1
|
Alu'datt MH, Al-U'datt D, Rababah T, Gammoh S, Alrosan M, Bani-Melhem K, Al-Widyan Y, Kubow S, AbuJalban D, Al Khateeb W, Abubaker M. Recent research directions on functional royal jelly: highlights prospects in food, nutraceutical, and pharmacological industries. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39440352 DOI: 10.1080/10408398.2024.2418892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The food and pharmaceutical industries have utilized royal jelly, an alternative medicinal food, as a natural pharmaceutical product since ancient times. Royal jelly has a unique remarkable composition containing lipids, proteins, carbohydrates, vitamins, minerals, hormones, and phenolic compounds. The rapidly expanding functional food market has coincided with the increasing consumer demand for royal jelly. Over the past two decades, royal jelly, a rich source of certain bioactive components, has been used by humans as a functional and nutritious food due to recent studies of the effect of royal jelly in underlying pathogenic processes in a variety of animal models. Scientific evidence has accumulated supporting a wide variety of health-promoting effects from the intake of royal jelly that supports cardiovascular health, immune and antioxidant function, wound healing, blood lipid, and glucose control in addition to antibacterial and antihypertensive effects. The main bioactive ingredients are Major Royal Jelly Proteins (MRJPs), essential oils, fatty acids, peptides, and phenolics, which are thought to have a significant role in the development of honeybee queens. The health-endorsing qualities of royal jelly make it a significant functional ingredient in the food, and cosmetic industry. Apisin is one of the main proteins in royal jelly that has antibacterial properties. Other bioactive ingredients of royal jelly that have multifunctional health-promoting properties include defensin-1, royalisin, apisimin, apidaecin, jelleins, royalactin and 10-hydroxy-2-decenoic acid (10HDA) in epigenetic diseases. This review highlights the important role that royal jelly plays as an agent in various fields of medicine, paying special attention to its biological features. Additionally, we discuss royal jelly's composition as a possible therapeutic for vital natural sources of bioactive substances.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Doa'a Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alrosan
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
- QU Health, College of Health Sciences, Qatar University, Doha, Qatar
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Khalid Bani-Melhem
- Water Technology Unit (WTU), Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
| | - Yasmeen Al-Widyan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Dana AbuJalban
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Wesam Al Khateeb
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - Mais Abubaker
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Oršolić N, Jazvinšćak Jembrek M. Royal Jelly: Biological Action and Health Benefits. Int J Mol Sci 2024; 25:6023. [PMID: 38892209 PMCID: PMC11172503 DOI: 10.3390/ijms25116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Royal jelly (RJ) is a highly nutritious natural product with great potential for use in medicine, cosmetics, and as a health-promoting food. This bee product is a mixture of important compounds, such as proteins, vitamins, lipids, minerals, hormones, neurotransmitters, flavonoids, and polyphenols, that underlie the remarkable biological and therapeutic activities of RJ. Various bioactive molecules like 10-hydroxy-2-decenoic acid (10-HDA), antibacterial protein, apisin, the major royal jelly proteins, and specific peptides such as apisimin, royalisin, royalactin, apidaecin, defensin-1, and jelleins are characteristic ingredients of RJ. RJ shows numerous physiological and pharmacological properties, including vasodilatory, hypotensive, antihypercholesterolaemic, antidiabetic, immunomodulatory, anti-inflammatory, antioxidant, anti-aging, neuroprotective, antimicrobial, estrogenic, anti-allergic, anti-osteoporotic, and anti-tumor effects. Moreover, RJ may reduce menopause symptoms and improve the health of the reproductive system, liver, and kidneys, and promote wound healing. This article provides an overview of the molecular mechanisms underlying the beneficial effects of RJ in various diseases, aging, and aging-related complications, with special emphasis on the bioactive components of RJ and their health-promoting properties. The data presented should be an incentive for future clinical studies that hopefully will advance our knowledge about the therapeutic potential of RJ and facilitate the development of novel RJ-based therapeutic opportunities for improving human health and well-being.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
3
|
Chen L, Zhao L, Zhang G, Li Z, Qu L, Luo L. Long-term administration of royal jelly regulates age-related disorders and improves gut function in naturally aging mice. Food Funct 2024; 15:5272-5286. [PMID: 38629388 DOI: 10.1039/d4fo00781f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
