1
|
Elbasuony AR, Abdelaziz AE, Mazyed EA, El Maghraby GM. Niosomes for enhanced oral delivery of pioglitazone: in vitro characterization and in vivo evaluation. J Pharm Pharmacol 2025:rgaf015. [PMID: 40266955 DOI: 10.1093/jpp/rgaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES The aim was to investigate oleic acid and nigella oil modified niosomes as novel carriers for enhanced pioglitazone (PGZ) oral delivery. METHODS PGZ was encapsulated into niosomes of cholesterol, tween 80, and span 60 before (F1) and after incorporation of nigella oil (F2) or oleic acid (F3) as membrane fluidizers. Niosomes were characterized for morphology, size, zeta potential, PGZ entrapment, and release. Hypoglycemic effect was also assessed. KEY FINDINGS Vesicles were spherical recording size values of 286.4, 111.3, and 137.5 nm for F1, F2, and F3 niosomes, respectively. The zeta potential predicted good stability of niosomes. The lipophilic nature of PGZ resulted in more than 99% entrapment into niosomes. PGZ niosomes significantly boosted rate and extent of hypoglycemic activity compared with the unprocessed PGZ. This is clear from the Tmax, which was 3.6, 1.5, 0.87, and 0.62 h for control, F1, F2, and F3, respectively. This was associated with increase in the area above hypoglycemia curve, which was 655.8, 1613.6, 1617.2, and 1764.9 mg h/dl for the same formulations, respectively. CONCLUSION Vesicular structure is responsible for enhanced oral bioavailability and drug release is not the limiting factor. Fluidizing material showed potential contribution in enhanced efficacy but requires future verification.
Collapse
Affiliation(s)
- Aya R Elbasuony
- Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Eman A Mazyed
- Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
2
|
Elebyary TT, Sultan AA, Abu-Risha SE, El Maghraby GM, Amin M. Bilosomal Co-Encapsulated Tamoxifen and Propranolol for Potentiated Anti-Breast Cancer Efficacy: In Vitro and In Vivo Investigation. Pharmaceutics 2025; 17:123. [PMID: 39861770 PMCID: PMC11768151 DOI: 10.3390/pharmaceutics17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Tamoxifen (TAM) is an anti-breast cancer drug suffering from acquired resistance development, prompting cancer relapse. Propranolol (PRO)'s repurposing for cancer therapy has gained interest. This work aimed to investigate combined TAM/PRO therapy for potentiating the anti-breast cancer activity of TAM. The work probed bilosomes versus standard noisome for simultaneous oral and intratumor delivery of TAM and PRO. Methods: Bilosomes comprising Span60, cholesterol, and increasing concentrations of bile salts were prepared together with bile salts containing free standard niosomes. The vesicular size and morphology were characterized. The entrapment and release efficiencies of TAM and PRO from the tailored vesicles were determined. The in vivo investigations of anti-tumor activity of TAM with or without PRO employed the solid Ehrlich carcinoma model. Results: The vesicles of all fabricated dispersions were spherical and negatively charged, with a size ranging from 104 to 182 nm. The entrapment efficiency depended on the nature of the drug, recording values ranging from 87.5% to 97.8% for TAM and from 31.0% to 46.8% for PRO. Incorporation of bile salts into vesicles increased TAM and PRO release compared to standard niosomes. Oral administration of combined TAM/PRO bilosomes showed a significant reduction in tumor growth volume compared to that recorded following naked drug administration. Histopathological investigations reflected a significant decline in tumor giant cells and mitotic figures, implying the in vivo capability of the TAM/PRO combination to interfere with cancer cell proliferation and persistence. Conclusions: The overall results demonstrated the impact of repurposed PRO to enhance the anti-breast cancer activity of TAM when both were co-encapsulated into bilosomes.
Collapse
Affiliation(s)
- Toka T. Elebyary
- Department of Pharmaceutical Technology, Faculty of pharmacy, Tanta University, Tanta 31527, Egypt; (T.T.E.); (G.M.E.M.)
- Educational Hospital, Tanta University, Tanta 31527, Egypt
| | - Amal A. Sultan
- Department of Pharmaceutical Technology, Faculty of pharmacy, Tanta University, Tanta 31527, Egypt; (T.T.E.); (G.M.E.M.)
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39911, Saudi Arabia
| | - Sally E. Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Gamal M. El Maghraby
- Department of Pharmaceutical Technology, Faculty of pharmacy, Tanta University, Tanta 31527, Egypt; (T.T.E.); (G.M.E.M.)
- Faculty of Pharmacy, Alsalam University, Tanta 31527, Egypt
| | - Manna Amin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
3
|
Kusumawati I, Kurniawan KO, Rohmania R, Pratama BA, Pratama YA, Rullyansyah S, Warsito MF, Widyowati R, Hestianah EP, Matsunami K. Comparative Study of Liposomal and Ethosomal Formulations of Curcuma heyneana Rhizome Extract in a Transdermal Delivery System. Pharm Nanotechnol 2025; 13:303-312. [PMID: 37937575 DOI: 10.2174/0122117385252518231018161755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 11/09/2023]
Abstract
AIMS This study aimed to develop an anti-aging nanoformulation with Curcuma heyneana extract as bioactive substance. BACKGROUND Curcuma heyneana Valeton & Zipj extract has been proven in previous research to have antioxidant, anti-ageing, anti-inflammatory, and wound healing properties, which makes it a potential bioactive material for anti-ageing and sunscreen cosmetic products. Phytoantioxidants need to penetrate into deeper skin layers to ensure effectivity. Thus, a transdermal delivery system is needed to deliver the extract to a deeper skin layer. OBJECTIVES The objective of the study was to compare the permeability and anti-ageing activity of liposomal and ethosomal formulations of C. heynena rhizome ethanolic extract. METHODS In this study, C. heyneana extract was loaded into a phospholipid vesicular system in the form of liposome and ethosome formulations using the ethanolic injection method. The anti-ageing activity was assessed by analyzing the epidermal thickness, number of sunburn cells, distance between collagen fibers, and number of fibroblasts. While the histologic specimen scoring was carried out for the in vivo penetration study. RESULTS The ethosomal formulation had been found to have better penetration ability since it was able to reach the lower dermis area compared to the liposomes, which only reached the upper dermis. The ethosomal formulation of C. heyneana extract exhibited a better anti-ageing activity based on the parameters of epidermal thickness, sunburn cell count, fibroblast count, and the distance between collagen fibres in rat skin histology. CONCLUSION Ethosomes have been found to be a more proficient carrier system for transdermal delivery of C. heyneana extract compared to liposomes. Meanwhile, their penetration correlated with the effectivity of the formulation, suggesting that the vesicular system enhanced the penetration ability of the extract.
Collapse
Affiliation(s)
- Idha Kusumawati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
- Natural Product Drug Discovery and Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Kresma Oky Kurniawan
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Rohmania Rohmania
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Bernasdito Ade Pratama
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Subhan Rullyansyah
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Mega Ferdina Warsito
- Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor Km 46, Cibinong, 16911, Bogor, Indonesia
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Eka Pramyrtha Hestianah
- Veterinary Anatomy Department, Faculty of Veterinary, Universitas Airlangga, Jl. Mulyorejo, Surabaya, 60155, Indonesia
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
4
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
5
|
Said AR, Arafa MF, El-Dakroury WA, Alshehri S, El Maghraby GM. Bilosomes and Niosomes for Enhanced Intestinal Absorption and In Vivo Efficacy of Cytarabine in Treatment of Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2024; 17:1572. [PMID: 39770414 PMCID: PMC11677554 DOI: 10.3390/ph17121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Cytarabine (CTR) is a hydrophilic anticancer drug used to treat leukemia. It suffers from poor permeability and intestinal metabolism, diminishing its oral bioavailability. BACKGROUND/OBJECTIVES The objective was to develop and evaluate niosomes and bilosomes for enhanced intestinal absorption; hence, oral bioavailability. RESULTS CTR-loaded niosomes and bilosomes with vesicle sizes of 152 and 204.3 nm were successfully prepared with acceptable properties. The presence of bile salts increased the zeta potential of bilosomes. The recorded entrapment efficiency of cytarabine was acceptable for such a hydrophilic drug. CTR-bilosomes showed a pH-dependent drug release pattern with preferred release in pH 6.8. Intestinal absorption behavior indicated a site-dependent CTR absorption pattern with unfavorable absorption in the distal intestine. Niosomal and bilosomal formulations enhanced intestinal absorption parameters with evidence for a predominant paracellular absorption mechanism that bypasses intestinal barriers. The investigation of the anti-leukemic effect of niosomal and bilosomal formulations indicated that both formulations ameliorated the blood parameters, reflecting significant improvement in leukemia treatment compared with the drug solution. Pathological examination of blood films revealed decreased blast cells in peripheral blood in groups treated with tested formulations. METHODS Tested formulations were prepared according to the pro-concentrate method and characterized for particle size, zeta potential, entrapment efficiency, and in vitro release. CTR-loaded niosomes and bilosomes were evaluated for enhanced intestinal absorption utilizing the single-pass in situ intestinal perfusion method in rabbits, and the anti-leukemic effect was assessed using the benzene-induced leukemia model in rats. CONCLUSIONS This study introduced surfactant vesicles for enhanced oral bioavailability of CTR.
