. Thus, O‐GlcNAcylation markedly alters cell fate during differentiation via the post‐transcriptional modification of proteins. Furthermore, O‐GlcNAcylation and phosphorylation show complex interactions during cell differentiation: they can either non‐competitively occupy different sites on a substrate or competitively occupy a single site or proximal sites. Therefore, the influence of glucose on cell differentiation via O‐GlcNAcylation offers a potential target for controlling tissue homoeostasis and regeneration in ageing and disease. Here, we review recent progress establishing an emerging relationship among glucose concentration, O‐GlcNAcylation levels and cell differentiation.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jin Shang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaohong Yin
- Center for Evidence-based and Translational Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
4
|
González-Rodríguez A, Más-Gutierrez JA, Mirasierra M, Fernandez-Pérez A, Lee YJ, Ko HJ, Kim JK, Romanos E, Carrascosa JM, Ros M, Vallejo M, Rondinone CM, Valverde AM. Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging. Aging Cell 2012; 11:284-96. [PMID: 22221695 DOI: 10.1111/j.1474-9726.2011.00786.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes (T2DM). In this study, we have evaluated the role of PTP1B in the development of aging-associated obesity, inflammation, and peripheral insulin resistance by assessing metabolic parameters at 3 and 16 months in PTP1B(-/-) mice maintained on mixed genetic background (C57Bl/6J × 129Sv/J). Whereas fat mass and adipocyte size were increased in wild-type control mice at 16 months, these parameters did not change with aging in PTP1B(-/-) mice. Increased levels of pro-inflammatory cytokines, crown-like structures, and hypoxia-inducible factor (HIF)-1α were observed only in adipose tissue from 16-month-old wild-type mice. Similarly, islet hyperplasia and hyperinsulinemia were observed in wild-type mice with aging-associated obesity, but not in PTP1B(-/-) animals. Leanness in 16-month-old PTP1B(-/-) mice was associated with increased energy expenditure. Whole-body insulin sensitivity decreased in 16-month-old control mice; however, studies with the hyperinsulinemic-euglycemic clamp revealed that PTP1B deficiency prevented this obesity-related decreased peripheral insulin sensitivity. At a molecular level, PTP1B expression and enzymatic activity were up-regulated in liver and muscle of 16-month-old wild-type mice as were the activation of stress kinases and the expression of p53. Conversely, insulin receptor-mediated Akt/Foxo1 signaling was attenuated in these aged control mice. Collectively, these data implicate PTP1B in the development of inflammation and insulin resistance associated with obesity during aging and suggest that inhibition of this phosphatase by therapeutic strategies might protect against age-dependent T2DM.
Collapse
|
5
|
Vila-Bedmar R, Fernández-Veledo S. A new era for brown adipose tissue: New insights into brown adipocyte function and differentiation. Arch Physiol Biochem 2011; 117:195-208. [PMID: 21428723 DOI: 10.3109/13813455.2011.560951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Until quite recently, brown adipose tissue was considered of metabolic significance only in small mammals and human newborns, since it was thought to disappear rapidly after birth in humans. However, nowadays this tissue is known to play a role in the regulation of energy balance not only in rodents, but also in humans. In this review we highlight new features regarding brown adipose tissue origin and function and revise old paradigms about brown adipocyte differentiation.
Collapse
Affiliation(s)
- Rocio Vila-Bedmar
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | | |
Collapse
|
6
|
Bouraoui L, Capilla E, Gutiérrez J, Navarro I. Insulin and insulin-like growth factor I signaling pathways in rainbow trout (Oncorhynchus mykiss) during adipogenesis and their implication in glucose uptake. Am J Physiol Regul Integr Comp Physiol 2010; 299:R33-41. [DOI: 10.1152/ajpregu.00457.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary cultures of rainbow trout ( Oncorhynchus mykiss ) adipocytes were used to examine the main signaling pathways of insulin and insulin-like growth factor I (IGF-I) during adipogenesis. We first determined the presence of IGF-I receptors (IGF-IR) and insulin receptors (IR) in trout preadipocytes ( day 5) and adipocytes ( day 14). IGF-IRs were more abundant and appeared to be in higher levels in differentiated cells than in preadipocytes, whereas IRs were detected in lower but constant levels throughout the culture. The cells were immunoreactive against ERK1/2 MAPK, and AKT/PI3K, components of the two main signal transduction pathways for insulin and IGF-I receptors. Stimulation of MAPK phosphorylation by IGF-I was higher in preadipocytes than in adipocytes, while no effects were observed in MAPK phosphorylation after incubation of cells with insulin. AKT phosphorylation increased in the presence of both insulin and IGF-I, with higher levels of stimulation in adipocytes than in preadipocytes. Activation of both pathways was blocked by the use of specific inhibitors of MAPK (PD98059) and AKT (wortmannin). We describe here, for the first time, the effects of IGF-I and insulin on 2-deoxyglucose uptake in primary culture of trout adipocytes. IGF-I was more potent in stimulating glucose uptake than insulin, and PD98059 and wortmannin inhibited the stimulation of glucose uptake by this growth factor, suggesting that IGF-I plays an important metabolic role in trout adipocytes. Our results suggest that differential activation of the MAPK and AKT pathways are involved in the IGF-I- and insulin-induced effects of trout adipocytes during the various stages of adipogenesis.
Collapse
Affiliation(s)
- L. Bouraoui
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - E. Capilla
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - J. Gutiérrez
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I. Navarro
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Chuang CC, Yang RS, Tsai KS, Ho FM, Liu SH. Hyperglycemia enhances adipogenic induction of lipid accumulation: involvement of extracellular signal-regulated protein kinase 1/2, phosphoinositide 3-kinase/Akt, and peroxisome proliferator-activated receptor gamma signaling. Endocrinology 2007; 148:4267-75. [PMID: 17540722 DOI: 10.1210/en.2007-0179] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular events of hyperglycemia-triggered increase in adipogenic induction of lipid accumulation remain unclear. We examined the effects of hyperglycemia on adipogenic induction of lipid accumulation and its involved signaling molecules, such as phosphoinositide 3-kinase (PI3K), ERKs, and peroxisome proliferator-activated receptor gamma (PPAR gamma). Bone marrow-derived mesenchymal stem cells (MSCs) isolated from FVB/N mice were capable of differentiating into adipocytes in adipogenic medium. The effects of high glucose (HG) (25.5 mm) were assessed in vitro by RT-PCR, ELISA, flow cytometry, immunostaining, and immunoblotting. The in vivo effect of hyperglycemia was further studied in streptozotocin (STZ)-induced diabetic FVB/N mice. Exposure of MSCs to HG enhanced adipogenic induction of lipid accumulation as compared with 5.5 mm glucose. HG increased PPAR gamma expression and PI3K activity and its downstream effector Akt phosphorylation during adipogenesis. Inhibition of PI3K/Akt activity with PI3K inhibitor LY294002 or by expressing the dominant negative p85 or Akt prevented the HG-enhanced PPAR gamma-dependent adipogenic induction of lipid accumulation. Moreover, HG increased the phosphorylation of ERK1/2 during adipogenesis. MAPK/ERK inhibitor PD98059 inhibited the PI3K activity, Akt phosphorylation, and lipid accumulation triggered by HG. PI3K inhibitor LY294002 did not affect the HG-increased ERK1/2 phosphorylation during adipogenesis. We next observed that adipogenic induction of lipid accumulation of MSCs isolated from STZ-induced diabetic mice is enhanced. Moreover, triglyceride, PPAR gamma expression, phosphorylated Akt and ERK1/2, and marrow fat in bones of STZ-diabetic mice were also increased. These results suggest that hyperglycemia enhances the adipogenic induction of lipid accumulation through an ERK1/2-activated PI3K/Akt-regulated PPAR gamma pathway.
Collapse
Affiliation(s)
- Chia Chi Chuang
- Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 10043, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Harrington M, Pond-Tor S, Boney CM. Role of epidermal growth factor and ErbB2 receptors in 3T3-L1 adipogenesis. Obesity (Silver Spring) 2007; 15:563-71. [PMID: 17372305 DOI: 10.1038/oby.2007.562] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Epidermal growth factor (EGF) stimulates proliferation in 3T3-L1 preadipocytes, but EGF action in differentiation is less clear. EGF promotes differentiation at concentrations <1 nM but inhibits differentiation at higher concentrations, suggesting a dual role in adipogenesis. We hypothesized that differences in EGF receptor activation and downstream signaling mediate distinct biological effects of EGF at low vs. high abundance. RESEARCH METHODS AND PROCEDURES We compared the effects of low (0.1 nM) vs. high (10 nM) EGF on the activation of EGF receptors, proximal signaling molecules Src and Shc, and the downstream mitogen-activated protein kinase (MAPK) pathways extracellular regulated kinase (ERK) and p38 in proliferating and differentiated 3T3-L1 cells. RESULTS Both low and high EGF activated ERK and p38 in preadipocytes. Src inhibitors PP1 and PP2 blocked ERK and p38 activation by low but not high EGF, and only high EGF increased Shc phosphorylation. Selective inhibition of the EGF receptor (EGFR) with AG1478 blocked ERK and p38 activation at both concentrations; however, selective inhibition of the ErbB2 receptor (EB2R) with AG825 or small interfering RNA (siRNA) blocked low but not high EGF activation of ERK and p38. Coimmunoprecipitation of EGFR with EB2R and Src was observed with low EGF in preadipocytes but at both concentrations in adipocytes. EB2R inhibition during differentiation decreased p38 activity and peroxisome proliferator-activated receptor gamma (PPARgamma) abundance. DISCUSSION Our results show that EGFR homodimers mediate action of EGF at high abundance, but at low abundance, EGF promotes differentiation through EGFR/EB2R heterodimer activation of Src and p38. These results may partially explain the observations that high EGF concentrations inhibit, whereas low concentrations support, preadipocyte differentiation.
Collapse
Affiliation(s)
- Molly Harrington
- Department of Pediatrics, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island 02903, USA
| | | | | |
Collapse
|
9
|
Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem J 2006; 398:153-68. [PMID: 16898874 PMCID: PMC1550312 DOI: 10.1042/bj20060402] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue is a major endocrine organ that exerts a profound influence on whole-body homoeostasis. Two types of adipose tissue exist in mammals: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT stores energy and is the largest energy reserve in mammals, whereas BAT, expressing UCP1 (uncoupling protein 1), can dissipate energy through adaptive thermogenesis. In rodents, ample evidence supports BAT as an organ counteracting obesity, whereas less is known about the presence and significance of BAT in humans. Despite the different functions of white and brown adipocytes, knowledge of factors differentially influencing the formation of white and brown fat cells is sparse. Here we summarize recent progress in the molecular understanding of white versus brown adipocyte differentiation, including novel insights into transcriptional and signal transduction pathways. Since expression of UCP1 is the hallmark of BAT and a key factor determining energy expenditure, we also review conditions associated with enhanced energy expenditure and UCP1 expression in WAT that may provide information on processes involved in brown adipocyte differentiation.
