1
|
Hoedjes KM, van den Heuvel J, Kapun M, Keller L, Flatt T, Zwaan BJ. Distinct genomic signals of lifespan and life history evolution in response to postponed reproduction and larval diet in Drosophila. Evol Lett 2019; 3:598-609. [PMID: 31867121 PMCID: PMC6906992 DOI: 10.1002/evl3.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Reproduction and diet are two major factors controlling the physiology of aging and life history, but how they interact to affect the evolution of longevity is unknown. Moreover, although studies of large-effect mutants suggest an important role of nutrient sensing pathways in regulating aging, the genetic basis of evolutionary changes in lifespan remains poorly understood. To address these questions, we analyzed the genomes of experimentally evolved Drosophila melanogaster populations subjected to a factorial combination of two selection regimes: reproductive age (early versus postponed), and diet during the larval stage ("low," "control," "high"), resulting in six treatment combinations with four replicate populations each. Selection on reproductive age consistently affected lifespan, with flies from the postponed reproduction regime having evolved a longer lifespan. In contrast, larval diet affected lifespan only in early-reproducing populations: flies adapted to the "low" diet lived longer than those adapted to control diet. Here, we find genomic evidence for strong independent evolutionary responses to either selection regime, as well as loci that diverged in response to both regimes, thus representing genomic interactions between the two. Overall, we find that the genomic basis of longevity is largely independent of dietary adaptation. Differentiated loci were not enriched for "canonical" longevity genes, suggesting that naturally occurring genic targets of selection for longevity differ qualitatively from variants found in mutant screens. Comparing our candidate loci to those from other "evolve and resequence" studies of longevity demonstrated significant overlap among independent experiments. This suggests that the evolution of longevity, despite its presumed complex and polygenic nature, might be to some extent convergent and predictable.
Collapse
Affiliation(s)
- Katja M. Hoedjes
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Joost van den Heuvel
- Laboratory of Genetics, Plant Sciences GroupWageningen UniversityWageningenThe Netherlands
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Current Address: Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Laurent Keller
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Bas J. Zwaan
- Laboratory of Genetics, Plant Sciences GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
2
|
Hammerling U. Retinol as electron carrier in redox signaling, a new frontier in vitamin A research. Hepatobiliary Surg Nutr 2016; 5:15-28. [PMID: 26904553 PMCID: PMC4739943 DOI: 10.3978/j.issn.2304-3881.2016.01.02] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023]
Abstract
Nature uses carotenoids and retinoids as chromophores for diverse energy conversion processes. The key structural feature enabling the interaction with light and other manifestations of electro-magnetism is the conjugated double-bond system that all members of this superfamily share in common. Among retinoids, retinaldehyde alone was long known as the active chromophore of vision in vertebrates and invertebrates, as well of various light-driven proton and ion pumps in Archaea. Until now, vitamin A (retinol) was solely regarded as a biochemical precursor for bioactive retinoids such as retinaldehyde and retinoic acid (RA), but recent results indicate that this compound has its own physiology. It functions as an electron carrier in mitochondria. By electronically coupling protein kinase Cδ (PCKδ) with cytochrome c, vitamin A enables the redox activation of this enzyme. This review focuses on the biochemistry and biology of the PCKδ signaling system, comprising PKCδ, the adapter protein p66Shc, cytochrome c and retinol. This complex positively regulates the conversion of pyruvate to acetyl-coenzyme A (CoA) by the pyruvate dehydrogenase enzyme. Vitamin A therefore plays a key role in glycolytic energy generation. The emerging paradigm of retinol as electron-transfer agent is potentially transformative, opening new frontiers in retinoid research.