Collapse
Affiliation(s)
- Abdelrahman R. Said
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.F.A.); (G.M.E.M.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Mona F. Arafa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.F.A.); (G.M.E.M.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Gamal M. El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (M.F.A.); (G.M.E.M.)
- Faculty of Pharmacy, Alsalam University, Tanta 31527, Egypt
| |
Collapse
|
6
|
Elbasuony AR, Abdelaziz AE, Mazyed EA, El Maghraby GM. Glyceroniosomes for enhanced intestinal absorption of hydrochlorothiazide and lisinopril in their fixed dose combination. Sci Rep 2024; 14:24499. [PMID: 39424875 PMCID: PMC11489662 DOI: 10.1038/s41598-024-74986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
The objective was to investigate the effect of co-administration of hydrochlorothiazide and lisinopril as fixed dose combination on their intestinal absorption. The scope was extended to enhance intestinal absorption of both drugs. In situ rabbit intestinal absorption through the duodenum and jejuno-ileum was used to monitor membrane permeability of both drugs when perfused alone or in combination. Niosomes containing glycerols (glyceroniosomes) were loaded with both drugs. Glyceroniosomes comprised Span 60 or Tween 40 in combination with cholesterol and glycerol were prepared by bath sonication. Glyceroniosomes were characterized with respect to vesicle size, drug entrapment efficiency and were examined using transmission electron microscope (TEM). The prepared vesicles were nanosized spherical vesicles with average size of 202.4 nm and 108.8 nm for span free and span containing glyceroniosomes, respectively. The recorded Zeta potential values suggested good stability of the prepared formulations. Intestinal absorption studies reflected incomplete absorption of hydrocholothiazide and lisinopril correlating with their categorization as class IV and III drugs, respectively. Co-perfusion of both drugs reduced the intestinal absorption of lisinopril. Simultaneous encapsulation in glyceroniosomes enhanced the intestinal absorption of both drugs. Tween based systems were more efficient. The study introduced glyceroniosomes as carriers of simultaneous delivery of hydrochlorothiazide and lisinopril.
Collapse
Affiliation(s)
- Aya R Elbasuony
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Abdelaziz E Abdelaziz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Eman A Mazyed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
7
|
Han W, Liu F, Muhammad M, Liu G, Li H, Xu Y, Sun S. Application of biomacromolecule-based passive penetration enhancement technique in superficial tumor therapy: A review. Int J Biol Macromol 2024; 272:132745. [PMID: 38823734 DOI: 10.1016/j.ijbiomac.2024.132745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Transdermal drug delivery (TDD) has shown great promise in superficial tumor therapy due to its noninvasive and avoidance of the first-pass effect. Especially, passive penetration enhancement technique (PPET) provides the technical basis for TDD by temporarily altering the skin surface structure without requiring external energy. Biomacromolecules and their derived nanocarriers offer a wide range of options for PPET development, with outstanding biocompatibility and biodegradability. Furthermore, the abundant functional groups on biomacromolecule surfaces can be modified to yield functional materials capable of targeting specific sites and responding to stimuli. This enables precise drug delivery to the tumor site and controlled drug release, with the potential to replace traditional drug delivery methods and make PPET-related personalized medicine a reality. This review focuses on the mechanism of biomacromolecules and nanocarriers with skin, and the impact of nanocarriers' surface properties of nanocarriers on PPET efficiency. The applications of biomacromolecule-based PPET in superficial tumor therapy are also summarized. In addition, the advantages and limitations are discussed, and their future trends are projected based on the existing work of biomacromolecule-based PPET.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, China.
| | - Mehdi Muhammad
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China.
| |
Collapse
|
8
|
Abo Kamer AM, Amer NM, Abdelmegeed AA, El Maghraby GM, Gamaleldin NM. Surfactant nanovesicles for augmented antibacterial activity against carbapenemase resistant enterobacteriaceae and extended spectrum beta-lactamases producing bacteria: in vitro and in vivo evaluation. BMC Microbiol 2023; 23:73. [PMID: 36927445 PMCID: PMC10018850 DOI: 10.1186/s12866-023-02812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
The ubiquitous emergence of bacterial resistance is a challenging problem in infectious diseases treatment. Recently, new research lines employed nano-drug delivery systems to enhance antibacterial activity of the existing antibiotics. Accordingly, the objective of this study is to optimize surfactant nanovesicles to improve the antimicrobial effect of meropenem, ertapenem and tigecycline against Carbapenemase Resistant Enterobacteriaceae (CRE) and extended spectrum beta-lactamases producing bacteria (ESBL). Klebsiella pneumoniae and Escherichia coli were used as the test organisms. In vivo and in vitro evaluations were conducted to prove the efficacy of niosome-encapsulated drugs formulations. The results revealed that surfactant vesicles were able to reduce the MIC values of the tested drugs by nine-fold change compared to their free forms. Scanning Electron Microscope (SEM) showed possible adhesion/fusion of the vesicles encapsulated drugs on the bacterial cells compared to its solution. In vivo investigations using animal skin model confirmed the superiority of nanovesicles drug encapsulation regarding both wound size and histopathological examination. Wound surface area was reduced from 24.6mm2 in absence of drug to reach 13.9, and 6.2mm2 in presence of ertapenem solution or niosomes, respectively. Nanovesicular formulations can be considered as effective drug delivery systems that can diminish bacterial resistance against β-lactams antibiotics.
Collapse
Affiliation(s)
- Amal M. Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Noha M. Amer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Gamal M. El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk, Cairo 11837 Egypt
- The Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), El-Sherouk, Cairo Egypt
| |
Collapse
|
9
|
Dwiastuti R, Radifar M, Putri DCA, Riswanto FDO, Hariono M. In silico modeling and empirical study of 4- n-Butylresorcinol nanoliposome formulation. J Biomol Struct Dyn 2022; 40:10603-10613. [PMID: 34238124 DOI: 10.1080/07391102.2021.1946430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A study to incorporate in silico modeling with an empirical experiment has been carried out to formulate nanoliposome containing 4-n-butylresorcinol as the active ingredient. The in silico modeling was performed using molecular dynamics simulation followed by radius of gyration observation to provide insight into the mechanisms of 4-n-butylresorcinol stabilization by liposome due to their nano-size. The empirical experiment was conducted by formulating the nanoliposome using soy lecithin phospholipid formula as suggested by the in silico modeling followed by determining its particle size as well as its shape. From their incorporation, it was found that 3200 phospholipid molecules were selected in formulating nanoliposome containing 4-n-butylresorcinol. The results of the nanoliposomes size observation in the modeling of 3200 lipid molecules was 87.01 (± 0.59) nm, whereas the size from the empirical study was 87.57 (± 0.06) nm. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rini Dwiastuti
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Muhammad Radifar
- Medical Laboratory Technology, Guna Bangsa Institute of Health Science, Yogyakarta, Indonesia
| | - Dina Christin Ayuning Putri
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Florentinus Dika Octa Riswanto
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Maywan Hariono
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Kumar B, Pandey M, Aggarwal R, Sahoo PK. A comprehensive review on invasomal carriers incorporating natural terpenes for augmented transdermal delivery. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Transdermal drug delivery is one of the most widely used drug administration routes, which offer several advantages over other routes of drug delivery. The apical layer of the skin called the stratum corneum is the most dominant obstacle in the transdermal drug delivery, which restricts the passage of drugs across the skin. Considerable strategies have been applied to enhance the rate of permeation across the epithelial cells; however, the most widely used strategy is the use of sorption boosters, also known as permeation enhancers.
Main body
Terpenes were considered as efficient skin permeation enhancers and are generally recognized as safe as per Food and Drug Administration. Terpenes improve the permeability of drugs either by destructing the stratum corneum’s tightly packed lipid framework, excessive diffusivity of drug in cell membrane or by rampant drug partitioning into epithelial cells. Various vesicular systems have been developed and utilized for the transdermal delivery of many drugs. Invasomes are one such novel vesicular system developed which are composed of phospholipids, ethanol and terpenes. The combined presence of ethanol and terpenes provides exceptional flexibility to the vesicles and improves the permeation across the barrier offered due to the stratum corneum as both ethanol and terpenes act as permeation enhancers. Therefore, utilization of invasomes as carriers to facilitate higher rate of drug permeation through the skin can be a very useful approach to improve transdermal drug delivery of a drug.
Conclusion
The paper focuses on a broad updated view of terpenes as effective permeation enhancers and invasomes along with their applications in the pharmaceutical formulations.