Collapse
Affiliation(s)
- Jacob B Hansen
- Department of Medical Biochemistry and Genetics, the Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
10
|
Bellows CG, Jia D, Jia Y, Hassanloo A, Heersche JNM. Different effects of insulin and insulin-like growth factors I and II on osteoprogenitors and adipocyte progenitors in fetal rat bone cell populations. Calcif Tissue Int 2006; 79:57-65. [PMID: 16897348 DOI: 10.1007/s00223-005-0234-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 04/12/2006] [Indexed: 11/26/2022]
Abstract
We investigated the effects of insulin (1-1,000 nM), insulin-like growth factor (IGF)-I, and IGF-II (3-100 nM each) alone or together with 10 nM dexamethasone (DEX) or 10 nM 1,25-dihydroxyvitamin D(3) (1,25[OH](2)D(3)) on proliferation and differentiation of adipocyte and osteoblast progenitors in bone cell populations derived from fetal rat calvaria. The effects on differentiation were evaluated by counting the number of bone or osteoid nodules and adipocyte colonies and the effects on proliferation, by measuring their size by image analysis. The types of cells studied were 1,25(OH)(2)D(3)- and DEX-responsive adipocyte progenitors and DEX-dependent and independent osteoprogenitors. Both IGF-I and IGF-II stimulated osteoprogenitor differentiation both alone and in the presence of DEX, while insulin stimulated osteoprogenitor differentiation only in the absence of DEX. Neither IGF-I/-II nor insulin affected proliferation of osteoprogenitors. Insulin had little effect on adipocyte differentiation by itself but strongly stimulated differentiation in the presence of either 1,25(OH)(2)D(3) or DEX, while IGF-II stimulated adipocyte differentiation in both the absence and presence of 1,25(OH)(2)D(3) or DEX. IGF-I by itself or in the presence of DEX strongly stimulated adipocyte cell differentiation but had little effect in the presence of 1,25(OH)(2)D(3). Our results demonstrate that insulin, IGF-II, and IGF-I have specific and different effects on the differentiation and proliferation of different groups of progenitor cells.
Collapse
Affiliation(s)
- C G Bellows
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada.
| | | | | | | | | |
Collapse
|
11
|
Chong YM, Colston K, Jiang WG, Sharma AK, Mokbel K. The relationship between the insulin-like growth factor-1 system and the oestrogen metabolising enzymes in breast cancer tissue and its adjacent non-cancerous tissue. Breast Cancer Res Treat 2006; 99:275-88. [PMID: 16752221 DOI: 10.1007/s10549-006-9215-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/02/2006] [Indexed: 12/12/2022]
Abstract
AIMS Previous studies have shown that oestrogen and Insulin-like Growth Factor-1 (IGF-1) act synergistically and cross-stimulatory while the oestrogen receptor (ER) and IGF-1R downstream signalling pathways interact at many levels. We investigate the relationship between the ER, and IGF-1R and their ligands in a series of human breast cancer tissue and adjacent non-cancerous tissue (ANCT). METHODS A series of 139 pairs of breast cancer tissue and ANCT were obtained and divided into ER positive and ER negative groups based on tumour ER alpha immunostaining. All samples were processed for real-time quantitative-PCR to measure IGF-1, IGF-1R, ER alpha, STS and Cyp-19 mRNA levels. In addition, ER positive MCF-7 and ER negative MDA-MB-231 cell lines were treated separately with IGF-1 and an IGF-1R inhibitor called Tyrphostin AG1024 to see the effects of stimulating and inhibiting the IGF-1R. MCF-7 cell line was also treated with 4-hydroxytamoxifen. The mRNA levels of IGF-1, IGF-1R, ER alpha, STS and Cyp-19 of treated cell lines were measured and compared to those of non-treated controls. Data generated was normalised to Cytokeratin-19 mRNA levels. RESULTS IGF-1R expression was higher in tumour tissue compared to ANCT (P = 0.038) while IGF-1 expression was marginally higher in ANCT compared to tumour tissue only in the ER positive samples (P = 0.098). ER positive tumours had a higher expression of IGF-1 compared to ER negative tumours (P = 0.001) while IGF-1R, STS and Cyp-19 expression were higher in ER negative tumours (P = 0.000, 0.000 and 0.006 respectively). There was no difference in STS or Cyp-19 expression in tumours or ANCT. Using Spearman's Correlation test, IGF-1 positively correlated with STS, Cyp-19 and ER alpha in ER positive and negative groups (Coefficient = +0.497, +0.662 and +0.651 respectively, P = 0.000 in all). IGF-1R correlated with IGF-1, STS, Cyp-19 and ER alpha only in the ER negative tumours (Coefficient = +0.620, +0.394, +0.692 and +0.662 respectively, P = 0.000, 0.012, 0.000 and 0.000 respectively). In cell lines, IGF-1 treatment led to an increase in the mean expression of IGF-1, IGF-1R, STS and Cyp-19 in both cell lines while ER alpha expression increased only in MCF-7. IGF-1R inhibition caused a decrease in expression of all five genes in MDA-MB-231 but not in the MCF-7 cell line. Treatment with 4-hydroxytamoxifen caused a decrease in expression of all five genes. CONCLUSIONS IGF-1R is over-expressed in malignant tissue. IGF-1 is expressed at higher levels in ER positive tumours probably as a result of oestrogen stimulation while IGF-1R expression is higher in ER negative samples as an adaptation to lower local IGF-1 levels. An IGF-1 paracrine relationship may exist between tumour and ANCT but for STS and Cyp-19, there may be an autocrine-paracrine relationship. The IGF-1 ligand-receptor system is an important regulator of oestrogen production while oestrogen may be involved in stimulating IGF-1 expression. The expression of oestrogen synthesising enzymes is higher in ER negative breast cancers which may be due to the lack of oestrogen negative feedback or contribution from the overexpression of IGF-1R.
Collapse
Affiliation(s)
- Yoon Mann Chong
- Department of Cellular & Molecular Medicine, St George's Hospital, London, UK.
| | | | | | | | | |
Collapse
|
12
|
Fernández-Veledo S, Huber-Ruano I, Aymerich I, Duflot S, Casado F, Pastor-Anglada M. Bile acids alter the subcellular localization of CNT2 (concentrative nucleoside cotransporter) and increase CNT2-related transport activity in liver parenchymal cells. Biochem J 2006; 395:337-44. [PMID: 16390326 PMCID: PMC1422760 DOI: 10.1042/bj20051232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CNT2 (concentrative nucleoside cotransporter) is a plasma membrane high-affinity Na+-coupled adenosine transporter, also localized in intracellular structures. This transporter protein may play additional roles other than nucleoside salvage, since it has recently been shown to be under purinergic control via K(ATP) channels, by a mechanism that does not seem to involve changes in its subcellular localization. In an attempt to identify the agents that promote CNT2 trafficking, bile acids were found to increase CNT2-related transport activity in a K(ATP) channel-independent manner in both Fao hepatoma and rat liver parenchymal cells. A maximum effect was recorded after treatment with hydrophilic anions such as TCA (taurocholate). However, this effect did not involve changes in the amount of CNT2 protein, it was instead associated with a subcellular redistribution of CNT2, resulting in an accumulation of the transporter at the plasma membrane. This was deduced from subcellular fractionation studies, biotinylation of plasma membrane proteins and subsequent CNT2 detection in streptavidin precipitates and in vivo confocal microscopic analysis of the distribution of a YFP (yellow fluorescent protein)-CNT2 construct. The induction of CNT2 translocation, triggered by TCA, was inhibited by wortmannin, dibutyryl-AMPc, PD98059 and colchicine, thus suggesting the involvement of the PI3K/ERK (phosphoinositide 3-kinase/extracellular-signal related kinase) pathway in microtubule-dependent activation of recombinant CNT2. These are novel effects of bile-acid physiology and provide the first evidence for short-term regulation of CNT2 translocation into and from the plasma membrane.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Isabel Huber-Ruano
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Ivette Aymerich
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Sylvie Duflot
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - F. Javier Casado
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Marçal Pastor-Anglada
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
13
|
Guillen C, Navarro P, Robledo M, Valverde AM, Benito M. Differential mitogenic signaling in insulin receptor-deficient fetal pancreatic beta-cells. Endocrinology 2006; 147:1959-68. [PMID: 16396989 DOI: 10.1210/en.2005-0831] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin receptor (IR) may play an essential role in the development of beta-cell mass in the mouse pancreas. To further define the function of this signaling system in beta-cell development, we generated IR-deficient beta-cell lines. Fetal pancreata were dissected from mice harboring a floxed allele of the insulin receptor (IRLoxP) and used to isolate islets. These islets were infected with a retrovirus to express simian virus 40 large T antigen, a strategy for establishing beta-cell lines (beta-IRLoxP). Subsequently, these cells were infected with adenovirus encoding cre recombinase to delete insulin receptor (beta-IR(-/-)). beta-Cells expressed insulin and Pdx-1 mRNA in response to glucose. In beta-IRLoxP beta-cells, p44/p42 MAPK and phosphatidylinositol 3 kinase pathways, mammalian target of rapamycin (mTOR), and p70S(6)K phosphorylation and beta-cell proliferation were stimulated in response to insulin. Wortmannin or PD98059 had no effect on insulin-mediated mTOR/p70S(6)K signaling and the corresponding mitogenic response. However, the presence of both inhibitors totally impaired these signaling pathways and mitogenesis in response to insulin. Rapamycin completely blocked insulin-activated mTOR/p70S(6)K signaling and mitogenesis. Interestingly, in beta-IR(-/-) beta-cells, glucose failed to stimulate phosphatidylinositol 3 kinase activity but induced p44/p42 MAPKs and mTOR/p70S(6)K phosphorylation and beta-cell mitogenesis. PD98059, but not wortmannin, inhibited glucose-induced mTOR/p70S(6)K signaling and mitogenesis in those cells. Finally, rapamycin blocked glucose-mediated mitogenesis of beta-IR(-/-) cells. In conclusion, independently of glucose, insulin can mediate mitogenesis in fetal pancreatic beta-cell lines. However, in the absence of the insulin receptor, glucose induces beta-cell mitogenesis.