Collapse
|
3
|
Shabrova E, Hoyos B, Vinogradov V, Kim YK, Wassef L, Leitges M, Quadro L, Hammerling U. Retinol as a cofactor for PKCδ-mediated impairment of insulin sensitivity in a mouse model of diet-induced obesity. FASEB J 2015; 30:1339-55. [PMID: 26671999 DOI: 10.1096/fj.15-281543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
We previously defined that the mitochondria-localized PKCδ signaling complex stimulates the conversion of pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase complex. We demonstrated in vitro and ex vivo that retinol supplementation enhances ATP synthesis in the presence of the PKCδ signalosome. Here, we tested in vivo if a persistent oversupply of retinol would further impair glucose metabolism in a mouse model of diet-induced insulin resistance. We crossed mice overexpressing human retinol-binding protein (hRBP) under the muscle creatine kinase (MCK) promoter (MCKhRBP) with the PKCδ(-/-) strain to generate mice with a different status of the PKCδ signalosome and retinoid levels. Mice with a functional PKCδ signalosome and elevated retinoid levels (PKCδ(+/+)hRBP) developed the most advanced stage of insulin resistance. In contrast, elevation of retinoid levels in mice with inactive PKCδ did not affect remarkably their metabolism, resulting in phenotypic similarity between PKCδ(-/-)hRBP and PKCδ(-/-) mice. Therefore, in addition to the well-defined role of PKCδ in the etiology of metabolic syndrome, we present a novel PKCδ signaling pathway that requires retinol as a metabolic cofactor and is involved in the regulation of fuel utilization in mitochondria. The distinct role in whole-body energy homeostasis establishes the PKCδ signalosome as a promising target for therapeutic intervention in metabolic disorders.
Collapse
Affiliation(s)
- Elena Shabrova
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Beatrice Hoyos
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Valerie Vinogradov
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Youn-Kyung Kim
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Lesley Wassef
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Michael Leitges
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Loredana Quadro
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Ulrich Hammerling
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Li M, Vienberg SG, Bezy O, O'Neill BT, Kahn CR. Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism. Diabetes 2015; 64:4023-32. [PMID: 26307588 PMCID: PMC4657586 DOI: 10.2337/db14-1891] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Abstract
Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose metabolism by generating mice in which PKCδ was deleted specifically in muscle using Cre-lox recombination. Deletion of PKCδ in muscle improved insulin signaling in young mice, especially at low insulin doses; however, this did not change glucose tolerance or insulin tolerance tests done with pharmacological levels of insulin. Likewise, in young mice, muscle-specific deletion of PKCδ did not rescue high-fat diet-induced insulin resistance or glucose intolerance. However, with an increase in age, PKCδ levels in muscle increased, and by 6 to 7 months of age, muscle-specific deletion of PKCδ improved whole-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ in the regulation of mitochondrial mass at older age. These data indicate an important role of PKCδ in the regulation of insulin sensitivity and mitochondrial homeostasis in skeletal muscle with aging.
Collapse
Affiliation(s)
- Mengyao Li
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Sara G Vienberg
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen University, Copenhagen, Denmark
| | - Olivier Bezy
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Brian T O'Neill
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Lim KM, Kwon JH, Kim K, Noh JY, Kang S, Park JM, Lee MY, Bae ON, Chung JH. Emodin inhibits tonic tension through suppressing PKCδ-mediated inhibition of myosin phosphatase in rat isolated thoracic aorta. Br J Pharmacol 2015; 171:4300-10. [PMID: 24909118 DOI: 10.1111/bph.12804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Dysregulated tonic tension and calcium sensitization in blood vessels has frequently been observed in many cardiovascular diseases. Despite a huge therapeutic potential, little is known about natural products targeting tonic tension and calcium sensitization. EXPERIMENTAL APPROACH We screened natural products for inhibitory effects on vasoconstriction using the rat isolated thoracic aorta and found that an anthraquinone derivative, emodin, attenuated tonic tension. Organ bath system, primary vascular smooth muscle cells, confocal microscopy