1
|
Wu L, Xu J, Cong X, Zhang T, Pei Y, Liu J, Zheng H, Liu W. A Whole MED12 Gene Deletion in a Female Fetus With Features Encountered in Hardikar Syndrome. Prenat Diagn 2025; 45:223-226. [PMID: 39702865 DOI: 10.1002/pd.6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Chromosomal microarray analysis (CMA), methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), and trio-whole exome sequencing (WES) were performed in a female fetus with omphalocele. A de novo heterozygous 300-kb deletion in the Xq13.1 region, which includes the MED12 gene, was identified. Follow-up ultrasound at 18+4 weeks of gestation revealed features consistent with Hardikar syndrome (HS), including a right-sided cleft lip and palate, an omphalocele with intestines, a diaphragmatic hernia with the stomach in the left thoracic cavity, and displacement of the heart to the right. Phenotypic evaluation confirmed the presence of a cleft lip and palate as well as umbilical hernia. These findings suggest that a heterozygous deletion of the entire MED12 gene may contribute to the HS phenotype. This case extends the possible damaging effects of haploinsufficiency of the MED12 gene in the pathogenesis of HS.
Collapse
Affiliation(s)
- Liping Wu
- Department of Medical Genetics and Prenatal Diagnosis, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Jinmao Xu
- Department of Medical Ultrasonics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Xiaoyi Cong
- Central Lab (Genetics Lab), Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
- Genetic Department, Longgang District Key Laboratory for Birth Defects Prevention, Shenzhen, China
| | - Tong Zhang
- Central Lab (Genetics Lab), Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
- Genetic Department, Longgang District Key Laboratory for Birth Defects Prevention, Shenzhen, China
| | - Yuanyuan Pei
- Central Lab (Genetics Lab), Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
- Genetic Department, Longgang District Key Laboratory for Birth Defects Prevention, Shenzhen, China
| | - Jinghua Liu
- Department of Medical Ultrasonics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Hongping Zheng
- Department of Medical Ultrasonics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Weiqiang Liu
- Central Lab (Genetics Lab), Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
- Genetic Department, Longgang District Key Laboratory for Birth Defects Prevention, Shenzhen, China
| |
Collapse
|
2
|
Lang RM, Chawla R, Patel S, Abrams CK, Dobrowsky RT. Cemdomespib Therapy Slows the Progression of Neuromuscular Weakness and Demyelination in the R75W-Connexin 32 Animal Model of Charcot-Marie-Tooth 1X Disease. ACS Pharmacol Transl Sci 2025; 8:124-135. [PMID: 39816792 PMCID: PMC11729424 DOI: 10.1021/acsptsci.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression. However, whether a similar efficacy may manifest in models of CMT1X arising from Cx32 mutations that cause the organellar accumulation of the protein was unclear. Additionally, it was unclear whether cemdomespib therapy slowed the rate of demyelination/NMJ degeneration or stabilized nerve and NMJ morphology to levels present at the initiation of drug therapy. To address these issues, 4-month-old R75W-Cx32 mice, which accumulate the mutant Cx32 in golgi, were treated for 0, 10, or 20 weeks with 0 or 3 mg/kg cemdomespib. Grip strength, motor nerve conduction velocity (MNCV), femoral nerve myelination, and NMJ morphology were quantified. Daily drug therapy significantly slowed the decline in grip strength over the course of treatment, while 20 weeks of drug treatment significantly improved MNCV and decreased the g-ratio and the number of thinly myelinated femoral nerve axons. Similarly, 20 weeks of cemdomespib therapy improved the NMJ morphology and the overlap between presynaptic (synaptophysin) and postsynaptic (α-bungarotoxin) markers. These data show that cemdomespib therapy slows the rate of neuromuscular decline and demyelination and may present a disease-modifying approach for patients with gain-of-function Cx32 mutations.