Collapse
Affiliation(s)
- C Guillen
- Institute of Biochemistry/Department of Biochemistry and Molecular Biology, Joint Center Consejo Superior Investigacion Cientifica/Universidad Complutense, School of Pharmacy, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Valverde AM, Fabregat I, Burks DJ, White MF, Benito M. IRS-2 mediates the antiapoptotic effect of insulin in neonatal hepatocytes. Hepatology 2004; 40:1285-94. [PMID: 15565601 DOI: 10.1002/hep.20485] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To assess the role of insulin action and inaction in the liver, immortalized hepatocyte cell lines have been generated from insulin receptor substrate (IRS)-2(-/-) and wild-type mice. Using this model, we have recently demonstrated that the lack of IRS-2 in neonatal hepatocytes resulted in insulin resistance. In the current study, we show that immortalized neonatal hepatocytes undergo apoptosis on serum withdrawal, with caspase-3 activation and DNA laddering occurring earlier in the absence of IRS-2. Insulin rescued wild-type hepatocytes from serum withdrawal-induced caspase-3 activation and DNA fragmentation in a dose-dependent manner, but it failed to rescue hepatocytes lacking IRS-2. In IRS-2(-/-) cells, insulin failed to phosphorylate Bad. Furthermore, in these cells, insulin was unable to translocate Foxo1 from the nucleus to the cytosol. Adenoviral infection of wild-type cells with constitutively active Foxo1 (ADA) induced caspase-8 and caspase-3 activities, proapoptotic gene expression, DNA laddering and apoptosis. Dominant negative Foxo1 regulated the whole pathway in an opposite manner. Prolonged insulin treatment (24 hours) increased expression of antiapoptotic genes (Bcl-xL), downregulated proapoptotic genes (Bim and nuclear Foxo1), and decreased caspase-3 activity in wild-type hepatocytes but not in IRS-2(-/-) cells. Infection of IRS-2(-/-) hepatocytes with adenovirus encoding IRS-2 reconstituted phosphatidylinositol 3-kinase (PI 3-kinase)/Akt/Foxo1 signaling, restored pro- and antiapoptotic gene expression, and decreased caspase-3 activity in response to insulin, thereby blocking apoptosis. In conclusion, IRS-2 signaling is specifically required through PIP3 generation to mediate the survival effects of insulin. Epidermal growth factor, via PIP3/Akt/Foxo1 phosphorylation, was able to rescue IRS-2(-/-) hepatocytes from serum withdrawal-induced apoptosis, modulating pro- and anti-apoptotic gene expression and downregulating caspase-3 activity.
Collapse
Affiliation(s)
- Angela M Valverde
- Instituto de Bioquímica/Departamento de Bioquímica y Biología Molecular II, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | | | | | | | | |
Collapse
|
15
|
Valverde AM, Mur C, Brownlee M, Benito M. Susceptibility to apoptosis in insulin-like growth factor-I receptor-deficient brown adipocytes. Mol Biol Cell 2004; 15:5101-17. [PMID: 15356271 PMCID: PMC524782 DOI: 10.1091/mbc.e03-11-0853] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fetal brown adipocytes are insulin-like growth factor-I (IGF-I) target cells. To assess the importance of the IGF-I receptor (IGF-IR) in brown adipocytes during fetal life, we have generated immortalized brown adipocyte cell lines from the IGF-IR(-/-) mice. Using this experimental model, we demonstrate that the lack of IGF-IR in fetal brown adipocytes increased the susceptibility to apoptosis induced by serum withdrawal. Culture of cells in the absence of serum and growth factors produced rapid DNA fragmentation (4 h) in IGF-IR(-/-) brown adipocytes, compared with the wild type (16 h). Consequently, cell viability was decreased more rapidly in fetal brown adipocytes in the absence of IGF-IR. Furthermore, caspase-3 activity was induced much earlier in cells lacking IGF-IR. At the molecular level, IGF-IR deficiency in fetal brown adipocytes altered the balance of the expression of several proapoptotic (Bcl-xS and Bim) and antiapoptotic (Bcl-2 and Bcl-xL) members of the Bcl-2 family. This imbalance was irreversible even though in IGF-IR-reconstituted cells. Likewise, cytosolic cytochrome c levels increased rapidly in IGF-IR-deficient cells compared with the wild type. A rapid entry of Foxo1 into the nucleus accompanied by a rapid exit from the cytosol and an earlier activation of caspase-8 were observed in brown adipocytes lacking IGF-IR upon serum deprivation. Activation of caspase-8 was inhibited by 50% in both cell types by neutralizing anti-Fas-ligand antibody. Adenoviral infection of wild-type brown adipocytes with constitutively active Foxol (ADA) increased the expression of antiapoptotic genes, decreased Bcl-xL and induced caspase-8 and -3 activities, with the final outcome of DNA fragmentation. Up-regulation of uncoupling protein-1 (UCP-1) expression in IGF-IR-deficient cells by transduction with PGC-1alpha or UCP-1 ameliorated caspase-3 activation, thereby retarding apoptosis. Finally, insulin treatment prevented apoptosis in both cell types. However, the survival effect of insulin on IGF-IR(-/-) brown adipocytes was elicited even in the absence of phosphatidylinositol 3-kinase/Akt signaling. Thus, our results demonstrate for the first time the unique role of IGF-IR in maintaining the balance of death and survival in fetal brown adipocytes.
Collapse
Affiliation(s)
- Angela M Valverde
- Departamento de Bioquímica y Biología Molecular II, Centro Mixto Consejo Superior de Investigaciones Cientificas, Universidad Complutense de Madrid, Facultad de Farmacia, Ciudad Universitaria, 28040-Madrid, Spain.
| | | | | | | |
Collapse
|
16
|
Gustafsson H, Tamm C, Forsby A. Signalling pathways for insulin-like growth factor type 1-mediated expression of uncoupling protein 3. J Neurochem 2003; 88:462-8. [PMID: 14690534 DOI: 10.1046/j.1471-4159.2003.02162.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uncoupling protein 3 (UCP3) is a mitochondrial protein with antioxidant properties and its regulation by factors promoting cell-survival may be important for protection of, for instance, neurons in states of oxidative stress. In the present study, we investigated regulatory pathways for UCP3 expression mediated by the neuroprotective hormone insulin-like growth factor type 1 (IGF-1) in human neuroblastoma SH-SY5Y cells. Northern blot analysis and RT-PCR showed that treatment with 10 nm IGF-1 increased the UCP3 mRNA levels 2.5-fold after 5 h. Co-incubation with the phosphatidylinositol 3 (PI3)-kinase inhibitor LY294002 prohibited IGF-1-mediated induction of both UCP3 mRNA and protein in a concentration-dependent manner, with a complete blockage at 1 microm, as shown by RT-PCR and western blot analyses. The mitogen-activated protein (MAP) kinase kinase 1 (MKK1 or MEK) inhibitor PD98059 also decreased the UCP3 mRNA expression at 10 microm, however, this concentration only partly inhibited the protein expression. We conclude that IGF-1 enhanced UCP3 expression at transcriptional level, primarily through the PI3-kinase-dependent pathway and partly through the MAP kinase pathway.
Collapse
Affiliation(s)
- Helena Gustafsson
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
17
|
Porras A, Zuluaga S, Valladares A, Alvarez AM, Herrera B, Fabregat I, Benito M. Long-term treatment with insulin induces apoptosis in brown adipocytes: role of oxidative stress. Endocrinology 2003; 144:5390-401. [PMID: 14500576 DOI: 10.1210/en.2003-0622] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trying to define the precise role played by insulin regulating the survival of brown adipocytes, we have used rat fetal brown adipocytes maintained in primary culture. The effect of insulin on apoptosis and the mechanisms involved were assessed. Different from the known effects of insulin as a survival factor, we have found that long-term treatment (72 h) with insulin induces apoptosis in rat fetal brown adipocytes. This process is dependent on the phosphatidylinositol 3-kinase/mammalian target of rapamycin/p70 S6 kinase pathway. Short-term treatment with the conditioned medium from brown adipocytes treated with insulin for 72 h mimicked the apoptotic effect of insulin. During the process, caspase 8 activation, Bid cleavage, cytochrome c release, and activation of caspases 9 and 3 are sequentially produced. Treatment with the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (Z-VAD), prevents activation of this apoptotic cascade. The antioxidants, ascorbic acid and superoxide dismutase, also impair this process of apoptosis. Moreover, generation of reactive oxygen species (ROS), probably through reduced nicotinamide adenine dinucleotide phosphate oxidases, and a late decrease in reduced glutathione content are produced. According to this, antioxidants prevent caspase 8 activation and Bid cleavage, suggesting that ROS production is an important event mediating this process of apoptosis. However, the participation of uncoupling protein-1, -2, and -3 regulating ROS is unclear because their levels remain unchanged upon insulin treatment for 72 h. Our data suggest that the prolonged hyperinsulinemia might cause insulin resistance through the loss of brown adipose tissue.
Collapse
Affiliation(s)
- Almudena Porras
- Departament of Biochemistry and Molecualr Biology II, Biochemistry Institute, Concejo Superior de Investigaciones Cientificas-Unioversidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
18
|
Arribas M, Valverde AM, Benito M. Role of IRS-3 in the insulin signaling of IRS-1-deficient brown adipocytes. J Biol Chem 2003; 278:45189-99. [PMID: 12944402 DOI: 10.1074/jbc.m301185200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin receptor substrate-1 (IRS-1) plays an essential role in mediating the insulin signals that trigger mitogenesis, lipid synthesis, and uncoupling protein-1 gene expression in mouse brown adipocytes. Expression of IRS-3 is restricted mainly to white adipose tissue; expression of this IRS protein is virtually absent in brown adipocytes. We have tested the capacity of IRS-3 to mediate insulin actions in IRS-1-deficient brown adipocytes. Thus, we expressed exogenous IRS-3 in immortalized IRS-1-/- brown adipocytes at a level comparable with that of endogenous IRS-3 in white adipose tissue. Under these conditions, IRS-3 signaling in response to insulin was observed, as revealed by tyrosine phosphorylation of IRS-3, and the activation of phosphatidylinositol (PI) 3-kinase associated with this recombinant protein. However, although insulin promoted the association of Grb-2 with recombinant IRS-3 in IRS-1-/- cells, the exogenous expression of this IRS family member failed to activate p42/44 MAPK and mitogenesis in brown adipocytes lacking IRS-1. Downstream of PI 3-kinase, IRS-3 expression restored insulin-induced Akt phosphorylation, which is impaired by the lack of IRS-1 signaling. Whereas the generation of IRS-3 signals enhanced adipocyte determination and differentiation-dependent factor 1/sterol regulatory element-binding protein (ADD-1/SREBP-1c) and fatty acid synthase mRNA and protein expression, activation of this pathway was unable to reconstitute CCAAT/enhancer-binding protein alpha and uncoupling protein-1 transactivation and gene expression in response to insulin. Similar results were obtained following insulin-like growth factor-I stimulation. In brown adipocytes expressing the IRS-3F4 mutant, the association of the p85alpha regulatory subunit via Src homology 2 binding was lost, but insulin nevertheless induced PI 3-kinase activity and Akt phosphorylation in a wortmannin-dependent manner. In contrast, activation of IRS-3F4 signaling failed to restore the induction of ADD-1/SREBP-1c and fatty acid synthase gene expression in IRS-1-deficient brown adipocytes. These studies demonstrate that recombinant IRS-3 may reconstitute some, but not all, of the signals required for insulin action in brown adipocytes. Thus, our data further implicate a unique role for IRS-1 in triggering insulin action in brown adipocytes.