and Western blot analysis were employed to demonstrate the suppressive effects of emodin on PKCδ-mediated myosin phosphatase inhibition. KEY RESULTS Emodin, an active ingredient of Polygonum multiflorum extract, inhibited phenylephrine-induced vasoconstriction in rat isolated thoracic aorta, and inhibited vasoconstriction induced by 5-HT and endothelin-1. It also generally suppressed vasoconstrictions mediated by voltage-operated, store-operated calcium channels and intracellular calcium store. However, emodin did not affect agonist-induced calcium increases in primary smooth muscle cells. In contrast, post-treatment with emodin following phenylephrine stimulation potently suppressed tonic tension in rat aortic rings. Western blot analysis revealed that emodin inhibited phenylephrine-induced phospho-myosin light chain (pMLC) and the phosphorylation of myosin-targeting subunit and C-kinase-activated protein phosphatase-1 inhibitor (CPI-17). This was mediated by selective inhibition of PKCδ, whereas PKCα was not involved. CONCLUSION AND IMPLICATIONS Emodin attenuates tonic tension through the blockade of PKCδ and CPI-17-mediated MLC-phosphatase inhibition. This new mode of action for the suppression of tonic tension and structural insights into PKCδ inhibition revealed by emodin may provide new information for the development of modulators of tonic tension and for the treatment of hypertension.
Collapse
Affiliation(s)
- Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The insulin receptor (IR) is an important hub in insulin signaling and its activation is tightly regulated. Upon insulin stimulation, IR is activated through autophosphorylation, and consequently phosphorylates several insulin receptor substrate (IRS) proteins, including IRS1-6, Shc and Gab1. Certain adipokines have also been found to activate IR. On the contrary, PTP, Grb and SOCS proteins, which are responsible for the negative regulation of IR, are characterized as IR inhibitors. Additionally, many other proteins have been identified as IR substrates and participate in the insulin signaling pathway. To provide a more comprehensive understanding of the signals mediated through IR, we reviewed the upstream and downstream signal molecules of IR, summarized the positive and negative modulators of IR, and discussed the IR substrates and interacting adaptor proteins. We propose that the molecular events associated with IR should be integrated to obtain a better understanding of the insulin signaling pathway and diabetes.
Collapse
Affiliation(s)
- Yipeng Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | |
Collapse
|
7
|
Bezy O, Tran TT, Pihlajamäki J, Suzuki R, Emanuelli B, Winnay J, Mori MA, Haas J, Biddinger SB, Leitges M, Goldfine AB, Patti ME, King GL, Kahn CR. PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. J Clin Invest 2011; 121:2504-17. [PMID: 21576825 DOI: 10.1172/jci46045] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/30/2011] [Indexed: 12/27/2022] Open
Abstract
C57BL/6J and 129S6/Sv (B6 and 129) mice differ dramatically in their susceptibility to developing diabetes in response to diet- or genetically induced insulin resistance. A major locus contributing to this difference has been mapped to a region on mouse chromosome 14 that contains the gene encoding PKCδ. Here, we found that PKCδ expression in liver was 2-fold higher in B6 versus 129 mice from birth and was further increased in B6 but not 129 mice in response to a high-fat diet. PRKCD gene expression was also elevated in obese humans and was positively correlated with fasting glucose and circulating triglycerides. Mice with global or liver-specific inactivation of the Prkcd gene displayed increased hepatic insulin signaling and reduced expression of gluconeogenic and lipogenic enzymes. This resulted in increased insulin-induced suppression of hepatic gluconeogenesis, improved glucose tolerance, and reduced hepatosteatosis with aging. Conversely, mice with liver-specific overexpression of PKCδ developed hepatic insulin resistance characterized by decreased insulin signaling, enhanced lipogenic gene expression, and hepatosteatosis. Therefore, changes in the expression and regulation of PKCδ between strains of mice and in obese humans play an important role in the genetic risk of hepatic insulin resistance, glucose intolerance, and hepatosteatosis; and thus PKCδ may be a potential target in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Olivier Bezy
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Reznikova TV, Phillips MA, Patterson TJ, Rice RH. Opposing actions of insulin and arsenite converge on PKCdelta to alter keratinocyte proliferative potential and differentiation. Mol Carcinog 2010; 49:398-409. [PMID: 20082316 DOI: 10.1002/mc.20612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