A natural aging mouse model can exhibit physiological characteristics that closely resemble those of human aging. Through long-term observation, it reflects the occurrence and development of the aging process more accurately. Although numerous beneficial effects of royal jelly (RJ) have been extensively demonstrated in multiple experimental models, the effects of RJ on naturally aging mice have not yet been investigated. In this study, middle-aged male C57BL/6J mice were given RJ for 9 consecutive months to investigate its impact on the intestinal barrier function, gut microbiota, short-chain fatty acids (SCFAs) content and possible mechanisms. The results confirmed that RJ modulated serum lipids by reducing the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Additionally, it protected the liver by increasing antioxidant enzyme levels while decreasing inflammatory cytokines TNF-α (by 51.97%), IL-6 (by 29.73%), and IL-1β (by 43.89%). Furthermore, RJ inhibited the expression of cell cycle-dependent kinase inhibitors including p16, p21, and p53. Importantly, RJ ameliorated gut dysfunctions by inhibiting reduction of tight junction proteins and reducing inflammatory cytokines content in the colon. We also observed an alteration in gut microbiota characterized by an elevated ratio of Firmicutes to Bacteroides (F/B) along with increased abundance of beneficial bacteria, i.e., Lachnospiraceae NK4A136 and Akkermansia. Correlation analysis revealed positive associations between most bacterial genera and SCFAs production. Functional profiling of gut microbiota composition indicated that RJ intervention regulated amino acid metabolism, glycan biosynthesis, and cofactor/vitamin metabolism. Overall, our findings provide an effective dietary intervention strategy for modulating age-associated frailty through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Li Zhao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Gaowei Zhang
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Liangliang Qu
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
4
|
El-Seedi HR, Salama S, El-Wahed AAA, Guo Z, Di Minno A, Daglia M, Li C, Guan X, Buccato DG, Khalifa SAM, Wang K. Exploring the Therapeutic Potential of Royal Jelly in Metabolic Disorders and Gastrointestinal Diseases. Nutrients 2024; 16:393. [PMID: 38337678 PMCID: PMC10856930 DOI: 10.3390/nu16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE-751 24 Uppsala, Sweden
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 210024, China
| | - Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish 51111, Sudan;
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
| | - Shaden A. M. Khalifa
- Psychiatry and Neurology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
5
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
6
|
Bee Products as Interesting Natural Agents for the Prevention and Treatment of Common Cardiovascular Diseases. Nutrients 2022; 14:nu14112267. [PMID: 35684067 PMCID: PMC9182958 DOI: 10.3390/nu14112267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/02/2023] Open
Abstract
Apitherapy is a form of alternative therapy that relies on the use of bee products, i.e., honey, royal jelly, propolis, pollen, and bee venom (known as apitoxin), for the prevention and treatment of various diseases. Various in vitro and in vivo studies suggest that these products may be effective in the prophylaxis and treatment of cardiovascular diseases (CVDs). This mini-review of papers identified in various electronic databases describes new aspects of the bioactivity of certain bee products, viz. bee pollen, royal jelly, bee venom, propolis, and bee bread, as natural interesting products for the prevention and treatment of common CVDs.
Collapse
|
7
|
Hamza RZ, Al-Eisa RA, El-Shenawy NS. Possible Ameliorative Effects of the Royal Jelly on Hepatotoxicity and Oxidative Stress Induced by Molybdenum Nanoparticles and/or Cadmium Chloride in Male Rats. BIOLOGY 2022; 11:450. [PMID: 35336823 PMCID: PMC8945475 DOI: 10.3390/biology11030450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/24/2023]
Abstract
The present study aimed to investigate the effect of the royal jelly (RJ) on hepatotoxicity induced by molybdenum nanoparticles (MoO3-NPs), cadmium chloride (CdCl2), or their combination in male rats at biochemical, inflammation, immune response, histological, and ultrastructural levels. The physicochemical properties of MoO3-NPs have been characterized, as well as their ultrastructural organization. A rat experimental model was employed to assess the liver toxicity of MoO3-NPs, even in combination with CdCl2. Different cellular studies indicate divergent mechanisms, from increased reactive oxygen species production to antioxidative damage and cytoprotective activity. Seventy male rats were allocated to groups: (i) control; (ii) MoO3-NPs (500 mg/kg); (iii) CdCl2 (6.5 mg/kg); (iv) RJ (85 mg/kg diluted in saline); (v) MoO3-NPs followed by RJ (30 min after the MoO3-NPs dose); (vi) CdCl2 followed by RJ; and (vii) a combination of MoO3-NPs and CdCl2, followed by RJ, for a total of 30 successive days. Hepatic functions, lipid profile, inflammation marker (CRP), antioxidant biomarkers (SOD, CAT, GPx, and MDA), and genotoxicity were examined. Histological changes, an immunological marker for caspase-3, and transmission electron microscope variations in the liver were also investigated to indicate liver status. The results showed that RJ alleviated the hepatotoxicity of MoO3-NPs and/or CdCl2 by improving all hepatic vitality markers. In conclusion, the RJ was more potent and effective as an antioxidant over the oxidative damage induced by the combination of MoO3-NPs and CdCl2.