Collapse
Affiliation(s)
- Mónica Arribas
- Departamento de Bioquímica y Biología Molecular/Instituto de Bioquímica, Centro Mixto Consejo Superior de Investigaciones Científicas/Universidad Complutense, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | | | | |
Collapse
|
19
|
Grey A, Chen Q, Xu X, Callon K, Cornish J. Parallel phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways subserve the mitogenic and antiapoptotic actions of insulin-like growth factor I in osteoblastic cells. Endocrinology 2003; 144:4886-93. [PMID: 12960100 DOI: 10.1210/en.2003-0350] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I is an endocrine and paracrine regulator of skeletal homeostasis, principally by virtue of its anabolic effects on osteoblastic cells. In the current study, we examined the intracellular signaling pathways by which IGF-I promotes proliferation and survival in SaOS-2 human osteoblastic cells. Inhibition of each of the phosphatidylinositol-3 kinase (PI-3 kinase), p42/44 MAPK, and p70s6 kinase pathways partially inhibited the ability of IGF-I to stimulate osteoblast proliferation and survival. Because activation of p70s6 kinase is downstream of both PI-3 kinase and p42/44 MAPK activation in osteoblasts treated with IGF-I, this ribosomal kinase represents a convergence point for IGF-I-induced PI-3 kinase and p42/44 MAPK signaling in osteoblastic cells. In addition, abrogation of PI-3 kinase-dependent Akt signaling, which does not inhibit IGF-I-induced p70s6 kinase phosphorylation, also inhibited the antiapoptotic effects of IGF-I in osteoblasts. Finally, interruption of G beta gamma signaling partially abrogated the ability of IGF-I to promote osteoblast survival, without inhibiting signaling through PI-3 kinase/Akt, p42/44 MAPKs, or p70s6 kinase. These data suggest that IGF-I signals osteoblast mitogenesis and survival through parallel, partly overlapping intracellular pathways involving PI-3 kinase, p42/44 MAPKs, and G beta gamma subunits.
Collapse
Affiliation(s)
- Andrew Grey
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
20
|
Valverde AM, Burks DJ, Fabregat I, Fisher TL, Carretero J, White MF, Benito M. Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes. Diabetes 2003; 52:2239-48. [PMID: 12941762 DOI: 10.2337/diabetes.52.9.2239] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To assess the role of insulin receptor (IR) substrate (IRS)-2 in insulin action and resistance in the liver, immortalized neonatal hepatocyte cell lines have been generated from IRS-2(-/-), IRS-2(+/-), and wild-type mice. These cells maintained the expression of the differentiated liver markers albumin and carbamoyl phosphate synthetase, as well as bear a high number of IRs. The lack of IRS-2 did not result in enhanced IRS-1 tyrosine phosphorylation or IRS-1-associated phosphatidylinositol (PI) 3-kinase activity on insulin stimulation. Total insulin-induced PI 3-kinase activity was decreased by 50% in IRS-2(-/-) hepatocytes, but the translocation of PI-3,4,5-trisphosphate to the plasma membrane in these cells was almost completely abolished. Downstream PI 3-kinase, activation of Akt, glycogen synthase kinase (GSK)-3 (alpha and beta isoforms), Foxo1, and atypical protein kinase C were blunted in insulin-stimulated IRS-2(-/-) cells. Reconstitution of IRS-2(-/-) hepatocytes with adenoviral IRS-2 restored activation of these pathways, demonstrating that IRS-2 is essential for functional insulin signaling in hepatocytes. Insulin induced a marked glycogen synthase activity in wild-type and heterozygous primary hepatocytes; interestingly, this response was absent in IRS-2(-/-) cells but was rescued by infection with adenoviral IRS-2. Regarding gluconeogenesis, the induction of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase by dibutyryl cAMP and dexamethasone was observed in primary hepatocytes of all genotypes. However, insulin was not able to suppress gluconeogenic gene expression in primary hepatocytes lacking IRS-2, but when IRS-2 signaling was reconstituted, these cells recovered this response to insulin. Suppression of gluconeogenic gene expression in IRS-2-deficient primary hepatocytes was also restored by infection with dominant negative Delta 256Foxo1.
Collapse
Affiliation(s)
- Angela M Valverde
- Instituto de Bioquímica/Departamento de Bioquímica y Biología Molecular II, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hernandez R, Teruel T, Lorenzo M. Insulin and dexamethasone induce GLUT4 gene expression in foetal brown adipocytes: synergistic effect through CCAAT/enhancer-binding protein alpha. Biochem J 2003; 372:617-24. [PMID: 12641495 PMCID: PMC1223428 DOI: 10.1042/bj20030325] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Revised: 03/11/2003] [Accepted: 03/17/2003] [Indexed: 01/02/2023]
Abstract
Treatment of foetal brown adipocytes in primary culture with either dexamethasone or insulin, at physiological concentrations, for 24 h up-regulates the expression of the GLUT4 gene, producing a synergistic effect on mRNA accumulation (20-fold increase), in the amount of protein in the total membrane fraction (8-fold increase) and in the transactivation of a full-promoter GLUT4 -chloramphenicol acetyltransferase gene ( CAT ) construct (7-fold increase). However, GLUT1 expression remains essentially unmodified regardless of the presence of the hormones. As a consequence, exposure of brown adipocytes to dexamethasone and insulin results in a dramatic increase of glucose uptake (12-fold). Dexamethasone induces the expression of CCAAT/enhancer-binding protein (C/EBP) alpha, insulin promotes myocyte enhancer factor-2 DNA-binding activity and both combined produces a significant increase in C/EBPalpha DNA-binding activity. Moreover, co-transfection with a wild-type C/EBPalpha construct transactivates a full-promoter GLUT4 - CAT fusion gene, whereas a dominant-negative C/EBPalpha expression vector impairs the hormonal effects. Our results show that the synergism between insulin and glucocorticoids on glucose uptake is a consequence of the activation of the GLUT4 promoter by the transcription factor C/EBPalpha.
Collapse
Affiliation(s)
- Rosario Hernandez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
| | | | | |
Collapse
|
22
|
Valverde AM, Arribas M, Mur C, Navarro P, Pons S, Cassard-Doulcier AM, Kahn CR, Benito M. Insulin-induced up-regulated uncoupling protein-1 expression is mediated by insulin receptor substrate 1 through the phosphatidylinositol 3-kinase/Akt signaling pathway in fetal brown adipocytes. J Biol Chem 2003; 278:10221-31. [PMID: 12525499 DOI: 10.1074/jbc.m209363200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the role of insulin receptor substrate-1 (IRS-1) and its downstream signaling in insulin-induced thermogenic differentiation of brown adipocytes, we have reconstituted IRS-1-deficient fetal brown adipocytes (IRS-1(-/-)) with wild-type IRS-1 (IRS-1(wt)). The lack of IRS-1 resulted in the inability of insulin to induce IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity and Akt phosphorylation in IRS-1(-/-) brown adipocytes. In addition, these cells showed an impairment in activating alpha-Akt, beta-Akt, and gamma-Akt isoforms upon insulin stimulation. Reconstitution of IRS-1(-/-) brown adipocytes with IRS-1(wt) restored the IRS-1/PI 3-kinase/Akt signaling pathway. Treatment of wild-type brown adipocytes with insulin for 24 h up-regulated uncoupling protein-1 (UCP-1) expression and transactivated the UCP-1 promoter; this effect was abolished in the absence of IRS-1 or in the presence of an Akt inhibitor and further recovered after IRS-1(wt) reconstitution. Neither UCP-2 nor UCP-3 was up-regulated by insulin in wild-type and IRS-1-deficient brown adipocytes. Insulin stimulated the expression of CCAAT/enhancer-binding protein alpha (C/EBPalpha) and its DNA binding activity in wild-type brown adipocytes but not in IRS-1(-/-) cells. However, insulin stimulation of both C/EBPalpha expression and binding activity was restored after IRS-1(wt) reconstitution of deficient cells. Retrovirus-mediated expression of C/EBPalpha and peroxisome proliferator-activated receptor gamma in IRS-1(-/-) brown adipocytes up-regulated UCP-1 protein content and transactivated UCP-1 promoter regardless of insulin stimulation. Both C/EBPalpha and peroxisome proliferator-activated receptor gamma reconstituted FAS mRNA expression, but only C/EBPalpha restored insulin sensitivity in the absence of IRS-1. Finally, reconstitution of IRS-1(-/-) brown adipocytes with the IRS-1 mutants IRS-1(Phe-895), which lacks IRS-1/growth factor receptor binding protein 2 binding but not IRS-1/p85-PI 3-kinase binding, or with IRS-1(Tyr-608/Tyr-628/Tyr-658), which only binds p85-PI 3-kinase, induced UCP-1 expression and transactivated the UCP-1 promoter. These data provide strong evidence for an essential role of IRS-1 through the PI 3-kinase/Akt signaling pathway inducing UCP-1 gene expression by insulin.
Collapse
Affiliation(s)
- Angela M Valverde
- Departamento de Bioquímica y Biología Molecular, Centro Mixto Consejo Superior de Investigaciones Cientificas/Universidad Complutense de Madrid, Facultad de Farmacia, Universidad Complutense, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mur C, Arribas M, Benito M, Valverde AM. Essential role of insulin-like growth factor I receptor in insulin-induced fetal brown adipocyte differentiation. Endocrinology 2003; 144:581-93. [PMID: 12538620 DOI: 10.1210/en.2002-220828] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To define the specific role of IGF-I receptor (IGF-IR) in adipogenic and thermogenic differentiation of brown adipocytes during late fetal life, we have established immortalized brown adipocyte cell lines from fetuses of IGF-IR-deficient mice (IGF-IR(-/-)) as well as from wild-type mice (IGF-IR(+/+)). IGF-IR(-/-) cells showed an increased insulin sensitivity regarding insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation despite a substantial reduction in IRS-1 protein content. Furthermore, insulin-induced total and IRS-1-associated phosphatidylinositol 3-kinase activities were augmented in IGF-IR-deficient cells compared with wild-type cells. Downstream phosphatidylinositol 3-kinase activation of Akt, but not p70s6 kinase, were elicited at lower doses of insulin in IGF-IR(-/-) brown adipocytes. Activation of protein kinase Czeta by insulin was similar in both cell types as was insulin-induced glucose uptake. Treatment of wild-type brown adipocytes with insulin for 12 h up-regulated fatty acid synthase (FAS) and adipocyte determination and differentiation (ADD1/SREBP) mRNAs; this effect was impaired in the absence of IGF-IR. At the protein level, insulin increased FAS content and the amount of the mature form of adipocyte determination and differentiation (ADD1/SREBP) in the nucleus in wild-type cells, but not in IGF-IR(-/-) cells. Furthermore, 24 h of insulin stimulation induced the expression of both uncoupling protein-1 and CCAAT/enhancer-binding protein alpha (C/EBPalpha) in wild-type brown adipocytes; these effects were abolished in IGF-I-R(-/-) cells. Retrovirus-mediated reexpression of peroxisomal proliferator-activated receptor gamma (PPARgamma) in IGF-IR(-/-) brown adipocytes could overcome FAS mRNA impairment, bypassing insulin signaling. However, insulin further increased FAS mRNA expression in C/EBPalpha-IGF-IR(-/-) cells, but not in PPARgamma-IGF-IR(-/-) cells. In addition, fetal brown adipocytes lacking IGF-IR up-regulated uncoupling protein-1 expression in the absence of insulin when PPARgamma, but not C/EBPalpha, was overexpressed. These data provide strong evidence for a critical role of IGF-IR in the differentiation of the brown adipocyte phenotype in fetal life; this effect is mimicked by PPARgamma in an insulin-independent manner.