When cultured human keratinocytes reach confluence, they undergo a program of changes replicating features of differentiation in vivo, including exit from the proliferative pool, increased cell size, and expression of specialized differentiation marker proteins. Previously, we showed that insulin is required for some of these steps and that arsenite, a human carcinogen in skin and other epithelia, opposes the differentiation process. In present work, we show that insulin signaling, probably through the IGF-I receptor, is required for the increase in cell size accompanying differentiation and that this is opposed by arsenite. We further examine the impact of insulin and arsenite on PKCdelta, a known key regulator of keratinocyte differentiation, and show that insulin increases the amount, tyrosine phosphorylation, and membrane localization of PKCdelta. All these effects are prevented by exposure of cells to arsenite or to inhibitors of downstream effectors of insulin (phosphotidylinositol 3-kinase and mammalian target of rapamycin). Retrovirally mediated expression of activated PKCdelta resulted in increased loss of proliferative potential after confluence and greatly increased formation of cross-linked envelopes, a marker of keratinocyte terminal differentiation. These effects were prevented by removal of insulin, but not by arsenite addition. We further demonstrate a role for src family kinases in regulation of PKCdelta. Finally, inhibiting epidermal growth factor receptor kinase activity diminished the ability of arsenite to prevent cell enlargement and to suppress insulin-dependent PKCdelta amount and tyrosine 311 phosphorylation. Thus suppression of PKCdelta signaling is a critical feature of arsenite action in preventing keratinocyte differentiation and maintaining proliferative capability.
Collapse
Affiliation(s)
- Tatiana V Reznikova
- Department of Environmental Toxicology, University of California, Davis, California 95616-8588, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Free fatty acids are known to play a key role in promoting loss of insulin sensitivity,thereby causing insulin resistance and type 2 diabetes.However,the underlying mechanism involved is still unclear.In searching for the cause of the mechanism,it has been found that palmitate inhibits insulin receptor (IR)gene expression,leading to a reduced amount of IR protein in insulin target cells. PDK1-independent phosphorylation of PKC(eta) causes this reduction in insulin receptor gene expression.One of the pathways through which fatty acid can induce insulin resistance in insulin target cells is suggested by these studies.We provide an overview of this important area,emphasizing the current status.
Collapse
Affiliation(s)
- Samir Bhattacharya
- Cellular and Molecular Endocrinology Laboratory, Department of Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan 731 235, India.
| | | | | |
Collapse
|
10
|
Stanhope KL, Havel PJ. Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol 2008; 19:16-24. [PMID: 18196982 PMCID: PMC4151171 DOI: 10.1097/mol.0b013e3282f2b24a] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Based on interim results from an ongoing study, we have reported that consumption of a high-fructose diet, but not a high-glucose diet, promotes the development of three of the pathological characteristics associated with metabolic syndrome: visceral adiposity, dyslipidemia, and insulin resistance. From these results and a review of the current literature, we present two potential sequences of events by which fructose consumption may contribute to metabolic syndrome. RECENT FINDINGS The earliest metabolic perturbation resulting from fructose consumption is postprandial hypertriglyceridemia, which may increase visceral adipose deposition. Visceral adiposity contributes to hepatic triglyceride accumulation, novel protein kinase C activation, and hepatic insulin resistance by increasing the portal delivery of free fatty acids to the liver. With insulin resistance, VLDL production is upregulated and this, along with systemic free fatty acids, increase lipid delivery to muscle. It is also possible that fructose initiates hepatic insulin resistance independently of visceral adiposity and free fatty acid delivery. By providing substrate for hepatic lipogenesis, fructose may result in a direct lipid overload that leads to triglyceride accumulation, novel protein kinase C activation, and hepatic insulin resistance. SUMMARY Our investigation and future studies of the effects of fructose consumption may help to clarify the sequence of events leading to development of metabolic syndrome.