Collapse
|
11
|
Permeation enhancers loaded bilosomes for improved intestinal absorption and cytotoxic activity of doxorubicin. Int J Pharm 2022; 630:122427. [PMID: 36435504 DOI: 10.1016/j.ijpharm.2022.122427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The clinical utility of doxorubicin is compromised due to dose related toxic side effects and limited oral bioavailability with no oral formulation being marketed. Enhancement of intestinal absorption and magnification of cytotoxicity can overcome these limitations. Accordingly, the objective was to probe penetration enhancers, bilosomes and their combinations for enhanced intestinal absorption and improved cytotoxicity of doxorubicin. Piperine and dipyridamole were tested as enhancers alone or encapsulated in bilosomes comprising Span60, cholesterol and bile salts. Bilosomes were nanosized spherical vesicles with negative zeta potential and were able to entrap doxorubicin with efficiency ranging from 45.3 % to 53 %. Intestinal absorption studies utilized in-situ rabbit intestinal perfusion which revealed site dependent doxorubicin absorption correlating with regional distribution of efflux transporters. Co-perfusion with the enhancer increased intestinal absorption with further augmentation after bilosomal encapsulation. The latter increased the % fraction absorbed by 4.5-6 and 1.8-2.5-fold from jejuno-ileum and colon, respectively, depending on bilosomes composition. Additionally, doxorubicin cytotoxicity against breast cancer cells (MCF-7) was significantly improved after bilosomal encapsulation and the recorded doxorubicin IC50 value was reduced from 13.3 μM to 0.1 μM for the best formulation. The study introduced bilosomes encapsulating absorption enhancers as promising carriers for enhanced cytotoxicity and oral absorption of doxorubicin.
Collapse
|
12
|
Gupta N, Gupta GD, Singh D. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1006628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Topical drug delivery presents a novel substitute to the conventional drug-distribution routes of oral delivery and injection. Apart from the simplicity and non-invasiveness, the skin also serves as a “reservoir” that sustains administration over a period of days. Nanocarriers provide new potential for the treatment of skin disease. The skin’s barrier function offers a considerable obstacle for the potential nanocarriers to infiltrate into the tissue. However, the barrier is partially weakened in case of damage or inflammation, as in the case of skin cancer. Nanoparticles may promote the penetration of the skin. Extensive research has been done into producing nanoparticles for topical distribution; nevertheless, relatively little progress has been achieved in transferring them to the clinic for treating skin malignancies. The prior art features the critical concepts of skin malignancies and techniques in current clinical care. The present review gives a complete viewpoint of the numerous nanoparticle technologies studied for the topical treatment of skin malignancies and outlines the hurdles that hamper its advancement from the bench to the bedside. The review also intends to give knowledge of the routes that control nanoparticle penetration into the skin and their interactions inside the tissue.
Collapse
|
13
|
Lipid-Drug Conjugates and Nanoparticles for the Cutaneous Delivery of Cannabidiol. Int J Mol Sci 2022; 23:ijms23116165. [PMID: 35682847 PMCID: PMC9180973 DOI: 10.3390/ijms23116165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Lipid nanoparticles are currently used to deliver drugs to specific sites in the body, known as targeted therapy. Conjugates of lipids and drugs to produce drug-enriched phospholipid micelles have been proposed to increase the lipophilic character of drugs to overcome biological barriers. However, their applicability at the topical level is still minimal. Phospholipid micelles are amphiphilic colloidal systems of nanometric dimensions, composed of a lipophilic nucleus and a hydrophilic outer surface. They are currently used successfully as pharmaceutical vehicles for poorly water-soluble drugs. These micelles have high in vitro and in vivo stability and high biocompatibility. This review discusses the use of lipid-drug conjugates as biocompatible carriers for cutaneous application. This work provides a metadata analysis of publications concerning the conjugation of cannabidiol with lipids as a suitable approach and as a new delivery system for this drug.
Collapse
|
14
|
Does the technical methodology influence the quality attributes and the potential of skin permeation of Luliconazole loaded transethosomes? J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Topical carvedilol delivery prevents UV-induced skin cancer with negligible systemic absorption. Int J Pharm 2022; 611:121302. [PMID: 34793935 PMCID: PMC8692451 DOI: 10.1016/j.ijpharm.2021.121302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023]
Abstract
The β-blocker carvedilol prevents ultraviolet (UV)-induced skin cancer, but systemic drug administration may cause unwanted cadiovascular effects. To overcome this limitation, a topical delivery system based on transfersome (T-CAR) was characterized ex vivo and in vivo. T-CAR was visualized by Transmission Electron Microscopy as nanoparticles of spherical and unilamellar structure. T-CAR incorporated into carbopol gel and in suspension showed similar drug permeation and deposition profiles in Franz diffusion cells loaded with porcine ear skin. In mice exposed to a single dose UV, topical T-CAR gel (10 µM) significantly reduced UV-induced skin edema and cyclobutane pyrimidine dimer formation. In mice exposed to chronic UV radiation for 25 weeks, topical T-CAR gel (10 µM) significantly delayed the incidence of tumors, reduced tumor number and burden, and attenuated Ki-67 and COX-2 expression. The T-CAR gel was subsequently examined for skin deposition, systemic absorption and cardiovascular effects in mice. In mice treated with repeated doses of T-CAR gel (100 µM), the drug was undetectable in plasma, the heart rate was unaffected, but skin deposition was significantly higher than mice treated with oral carvedilol (32 mg/kg/day). These data indicate that the carbopol-based T-CAR gel holds great promise for skin cancer prevention with negligible systemic effects.
Collapse
|
16
|
Mombeiny R, Tavakol S, Kazemi M, Mehdizadeh M, Hasanzadeh A, Karimi Babaahmadi M, Abedi A, Keyhanvar P. Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study. IET Nanobiotechnol 2021; 15:710-718. [PMID: 34694760 PMCID: PMC8806119 DOI: 10.1049/nbt2.12069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Prescription of anti-inflammatory drugs may be considered as a promising strategy in chronic wound healing where the inflammatory disturbance has delayed the healing process. It seems that hydrocortisone 17-butyrate (HB17) would be promising in the form of a nano-formulation to enhance drug delivery efficacy. In the present study, transdermal delivery of nano-HB17 in combination with iontophoresis was investigated ex vivo. Ethosomal-HB17 was synthesised using lecithin, ethanol and cholesterol with a different ratio by hot method. The negative ethosomal-HB17 particle size was around 244 ± 4.3 nm with high stability of up to 30 days. Additionally, evaluated entrapment efficiency of HB17 in ethosomes by high performance liquid chromatography was 40.6 ± 2.21%. Moreover, the permeation speed and amount of H17B in complete-thickness rat skin in the presence and absence of iontophoresis showed that the penetration of free H17B and ethosomal-H17B formulations were zero and 7.98 μg/cm2 in 120 min, respectively. Whereas in the case of applying iontophoresis, permeation amount obtained was zero and 19.69 μg/cm2 in 30 min in free H17B and ethosomal-H17B formulations, respectively. It has been concluded that transdermal delivery of ethosomal-H17B is an effective strategy to enhance drug delivery and it will be improved when it is combined with iontophoresis.
Collapse
Affiliation(s)
- Reza Mombeiny
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Kazemi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimi Babaahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Peyman Keyhanvar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Life Sciences Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran.,Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran.,Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
17
|
Ultradeformable vesicles: concepts and applications relating to the delivery of skin cosmetics. Ther Deliv 2021; 12:739-756. [PMID: 34519219 DOI: 10.4155/tde-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Skin aging is a phenomenon resulting in reduced self-confidence, thus becoming a major factor in social determinants of health. The use of active cosmetic ingredients can help prevent skin aging. Transfersomes are well known to be capable of deeply penetrating the dermis. This scoping review provides an insight into transfersomes and their prospective use in anti-aging cosmetics. Numerous reports exist highlighting the successful skin delivery of therapeutic agents such as high-molecular-weight, poorly water soluble and poorly permeable active ingredients by means of transfersomes. Moreover, in vitro and in vivo studies have indicated that transfersomes increase the deposition, penetration and efficacy of active ingredients. However, the use of transfersomes in the delivery of active cosmetic ingredients is limited. Considering their similar physicochemical properties, transfersomes should possess considerable potential as a delivery system for anti-aging cosmetics.