Collapse
Affiliation(s)
- Cecilia Mur
- Instituto de Bioquímica/Departamento de Bioquímica y Biología Molecular, Centro Mixto, Facultad de Farmacia, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Conejo R, de Alvaro C, Benito M, Cuadrado A, Lorenzo M. Insulin restores differentiation of Ras-transformed C2C12 myoblasts by inducing NF-kappaB through an AKT/P70S6K/p38-MAPK pathway. Oncogene 2002; 21:3739-53. [PMID: 12032842 DOI: 10.1038/sj.onc.1205469] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 03/07/2002] [Accepted: 03/11/2002] [Indexed: 11/08/2022]
Abstract
v-H-ras transformed C2C12 (C2Ras) myoblasts, overexpressing p21-Ras protein in the Ras-GTP active form, showed a differentiation-defective phenotype when cultured in low serum as compared with C2C12 myoblasts. Accordingly, the purpose of the present study was to delineate the signaling pathways that restore C2Ras myoblasts differentiation. Inhibition of p42/p44-MAPK with the chemical inhibitor PD98059, and activation of AKT/P70S6K and p38-MAPK with insulin, produced growth arrest (precluding the expression of PCNA, cyclin-D1 and retinoblastoma at the hyperphosphorylated state and inducing the expression of the cell cycle inhibitor p21(Cip)) and myogenesis (multinucleated myotubes formation and induction of creatine kinase, caveolin-3 and alpha-actin). Both events were accompanied by down-regulation of AP-1 and up-regulation of NF-kappaB transcriptional activities. Furthermore, inhibition of NF-kappaB transcriptional activity by the use of the proteasome inhibitor MG132 totally precluded differentiation by insulin+PD98059, demonstrating a direct role for NF-kappaB on C2Ras myogenesis. C2Ras myoblasts failed to restore differentiation when rapamycin or PD169316 were added in the presence of insulin+PD98059, indicating that the activation of both P70S6K and p38-MAPK was necessary to reach a fully differentiated phenotype. Finally, transient transfection of a constitutively active Myr-EGFP-AKT-HA construct (in the presence of PD98059) restored C2Ras myogenesis by its ability to activate P70S6K and p38-MAPK. A crosstalk between P70S6K and p38-MAPK was observed under rapamycin treatment in both insulin or active AKT induced myogenesis. Our results are delineating an AKT/P70S6K/p38-MAPK pathway involved in skeletal muscle differentiation.
Collapse
Affiliation(s)
- Ruben Conejo
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Abstract
Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)-treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH-SY5Y neurons, rat sensory neurons, and SC, in vivo, there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the DeltaPsi(M), block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the DeltaPsi(M). This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up-regulation of uncoupling proteins (UCPs), which stabilize the DeltaPsi(M), blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress-induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy.
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
26
|
Klein J, Fasshauer M, Klein HH, Benito M, Kahn CR. Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action. Bioessays 2002; 24:382-8. [PMID: 11948624 DOI: 10.1002/bies.10058] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adipose tissue has emerged as an important endocrine regulator of glucose metabolism and energy homeostasis. By virtue of the mitochondrial protein uncoupling protein-1 (UCP-1), brown fat additionally plays a unique role in thermoregulation. Interest has focused on this tissue not only as a target for pharmacotherapy of obesity and insulin resistance but also as an endocrine tissue with leptin secretion and high insulin sensitivity. Most studies of adipocytes have been limited either to primary cell culture or to a small number of established cell lines. Recently, we have generated immortalized brown adipocyte cell lines from single newborn mice of different knockout mouse models. These cell lines retain the main characteristics of primary cells including UCP-1 expression. They display sensitive and diverse metabolic responses to insulin and adrenergic stimulation and have proven to be useful in the characterization of UCP regulation and the role of key insulin signaling elements for insulin action. Here, we outline common approaches to the generation of adipose tissue cell lines. Furthermore, we propose that the novel technique of generating brown adipocyte lines from a single newborn mouse will be instrumental in gaining further insight into the role of a broad range of signaling molecules in adipose tissue biology and in the pathogenesis of insulin resistance.
Collapse
Affiliation(s)
- Johannes Klein
- Department of Internal Medicine I, Medical University of Lübeck, Germany.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Immortalized brown adipocyte cell lines have been generated from fetuses of mice deficient in the insulin-like growth factor I receptor gene (IGF-IR(-/-)), as well as from fetuses of wild-type mice (IGF-IR(+/+)). These cell lines maintained the expression of adipogenic- and thermogenic-differentiation markers and show a multilocular fat droplets phenotype. IGF-IR(-/-) brown adipocytes lacked IGF-IR protein expression; insulin receptor (IR) expression remained unchanged as compared with wild-type cells. Insulin-induced tyrosine autophosphorylation of the IR beta-chain was augmented in IGF-IR--deficient cells. Upon insulin stimulation, tyrosine phosphorylation of (insulin receptor substrate-1) IRS-1 was much higher in IGF-IR(-/-) brown adipocytes, although IRS-1 protein content was reduced. In contrast, tyrosine phosphorylation of IRS-2 decreased in IGF-IR--deficient cells; its protein content was unchanged as compared with wild-type cells. Downstream, the association IRS-1/growth factor receptor binding protein-2 (Grb-2) was augmented in the IGF-IR(-/-) brown adipocyte cell line. However, SHC expression and SHC tyrosine phosphorylation and its association with Grb-2 were unaltered in response to insulin in IGF-IR--deficient brown adipocytes. These cells also showed an enhanced activation of mitogen-activated protein kinase (MAPK) kinase (MEK1/2) and p42/p44 mitogen-activated protein kinase (MAPK) upon insulin stimulation. In addition, the lack of IGF-IR in brown adipocytes resulted in a higher mitogenic response (DNA synthesis, cell number, and proliferating cell nuclear antigen expression) to insulin than wild-type cells. Finally, cells lacking IGF-IR showed a much lower association between IR or IRS-1 and phosphotyrosine phosphatase 1B (PTP1B) and also a decreased PTP1B activity upon insulin stimulation. However, PTP1B/Grb-2 association remained unchanged in both cell types, regardless of insulin stimulation. Data presented here provide strong evidence that IGF-IR--deficient brown adipocytes show an increased insulin sensitivity via IRS-1/Grb-2/MAPK, resulting in an increased mitogenesis in response to insulin.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/embryology
- Animals
- Cell Division/drug effects
- Cell Line, Transformed
- Enzyme Activation
- GRB2 Adaptor Protein
- Gene Expression
- Insulin/pharmacology
- Insulin Receptor Substrate Proteins
- Insulin-Like Growth Factor I/pharmacology
- Intracellular Signaling Peptides and Proteins
- MAP Kinase Kinase 1
- MAP Kinase Kinase 2
- Mice
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proteins/metabolism
- Receptor, IGF Type 1/deficiency
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/physiology
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- fas Receptor/genetics
Collapse
Affiliation(s)
- Cecilia Mur
- Departamento de Bioquímica y Biología Molecular, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Teruel T, Hernandez R, Lorenzo M. Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes 2001; 50:2563-71. [PMID: 11679435 DOI: 10.2337/diabetes.50.11.2563] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor (TNF)-alpha causes insulin resistance on glucose uptake in fetal brown adipocytes. We explored the hypothesis that some effects of TNF-alpha could be mediated by the generation of ceramide, given that TNF-alpha treatment induced the production of ceramide in these primary cells. A short-chain ceramide analog, C2-ceramide, completely precluded insulin-stimulated glucose uptake and insulin-induced GLUT4 translocation to plasma membrane, as determined by Western blot or immunofluorescent localization of GLUT4. These effects were not produced in the presence of a biologically inactive ceramide analog, C2-dihydroceramide. Analysis of the phosphatidylinositol (PI) 3-kinase signaling pathway indicated that C2-ceramide precluded insulin stimulation of Akt kinase activity, but not of PI-3 kinase or protein kinase C-zeta activity. C2-ceramide completely abolished insulin-stimulated Akt/protein kinase B phosphorylation on regulatory residues Thr 308 and Ser 473, as did TNF-alpha, and inhibited insulin-induced mobility shift in Akt1 and Akt2 separated in PAGE. Moreover, C2-ceramide seemed to activate a protein phosphatase (PP) involved in dephosphorylating Akt because 1) PP2A activity was increased in C2-ceramide- and TNF-alpha-treated cells, 2) treatment with okadaic acid concomitantly with C2-ceramide completely restored Akt phosphorylation by insulin, and 3) transient transfection of a constitutively active form of Akt did not restore Akt activity. Our results indicate that ceramide produced by TNF-alpha induces insulin resistance in brown adipocytes by maintaining Akt in an inactive dephosphorylated state.