Collapse
Affiliation(s)
- Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Nutrition, University of California, Davis, California, USA
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Nutrition, University of California, Davis, California, USA
| |
Collapse
|
11
|
Breitkreutz D, Braiman-Wiksman L, Daum N, Denning MF, Tennenbaum T. Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium. J Cancer Res Clin Oncol 2007; 133:793-808. [PMID: 17661083 DOI: 10.1007/s00432-007-0280-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 07/03/2007] [Indexed: 12/28/2022]
Abstract
The protein kinase C (PKC) family represents a large group of phospholipid dependent enzymes catalyzing the covalent transfer of phosphate from ATP to serine and threonine residues of proteins. Phosphorylation of the substrate proteins induces a conformational change resulting in modification of their functional properties. The PKC family consists of at least ten members, divided into three subgroups: classical PKCs (alpha, betaI, betaII, gamma), novel PKCs (delta, epsilon, eta, theta), and atypical PKCs (zeta, iota/lambda). The specific cofactor requirements, tissue distribution, and cellular compartmentalization suggest differential functions and fine tuning of specific signaling cascades for each isoform. Thus, specific stimuli can lead to differential responses via isoform specific PKC signaling regulated by their expression, localization, and phosphorylation status in particular biological settings. PKC isoforms are activated by a variety of extracellular signals and, in turn, modify the activities of cellular proteins including receptors, enzymes, cytoskeletal proteins, and transcription factors. Accordingly, the PKC family plays a central role in cellular signal processing. Accumulating data suggest that various PKC isoforms participate in the regulation of cell proliferation, differentiation, survival and death. These findings have enabled identification of abnormalities in PKC isoform function, as they occur in several cancers. Specifically, the initiation of squamous cell carcinoma formation and progression to the malignant phenotype was found to be associated with distinct changes in PKC expression, activation, distribution, and phosphorylation. These studies were recently further extended to transgenic and knockout animals, which allowed a more direct analysis of individual PKC functions. Accordingly, this review is focused on the involvement of PKC in physiology and pathology of the skin.
Collapse
Affiliation(s)
- D Breitkreutz
- Division of Differentiation and Carcinogenesis (A080/A110), German Cancer Research Center (DKFZ), POB 101949, Im Neuenheimer Feld 280, 69009, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 2006; 89:32-47. [PMID: 16798038 DOI: 10.1016/j.ymgme.2006.04.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/23/2006] [Accepted: 04/23/2006] [Indexed: 12/14/2022]
Abstract
Recent studies implicate specific PKC isoforms in the insulin-signaling cascade. Insulin activates PKCs alpha, betaII, delta and zeta in several cell types. In addition, as will be documented in this review, certain members of the PKC family may also be activated and act upstream of PI3 and MAP kinases. Each of these isoforms has been shown one way or another either to mimic or to modify insulin-stimulated effects in one or all of the insulin-responsive tissues. Moreover, each of the isoforms has been shown to be activated by insulin stimulation or conditions important for effective insulin stimulation. Studies attempting to demonstrate a definitive role for any of the isoforms have been performed on different cells, ranging from appropriate model systems for skeletal muscle, liver and fat, such as primary cultures, and cell lines and even in vivo studies, including transgenic mice with selective deletion of specific PKC isoforms. In addition, studies have been done on certain expression systems such as CHO or HEK293 cells, which are far removed from the tissues themselves and serve mainly as vessels for potential protein-protein interactions. Thus, a clear picture for many of the isoforms remains elusive in spite of over two decades of intensive research. The recent intrusion of transgenic and precise molecular biology technologies into the research armamentarium has opened a wide range of additional possibilities for direct involvement of individual isoforms in the insulin signaling cascade. As we hope to discuss within the context of this review, whereas many of the long sought-after answers to specific questions are not yet clear, major advances have been made in our understanding of precise roles for individual PKC isoforms in mediation of insulin effects. In this review, in which we shall focus our attention on isoforms in the conventional and novel categories, a clear case will be made to show that these isoforms are not only expressed but are importantly involved in regulation of insulin metabolic effects.