Collapse
Affiliation(s)
- Reham Z. Hamza
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Biology Department, Main Campus, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Rasha A. Al-Eisa
- Biology Department, Main Campus, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Nahla S. El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; or
| |
Collapse
|
8
|
Guo J, Wang Z, Chen Y, Cao J, Tian W, Ma B, Dong Y. Active components and biological functions of royal jelly. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Moubarak MM, Chanouha N, Abou Ibrahim N, Khalife H, Gali-Muhtasib H. Thymoquinone anticancer activity is enhanced when combined with royal jelly in human breast cancer. World J Clin Oncol 2021; 12:342-354. [PMID: 34131566 PMCID: PMC8173327 DOI: 10.5306/wjco.v12.i5.342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cause of the majority of cancer-related deaths in women, among which triple-negative breast cancer is the most aggressive type of breast cancer diagnosed with limited treatment options. Thymoquinone (TQ), the main bioactive constituent of Nigella sativa, has been extensively studied as a potent anticancer molecule against various types of cancers. Honeybee products such as the royal jelly (RJ), the nutritive secretion fed to honeybee queens, exhibit a variety of biological activities besides its anticancer effect. However, the anticancer activity of the combination of TQ and RJ against breast cancer is still unknown.
AIM To investigate cytotoxicity of RJ in FHs 74 Int cells and the anticancer effects of TQ, RJ, and their combinations in the MDA-MB-231 cell line.
METHODS Cells were treated with TQ, RJ, and their combinations for 24 h. Using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, we determined the half-maximal inhibitory concentration of TQ. Trypan blue and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were then performed to assess the cell viability in response to different treatment conditions. Cell death and cycle regulation were investigated using propidium iodide deoxyribonucleic acid staining followed by flow cytometry in response to a single dose of TQ, RJ, and their combination. Immunostaining for cleaved caspase 3 and Ki67 expression was used to determine apoptosis induction and changes in cell proliferation.
RESULTS TQ alone inhibited cell viability in a dose-dependent manner at concentrations below and above the half-maximal inhibitory concentration. RJ exhibited relatively nontoxic effects against MDA-MB-231 cells and FHs 74 Int small intestinal cells at concentrations below 5 µg/mL. High doses of RJ (200 µg/mL) had greater toxicity against MDA-MB-231 cells. Interestingly, the inhibition of cell viability was most pronounced in response to 15 µmol/L TQ and 5 µg/mL RJ. A dose of 15 µmol/L TQ caused a significant increase in the PreG1 population, while a more pronounced effect on cell viability inhibition and PreG1 increase was observed in response to TQ and RJ combinations. TQ was the main inducer of caspase 3-dependent apoptosis when applied alone and in combination with RJ. In contrast, no significant regulation of Ki67 expression was observed, indicating that the decrease in cell viability was due to apoptosis induction rather than to inhibition of cell proliferation.
CONCLUSION This study is the first to report enhanced anticancer effects of TQ and RJ combination against MDA-MB-231 breast cancer cells, which could confer an advantage for cancer therapy.
Collapse
Affiliation(s)
- Maya M Moubarak
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nour Chanouha
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Najwa Abou Ibrahim
- Rammal Rammal Laboratory (ATAC group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Hala Khalife
- Rammal Rammal Laboratory (ATAC group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
10
|
Ghorbanpour AM, Saboor M, Panahizadeh R, Saadati H, Dadkhah M. Combined effects of royal jelly and environmental enrichment against stress-induced cognitive and behavioral alterations in male rats: behavioral and molecular studies. Nutr Neurosci 2021; 25:1860-1871. [PMID: 33814002 DOI: 10.1080/1028415x.2021.1909205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Exposure to chronic stress has detrimental effects on cognitive and emotional processing. Also, the neuroprotective influences of environmental enrichment (EE) and royal jelly (RJ) have been indicated in previous studies. AIMS To our knowledge, to date, there are no studies about the synergistic effects of EE and RJ on cognitive changes induced by stress. Therefore, this study aimed to investigate the protective effects of RJ, and EE on anxiety-like behaviors, cognitive functions, and expression of hippocampal and also prefrontal cortex (PFC) brain-derived neurotrophic factor (BDNF) levels in stressed rats. METHODS By using restraint and cold temperature, rats were exposed to stressful situations and then subjected to treatment with RJ or/ and EE for 14 days. Stress induction was done 14 days before treatments by placing the rats in the restrainer under 4°C. Following the interventions, anxiety-like behaviors, novel object recognition memory (NORM), inhibitive avoidance performance, hippocampal, and PFC BDNF expression were examined. The plasma corticosterone level of all groups was also evaluated. RESULTS Results showed increased plasma corticosterone levels, stress-induced deficits in the NORM and IA tests, and increased anxiety-like behaviors. EE and RJ improved these deficits with a decline in serum corticosterone and also increased BDNF levels in the hippocampus and PFC in stressed ones. CONCLUSION The EE and the RJ prevented the detrimental effects of stress on anxiety-like behaviors and memory processes. These treatments can protect susceptible brain areas against chronic stress via improvement in behavioral and cognitive impairments through mediating BDNF expression.