Collapse
Affiliation(s)
- T Teruel
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | | | | |
Collapse
|
29
|
Hernandez R, Teruel T, Lorenzo M. Akt mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes. FEBS Lett 2001; 494:225-31. [PMID: 11311245 DOI: 10.1016/s0014-5793(01)02353-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin acutely stimulated glucose uptake in rat primary brown adipocytes in a PI3-kinase-dependent but p70S6-kinase-independent manner. Since Akt represents an intermediate step between these kinases, this study investigated the contribution of Akt to insulin-induced glucose uptake by the use of a chemical compound, ML-9, as well as by transfection with a dominant-negative form of Akt (DeltaAkt). Pretreatment with ML-9 for 10 min completely inhibited insulin stimulation of (1) Akt kinase activity, (2) Akt phosphorylation on the regulatory residue Ser473 but not on Thr308, and (3) mobility shift in Akt1 and Akt2. However, ML-9 did not affect insulin-stimulated PI3-kinase nor PKCzeta activities. In consequence, ML-9 precluded insulin stimulation of glucose uptake and GLUT4 translocation to plasma membrane (determined by Western blot), without any effect on the basal glucose uptake. Moreover, DeltaAkt impaired insulin stimulation of glucose uptake and GFP-tagged GLUT4 translocation to plasma membrane in transiently transfected immortalised brown adipocytes and HeLa cells, respectively. Furthermore, ML-9 treatment for 6 h down-regulated insulin-induced GLUT4 mRNA accumulation, without affecting GLUT1 expression, in a similar fashion as LY294002. Indeed, co-transfection of brown adipocytes with DeltaAkt precluded the transactivation of GLUT4-CAT promoter by insulin in a similar fashion as a dominant-negative form of PI3-kinase. Our results indicate that activation of Akt may be an essential requirement for insulin regulation of glucose uptake and GLUT4 gene expression in brown adipocytes.
Collapse
Affiliation(s)
- R Hernandez
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
30
|
Abstract
We have recently shown that insulin induced myogenesis in the mouse C2C12 skeletal muscle cell line by activation of phosphatidylinositol (PI) 3-kinase/p70S6-kinase and p38-mitogen-activated protein kinase (MAPK) and downregulation of p42/p44-MAPK. This study investigated the insulin-signaling pathways involved in mitogenesis, survival, and membrane ruffling in C2C12 myoblasts, a cellular system that besides IGF-I receptors, expressed a high number of functional insulin receptors. Insulin (10 nM) rapidly stimulated beta-chain insulin receptor and IRS-1 tyrosine phosphorylation, IRS-2 being poorly and SHC not phosphorylated at all. However, an association of SHC with IRS-1 was found under insulin stimulation. Insulin stimulated IRS-1 association with p85alpha leading to the activation of PI3-kinase, and, subsequently AKT and p70S6-kinases. Moreover, both p42/p44- and p38-MAPKs resulted in phosphorylation after insulin stimulation. Insulin treatment for 24 h produced mitogenesis, as demonstrated by the increase in ((3)H)-thymidine incorporation, DNA content, the expression of PCNA and cyclin D1 proteins, and the proportion of cells in S + G2/M phases of the cell cycle. This mitogenic effect of insulin was precluded by inhibition of p70S6-kinase (either by rapamycin or by the PI3-kinase inhibitor LY294002) as well as by inhibition of p44/p42-MAPK with PD098059, but was not affected by inhibition of p38-MAPK. Serum deprivation of C2C12 myoblasts resulted in growth arrest at the GO/G1 phases of the cell cycle and apoptosis, as detected either by DNA laddering or by increase in the percentage of hypodiploid cells. Insulin rescued serum-deprived cells from apoptosis in an AKT-dependent manner, as demonstrated by the inhibition of AKT-activity by the use of LY294002 and ML-9, meanwhile neither inhibition of p70S6-kinase, nor MAPK affected insulin-induced survival. Finally, we evaluated the capacity of insulin to modulate actin cytoskeleton rearrangement. Insulin stimulation of myoblasts produced membrane ruffling and decreased actin stress fibers; this biological response being dependent of p38-MAPK, as demonstrated by the use of the p38-MAPK inhibitors SB203580 or PD169316, but independent of PI3-kinase and p42/p44-MAPK.
Collapse
Affiliation(s)
- R Conejo
- Departmento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
| | | |
Collapse
|
31
|
Valverde AM, Mur C, Pons S, Alvarez AM, White MF, Kahn CR, Benito M. Association of insulin receptor substrate 1 (IRS-1) y895 with Grb-2 mediates the insulin signaling involved in IRS-1-deficient brown adipocyte mitogenesis. Mol Cell Biol 2001; 21:2269-80. [PMID: 11259577 PMCID: PMC86861 DOI: 10.1128/mcb.21.7.2269-2280.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently generated immortalized fetal brown adipocyte cell lines from insulin receptor substrate 1 (IRS-1) knockout mice and demonstrated an impairment in insulin-induced lipid synthesis as compared to wild-type cell lines. In this study, we investigated the consequences of IRS-1 deficiency on mitogenesis in response to insulin. The lack of IRS-1 resulted in the inability of insulin-stimulated IRS-1-deficient brown adipocytes to increase DNA synthesis and enter into S/G2/M phases of the cell cycle. These cells showed a severe impairment in activating mitogen-activated protein kinase kinase (MEK1/2) and p42-p44 mitogen-activated protein kinase (MAPK) upon insulin stimulation. IRS-1-deficient cells also lacked tyrosine phosphorylation of SHC and showed no SHC-Grb-2 association in response to insulin. The mitogenic response to insulin could be partially restored by enhancing IRS-2 tyrosine phosphorylation and its association with Grb-2 by inhibition of phosphatidylinositol 3-kinase activity through a feedback mechanism. Reconstitution of IRS-1-deficient brown adipocytes with wild-type IRS-1 restored insulin-induced IRS-1 and SHC tyrosine phosphorylation and IRS-1-Grb-2, IRS-1-SHC, and SHC-Grb-2 associations, leading to the activation of MAPK and enhancement of DNA synthesis. Reconstitution of IRS-1-deficient brown adipocytes with the IRS-1 mutant Tyr895Phe, which lacks IRS-1-Grb-2 binding, restored SHC-IRS-1 association and SHC-Grb-2 association. However, the lack of IRS-1-Grb-2 association impaired MAPK activation and DNA synthesis in insulin-stimulated mutant cells. These data provide strong evidence for an essential role of IRS-1 and its direct association with Grb-2 in the insulin signaling pathway leading to MAPK activation and mitogenesis in brown adipocytes.
Collapse
Affiliation(s)
- A M Valverde
- Departamento de Bioquímica y Biología Molecular, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Conejo R, Valverde AM, Benito M, Lorenzo M. Insulin produces myogenesis in C2C12 myoblasts by induction of NF-kappaB and downregulation of AP-1 activities. J Cell Physiol 2001; 186:82-94. [PMID: 11147817 DOI: 10.1002/1097-4652(200101)186:1<82::aid-jcp1001>3.0.co;2-r] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, we have examined the insulin-signaling pathways involved in myogenesis in mouse C2C12 skeletal muscle cell line, a cellular system that expresses high number of high affinity insulin receptors. Insulin (50 nM) rapidly (5 min) stimulated beta-chain insulin receptor, activated the phosphatidylinositol (PI) 3-kinase/Akt/p70S6-kinase signaling pathway, as well as phosphorylated both p44/p42- and p38-mitogen-activated protein kinases (MAPKs). Preconfluent cells were differentiated in a serum-free medium in response to 50 nM insulin for 72 h, as revealed by the formation of multinucleated myotubes and the induction of the creatine kinase activity. This differentiation process was also monitored by the inhibition of the PCNA content and induction of the cell cycle inhibitor p21. Furthermore, insulin induced nuclear factor-kappaB (NF-kappaB) DNA binding activity and down-regulated activating protein-1 (AP-1) DNA binding activity throughout the differentiation process. The use of specific inhibitors of the insulin-signaling pathways indicated that myogenesis was precluded by treatment for 72 h with LY294002 (an inhibitor of PI 3-kinase), rapamycin (a p70S6-kinase blocker), and SB203580 or PD169316 (p38-MAPK inhibitors). These inhibitors abolished insulin induction of NF-kappaB DNA binding activity and kappaB-chloramphenicol acetyltransferase (CAT) promoter activity, maintaining expressed cytosolic IkappaB-alpha protein, and increased AP-1 DNA binding activity and TRE-CAT promoter activity. These data suggest that insulin induces myogenesis in C2C12 through PI 3-kinase/ p70S6-kinase and p38-MAPK pathways, the signaling through p44/p42-MAPK being inhibited.
Collapse
Affiliation(s)
- R Conejo
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Dupont J, Karas M, LeRoith D. The potentiation of estrogen on insulin-like growth factor I action in MCF-7 human breast cancer cells includes cell cycle components. J Biol Chem 2000; 275:35893-901. [PMID: 10967123 DOI: 10.1074/jbc.m006741200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight into the mechanisms involved in the cross-talk between IGF-1 receptor (IGF-1R) and estrogen receptor signaling pathways, we used MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression. Growth of NEO cells (control MCF-7 cells) was stimulated by both IGF-1 and estradiol (E2), and the addition of both mitogens resulted in a synergistic response. Estrogen enhanced IGF-1R signaling in NEO cells, but this effect was markedly diminished in SX13 cells. Estrogen was also able to potentiate the IGF-1 effect on the expression of cyclin D1 and cyclin E and on the phosphorylation of retinoblastoma protein in control but not in SX13 cells. IGF-1 increased the protein level of p21 and the luciferase activity of the p21 promoter, whereas it only reduced the protein level of p27 without affecting p27 promoter activity. Estrogen did not affect the p21 inhibitor, but it decreased the protein level of p27 and the p27 promoter luciferase activity. These effects of both mitogens were also observed at the level of association of both cyclin-dependent kinase inhibitors with CDK2 suggesting that IGF-1 and E2 affect the activity of both p21 and p27. Taken together, these data suggest that in MCF-7 cells, estrogen potentiates the IGF-1 effect on IGF-1R signaling as well as on the cell cycle components. Moreover, IGF-1 and E2 regulate the expression of p21 and p27 and their association with CDK2 differently.
Collapse
Affiliation(s)
- J Dupont
- Section on Cellular and Molecular Physiology, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1758, USA
| | | | | |
Collapse
|
34
|
Usui I, Haruta T, Iwata M, Takano A, Uno T, Kawahara J, Ueno E, Sasaoka T, Kobayashi M. Retinoblastoma protein phosphorylation via PI 3-kinase and mTOR pathway regulates adipocyte differentiation. Biochem Biophys Res Commun 2000; 275:115-20. [PMID: 10944451 DOI: 10.1006/bbrc.2000.3201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the early phase of adipocyte differentiation, transient increase of DNA synthesis, called clonal expansion, and transient hyperphosphorylation of retinoblastoma protein (Rb) are observed. We investigated the role of these phenomena in insulin-induced adipocyte differentiation of 3T3-L1 cells. Insulin-induced clonal expansion, Rb phosphorylation and adipocyte differentiation were all inhibited by the PI 3-kinase inhibitors and rapamycin, but not the MEK inhibitor, whereas the MEK inhibitor, but not PI 3-kinase inhibitors or rapamycin, decreased c-fos induction. We conclude that insulin induces hyperphosphorylation of Rb via PI 3-kinase and mTOR dependent pathway, which promotes clonal expansion and adipocyte differentiation of 3T3-L1 cells.