Collapse
|
13
|
Tabata C, Kubo H, Tabata R, Wada M, Sakuma K, Ichikawa M, Fujita S, Mio T, Mishima M. All-trans retinoic acid modulates radiation-induced proliferation of lung fibroblasts via IL-6/IL-6R system. Am J Physiol Lung Cell Mol Physiol 2005; 290:L597-606. [PMID: 16257998 DOI: 10.1152/ajplung.00282.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although high-dose thoracic radiotherapy is an effective strategy for some malignancies including lung cancers and malignant lymphomas, it often causes complications of radiation fibrosis. To study the mechanism initiating tissue fibrosis, we investigated irradiation-induced cytokine production from human lung fibroblastic cells and found that IL-6 production was stimulated by irradiation. IL-6 is an autocrine growth factor for human myeloma cells, and retinoic acid is reported to inhibit their growth. Thus we evaluated the effect of all-trans retinoic acid (ATRA) on cell proliferation of lung fibroblasts along with the cytokine/receptor system. Irradiation-dependent stimulation of IL-6 production was correlated with increased NF-kappaB activity, and ATRA reduced this effect. Irradiation also increased the levels of mRNA for IL-6R and gp130, which were blocked by coexisting ATRA. Furthermore, IL-6 stimulated cell proliferation in dose-dependent manner but was overcome by pharmacological concentration of ATRA. These effects of ATRA were inhibited by rottlerin, which suggests ATRA abolished irradiation-induced stimulation through a PKCdelta-dependent pathway. Finally, we demonstrated that IL-6 transcripts in the lung were upregulated at 2 mo after irradiation, and the effect was inhibited by the intraperitoneal administration of ATRA. ATRA is expected to have an advantage for radiotherapy in its antitumor effects, as reported previously, and to prevent radiotherapy-induced pulmonary injury.
Collapse
Affiliation(s)
- Chiharu Tabata
- Dept. of Respiratory Medicine, Graduate School of Medicine, Kyoto Univ. 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, Japan 606-8507.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Song YH, Godard M, Li Y, Richmond SR, Rosenthal N, Delafontaine P. Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. J Investig Med 2005; 53:135-42. [PMID: 15921033 PMCID: PMC3228637 DOI: 10.2310/6650.2005.00309] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Insulin-like growth factor I (IGF-I) is an anabolic hormone that is known to induce skeletal muscle hypertrophy. However, the signaling pathways mediating IGF-I's hypertrophic effect in vivo are unknown. METHOD The phosphorylation of 46 proteins was investigated by Kinetworks proteomic analysis in the gastrocnemius muscle of transgenic mice overexpressing IGF-I myosin light chain/muscle specific IGF-I (MLC/mlgf-I) and wild-type littermates. RESULTS In the hypertrophic muscle of MLC/mlgf-I mice, we observed increased phosphorylation of phosphoinositide-dependent protein kinase 1 (PDK1; 53% increase), the mammalian target of rapamycin (mTOR; 112% increase), and p70 S6 kinase (p70S6K) (254% increase) but no significant change in Akt phosphorylation (4% decrease). Furthermore, we found reduced phosphorylation of MAP kinase kinase 1 and 2 (MEK1/2) (60% decrease) and of mitogen-activated protein kinase kinases 3 and 6 (MKK3/6) (50% decrease) in muscle from transgenic mice, suggesting that the hypertrophic and mitogenic effects of IGF-I are mediated via distinct signaling pathways in skeletal muscle and that inhibition of the mitogen-activated protein (MAP) kinase pathway may be required for the IGF-I-induced hypertrophic effect. Single-fiber analysis revealed a trend toward a higher percentage of the fast twitch fibers (IIb and IIx) in the transgenic mice. CONCLUSION Persistent overexpression of IGF-I in mice skeletal muscle results in hypertrophy, which is likely mediated via the mTOR/p70S6K pathway, potentially via an Akt-independent signaling pathway.