Collapse
Affiliation(s)
| | - Meysam Saboor
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Students Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
11
|
Collazo N, Carpena M, Nuñez-Estevez B, Otero P, Simal-Gandara J, Prieto MA. Health Promoting Properties of Bee Royal Jelly: Food of the Queens. Nutrients 2021; 13:543. [PMID: 33562330 PMCID: PMC7915653 DOI: 10.3390/nu13020543] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Royal jelly (RJ) demand is growing every year and so is the market for functional foods in general. RJ is formed by different substances, mainly carbohydrates, proteins, and lipids, but also vitamins, minerals, and phenolic or volatile compounds in lower proportion. Major royal jelly proteins (MRJP) are, together with 10-hydroxy-2-decenoic acid (10-HDA), key substances of RJ due to their different biological properties. In particular, 10-HDA is a unique substance in this product. RJ has been historically employed as health enhancer and is still very relevant in China due to the traditional medicine and the apitherapy. Nowadays, it is mainly consumed as a functional food or is found in supplements and other formulations for its health-beneficial properties. Within these properites, anti-lipidemic, antioxidant, antiproliferative, antimicrobial, neuroprotective, anti-inflammatory, immunomodulatory, antiaging, and estrogenic activities have been reported for RJ or its specific components. This manuscript is aimed at reviewing the current knowledge on RJ components, their assessment in terms of authenticity, their biological activities, and related health applications.
Collapse
Affiliation(s)
- Nicolas Collazo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Bernabe Nuñez-Estevez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
12
|
Hadi A, Rafie N, Arab A. Bee products consumption and cardiovascular diseases risk factors: a systematic review of interventional studies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1867568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran
| | - Nahid Rafie
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Bălan A, Moga MA, Dima L, Toma S, Elena Neculau A, Anastasiu CV. Royal Jelly-A Traditional and Natural Remedy for Postmenopausal Symptoms and Aging-Related Pathologies. Molecules 2020; 25:molecules25143291. [PMID: 32698461 PMCID: PMC7397171 DOI: 10.3390/molecules25143291] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Women's life stages are based on their reproductive cycle. This cycle begins with menstruation and ends with menopause. Aging is a natural phenomenon that affects all humans, and it is associated with a decrease in the overall function of the organism. In women, aging is related with and starts with menopause. Also, during menopause and postmenopausal period, the risk of various age-related diseases and complaints is higher. For this reason, researchers were pushed to find effective remedies that could promote healthy aging and extended lifespan. Apitherapy is a type of alternative medicine that uses natural products from honeybees, such as honey, propolis, royal jelly, etc. Royal jelly is a natural yellowish-white substance, secreted by both hypopharyngeal and mandibular glands of nurse bees, usually used to feed the queen bees and young worker larvae. Over the centuries, this natural product was considered a gold mine for traditional and natural medicine, due to its miraculous effects. Royal jelly has been used for a long time in commercial medical products. It has been demonstrated to possess a wide range of functional properties, such as: antibacterial, anti-inflammatory, vasodilatative, hypotensive, anticancer, estrogen-like, antihypercholesterolemic, and antioxidant activities. This product is usually used to supplement various diseases such as cardiovascular disease, Alzheimer's disease, sexual dysfunctions, diabetes or cancer. The main objective of this study is to highlight the effectiveness of royal jelly supplementation in relieving menopause symptoms and aging-related diseases. We also aimed to review the most recent research advances regarding the composition of royal jelly for a better understanding of the effects on human health promotion.
Collapse
Affiliation(s)
- Andreea Bălan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (A.B.); (M.A.M.); (C.V.A.)
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (A.B.); (M.A.M.); (C.V.A.)
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
| | - Sebastian Toma
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
- Correspondence: (S.T.); (A.E.N.); Tel.: +40-0268-412-185 (S.T. & A.E.N.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
- Correspondence: (S.T.); (A.E.N.); Tel.: +40-0268-412-185 (S.T. & A.E.N.)
| | - Costin Vlad Anastasiu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (A.B.); (M.A.M.); (C.V.A.)
| |
Collapse
|
14
|
New Insights into the Biological and Pharmaceutical Properties of Royal Jelly. Int J Mol Sci 2020; 21:ijms21020382. [PMID: 31936187 PMCID: PMC7014095 DOI: 10.3390/ijms21020382] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Royal jelly (RJ) is a yellowish-white and acidic secretion of hypopharyngeal and mandibular glands of nurse bees used to feed young worker larvae during the first three days and the entire life of queen bees. RJ is one of the most appreciated and valued natural product which has been mainly used in traditional medicines, health foods, and cosmetics for a long time in different parts of the world. It is also the most studied bee product, aimed at unravelling its bioactivities, such as antimicrobial, antioxidant, anti-aging, immunomodulatory, and general tonic action against laboratory animals, microbial organisms, farm animals, and clinical trials. It is commonly used to supplement various diseases, including cancer, diabetes, cardiovascular, and Alzheimer's disease. Here, we highlight the recent research advances on the main bioactive compounds of RJ, such as proteins, peptides, fatty acids, and phenolics, for a comprehensive understanding of the biochemistry, biological, and pharmaceutical responses to human health promotion and life benefits. This is potentially important to gain novel insight into the biological and pharmaceutical properties of RJ.