Collapse
|
18
|
Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release 2021; 337:589-611. [PMID: 34364919 DOI: 10.1016/j.jconrel.2021.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Skin-cancer is the commonest malignancy affecting huge proportion of the population, reaching heights in terms of morbidity. The treatment strategies are presently focusing on surgery, radiation and chemotherapy, which eventually cause destruction to unaffected cells. To overcome this limitation, wide range of nanoscaled materials have been recognized as potential carriers for delivering selective response to cancerous cells and neoplasms. Nanotechnological approach has been tremendously exploited in several areas, owing to their functional nanometric dimensions. The alarming incidence of skin cancer engenders burdensome effects worldwide, which is further awakening innovational medicinal approaches, accompanying target specific drug delivery tools for coveted benefits to provide reduced toxicity and tackle proliferative episodes of skin cancer. The developed nanosystems for anti-cancer agents include liposomes, ethosomes, nanofibers, solid lipid nanoparticles and metallic nanoparticles, which exhibit pronounced outcomes for skin carcinoma. In this review, skin cancer with its sub-types is explained in nutshell, followed by compendium of specific nanotechnological tools presented, in addition to therapeutic applications of drug-loaded nano systems for skin cancer.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
19
|
Experimental Design Based Optimization and Ex Vivo Permeation of Desmopressin Acetate Loaded Elastic Liposomes Using Rat Skin. Pharmaceutics 2021; 13:pharmaceutics13071047. [PMID: 34371738 PMCID: PMC8309062 DOI: 10.3390/pharmaceutics13071047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022] Open
Abstract
The study aimed to develop elastic-liposome-based transdermal delivery of desmopressin acetate for enhanced permeation to control enuresis, central diabetes insipidus, and traumatic injury. Elastic liposomes (ELs)-loaded desmopressin acetate was prepared, optimized, and evaluated for improved transdermal permeation profiles using rat skin. Full factorial design with independent factors (X1 for lipid and X2 for surfactant) at three levels was used against four responses (Y1, Y2, Y3, and Y4) (dependent variables). Formulations were characterized for vesicle size, polydispersity index (PDI), zeta potential, % entrapment efficiency (% EE), in vitro drug release, in vitro hemolysis potential, ex vivo drug permeation and drug deposition (DD), and ex vivo vesicle–skin interaction using scanning electron microscopy studies. The optimized formulation ODEL1 based on desirability function was found to have vesicle size, % EE, % DR, and permeation flux values of 118.7 nm, 78.9%, 75.1%, and 5.3 µg/h·cm2, respectively, which were close to predicted values. In vitro release profiles indicated slow and sustained delivery. Permeation flux values of ODEL1 and ODEL2 were 5.3 and 3.1 µg/h·cm2, respectively, which are 7.5- and 4.4-fold higher as compared to DS (0.71 µg/h·cm2). The obtained flux was relatively higher than the clinical target value of the drug for therapeutic efficacy. Moreover, the DD value of ODEL1 was significantly higher than ODEL2 and DS. Hemocompatibility study confirmed safety concerns. Finally, vesicle–skin interaction corroborated mechanistic views of permeation through rat skin. Conclusively, the transdermal delivery may be a suitable alternative to oral and nasal delivery to treat nocturnal enuresis, central diabetes insipidus, hemophilia A and von Willebrand’s disease, and any traumatic injuries.
Collapse
|
20
|
Bi-Functional Radiotheranostics of 188Re-Liposome-Fcy-hEGF for Radio- and Chemo-Therapy of EGFR-Overexpressing Cancer Cells. Int J Mol Sci 2021; 22:ijms22041902. [PMID: 33672989 PMCID: PMC7918434 DOI: 10.3390/ijms22041902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) specific therapeutics is of great importance in cancer treatment. Fcy-hEGF fusion protein, composed of yeast cytosine deaminase (Fcy) and human EGF (hEGF), is capable of binding to EGFR and enzymatically convert 5-fluorocytosine (5-FC) to 1000-fold toxic 5-fluorocuracil (5-FU), thereby inhibiting the growth of EGFR-expressing tumor cells. To develop EGFR-specific therapy, 188Re-liposome-Fcy-hEGF was constructed by insertion of Fcy-hEGF fusion protein onto the surface of liposomes encapsulating of 188Re. Western blotting, MALDI-TOF, column size exclusion and flow cytometry were used to confirm the conjugation and bio-activity of 188Re-liposome-Fcy-hEGF. Cell lines with EGFR expression were subjected to treat with 188Re-liposome-Fcy-hEGF/5-FC in the presence of 5-FC. The 188Re-liposome-Fcy-hEGF/5-FC revealed a better cytotoxic effect for cancer cells than the treatment of liposome-Fcy-hEGF/5-FC or 188Re-liposome-Fcy-hEGF alone. The therapeutics has radio- and chemo-toxicity simultaneously and specifically target to EGFR-expression tumor cells, thereby achieving synergistic anticancer activity.
Collapse
|
21
|
Carvalheiro M, Vieira J, Faria-Silva C, Marto J, Simões S. Amphotericin B-loaded deformable lipid vesicles for topical treatment of cutaneous leishmaniasis skin lesions. Drug Deliv Transl Res 2021; 11:717-728. [PMID: 33534106 DOI: 10.1007/s13346-021-00910-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 11/26/2022]
Abstract
Cutaneous leishmaniasis (CL), the most common clinical form of human leishmaniasis, is a non-fatal chronic and disabling disease characterized by erythema and nodular or ulcerative skin lesions that may cause permanent scars and disfigurement. Topical drug delivery represents a simple and efficacious approach to treat CL skin lesions. The association of drugs with nanocarrier systems enhances their permeation properties and increases the drug amount available in the dermis. Here, a deformable lipid vesicle (DLV) was optimized for the topical administration of Amphotericin B (AmB), with the aim of studying and understanding the advantages of this type of delivery system in the transport of a drug through the skin layers. AmB-DVL were characterized in terms of incorporation parameters, stability, and elasticity, and evaluated in vitro for their permeation properties, cytotoxicity, and anti-leishmanial activity. The AmB-DVL exhibited a translucent fluid gel-like aspect and a yellow color, a mean size of 132 nm (PdI ≤ 0.1), zeta potential values around zero (mV), and an AmB incorporation efficiency of 95%. Permeation and penetration assays suggest that AmB-DLV are suitable for topical administration since AmB was detected in the epidermal and dermal skin layers. AmB-DVL was able to reduce promastigote viability in a dose-dependent manner, as well as the number of intracellular amastigotes in THP-1 macrophages. Selectivity index (SI) value for AmB-DLV was considerably higher than that observed for free AmB. Results suggest that DLV may represent an attractive vehicle for dermal delivery of AmB and a new low-cost and safe therapeutic option in CL treatment.
Collapse
Affiliation(s)
- Manuela Carvalheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jennifer Vieira
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Catarina Faria-Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
22
|
Balata GF, Faisal MM, Elghamry HA, Sabry SA. Preparation and Characterization of Ivabradine HCl Transfersomes for Enhanced Transdermal Delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Tiwari R, Tiwari G, Singh R. Allopurinol Loaded Transferosomes for the Alleviation of Symptomatic After-effects of Gout: An Account of Pharmaceutical Implications. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885515666200120124214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The present study assessed the transdermal potential of transferosomes
loaded with allopurinol for the treatment of gout.
Methods:
Transferosomes of allopurinol were composed of different ratios of tween-80, soya
lecithin and solvent using a thin-film hydration method. Transferosomes were characterized for
Scanning Electron Microscopy (SEM), zeta potential, % entrapment efficiency (%EE), Fourier
Transform Infrared Spectroscopy (FTIR), in-vitro drug release and kinetics as well as stability.
Then, optimized formulation was incorporated in gel and evaluated for viscosity, pH, extrudability,
homogeneity, skin irritation study, spreadability, ex vivo skin permeation study, flux, and stability.
Results:
SEM studies suggested that vesicles were spherical and zeta potential were in the range of
-11.4 mV to -29.6 mV and %EE was 52.4- 83.87%. FTIR study revealed that there was no interaction
between allopurinol and excipients during the preparation of transferosomes. The cumulative
percentage of drug release from various transferosomes was ranged from 51.87 to 81.87%. A transferosomal
gel of F8 formulation was prepared using dispersion method reported pseudoplastic
rheological behavior, optimum pH, spreadability and maximum drug permeation i.e. 79.84% with
flux 13.06 g/cm2/hr, followed zero-order release kinetics. Irritation and in-vivo studies of optimized
transferosomal gel G8 on rabbits revealed better results than the standard allopurinol.
Conclusion:
This research suggested that allopurinol loaded transferosomal gel can be potentially
used as a transdermal drug delivery system for the treatment of gout.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Pranveer Singh Institute of Technology, Pharmaceutics, Kanpur, Uttar Pradesh, India
| | - Gaurav Tiwari
- Pranveer Singh Institute of Technology, Pharmaceutics, Kanpur, Uttar Pradesh, India
| | - Rachna Singh
- Pranveer Singh Institute of Technology, Pharmaceutics, Kanpur, Uttar Pradesh, India
| |
Collapse
|
24
|
Chen M, Shamim MA, Shahid A, Yeung S, Andresen BT, Wang J, Nekkanti V, Meyskens FL, Kelly KM, Huang Y. Topical Delivery of Carvedilol Loaded Nano-Transfersomes for Skin Cancer Chemoprevention. Pharmaceutics 2020; 12:E1151. [PMID: 33260886 PMCID: PMC7761092 DOI: 10.3390/pharmaceutics12121151] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
The β-blocker carvedilol has been shown to prevent skin carcinogenesis in vitro and in vivo. Since systemic absorption of the β-blocker may cause cardiovascular disturbance, we developed a carvedilol loaded transfersome for skin-targeted delivery. Transfersomes were prepared using phospholipids and surfactants at various ratios and characterized. One formulation (F18) selected for further analysis was composed of carvedilol, soy phosphatidylcholine, and Tween-80 at a ratio of 1:3:0.5, which had a particle size of 115.6 ± 8.7 nm, a zeta potential of 11.34 ± 0.67 mV, and an encapsulation efficiency of 93.7 ± 5.1%. F18 inhibited EGF-induced neoplastic transformation of mouse epidermal JB6 P+ cells at non-toxic concentrations, while only high concentrations induced cytotoxicity in JB6 P+ and human keratinocytes HaCaT. Compared to the free drug, F18 released through the dialysis membrane and permeated through the porcine ear skin at a slower rate, but similarly depositing the drug in the epidermis and dermis of the skin. Consistently, surface application of F18 on reconstructed full-thickness human skin showed slower drug permeation, while it suppressed ultraviolet-induced DNA damage, inflammatory gene expression, and apoptosis. These data indicate that transfersome is a promising topical delivery system of carvedilol for preventing ultraviolet-induced skin damage and carcinogenesis.