Collapse
Affiliation(s)
- I Usui
- First Department of Internal Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama, 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Penfornis P, Viengchareun S, Le Menuet D, Cluzeaud F, Zennaro MC, Lombès M. The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes. Am J Physiol Endocrinol Metab 2000; 279:E386-94. [PMID: 10913039 DOI: 10.1152/ajpendo.2000.279.2.e386] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By use of targeted oncogenesis, a brown adipocyte cell line was derived from a hibernoma of a transgenic mouse carrying the proximal promoter of the human mineralocorticoid receptor (MR) linked to the SV40 large T antigen. T37i cells remain capable of differentiating into brown adipocytes upon insulin and triiodothyronine treatment as judged by their ability to express uncoupling protein 1 and maintain MR expression. Aldosterone treatment of undifferentiated cells induced accumulation of intracytoplasmic lipid droplets and mitochondria. This effect was accompanied by a significant and dose-dependent increase in intracellular triglyceride content (half-maximally effective dose 10(-9) M) and involved MR, because it was unaffected by RU-38486 treatment but was totally abolished in the presence of aldosterone antagonists (spironolactone, RU-26752). The expression of early adipogenic gene markers, such as lipoprotein lipase, peroxisome proliferator-activated receptor-gamma, and adipocyte-specific fatty acid binding protein 2, was enhanced by aldosterone, confirming activation of the differentiation process. We demonstrate that, in the T37i cell line, aldosterone participates in the very early induction of brown adipocyte differentiation. Our findings may have a broader biological significance and suggest that MR is not only implicated in maintaining electrolyte homeostasis but could also play a role in metabolism and energy balance.
Collapse
Affiliation(s)
- P Penfornis
- Institut National de la Santé et de la Recherche Médicale U 478, Faculté de Médecine Xavier Bichat, 75870 Paris, France
| | | | | | | | | | | |
Collapse
|
36
|
Valverde AM, Lorenzo M, Navarro P, Mur C, Benito M. Okadaic acid inhibits insulin-induced glucose transport in fetal brown adipocytes in an Akt-independent and protein kinase C zeta-dependent manner. FEBS Lett 2000; 472:153-8. [PMID: 10781824 DOI: 10.1016/s0014-5793(00)01448-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present study we have investigated the effect of increased serine/threonine phosphorylation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) by okadaic acid pretreatment on brown adipocyte insulin signalling leading to glucose transport, an important metabolic effect of insulin in brown adipose tissue. Okadaic acid pretreatment before insulin stimulation decreased IRS-1 and IRS-2 tyrosine phosphorylation in parallel to a decrease in their sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility. IRS-1/IRS-2-associated p85alpha and phosphatidylinositol (PI) 3-kinase enzymatic activity were partly reduced in brown adipocytes pretreated with okadaic acid upon stimulation with insulin. Furthermore, insulin-induced glucose uptake was totally abolished by the inhibitor in parallel with a total inhibition of insulin-induced protein kinase C (PKC) zeta activity. However, activation of Akt/PKB or p70 S6 kinase (p70(s6k)) by insulin remained unaltered. Our results suggest that downstream of PI 3-kinase, insulin signalling diverges into at least two independent pathways through Akt/PKB and PKC zeta, the PKC zeta pathway contributing to glucose transport induced by insulin in fetal brown adipocytes.
Collapse
Affiliation(s)
- A M Valverde
- Departamento de Bioquímica y Biología Molecular, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
Stoica A, Saceda M, Fakhro A, Joyner M, Martin MB. Role of insulin-like growth factor-I in regulating estrogen receptor-alpha gene expression. J Cell Biochem 2000; 76:605-14. [PMID: 10653980 DOI: 10.1002/(sici)1097-4644(20000315)76:4<605::aid-jcb9>3.0.co;2-t] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of insulin-like growth factor-I (IGF-I) in regulating estrogen receptor-alpha (ER-alpha) gene expression and activity was investigated in the human breast cancer cell line MCF-7. Treatment of cells with 40 ng/ml IGF-I resulted in a 60% decrease in ER-alpha protein concentration by 3 h, and the amount of ER-alpha remained suppressed for 24 h. A multiple-dose ligand-binding assay demonstrated that the decrease in ER-alpha protein corresponded to a similar decrease of 50% in estradiol-binding sites with no effect on the binding affinity of ER-alpha. The dissociation constant of the estradiol-ER-alpha complex in the absence of IGF-I (K(d) = 3 x 10(-10) +/- 0.5 x 10(-10) M) was similar to the dissociation constant in the presence of IGF-I (K(d) = 6 x 10(-10) +/- 0.3 x 10(-10) M). The decrease in ER-alpha protein concentration was paralleled by an 80% decrease in the steady-state amount of ER-alpha mRNA by 3 h. The IGF-I induced decrease in ER-alpha mRNA was due to the inhibition of ER-alpha gene transcription. When an 128-base pair ER-alpha-promoter-CAT construct was transfected into MCF-7 cells, treatment with IGF-I resulted in a 40% decrease in CAT activity. In contrast to the effects on ER-alpha, treatment with IGF-I induced two endogenous estrogen-regulated genes, progesterone receptor and pS2, by 4- and twofold, respectively. The pure antiestrogen ICI-164, 384 blocked this induction, suggesting that ER-alpha mediates the effects of IGF-I. Transient co-transfections of wild-type ER-alpha and an estrogen response element-CAT reporter into COS-1 cells demonstrated that IGF-I increased reporter gene activity. This effect was also blocked by ICI 164,384. Protein kinase A and phosphatidylinositol 3-kinase inhibitors blocked the IGF-I effects on ER-alpha expression and activity, suggesting that these kinases may be involved in the cross-talk between the IGF-I and ER-alpha pathways.
Collapse
Affiliation(s)
- A Stoica
- Lombardi Cancer Center, Department of Biochemistry and Molecular Biology, Georgetown University, Washington DC 20007-2197, USA
| | | | | | | | | |
Collapse
|
38
|
Klein J, Fasshauer M, Ito M, Lowell BB, Benito M, Kahn CR. beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J Biol Chem 1999; 274:34795-802. [PMID: 10574950 DOI: 10.1074/jbc.274.49.34795] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activity of the sympathetic nervous system is an important factor involved in the pathogenesis of insulin resistance and associated metabolic and vascular abnormalities. In this study, we investigate the molecular basis of cross-talk between beta(3)-adrenergic and insulin signaling systems in mouse brown adipocytes immortalized by SV40 T infection. Insulin-induced tyrosine phosphorylation of the insulin receptor, insulin receptor substrate 1 (IRS-1), and IRS-2 was reduced by prestimulation of beta(3)-adrenergic receptors (CL316243). Similarly, insulin-induced IRS-1-associated and phosphotyrosine-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity, but not IRS-2-associated PI 3-kinase activity, was reduced by beta(3)-adrenergic prestimulation. Furthermore, insulin-stimulated activation of Akt, but not mitogen-activated protein kinase, was diminished. Insulin-induced glucose uptake was completely inhibited by beta(3)-adrenergic prestimulation. These effects appear to be protein kinase A-dependent. Furthermore inhibition of protein kinase C restored the beta(3)-receptor-mediated reductions in insulin-induced IRS-1 tyrosine phosphorylation and IRS-1-associated PI 3-kinase activity. Together, these findings indicate cross-talk between adrenergic and insulin signaling pathways. This interaction is protein kinase A-dependent and, at least in part, protein kinase C-dependent, and could play an important role in the pathogenesis of insulin resistance associated with sympathetic overactivity and regulation of brown fat metabolism.
Collapse
Affiliation(s)
- J Klein
- Research Division Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
39
|
Navarro P, Valverde AM, Benito M, Lorenzo M. Activated Ha-ras induces apoptosis by association with phosphorylated Bcl-2 in a mitogen-activated protein kinase-independent manner. J Biol Chem 1999; 274:18857-63. [PMID: 10383381 DOI: 10.1074/jbc.274.27.18857] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum deprivation of Ha-ras-transformed brown adipocyte cell line resulted in a dramatic apoptotic cell death, as detected either by DNA laddering or by an increase in the percentage of hypodiploid cells or by nuclei condensation and fragmentation, as compared with immortalized cell line or primary fetal brown adipocytes. Moreover, transient transfection of immortalized brown adipocytes with a constitutively active ras gene (Ha-raslys12) mimics the high rate of apoptosis detected in the transformed cell line. On the other hand, transient transfection of the dominant-negative construct of raf-1 rescued serum-deprived Ha-ras-transformed brown adipocytes from apoptosis, decreasing the percentage of hypodiploid cells, the external display of phosphatidylserine, and the DNA laddering. However, inhibition of mitogen-activated protein kinase with PD098059 did not preclude apoptosis and in fact increased the rate of apoptosis observed in serum-deprived Ha-ras-transformed cells, indicating that the Ras/Raf-1 pathway induced apoptosis throughout a mitogen-activated protein kinase kinase 1 (MEK-1)-independent pathway. Furthermore, apoptosis in Ha-ras-transformed brown adipocytes is concurrent with an up-regulation in the expression of the pro-apoptotic protein Bcl-xS, the expression of the anti-apoptotic protein Bcl-2 being down-regulated. Finally, an association of Ras and Raf with phosphorylated Bcl-2 protein was demonstrated in immunoprecipitates from apoptotic cells. Thus, we propose a mechanism of apoptosis in Ha-ras-transformed adipocytes under serum deprivation involving Raf-1 association with phosphorylated Bcl-2, down-regulation of Bcl-2 expression, and up-regulation of Bcl-xS expression.
Collapse
Affiliation(s)
- P Navarro
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Pugazhenthi S, Boras T, O'Connor D, Meintzer MK, Heidenreich KA, Reusch JE. Insulin-like growth factor I-mediated activation of the transcription factor cAMP response element-binding protein in PC12 cells. Involvement of p38 mitogen-activated protein kinase-mediated pathway. J Biol Chem 1999; 274:2829-37. [PMID: 9915817 DOI: 10.1074/jbc.274.5.2829] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IGF-I is known to support growth and to prevent apoptosis in neuronal cells. Activation of the nuclear transcription factor cAMP response element-binding protein (CREB) has emerged as a central determinant in neuronal functions. In the present investigation, we examined the IGF-I-mediated phosphorylation and transcriptional activation of CREB in rat pheochromocytoma (PC12) cells, a cellular model for neuronal differentiation, and defined three distinct postreceptor signaling pathways important for this effect including the p38 mitogen-activated protein kinase (MAPK) pathway. CREB phosphorylation at serine 133 and its transcriptional activation as measured by a CREB-specific Gal4-CREB reporter and the neuroendocrine-specific gene chromogranin A was induced 2-3.3-fold by insulin-like growth factor (IGF)-I. This activation was significantly blocked (p < 0.001) by the dominant negative K-CREB or by mutation of the CRE site. IGF-I stimulated chromogranin A gene expression by Northern blot analysis 3.7-fold. Inhibition of MAPK kinase with PD98059, PI 3-kinase with wortmannin, and p38 MAPK with SB203580 blocked IGF-I-mediated phosphorylation and transcriptional activation of CREB by 30-50% (p < 0.001). Constitutively active and dominant negative regulators of the Ras and PI 3-kinase pathways confirmed the contribution of these pathways for CREB regulation by IGF-I. Cotransfection of PC12 cells with p38beta and constitutively active MAPK kinase 6 resulted in enhanced basal as well as IGF-I-stimulated chromogranin A promoter. IGF-I activated p38 MAPK, which was blocked by the inhibitor SB203580. This is the first description of a p38 MAPK-mediated nuclear signaling pathway for IGF-I leading to CREB-dependent neuronal specific gene expression.