Collapse
Affiliation(s)
- Yao-Hua Song
- Department of Medicine, Section of Cardiology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| | | | | | | | | | | |
Collapse
|
15
|
Rosenzweig T, Braiman L, Bak A, Alt A, Kuroki T, Sampson SR. Differential effects of tumor necrosis factor-alpha on protein kinase C isoforms alpha and delta mediate inhibition of insulin receptor signaling. Diabetes 2002; 51:1921-30. [PMID: 12031982 DOI: 10.2337/diabetes.51.6.1921] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine that interferes with insulin signaling, but the molecular mechanisms of this effect are unclear. Because certain protein kinase C (PKC) isoforms are activated by insulin, we examined the role of PKC in TNF-alpha inhibition of insulin signaling in primary cultures of mouse skeletal muscle. TNF-alpha, given 5 min before insulin, inhibited insulin-induced tyrosine phosphorylation of insulin receptor (IR), IR substrate (IRS)-1, insulin-induced association of IRS-1 with the p85 subunit of phosphatidylinositol 3-kinase (PI3-K), and insulin-induced glucose uptake. Insulin and TNF-alpha each caused tyrosine phosphorylation and activation of PKCs delta and alpha, but when TNF-alpha preceded insulin, the effects were less than that produced by each substance alone. Insulin induced PKCdelta specifically to coprecipitate with IR, an effect blocked by TNF-alpha. Both PKCalpha and -delta are constitutively associated with IRS-1. Whereas insulin decreased coprecipitation of IRS-1 with PKCalpha, it increased coprecipitation of IRS-1 with PKCdelta. TNF-alpha blocked the effects of insulin on association of both PKCs with IRS-1. To further investigate the involvement of PKCs in inhibitory actions of TNF-alpha on insulin signaling, we overexpressed specific PKC isoforms in mature myotubes. PKCalpha overexpression inhibited basal and insulin-induced IR autophosphorylation, whereas PKCdelta overexpression increased IR autophosphorylation and abrogated the inhibitory effect of TNF-alpha on IR autophosphorylation and signaling to PI3-K. Blockade of PKCalpha antagonized the inhibitory effects of TNF-alpha on both insulin-induced IR tyrosine phosphorylation and IR signaling to PI3-K. We suggest that the effects of TNF-alpha on IR tyrosine phosphorylation are mediated via alteration of insulin-induced activation and association of PKCdelta and -alpha with upstream signaling molecules.
Collapse
Affiliation(s)
- Tovit Rosenzweig
- Faculty of Life Sciences, Gonda-Goldschmied Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
16
|
Braiman L, Alt A, Kuroki T, Ohba M, Bak A, Tennenbaum T, Sampson SR. Activation of protein kinase C zeta induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle. Mol Cell Biol 2001; 21:7852-61. [PMID: 11604519 PMCID: PMC99955 DOI: 10.1128/mcb.21.22.7852-7861.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKC zeta in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKC zeta to associate specifically with the GLUT4 compartments and that PKC zeta together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKC zeta and GLUT4 recycled independently of one another. To further establish the importance of PKC zeta in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKC zeta (DNPKC zeta) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKC zeta was associated with a marked increase in the activity of this isoform. The overexpressed, active PKC zeta coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKC zeta caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKC zeta induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKC zeta disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKC zeta regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.
Collapse
Affiliation(s)
- L Braiman
- Faculty of Life Sciences, Gonda-Goldschmied Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|