Collapse
Affiliation(s)
- Mengbing Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (M.C.); (M.A.S.); (A.S.); (S.Y.); (B.T.A.); (J.W.); (V.N.)
| | - Md Abdullah Shamim
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (M.C.); (M.A.S.); (A.S.); (S.Y.); (B.T.A.); (J.W.); (V.N.)
| | - Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (M.C.); (M.A.S.); (A.S.); (S.Y.); (B.T.A.); (J.W.); (V.N.)
| | - Steven Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (M.C.); (M.A.S.); (A.S.); (S.Y.); (B.T.A.); (J.W.); (V.N.)
| | - Bradley T. Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (M.C.); (M.A.S.); (A.S.); (S.Y.); (B.T.A.); (J.W.); (V.N.)
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (M.C.); (M.A.S.); (A.S.); (S.Y.); (B.T.A.); (J.W.); (V.N.)
| | - Vijaykumar Nekkanti
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (M.C.); (M.A.S.); (A.S.); (S.Y.); (B.T.A.); (J.W.); (V.N.)
| | - Frank L. Meyskens
- Departments of Medicine and Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA;
| | - Kristen M. Kelly
- Department of Dermatology, University of California, Irvine, CA 92697, USA;
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (M.C.); (M.A.S.); (A.S.); (S.Y.); (B.T.A.); (J.W.); (V.N.)
| |
Collapse
|
25
|
Sundralingam U, Muniyandy S, Radhakrishnan AK, Palanisamy UD. Ratite oils for local transdermal therapy of 4-OH tamoxifen: development, characterization, and ex vivo evaluation. J Liposome Res 2020; 31:217-229. [PMID: 32648792 DOI: 10.1080/08982104.2020.1777155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The anti-inflammatory property of ratite oils as well as its ability to act as a penetration enhancer makes it an ideal agent to be used in transdermal formulations. The present study aims to develop an effective transfersomal delivery of 4-hydroxytamoxifen (4-OHT), an anti-cancer drug, using ratite oil as a carrier agent for the treatment of breast cancer (BC). The 4-OHT transfersomes were prepared with and without ratite oils using soy phosphatidylcholine and three different edge activators (EAs) in five different molar ratios using the rotary evaporation-ultrasonication method. Optimal transfersome formulations were selected using physical-chemical characterization and ex vivo studies. Results from physical-chemical characterization of the developed formulations found sodium taurocholate to be the most suitable EA, which recorded highest entrapment efficiency of 95.1 ± 2.70% with 85:15, (w/w) and lowest vesicle size of 82.3 ± 0.02 nm with 75:25, (w/w) molar ratios. TEM and DSC studies showed that the vesicles were readily identified and present in a nearly perfect spherical shape. In addition, formulations with emu oil had better stability than formulations with ostrich oil. Physical stability studies at 4 °C showed that ratite oil transfersomes were stable up to 4 weeks, while transfersomes without ratite oils were stable for 8 weeks. Ex vivo permeability studies using porcine skin concluded that 4-OHT transfersomal formulations with (85:15, w/w) without emu oil have the potential to be used in transdermal delivery approach to enhance permeation of 4-OHT, which may be beneficial in the treatment of BC.
Collapse
Affiliation(s)
- Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| | | | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| | - Uma D Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| |
Collapse
|
26
|
Provesicular elastic carriers of Simvastatin for enhanced wound healing activity: An in-vitro/in-vivo study. Int J Pharm 2020; 585:119470. [DOI: 10.1016/j.ijpharm.2020.119470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/26/2022]
|
27
|
Lai F, Caddeo C, Manca ML, Manconi M, Sinico C, Fadda AM. What's new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int J Pharm 2020; 583:119398. [DOI: 10.1016/j.ijpharm.2020.119398] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/24/2023]
|
28
|
Han M, Ji X, Li J, Ge Z, Luo B, Zhou K, Wang Q, Sun X, Zhang W, Li J. Lipoprotein-Inspired Nanocarrier Composed of Folic Acid-Modified Protein and Lipids: Preparation and Evaluation of Tumor-Targeting Effect. Int J Nanomedicine 2020; 15:3433-3445. [PMID: 32523342 PMCID: PMC7234978 DOI: 10.2147/ijn.s241448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Reconstituted lipoproteins (rLips) based on endogenous lipid nanostructures has been increasingly regarded as an excellent and promising antitumor drug delivery. However, some problems relating to the main component, apolipoprotein, for instance, rare source, unaffordable price, and low specificity of relevant receptor expression, become chief obstacles to its broad development and application. Purpose The primary aim of this study is to develop biomimetic rLips by utilizing folic acid (FA)-modified bovine serum albumin (BSA) as a replacement for apolipoprotein and demonstrate its tumor targeting and antitumor efficacy. Methods The amino groups of BSA were covalently conjugated with FA through the amide reaction. PTX-loaded nanostructured lipid carrier (termed as P-NLC) consisting of phospholipid, cholesteryl ester, triglyceride and cholesterol was prepared by the emulsification–evaporation method and utilized as the lipid core. FA-modified BSA (FA-BSA) was characterized for the protein substitute degree and attached with NLC by incubation-insert method to form the lipoprotein-mimic nanocomplex (termed as PFB-rLips). The morphology of nanoparticles was observed under transmission electron microscopy (TEM), and the particle size and zeta potential were determined using dynamic light scattering. In vitro release behavior of PTX from PFB-rLips was investigated with the dialysis method. Hemolysis tests were conducted to evaluate the biosecurity of PFB-rLips. Cell uptake and cytotoxicity assays were performed on human hepatocytes (LO2) and human hepatoma cells (HepG2). Tumor targeting was assessed using in vivo imaging system in H22 tumor-bearing mice model. Antitumor efficacy in vivo was investigated and compared between Taxol® (paclitaxel) formulation and PTX-incorporated nanoparticles in the same tumor model. Results A fixed molar ratio 50:1 of FA to BSA was chosen as the optimal input ratio based on the balance between appropriate degree of protein substitution and amphiphilicity of FA-BSA. The morphology of FB-rLips exhibited as a homogeneous spherical structure featured by lipid cores surrounded with a cloudy protein shell observed under TEM. The particle size, zeta potential and encapsulation efficiency were 174.6±3.2 nm, −17.26±0.9 mV and 82.2±2.4%, respectively. In vitro release behavior of PTX from PFB-rLips was slow and sustained. The uptake of FB-rLips was much higher in HepG2 cells than in LO2 cells. Furthermore, the uptake of FB-rLips was significantly higher than that of rLips without FA involved (termed as B-rLips) and NLC in HepG2 cells. Hemolysis and cytotoxicity assays showed good biocompatibility of FB-rLips. The internalization mechanism of FB-rLips mainly depended on clathrin-mediated and caveolin-mediated endocytosis coupling with energy consumption, and FA receptors expressed on tumor cells played a critical role in cellular uptake process. CCK-8 studies demonstrated that PFB-rLips exhibited significantly better tumor killing ability than Taxol® (paclitaxel) formulation in vitro. Moreover, FB-rLips produced more excellent tumor-targeting properties than NLC through in vivo imaging assays. On the basis of this, PTX-loaded FB-rLips also performed more remarkable anticancer activity than other therapy groups in H22 tumor-bearing mice. Conclusion FB-rLips would serve as a potential nanocarrier for improving tumor-targeting and therapeutic efficacy while reducing the side effects on normal tissues and organs.
Collapse
Affiliation(s)
- Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Xiaoman Ji
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Bin Luo
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Kai Zhou
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Xin Sun
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| |
Collapse
|
29
|
Invasome: A Novel Nanocarrier for Transdermal Drug Delivery. NANOMATERIALS 2020; 10:nano10020341. [PMID: 32079276 PMCID: PMC7075144 DOI: 10.3390/nano10020341] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/28/2023]
Abstract
Invasomes are novel vesicular systems that exhibit improved transdermal penetration compared to conventional liposomes. These vesicles contain phospholipids, ethanol, and terpene in their structures; these components confer suitable transdermal penetration properties to the soft vesicles. The main advantages of these nanovesicles lie in their ability to increase the permeability of the drug into the skin and decrease absorption into the systemic circulation, thus, limiting the activity of various drugs within the skin layer. In this paper, several features of invasomes, including their structure, mechanism of penetration, applications, characterization, and potential advantages in dermal drug delivery, are highlighted. Overall, this review suggests that enhanced transdermal penetration of drugs using invasomes provides an appropriate opportunity for the development of lipid vesicular carriers.
Collapse
|
30
|
Tran PHL, Duan W, Lee BJ, Tran TTD. Nanogels for Skin Cancer Therapy via Transdermal Delivery: Current Designs. Curr Drug Metab 2020; 20:575-582. [PMID: 31237201 DOI: 10.2174/1389200220666190618100030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/11/2019] [Accepted: 05/31/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Recently, several strategies have been proposed for skin cancer therapy by transdermal delivery, and particularly the use of nanotechnology. METHODS This process disrupts the stratum corneum to deliver a drug through the skin, allowing it to accumulate at the tumor site. RESULTS Nanogels are drug delivery systems that can be applied to many diseases. Nanogel engineering has been widely studied for use in drug delivery, particularly in cancer theranostics. This review summarizes specific strategies for using nanogels to treat skin cancer, a topic that is limited in recent literature. CONCLUSION Advanced techniques for effective skin cancer therapy based on the nanogel's penetration and cellular uptake abilities will be discussed. Moreover, techniques for penetrating the skin, as well as drug release, permeation studies, and microscopic observations, will also be discussed.