Collapse
|
15
|
Margaoan R, Tripon C, Bobis O, Bonta V, Dadarlat D. Coexistence of Phases in Royal Jelly Detected by Photopyroelectric Calorimetry. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1700269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, USAMV, Cluj-Napoca, Romania
| | - Carmen Tripon
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Otilia Bobis
- Life Science Institute “King Michael I of Romania”, USAMV, Cluj-Napoca, Romania
| | - Victorita Bonta
- Life Science Institute “King Michael I of Romania”, USAMV, Cluj-Napoca, Romania
| | - Dorin Dadarlat
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Hussain M, Khera RA, Iqbal J, Khalid M, Hanif MA. Phytochemicals: Key to Effective Anticancer Drugs. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180626113026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is considered one of the globally top lethal and never-ending public health troubles which affects the humankind population that mainly suffers from bone marrow tumor, breast cancer and lung cancer. Many health professionals and scientists have developed conventional therapies with a number of different modules of medicines obtainable from drugstores to cure diversified cancer disease despite the fact that none of these drugs have been found to be fully effective and safe. So, there is a great potential for the study of medicinal plants to reveal powerful anticancer activities. This coherent review is focused on an extensive investigation of frequently incited therapies through naturally occurring medicinal plants that cover a large number of pharmacological anticancer activities. During recent years, research has been focused on the structural modifications to accomplish anticancer medicines, drugs and complex physical therapies. Nevertheless, all reported therapies crafted improvements in the quality of cancer patients’ life issues however; these efforts are required to be escalated at a large scale and in high level clinical trials. The review covers the literature from 1985-2016.
Collapse
Affiliation(s)
- Munawar Hussain
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Asif Hanif
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
17
|
Waykar BB, Ali Alqadhi Y. Administration of Honey and Royal Jelly Ameliorate Cisplatin Induced Changes in Liver and Kidney Function in Rat. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although cisplatin is an effective drug, its clinical use is limited because of its side effects. Honey and royal jelly are natural antioxidants that can be extracted from honey bees. The aim of this investigation is to study the ameliorative role of both honey and royal jelly against cisplatin induced changes in levels of liver and kidney function biomarkers in rat. Male wistar albino rats of almost same age and weight were divided randomly into four groups. Group I: (control group) rats were given 0.9% saline. Group II; (cisplatin group) rats were injected by cisplatin (7mg/ kg/ day) intraperitoneally for 15 days. Group III; (Honey and Royall jelly group) rats were fed orally honey (500 mg/kg/day) with royal jelly (100mg/kg/day) for 15 days. Group IV; (cisplatin and honey with royal jelly group) rats were injected cisplatin (7mg/kg/day) intraperitoneally and fed orally honey (500mg/kg/day) with royal jelly (100mg/kg/day) daily for 15 days. At the end of experiment, blood was collected and serum was got by centrifugation at 3500 rpm. Serum obtained was analyzed for liver function test by estimating ALT, AST, ALP, total bilirubin, albumin, and total protein and kidney function test by estimating creatinine, urea, and uric acid levels. Administration of cisplatin to rats (Group, II) leads to a significant increase in serum ALT, AST, ALP enzyme activity, while the values of total bilirubin, total protein and albumin were significantly decreased as compared to control. Oral supplementation of royal jelly and honey to rats (Group, III) showed comparable enzyme activity of ALT, AST, ALP and values of total bilirubin, total protein and albumin to control. In the rat group that were administered honey and royal jelly in association of cisplatin (Group, IV) improvement was observed in liver function biomarkers. Cisplatin administrated rats (G, II) shows a significant increase in the values of kidney function biomarkers like creatinine, urea and uric acid compare to control. Oral supplementation of royal jelly and honey treated to rats (Group, III) showed comparable values of creatinine, urea and uric acid to control. In the rat group that were administered honey and royal jelly in association of cisplatin (Group, IV) improvement was observed in kidney function biomarkers. The study found that combined administration of honey and royal jelly attenuated the cisplatin induced alterations in liver and kidney function biomarkers, because honey and royal jelly are free radical scavengers, lipid peroxidation inhibitors and anti-inflammatory effects and hence are recommended during the cisplatin chemotherapy.