Collapse
Affiliation(s)
- S Pugazhenthi
- Section of Endocrinology, Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | | | |
Collapse
|
41
|
Niiori-Onishi A, Iwasaki Y, Mutsuga N, Oiso Y, Inoue K, Saito H. Molecular mechanisms of the negative effect of insulin-like growth factor-I on growth hormone gene expression in MtT/S somatotroph cells. Endocrinology 1999; 140:344-9. [PMID: 9886844 DOI: 10.1210/endo.140.1.6405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although insulin-like growth factor-I (IGF-I) is shown to have a suppressive effect on GH gene expression at the pituitary level, its molecular mechanism has not yet been clarified. To study the issue, we established a new in vitro system using MtT/S, a recently established rat somatotroph tumor cell line that retains the basic characteristics of somatotroph function. Plasmids containing the GH 5' promoter (approximately 1.75 kb or shorter)-luciferase fusion gene were transfected stably or transiently into the cells, and the effect of IGF-I on the GH promoter activity was estimated by a luciferase assay. The results showed that IGF-I inhibited GH promotor activity (more than 50% suppression) in a time- and dose-related manner. IGF-I also inhibited GH secretion. A study using deletion mutants of the GH promoter revealed that the negative effect was maintained in the shortest construct (-80 to +6), suggesting that IGF-I-related factor is acting at the region very close to the minimal promoter. Interestingly, the negative effect was completely eliminated by a PI3 kinase inhibitor wortmannin (1 microM), whereas a MAP kinase inhibitor PD98059 (20 microM) or S6 kinase inhibitor rapamycin (10 nM) did not influence the effect. Our results suggest that IGF-I suppresses GH gene expression at the transcriptional level and that the PI3 kinase-mediated signaling pathway plays a major role in the negative effect of IGF-I. We believe that our system using MtT/S cells is an excellent experimental model system for studying the cellular and molecular mechanisms of the transcriptional regulation of GH in vitro.
Collapse
Affiliation(s)
- A Niiori-Onishi
- First Department of Internal Medicine, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Canicio J, Gallardo E, Illa I, Testar X, Palacín M, Zorzano A, Kaliman P. p70 S6 kinase activation is not required for insulin-like growth factor-induced differentiation of rat, mouse, or human skeletal muscle cells. Endocrinology 1998; 139:5042-9. [PMID: 9832443 DOI: 10.1210/endo.139.12.6360] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factors (IGFs) are potent stimulators of muscle differentiation, and phosphatidylinositol 3-kinase (PI 3-kinase) is an essential second messenger in this process. Little is known about the downstream effectors of the IGF/PI 3-kinase myogenic cascade, and contradictory observations have been reported concerning the involvement of p70 S6 kinase. In an attempt to clarify the role of p70 S6 kinase in myogenesis, here we have studied the effect of rapamycin on rat, mouse, and human skeletal muscle cell differentiation. Both insulin and IGF-II activated p70 S6 kinase in rat L6E9 and mouse Sol8 myoblasts, which was markedly inhibited at 1 ng/ml rapamycin concentrations. Consistent with previous observations in a variety of cell lines, rapamycin exerted a potent inhibitory effect on L6E9 and Sol8 serum-induced myoblast proliferation. In contrast, even at high concentrations (20 ng/ml), rapamycin had no effect on IGF-II-induced proliferation or differentiation. Indeed, neither the morphological differentiation, as assessed by myotube formation, nor the expression of muscle-specific markers such as myogenin, myosin heavy chain, or GLUT4 (glucose transporter-4) glucose carriers was altered by rapamycin. Moreover, here we extended our studies on IGF-II-induced myogenesis to human myoblasts derived from skeletal muscle biopsies. We show that, as observed for rat and mouse muscle cells, human myoblasts can be induced to form multinucleated myotubes in the presence of exogenous IGF-II. Moreover, IGF-II-induced human myotube formation was totally blocked by LY294002, a specific PI 3-kinase inhibitor, but remained unaffected in the presence of rapamycin.
Collapse
Affiliation(s)
- J Canicio
- Department de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Navarro P, Valverde AM, Benito M, Lorenzo M. Insulin/IGF-I rescues immortalized brown adipocytes from apoptosis down-regulating Bcl-xS expression, in a PI 3-kinase- and map kinase-dependent manner. Exp Cell Res 1998; 243:213-21. [PMID: 9743581 DOI: 10.1006/excr.1998.4168] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum deprivation of immortalized brown adipocyte cell line resulted in growth arrest in G0/G1 phases of the cell cycle and apoptosis, as detected either by DNA laddering or by increase in the percentage of hypodiploid cells. Furthermore, apoptosis is concurrent with a dramatic increase in the expression of the proapoptotic protein Bcl-xS, the expression of Bcl-xL remaining almost undetectable. Insulin/insulin-like growth factor (IGF-I) rescued serum-deprived brown adipocytes from apoptosis, decreasing the number of hypodiploid cells and increasing the number of cells undergoing cell cycle progression throughout S and G2/M phases of the cell cycle. Moreover, insulin down-regulated Bcl-xS expression without inducing the expression of Bcl-xL. Both phosphatidylinositol (PI) 3-kinase and mitogen-activated protein kinase (MAPK) pathways are necessary for insulin/IGF-I full survival effect, since the use of specific inhibitors of PI 3-kinase activity (wortmannin or LY294002, at the dose that inhibits PI 3-kinase activity induced by insulin) or MAPK kinase activity inhibitor (PD098059, at the dose that inhibits insulin-induced phosphorylation of MAPK) totally blocked the antiapoptotic effect induced by insulin/IGF-I, respectively. In conclusion, insulin survival effect on immortalized brown adipocytes is associated with inhibition of the Bcl-xS content without changing Bcl-xL, in a PI 3-kinase- and MAP kinase-dependent manner.
Collapse
Affiliation(s)
- P Navarro
- Facultad de Farmacia, Universidad Complutense, Madrid, 28040, Spain
| | | | | | | |
Collapse
|
44
|
Valverde AM, Navarro P, Benito M, Lorenzo M. H-ras induces glucose uptake in brown adipocytes in an insulin- and phosphatidylinositol 3-kinase-independent manner. Exp Cell Res 1998; 243:274-81. [PMID: 9743587 DOI: 10.1006/excr.1998.4154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal brown adipocytes (parental cells) expressed mainly Glut4 mRNA glucose transporter, the expression of Glut1 mRNA being much lower. At physiological doses, insulin stimulation for 15 min increased 3-fold glucose uptake and doubled the amount of Glut4 protein located at the plasma membrane. Moreover, phosphatidylinositol (PI) 3-kinase activity was induced by the presence of insulin in those cells, glucose uptake being precluded by PI 3-kinase inhibitors such as wortmannin or LY294002. H-raslys12-transformed brown adipocytes showed a 10-fold higher expression of Glut1 mRNA and protein than parental cells, Glut4 gene expression being completely down-regulated. Glucose uptake increased by 10-fold in transformed cells compared to parental cells; this uptake was unaltered in the presence of insulin and/or wortmannin. Transient transfection of parental cells with a dominant form of active Ras increased basal glucose uptake by 5-fold, no further effects being observed in the presence of insulin. However, PI 3-kinase activity (immunoprecipitated with anti-alphap85 subunit of PI 3-kinase) remained unaltered in H-ras permanent and transient transfectants. Our results indicate that activated Ras induces brown adipocyte glucose transport in an insulin-independent manner, this induction not involving PI 3-kinase activation.
Collapse
Affiliation(s)
- A M Valverde
- Faculty of Pharmacy, University Complutense, Madrid, 28040, Spain
| | | | | | | |
Collapse
|
45
|
Teruel T, Valverde AM, Navarro P, Benito M, Lorenzo M. Inhibition of PI 3-kinase and RAS blocks IGF-I and insulin-induced uncoupling protein 1 gene expression in brown adipocytes. J Cell Physiol 1998; 176:99-109. [PMID: 9618150 DOI: 10.1002/(sici)1097-4652(199807)176:1<99::aid-jcp12>3.0.co;2-j] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fetal brown adipocytes expressed uncoupling protein 1 (UCP1) mRNA, this expression being blunted throughout culture for 24 h in a serum-free medium. At physiological doses, either insulin-like growth factor I (IGF-I) or insulin turned out to be as potent as dibutyryl cAMP (dbcAMP) in increasing UCP1 gene transcription rate (1 h) and also UCP1 mRNA accumulation (3 h), their maximal effect (15-fold increase) reached upon treatment for 24 h. Upon treatment with either IGF-I or insulin for 48 h, a 7-fold increase in the UCP1 protein content relative to levels in the control cells was found, this induction being abolished in the presence of cycloheximide. Moreover, either IGF-I or insulin transactivates the UCP1-chloramphenicol acetyl transferase (CAT) fusion gene after transient transfection of primary brown adipocytes, these effects being tissue-specific. Transient transfection of dominant-negative form of phosphatidylinositol (PI) 3-kinase completely blocked the transactivation of the fusion gene UCP1-CAT induced by either IGF-I or insulin, although inhibition of p70S6kinase with rapamycin does not preclude transactivation of the UCP1 promoter by insulin. Furthermore, transient transfection of dominant-negative form of p21-ras or treatment of cells with a mitogen-activated protein kinase kinase (MEK-1) inhibitor (PD098059) completely abolished insulin-induced UCP1-CAT transactivation. Cotransfection with dominant-negative p85 or with dominant-negative Ras also produced down-regulation of the insulin or IGF-I-induced 12-O-tetradecanoylphorbol-13-acetate response element (TRE)-CAT (five AP-1, activating protein-1, binding sites arranged in tandem) transactivation. In addition, insulin induced AP-1 DNA binding activity, this effect being totally prevented in the presence of MEK-1 inhibitor. These results strongly suggest that either IGF-I or insulin induced thermogenic-differentiation through AP-1 activity in a PI 3-kinase and Ras/MAPK dependent manner in brown adipocytes.
Collapse
Affiliation(s)
- T Teruel
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|