Collapse
Affiliation(s)
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, Australia
| | - Beom-Jin Lee
- Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
31
|
El-Shenawy AA, Abdelhafez WA, Ismail A, Kassem AA. Formulation and Characterization of Nanosized Ethosomal Formulations of Antigout Model Drug (Febuxostat) Prepared by Cold Method: In Vitro/Ex Vivo and In Vivo Assessment. AAPS PharmSciTech 2019; 21:31. [PMID: 31858305 DOI: 10.1208/s12249-019-1556-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 11/30/2022] Open
Abstract
Febuxostat (FXT) is a xanthine oxidase (XO) drug which indicated for the treatment of gout. FXT loaded nanosized ethosomes were prepared using cold method with varied concentrations of ethyl alcohol and soya lecithin (SL). The prepared ethosomes were characterized by size, entrapment efficiency (DEE), FT-IR, in vitro release, kinetic studies of in vitro release profile, in vitro skin permeation and deposition, and stability study. The selected ethosomal formulation was incorporated in HPMC gel and characterized for drug content, ex vivo diffusion study through rat skin, and in vivo study and determination of pharmacokinetic parameters using HPLC technique. The results of size analysis showed that minimum size was 124.2 ± 16.77 nm with PDI values between 0.2 and 0.6. The zeta potential was from - 43.5 ± 3.0 to - 20.6 ± 1.42 mV. DEE ranged from 48 to 86%. The results of in vitro skin permeation showed that the amount FXT permeated ranged from 43.33 ± 5.3 to 82.14 ± 5.8%, flux ranged from 14.85 to 28.02. The results of ex vivo study showed that the amount of FXT permeated from unprocessed FXT gel was 49.42 ± 3.29% which was lesser than from FXT ethosomal gel. The results of in vivo study showed that Cmax and tmax were significantly different and higher for transdermal administration of FXT than oral administration. The developed FXT nanosized selected ethosome-based transdermal drug delivery gel system would provide a promising method for better management of gout.
Collapse
|
32
|
Zeb A, Cha JH, Noh AR, Qureshi OS, Kim KW, Choe YH, Shin D, Shah FA, Majid A, Bae ON, Kim JK. Neuroprotective effects of carnosine-loaded elastic liposomes in cerebral ischemia rat model. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00462-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Kumar P, Huo P, Liu B. Formulation Strategies for Folate-Targeted Liposomes and Their Biomedical Applications. Pharmaceutics 2019; 11:E381. [PMID: 31382369 PMCID: PMC6722551 DOI: 10.3390/pharmaceutics11080381] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
The folate receptor (FR) is a tumor-associated antigen that can bind with folic acid (FA) and its conjugates with high affinity and ingests the bound molecules inside the cell via the endocytic mechanism. A wide variety of payloads can be delivered to FR-overexpressed cells using folate as the ligand, ranging from small drug molecules to large DNA-containing macromolecules. A broad range of folate attached liposomes have been proven to be highly effective as the targeted delivery system. For the rational design of folate-targeted liposomes, an intense conceptual understanding combining chemical and biomedical points of view is necessary because of the interdisciplinary nature of the field. The fabrication of the folate-conjugated liposomes basically involves the attachment of FA with phospholipids, cholesterol or peptides before liposomal formulation. The present review aims to provide detailed information about the design and fabrication of folate-conjugated liposomes using FA attached uncleavable/cleavable phospholipids, cholesterol or peptides. Advances in the area of folate-targeted liposomes and their biomedical applications have also been discussed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
34
|
Kateh Shamshiri M, Momtazi-Borojeni AA, Khodabandeh Shahraky M, Rahimi F. Lecithin soybean phospholipid nano-transfersomes as potential carriers for transdermal delivery of the human growth hormone. J Cell Biochem 2019; 120:9023-9033. [PMID: 30506803 DOI: 10.1002/jcb.28176] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
Pharmaceutical molecules such as peptides and proteins are usually injected into the body. Numerous efforts have been made to find new noninvasive ways to administer these peptides. In this study, highly flexible vesicles (transfersomes [TFs]) were designed as a new modern transdermal drug delivery system for systemic drug administration through the skin, which had also been evaluated in vitro. In this study, two growth hormone-loaded TF formulations were prepared, using soybean lecithin and two different surfactants; F1 _sodium deoxycholate and F 2 _sodium lauryl sulfate. Thereafter, the amount of skin penetration by the two formulas was assessed using the Franz diffusion cell system. TF formulations were evaluated for size, zeta potential and in vitro skin penetration across the rat skin. Results indicated that vesicle formulations were stable for 4 weeks and their mean sizes were 241.33 ± 17 and 171 ± 12.12 nm in the F 1 and F 2 formulation, respectively. After application to rat skin, transport of the human growth hormone (hGH) released from the TF formulations was found to be higher than that of the hGH alone. Maximum amounts of transdermal hormone delivery were estimated to be 489.54 ± 8.301 and 248.46 ± 4.019 ng·cm-2 , for F 1 and F 2 , respectively. The results demonstrate the capability of the TF-containing growth hormone in transdermal delivery and superiority of the F 1 to F 2 TFs.
Collapse
Affiliation(s)
- Maryam Kateh Shamshiri
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amir Abbas Momtazi-Borojeni
- Division of Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Khodabandeh Shahraky
- Division of Industrial and Environmental Biotechnology (IIEB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Rahimi
- Division of Industrial and Environmental Biotechnology (IIEB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
35
|
Marwah M, Perrie Y, Badhan RKS, Lowry D. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J Liposome Res 2019; 30:136-149. [PMID: 31010367 DOI: 10.1080/08982104.2019.1604746] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caucasian population groups have a higher propensity to develop skin cancer, and associated clinical interventions often present substantial financial burden on healthcare services. Conventional treatments are often not suitable for all patient groups as a result of poor efficacy and toxicity profiles. The primary objective of this study was to develop a deformable liposomal formulation, the properties of which being dictated by the surfactant Tween 20, for the dermal cellular delivery of epigallocatechin gallatein (EGCG), a compound possessing antineoplastic properties. The results demonstrated a significant (p ≤ 0.05) decrease in liposome deformability index (74 ± 8 to 37 ± 7) as Tween 20 loading increased from 0 to 10% w/w, indicating an increase in elasticity. EGCG release over 24-h demonstrated Tween 20 incorporation directly increased release from 13.7% ± 1.1% to 94.4% ± 4.9% (for 0 and 10% w/w Tween 20 respectively). Finally, we demonstrated DilC-loaded deformable liposomes were localized intracellularly within human dermal fibroblast and keratinocyte cells within 2 h. Thus, it was evident that deformable liposomes may aid drug penetration into dermal cells and would be useful in developing a controlled-release formulation.
Collapse
Affiliation(s)
- M Marwah
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Y Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - R K S Badhan
- Life and Health Sciences, Aston University Aston Health Research Group, Birmingham, UK
| | - D Lowry
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK
| |
Collapse
|
36
|
Tailoring novel soft nano-vesicles ‘Flexosomes’ for enhanced transdermal drug delivery: Optimization, characterization and comprehensive ex vivo – in vivo evaluation. Int J Pharm 2019; 560:101-115. [DOI: 10.1016/j.ijpharm.2019.01.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 11/18/2022]
|
37
|
Dar MJ, Din FU, Khan GM. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv 2018; 25:1595-1606. [PMID: 30105918 PMCID: PMC6095017 DOI: 10.1080/10717544.2018.1494222] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Topical drug delivery against cutaneous leishmaniasis (CL) signifies an effective alternate for improving the availability and reducing the toxicity associated with the parenteral administration of conventional sodium stibogluconate (SSG) injection. The basic aim of the study was to develop nano-deformable liposomes (NDLs) for the dermal delivery of SSG against CL. NDLs were formulated by a modified thin film hydration method and optimized via Box–Behnken statistical design. The physicochemical properties of SSG-NDLs were established in terms of vesicle size (195.1 nm), polydispersity index (0.158), zeta potential (−32.8 mV), and entrapment efficiency (35.26%). Moreover, deformability index, in vitro release, and macrophage uptake studies were also accomplished. SSG-NDLs were entrapped within Carbopol gel network for the ease of skin application. The ex vivo skin permeation study revealed that SSG-NDLs gel provided 10-fold higher skin retention towards the deeper skin layers, attained without use of classical permeation enhancers. Moreover, in vivo skin irritation and histopathological studies verified safety of the topically applied formulation. Interestingly, the cytotoxic potential of SSG-NDLs (1.3 mg/ml) was higher than plain SSG (1.65 mg/ml). The anti-leishmanial activity on intramacrophage amastigote model of Leishmania tropica showed that IC50 value of the SSG-NDLs was ∼ fourfold lower than the plain drug solution with marked increase in the selectivity index. The in vivo results displayed higher anti-leishmanial activity by efficiently healing lesion and successfully reducing parasite burden. Concisely, the outcomes indicated that the targeted delivery of SSG could be accomplished by using topically applied NDLs for the effective treatment of CL.