Collapse
Affiliation(s)
- Bhalchandra Baburao Waykar
- Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431001, Maharashtra, India
| | - Yahya Ali Alqadhi
- Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431001, Maharashtra, India
| |
Collapse
|
18
|
Almeer RS, Alarifi S, Alkahtani S, Ibrahim SR, Ali D, Moneim A. The potential hepatoprotective effect of royal jelly against cadmium chloride-induced hepatotoxicity in mice is mediated by suppression of oxidative stress and upregulation of Nrf2 expression. Biomed Pharmacother 2018; 106:1490-1498. [DOI: 10.1016/j.biopha.2018.07.089] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/08/2018] [Accepted: 07/17/2018] [Indexed: 12/23/2022] Open
|
19
|
Hadi A, Najafgholizadeh A, Aydenlu ES, Shafiei Z, Pirivand F, Golpour S, Pourmasoumi M. Royal jelly is an effective and relatively safe alternative approach to blood lipid modulation: A meta-analysis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Caixeta DC, Teixeira RR, Peixoto LG, Machado HL, Baptista NB, de Souza AV, Vilela DD, Franci CR, Salmen Espindola F. Adaptogenic potential of royal jelly in liver of rats exposed to chronic stress. PLoS One 2018; 13:e0191889. [PMID: 29377921 PMCID: PMC5788357 DOI: 10.1371/journal.pone.0191889] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Restraint and cold stress increase both corticosterone and glycemia, which lead to oxidative damages in hepatic tissue. This study assessed the effect of royal jelly (RJ) supplementation on the corticosterone level, glycemia, plasma enzymes and hepatic antioxidant system in restraint and cold stressed rats. Wistar rats were allocated into no-stress, stress, no-stress supplemented with RJ and stress supplemented with RJ groups. Initially, RJ (200mg/Kg) was administered for fourteen days and stressed groups were submitted to chronic stress from the seventh day. The results showed that RJ supplementation decreases corticosterone levels and improves glycemia control after stress induction. RJ supplementation also decreased the body weight, AST, ALP and GGT. Moreover, RJ improved total antioxidant capacity, SOD activity and reduced GSH, GR and lipoperoxidation in the liver. Thus, RJ supplementation reestablished the corticosterone levels and the hepatic antioxidant system in stressed rats, indicating an adaptogenic and hepatoprotective potential of RJ.
Collapse
Affiliation(s)
| | - Renata Roland Teixeira
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Leonardo Gomes Peixoto
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Helen Lara Machado
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Adriele Vieira de Souza
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Danielle Diniz Vilela
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
21
|
Teixeira RR, de Souza AV, Peixoto LG, Machado HL, Caixeta DC, Vilela DD, Baptista NB, Franci CR, Espindola FS. Royal jelly decreases corticosterone levels and improves the brain antioxidant system in restraint and cold stressed rats. Neurosci Lett 2017; 655:179-185. [PMID: 28709905 DOI: 10.1016/j.neulet.2017.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/27/2023]
Abstract
Restraint and cold stress induces the hypothalamic-pituitary-adrenal (HPA) axis to release corticosterone from the adrenal gland, which can worsen the antioxidant defense system in the central nervous system. Here, we investigated the corticosterone levels and the antioxidant defense system in the cerebellum and brain, as well as in its isolated regions, such as cerebral cortex, striatum and hippocampus of stressed rats supplemented with royal jelly (RJ). Wistar rats were supplemented with RJ for 14days and the stress induction started on the 7th day. Stressed rats increased corticosterone levels, glycemia and lipid peroxidation in the brain and cerebellum, cerebral cortex and hippocampus besides reduced glutathione defense system in the brain and striatum. Rats supplemented with RJ decreased corticosterone, maintained glycemia and decreased lipid peroxidation in the brain, cerebellum, as well as striatum and hippocampus, besides improved glutathione defense system in cerebral cortex and striatum. This study suggests an anti-stress and neuroprotective effect of RJ under stress conditions.
Collapse
Affiliation(s)
- Renata Roland Teixeira
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Minas Gerais, Brazil
| | - Adriele Vieira de Souza
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Minas Gerais, Brazil
| | - Leonardo Gomes Peixoto
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Minas Gerais, Brazil
| | - Helen Lara Machado
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Minas Gerais, Brazil
| | | | - Danielle Diniz Vilela
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Minas Gerais, Brazil
| | | | - Celso Rodrigues Franci
- Departament of Physiology, Medicine Faculty of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Foued Salmen Espindola
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Khoshpey B, Djazayeri S, Amiri F, Malek M, Hosseini AF, Hosseini S, Shidfar S, Shidfar F. Effect of Royal Jelly Intake on Serum Glucose, Apolipoprotein A-I (ApoA-I), Apolipoprotein B (ApoB) and ApoB/ApoA-I Ratios in Patients with Type 2 Diabetes: A Randomized, Double-Blind Clinical Trial Study. Can J Diabetes 2016; 40:324-8. [PMID: 27026221 DOI: 10.1016/j.jcjd.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/06/2016] [Accepted: 01/22/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Type 2 diabetes is the most common metabolic disorder worldwide. Evidence supports a role for royal jelly (RJ) in reduction of serum glucose and lipids in animals and healthy subjects. The purpose of this study was to determine the effect of RJ intake on serum glucose, apolipoprotein A-I (ApoA-I), apolipoprotein B (ApoB) and ApoB/ApoA-I ratios in patients with type 2 diabetes. METHODS Fifty patients with type 2 diabetes participated in a double-blind, placebo-controlled study. The participants were randomly divided into RJ and placebo groups and were given doses of 1000 mg royal jelly or placebo 3 times a day for 8 weeks, respectively. Weight, height, fasting blood glucose, ApoA-I and ApoB were measured at baseline and endpoint. RESULTS There were no significant differences in baseline characteristics and dietary intakes between groups. The mean difference in glucose concentrations decreased in the RJ group (-9.4 mg/dL vs. 4 mg/dL; p=0.011). The mean difference in ApoA-I concentrations increased in the RJ group (34.4 mg/dL vs. -1.08 mg/dL; p=0.013). There was a significant decrease in mean difference of ApoB/ApoA-I in the RJ group compared with the placebo group (0.008 vs. 0.13; p<0.044), respectively. CONCLUSIONS These data suggest that RJ intake may have desirable effects on serum glucose, Apo-A-I concentrations and ApoB/ApoA-I ratios in people with type 2 diabetes.
Collapse
Affiliation(s)
- Basemeh Khoshpey
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Djazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amiri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Malek
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Agha Fateme Hosseini
- Department of Statistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sharieh Hosseini
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shahrzad Shidfar
- Worcester Memorial Hospital, University of Massachusetts, Worcester, Massachusetts, USA
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochem 2015; 117:649-58. [PMID: 26190785 DOI: 10.1016/j.acthis.2015.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 01/14/2023]
Abstract
This study is aimed to evaluate the possible neurotoxic effect of tartrazine (T), an extensively used synthetic azo dye, as well as to determine the potential modulatory role of cod liver oil (CLO) or royal jelly (RJ) against such effects. For this purpose, thirty-six male rat pups were allocated into six groups. The 1st group received distilled water (control group), the 2nd group was given 300 mg RJ/kg bw (RJ group), the 3rd group was given 0.4 ml CLO/kg bw (CLO group), the 4th was given 500 mg T/kg bw (T group). The 5th group was given T concurrently with RJ (TRJ group) and the 6th group was given T concurrently with CLO (TCLO group), at the same doses as the former groups. All treatments were given orally for 30 consecutive days. The concentrations of different brain neurotransmitters, gamma amino butyric acid (GABA), dopamine (DA) and serotonin (5HT) as well as the antioxidant and oxidative stress biomarkers were measured in the brain homogenates. An immunohistochemical staining of the cerebral cortex was applied with the anti-ssDNA antibody (an apoptotic cell marker) to reveal the changes in brain structure. The T group revealed a significant decrease in the concentration of the brain neurotransmitters, a sharp shortage in the level of antioxidant biomarkers (super oxide dismutase, catalase and the reduced glutathione), a marked increase in malondialdehyde levels, and numerous apoptotic cells in the brain cortex compared with the other groups. Interestingly, all the previously mentioned parameters were almost retrieved in both the TRJ and TCLO groups compared to the T group. These results conclusively demonstrate that RJ and CLO administration provides sufficient protection against the ruinous effects of T on rat pups brain tissue function and structure.
Collapse
|
24
|
Ibrahim A, Eldaim MAA, Abdel-Daim MM. Nephroprotective effect of bee honey and royal jelly against subchronic cisplatin toxicity in rats. Cytotechnology 2015; 68:1039-48. [PMID: 25720368 DOI: 10.1007/s10616-015-9860-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/13/2015] [Indexed: 12/01/2022] Open
Abstract
Cisplatin is one of the most potent and effective chemotherapeutic agents. However, its antineoplastic use is limited due to its cumulative nephrotoxic side effects. Therefore, the present study was undertaken to examine the nephroprotective potential of dietary bee honey and royal jelly against subchronic cisplatin toxicity in rats. Male Wistar rats were randomly divided into controls, cisplatin-treated, bee honey-pretreated cisplatin-treated and royal jelly-pretreated cisplatin-treated groups. Bee honey and royal jelly were given orally at doses of 20 and 100 mg/kg, respectively. Subchronic toxicity was induced by cisplatin (1 mg/kg bw, ip), twice weekly for 10 weeks. Cisplatin treated animals revealed a significant increase in serum level of renal injury products (urea, creatinine and uric acid). Histopathologically, cisplatin produced pronounced tubulointerstitial injuries, upregulated the fibrogenic factors, α-smooth muscle actin (α-SMA) and transforming growth factor β1(TGF-β1), and downregulated the cell proliferation marker, bromodeoxyuridine (Brdu). Dietary bee honey and royal jelly normalized the elevated serum renal injury product biomarkers, improved the histopathologic changes, reduced the expression of α-SMA and TGF-β1 and increased the expression of Brdu. Therefore, it could be concluded that bee honey, and royal jelly could be used as dietary preventive natural products against subchronic cisplatin-induced renal injury.
Collapse
Affiliation(s)
- Abdelazim Ibrahim
- Pathology Department, College of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pathology, College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mabrouk A Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Sadat City University, Sadat City, 32897, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
25
|
Kashima Y, Kanematsu S, Asai S, Kusada M, Watanabe S, Kawashima T, Nakamura T, Shimada M, Goto T, Nagaoka S. Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly. PLoS One 2014; 9:e105073. [PMID: 25144734 PMCID: PMC4140749 DOI: 10.1371/journal.pone.0105073] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022] Open
Abstract
Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats.