Collapse
Affiliation(s)
- M Junaid Dar
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Fakhar Ud Din
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Gul Majid Khan
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
38
|
Calienni MN, Temprana CF, Prieto MJ, Paolino D, Fresta M, Tekinay AB, Alonso SDV, Montanari J. Nano-formulation for topical treatment of precancerous lesions: skin penetration, in vitro, and in vivo toxicological evaluation. Drug Deliv Transl Res 2018; 8:496-514. [PMID: 29288359 DOI: 10.1007/s13346-017-0469-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the aim of improving the topical delivery of the antineoplastic drug 5-fluorouracil (5FU), it was loaded into ultradeformable liposomes composed of soy phosphatidylcholine and sodium cholate (UDL-5FU). The liposome populations had a mean size of 70 nm without significant changes in 56 days, and the ultradeformable formulations were up to 324-fold more elastic than conventional liposomes. The interaction between 5FU and the liposomal membrane was studied by three methods, and also release profile was obtained. UDL-5FU did penetrate the stratum corneum of human skin. At in vitro experiments, the formulation was more toxic on a human melanoma-derived than on a human keratinocyte-derived cell line. Cells captured liposomes by metabolically active processes. In vivo toxicity experiments were carried out in zebrafish (Danio rerio) larvae by studying the swimming activity, morphological changes, and alterations in the heart rate after incubation. UDL-5FU was more toxic than free 5FU. Therefore, this nano-formulation could be useful for topical application in deep skin precancerous lesions with advantages over current treatments. This is the first work that assessed the induction of apoptosis, skin penetration in a Saarbrücken penetration model, and the toxicological effects in vivo of an ultradeformable 5FU-loaded formulation.
Collapse
Affiliation(s)
- Maria Natalia Calienni
- Laboratorio de Biomembranas, Departamento de Ciencia y Tecnología, GBEyB. IMBICE, CCT-LA PLATA, CONICET, Universidad Nacional de Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina.,Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Carlos Facundo Temprana
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, B1876BXD, Bernal, Argentina
| | - Maria Jimena Prieto
- Laboratorio de Biomembranas, Departamento de Ciencia y Tecnología, GBEyB. IMBICE, CCT-LA PLATA, CONICET, Universidad Nacional de Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, Germaneto, I-88100, Catanzaro, Italy
| | - Ayse Begum Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800, Ankara, Turkey
| | - Silvia Del Valle Alonso
- Laboratorio de Biomembranas, Departamento de Ciencia y Tecnología, GBEyB. IMBICE, CCT-LA PLATA, CONICET, Universidad Nacional de Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Jorge Montanari
- Laboratorio de Biomembranas, Departamento de Ciencia y Tecnología, GBEyB. IMBICE, CCT-LA PLATA, CONICET, Universidad Nacional de Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina. .,Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
39
|
Curcumin-loaded ultradeformable nanovesicles as a potential delivery system for breast cancer therapy. Colloids Surf B Biointerfaces 2018; 167:63-72. [DOI: 10.1016/j.colsurfb.2018.03.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023]
|
40
|
Zorec B, Zupančič Š, Kristl J, Pavšelj N. Combinations of nanovesicles and physical methods for enhanced transdermal delivery of a model hydrophilic drug. Eur J Pharm Biopharm 2018; 127:387-397. [DOI: 10.1016/j.ejpb.2018.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 11/27/2022]
|
41
|
Musa MN, David SR, Zulkipli IN, Mahadi AH, Chakravarthi S, Rajabalaya R. Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations. ACTA ACUST UNITED AC 2018; 7:227-239. [PMID: 29435430 PMCID: PMC5801534 DOI: 10.15171/bi.2017.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023]
Abstract
Introduction: The use of liquid crystalline (LC) gel formulations for drug delivery has considerably improved the current delivery methods in terms of bioavailability and efficacy. The purpose of this study was to develop and evaluate LC gel formulations to deliver the anti-cancer drug exemestane through transdermal route. Methods: Two LC gel formulations were prepared by phase separation coacervation method using glyceryl monooleate (GMO), Tween 80 and Pluronic® F127 (F127). The formulations were characterized with regard to encapsulation efficiency (EE), vesicle size, Fourier transform infrared (FTIR) spectroscopy, surface morphology (using light and fluorescence microscopy), in vitro release, ex vivo permeation, in vitro effectiveness test on MDA-MB231 cancer cell lines and histopathological analysis. Results: Results exhibited that the EE was 85%-92%, vesicle size was 119.9-466.2 nm while morphology showed spherical vesicles after hydration. An FTIR result also revealed that there was no significant shift in peaks corresponding to Exemestane and excipients. LC formulations release the drug from cellulose acetate and Strat-MTM membrane from 15%-88.95%, whereas ex vivo permeation ranges from 37.09-63%. The in vitro effectiveness study indicated that even at low exemestane concentrations (12.5 and 25 μg/mL) the formulations were able to induce cancer cell death, regardless of the surfactant used. Histopathological analysis thinning of the epidermis as the formulations penetrate into the intercellular regions of squamous cells. Conclusion: The results conjectured that exemestane could be incorporated into LC gels for the transdermal delivery system and further preclinical studies such as pharmacokinetic and pharmacodynamic studies will be carried out with suitable animal models.
Collapse
Affiliation(s)
- Muhammad Nuh Musa
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan BE 1410, Brunei Darussalam
| | - Sheba Rani David
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan BE 1410, Brunei Darussalam
| | - Ihsan Nazurah Zulkipli
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan BE 1410, Brunei Darussalam
| | - Abdul Hanif Mahadi
- Centre for Advanced Material and Energy Sciences (CAMES), Universiti Brunei Darussalam, Bandar Seri Begawan BE 1410, Brunei Darussalam
| | - Srikumar Chakravarthi
- School of Medicine, Perdana University, Jalan MAEPS Perdana, 43400 Serdang, Selangor, Malaysia
| | - Rajan Rajabalaya
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan BE 1410, Brunei Darussalam
| |
Collapse
|
42
|
A Density Functional Theory Study on the Interaction Between 5-Fluorouracil Drug and C24 Fullerene. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1253-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. NANO REVIEWS & EXPERIMENTS 2017; 8:1325708. [PMID: 30410704 PMCID: PMC6167026 DOI: 10.1080/20022727.2017.1325708] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/28/2017] [Indexed: 11/24/2022]
Abstract
Introduction: The skin acts as a barrier and prevents transcutaneous delivery of therapeutic agents. Transfersomes are novel vesicular systems that are several times more elastic than other vesicular systems. These are composed of edge activator, phospholipids, ethanol, and sodium cholate and are applied in a non-occlusive manner. Areas covered: This article covers information such as merits/demerits of transfersomes, regulatory aspects of materials used in preparation, different methods of preparation, mechanism of action, review of clinical investigations performed, marketed preparations available, research reports, and patent reports related to transfersomes. Expert opinion: Research over the past few years has provided a better understanding of transfersomal permeation of therapeutic agents across stratum corneum barrier. Transfersomes provides an essential feature of their application to variety of compositions in order to optimize the permeability of a range of therapeutic molecules. This is evidenced by the fact that there are several Transfersome products being processed in advanced clinical trials. It is noteworthy that a number of Transfersome products for dermal and transdermal delivery will gain a global market success in near future.
Collapse
Affiliation(s)
- Shubhra Rai
- Pharmaceutics, Guru Ramdas Khasla Institute of Science & Technology, Pharmacy, Jabalpur, India
| | - Vikas Pandey
- Pharmaceutics, Guru Ramdas Khasla Institute of Science & Technology, Pharmacy, Jabalpur, India
| | - Gopal Rai
- Pharmaceutics, Guru Ramdas Khasla Institute of Science & Technology, Pharmacy, Jabalpur, India
| |
Collapse
|
44
|
Imam SS, Ahad A, Aqil M, Akhtar M, Sultana Y, Ali A. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: In-vitro characterization, and in-vivo appraisal. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1198-1205. [DOI: 10.1016/j.msec.2017.02.149] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 12/01/2022]
|
45
|
Skin cancer: symptoms, mechanistic pathways and treatment rationale for therapeutic delivery. Ther Deliv 2017; 8:265-287. [DOI: 10.4155/tde-2016-0093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cancer is a group of diseases categorized by abandoning escalation and multiplication of abnormal cells. Current topical treatments for skin cancer are mainly in the semisolid dosage forms of 5-fluorouracil, imiquimod, etc. Many surgical treatments are also available these days for the treatment of skin cancer, for example, photodynamic therapy, which is approved by the US FDA. The stratum corneum is the main barrier against permeation of topical formulations developed for skin cancer treatment. Liposomes, thermosensitive stealth liposomes, nanoemulsions and polymeric lipid nanoparticles have been used by several researchers to increase skin permeability. In the present paper, major aspects of formulations developed for skin cancer, various types of skin cancer, its etiology and pathogenesis have been emphasized.