Collapse
Affiliation(s)
| | | | - Saori Asai
- Akitaya Honten Co., Ltd., Kano, Gifu, Japan
| | - Mio Kusada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | | | | | | | - Masaya Shimada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Tsuyoshi Goto
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
- * E-mail:
| |
Collapse
|
26
|
Melliou E, Chinou I. Chemistry and Bioactivities of Royal Jelly. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63430-6.00008-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Osada J. The use of transcriptomics to unveil the role of nutrients in Mammalian liver. ISRN NUTRITION 2013; 2013:403792. [PMID: 24967258 PMCID: PMC4045299 DOI: 10.5402/2013/403792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Liver is the organ primarily responding to diet, and it is crucial in determining plasma carbohydrate, protein, and lipid levels. In addition, it is mainly responsible for transformation of xenobiotics. For these reasons, it has been a target of transcriptomic analyses. In this review, we have covered the works dealing with the response of mammalian liver to different nutritional stimuli such as fasting/feeding, caloric restriction, dietary carbohydrate, cholesterol, fat, protein, bile acid, salt, vitamin, and oligoelement contents. Quality of fats or proteins has been equally addressed, and has the influence of minor dietary components. Other compounds, not purely nutritional as those represented by alcohol and food additives, have been included due to their relevance in processed food. The influence has been studied not only on mRNA but also on miRNA. The wide scope of the technology clearly reflects that any simple intervention has profound changes in many metabolic parameters and that there is a synergy in response when more compounds are included in the intervention. Standardized arrays to systematically test the same genes in all studies and analyzing data to establish patterns of response are required, particularly for RNA sequencing. Moreover, RNA is a valuable, easy-screening ally but always requires further confirmation.
Collapse
Affiliation(s)
- Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain ; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
28
|
Kanbur M, Eraslan G, Silici S, Karabacak M. Effects of sodium fluoride exposure on some biochemical parameters in mice: evaluation of the ameliorative effect of royal jelly applications on these parameters. Food Chem Toxicol 2009; 47:1184-9. [PMID: 19425189 DOI: 10.1016/j.fct.2009.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Forty eight male Balb/c mice, each weighing 30-35 g, were used in the present study. The animals were divided into four equal groups. The first group served as the control group, and the second group was administered royal jelly at a dose of 50 mg/kg bw by gavage for a period of 7 days. The third group received 200 ppm fluoride, as sodium fluoride, for a period of 7 days, in drinking water. Lastly, the fourth group was given 200 ppm fluoride in drinking water, in association with royal jelly at a dose of 50 mg/kg bw by gavage, for a period of 7 days. At the end of the seventh day, blood samples were collected from all groups into heparinised and dry tubes, and liver samples were taken concurrently. Erythrocyte and liver tissue malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were evaluated in the blood and tissue samples obtained. Furthermore, serum cholesterol, triglyceride, glucose, total protein and albumin levels, and aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alcaline phosphatase (ALP) activities were evaluated. In conclusion, fluoride was determined to cause adverse effects in mice, and the administration of royal jelly to these animals alleviated the adverse effects of fluoride.
Collapse
Affiliation(s)
- Murat Kanbur
- University of Erciyes, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kayseri, Turkey
| | | | | | | |
Collapse
|
29
|
Münstedt K, Henschel M, Hauenschild A, von Georgi R. Royal jelly increases high density lipoprotein levels but in older patients only. J Altern Complement Med 2009; 15:329-30. [PMID: 19388854 DOI: 10.1089/acm.2008.0420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Bibliography. Current world literature. Lipid metabolism. Curr Opin Lipidol 2008; 19:314-21. [PMID: 18460925 DOI: 10.1097/mol.0b013e328303e27e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Guo H, Saiga A, Sato M, Miyazawa I, Shibata M, Takahata Y, Morimatsu F. Royal jelly supplementation improves lipoprotein metabolism in humans. J Nutr Sci Vitaminol (Tokyo) 2007; 53:345-8. [PMID: 17934240 DOI: 10.3177/jnsv.53.345] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Royal jelly (RJ) has several physiological effects and is widely used in commercial medical products and health foods. We examined the effects of RJ supplementation on serum lipoprotein metabolism in humans. Fifteen volunteers were divided into an RJ intake group (n=7) and a control group (n=8). The RJ group took 6 g per day for 4 wk. Their serum total cholesterol (TC) and serum low-density lipoprotein (LDL) decreased significantly compared with those of the control group (p<0.05). There were no significant differences in serum high-density lipoprotein (HDL) or triglyceride concentrations. Moreover, the relationship between the serum cholesterol and lipoprotein levels was investigated. Among the lipoprotein fractions, small very-low-density lipoprotein was decreased (p<0.05) after RJ intake. Our results suggest that dietary RJ decreases TC and LDL by lowering small VLDL levels.
Collapse
Affiliation(s)
- Hang Guo
- R&D Center, Nippon Meat Packers, Inc., Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|