Collapse
|
46
|
Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, Alam MA. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J 2017; 25:1040-1046. [PMID: 29158713 PMCID: PMC5681305 DOI: 10.1016/j.jsps.2017.01.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/25/2017] [Indexed: 01/11/2023] Open
Abstract
The objective of the present work was to formulate, optimize and evaluate the potential of novel soft nanovesicles i.e. nano-transfersomes, containing eprosartan mesylate (EM) for transdermal delivery. Nano-transfersomes of EM were developed using Phospholipon 90G, Span 80 (SP) and sodium deoxycholate (SDC) and characterized for vesicle size, shape, entrapment efficiency, in vitro skin permeation study and confocal laser scanning microscopy. The optimized nano-transfersomes formulation showed vesicles size of 108.53 ± 0.06 nm and entrapment efficiency of 63.00 ± 2.76%. The optimized nano-transfersomes provided an improved transdermal flux of 27.22 ± 0.29 µg/cm2/h with an enhancement ratio of 16.80 over traditional liposomes through Wistar rat skin. Confocal laser microscopy of rat skin treated with the optimized formulation showed that the formulation was eventually distributed and permeated deep into the rat skin. The present investigation has shown that the nature and concentration of surfactants (edge activators) influence immense control on the characteristics of nano-transfersomes. It was concluded that the developed nano-transfersomes surmount the limitation of low penetration ability of the traditional liposomes across the rat skin. Improved drug delivery presented by nano-transfersomes establishes this system as an encouraging dosage form for the delivery of EM via skin route.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulmohsen A Al-Saleh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa Eldeen B Yassin
- Pharmaceutical Sciences Department, College of Pharmacy-3163, King Saud bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center, Ministry of National Guard, Health Affairs, Riyadh 11426, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
47
|
Jain S, Patel N, Shah MK, Khatri P, Vora N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J Pharm Sci 2016; 106:423-445. [PMID: 27865609 DOI: 10.1016/j.xphs.2016.10.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
In the recent decade, skin delivery (topical and transdermal) has gained an unprecedented popularity, especially due to increased incidences of chronic skin diseases, demand for targeted and patient compliant delivery, and interest in life cycle management strategies among pharmaceutical companies. Literature review of recent publications indicates that among various skin delivery systems, lipid-based delivery systems (vesicular carriers and lipid particulate systems) have been the most successful. Vesicular carriers consist of liposomes, ultradeformable liposomes, and ethosomes, while lipid particulate systems consist of lipospheres, solid lipid nanoparticles, and nanostructured lipid carriers. These systems can increase the skin drug transport by improving drug solubilization in the formulation, drug partitioning into the skin, and fluidizing skin lipids. Considering that lipid-based delivery systems are regarded as safe and efficient, they are proving to be an attractive delivery strategy for the pharmaceutical as well as cosmeceutical drug substances. However, development of these delivery systems requires comprehensive understanding of physicochemical characteristics of drug and delivery carriers, formulation and process variables, mechanism of skin delivery, recent technological advancements, specific limitations, and regulatory considerations. Therefore, this review article encompasses recent research advances addressing the aforementioned issues.
Collapse
Affiliation(s)
- Shashank Jain
- Department of Product Development, G & W Labs, 101 Coolidge Street, South Plainfield, New Jersey 07080.
| | - Niketkumar Patel
- Charles River Laboratories Contract Manufacturing PA, LLC, Boothwyn, Pennsylvania 19061
| | - Mansi K Shah
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Pinak Khatri
- Department of Product Development, G & W PA Laboratories, Sellersville, Pennsylvania 18960
| | - Namrata Vora
- Department of Formulation Development, Capsugel Dosage Form Solutions Division, Xcelience, Tampa, Florida 33634
| |
Collapse
|
48
|
Zeb A, Qureshi OS, Kim HS, Cha JH, Kim HS, Kim JK. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomedicine 2016; 11:3813-24. [PMID: 27540293 PMCID: PMC4982511 DOI: 10.2147/ijn.s109565] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to investigate methotrexate-entrapped ultradeformable liposomes (MTX-UDLs) for potential transdermal application. MTX-UDLs were prepared by extrusion method with phosphatidylcholine as a bilayer matrix and sodium cholate or Tween 80 as an edge activator. The physicochemical properties of MTX-UDLs were determined in terms of particle size, polydispersity index, zeta potential, and entrapment efficiency. The deformability of MTX-UDLs was compared with that of methotrexate-entrapped conventional liposomes (MTX-CLs) using a steel pressure filter device. The skin permeation of MTX-UDLs was investigated using Franz diffusion cell, and the skin penetration depth of rhodamine 6G-entrapped UDLs was determined by confocal laser scanning microscopy. MTX-UDLs showed a narrow size distribution, with the particle size of ~100 nm. The deformability of MTX-UDLs was two to five times greater than that of MTX-CLs. The skin permeation of MTX-UDLs was significantly improved compared with MTX-CLs and free MTX solution. The optimized UDLs (phosphatidylcholine: Tween 80 =7:3, w/w) showed a higher fluorescence intensity than conventional liposomes at every increment of skin depth. Thus, the optimized UDLs could be promising nanocarriers for systemic delivery of MTX across skin.
Collapse
Affiliation(s)
- Alam Zeb
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Omer Salman Qureshi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Hyung-Seo Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Ji-Hye Cha
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Hoo-Seong Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| |
Collapse
|
49
|
Khan AA, Alanazi AM, Jabeen M, Hassan I, Bhat MA. Targeted nano-delivery of novel omega-3 conjugate against hepatocellular carcinoma: Regulating COX-2/bcl-2 expression in an animal model. Biomed Pharmacother 2016; 81:394-401. [PMID: 27261618 DOI: 10.1016/j.biopha.2016.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/14/2016] [Accepted: 04/17/2016] [Indexed: 12/30/2022] Open
Abstract
The present approach enumerates the effectiveness of tuftsin tagged nano-liposome for the cytosolic transport of 2,6-di-isopropylphenol-linolenic acid conjugate against liver cancer in mice. Initially, the conjugate in its free form was examined for anticancer potential on HepG2 liver cancer cells. Induction of apoptosis and suppression of migration and adhesion of HepG2 cells confirmed the effectiveness of conjugate as an anticancer agent. After this, role of the conjugate entrapped in a nano-carrier was evaluated in animal model. The nano-formulation comprising of conjugate bearing tuftsin tagged liposome was firsly characterized and then its therapeutic effect was determined. The nano-formulation had 100-130nm size nanoparticles and showed sustained release of the conjugate in the surrounding milieu. The nano-formulation distinctly reduced the expression of COX-2, an important molecule that is vastly expressed in hepatocellular carcinoma. The utilization of in-house engineered nano-formulation was also successful in significantly up-regulating Bax and down-regulating bcl-2 gene expression eventually helping in better survival of treated mice. Histopathological analysis also revealed positive recovery of the general architecture and the violent death of cancer cells by apoptosis at tumor specific site. The site specific delivery of conjugate entrapped in tuftsin tagged liposomes was highly safe as well as efficaceous. Nano-formulation based approach showed a visible chemotherapeutic effect on liver cancer progression in experimental mice thereby making it a potential candidate for treatment of liver cancer in clinical settings.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mumtaz Jabeen
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashooq Ahmad Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
50
|
Kumar L, Verma S, Kumar S, Prasad DN, Jain AK. Fatty acid vesicles acting as expanding horizon for transdermal delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:251-260. [PMID: 26890090 DOI: 10.3109/21691401.2016.1146729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The body is protected against the external environment by the skin due to its physical barrier nature. Stratum corneum composed of corneocytes surrounded by lipid region performs a major barrier function as it lies in the uppermost area of skin. Alteration in barrier function, increase in permeability, and disorganization of stratum corneum represent diseased skin. Drugs applied to the diseased skin should induce a local effect at the site of application or area close to it along with cutaneous absorption rather than percutaneous absorption. Conventional formulations like ointments, gels, and creams suffer from the drawback of limited local activity. For the enhancement of drug penetration and localization of the drug at the site of action approaches explored are liposomes, niosomes, ethosomes microparticles, and solid lipid nanoparticles. Vesicles composed of fatty acids like oleic acid and linoleic acid represent the new approach used for transdermal penetration and localization. In this review article, our major aim was to explore the applications of fatty acid vesicles for transdermal delivery of various bioactives.
Collapse
Affiliation(s)
- Lalit Kumar
- a Department of Pharmaceutics , Shivalik College of Pharmacy , Nangal , Punjab , India.,b I. K. Gujral Punjab Technical University , Jallandhar , Punjab , India
| | - Shivani Verma
- b I. K. Gujral Punjab Technical University , Jallandhar , Punjab , India.,c Department of Pharmaceutics , Rayat Bahra College of Pharmacy , Hoshiarpur , Punjab , India
| | - Sanjeev Kumar
- a Department of Pharmaceutics , Shivalik College of Pharmacy , Nangal , Punjab , India
| | - Deo Nandan Prasad
- d Department of Pharmaceutical Chemistry , Shivalik College of Pharmacy , Nangal , Punjab , India
| | - Amit Kumar Jain
- b I. K. Gujral Punjab Technical University , Jallandhar , Punjab , India.,e Department of Pharmaceutics , Guru Nanak Institute of Pharmacy , Hoshiarpur , Punjab , India
| |
Collapse
|