Collapse
Affiliation(s)
- Ryan M. Lang
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Riddhi Chawla
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Sugandha Patel
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Charles K. Abrams
- Department
of Neurology and Rehabilitation, College of Medicine, University of Illinois Chicago, Chicago Illinois 60612, United States
| | - Rick T. Dobrowsky
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Barbat du Closel L, Bonello‐Palot N, Delmont E, Péréon Y, Echaniz‐Laguna A, Camdessanché JP, Pakleza AN, Chanson J, Frachet S, Magy L, Cassereau J, Cintas P, Choumert A, Devic P, Louis SL, Tard C, Solé G, Salort‐Campana E, Bouhour F, Latour P, Stojkovic T, Attarian S. Phenotype-genotype correlation in X-linked Charcot-Marie-Tooth disease: A French cohort study. Eur J Neurol 2025; 32:e16523. [PMID: 39569692 PMCID: PMC11622270 DOI: 10.1111/ene.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND AND PURPOSE X-linked Charcot-Marie-Tooth disease type 1 (CMTX1) ranks as the second most prevalent hereditary neuropathy and, currently, has no definitive cure. Emerging preclinical trials offer hope for potential clinical studies in the near future. While it is widely accepted that experimental groups in these trials should be balanced for age and gender, there is a current shortfall in data regarding phenotype-genotype correlations. Our aim was to provide a more detailed understanding of these correlations to facilitate the formation of well-matched patient groups in upcoming clinical trials. METHODS We conducted a retrospective evaluation of CMTX1 patients from 13 designated reference centers in France. Data on genetics, clinical features, and nerve conduction were systematically gathered. RESULTS We analyzed the genotype-phenotype correlations in 275 CMTX1 patients belonging to 162 families and carrying 87 distinct variants. Patients with variants affecting the transmembrane domains demonstrated significantly greater severity, as evidenced by a Charcot-Marie-Tooth Examination Score of 10.5, compared to 7.1 for those with intracellular domain variants and 8.7 for extracellular domain variants (p < 0.000). These patients also experienced an earlier age of onset, showed slower ulnar nerve conduction velocities and had more substantial loss of motor amplitude. CONCLUSIONS This study confirms the presence of a correlation between the mutated protein domain and the clinical phenotype. Patients with a variant in the transmembrane domains demonstrated a more severe clinical and electrophysiological profile. Consequently, the genotype could play a prognostic role in addition to its diagnostic role, and it will be essential to consider this in future clinical trials.
Collapse
Affiliation(s)
- Luce Barbat du Closel
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
| | | | - Emilien Delmont
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
| | - Yann Péréon
- CHU Nantes, Laboratoire d'Explorations FonctionnellesReference Center for NMD AOC, Filnemus, Euro‐NMDNantesFrance
| | - Andoni Echaniz‐Laguna
- Department of NeurologyAPHP, CHU de BicêtreLe Kremlin‐BicêtreFrance
- French National Reference Center for Rare NeuropathiesLe Kremlin‐BicêtreFrance
- Inserm U1195 and Paris‐Saclay UniversityLe Kremlin‐BicêtreFrance
| | | | - Aleksandra Nadaj Pakleza
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile‐de‐FranceService de Neurologie, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Jean‐Baptiste Chanson
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile‐de‐FranceService de Neurologie, Hôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Simon Frachet
- Service et Laboratoire de NeurologieCentre de Référence Neuropathies Périphériques rares, NNerf, UR NeurIT, CHU LimogesLimogesFrance
| | - Laurent Magy
- Service et Laboratoire de NeurologieCentre de Référence Neuropathies Périphériques rares, NNerf, UR NeurIT, CHU LimogesLimogesFrance
| | - Julien Cassereau
- Reference Center for Neuromuscular Disorders AOC and National Reference Center for Neurogenetic DiseasesAngers University HospitalAngersFrance
| | - Pascal Cintas
- Centre de référence de pathologie neuromusculaire de Toulouse. Hôpital PurpanToulouseFrance
| | - Ariane Choumert
- Service des Maladies Neurologiques RaresCHU de la Réunion—GH Sud Réunion—Saint‐PierreMarseilleFrance
| | - Perrine Devic
- Department of NeurologyHospices Civils de Lyon, Lyon Sud HospitalPierre‐BéniteFrance
| | - Sarah Léonard Louis
- APHP, Centre de référence des maladies neuromusculaires Nord/Est/Ile‐de‐FranceInstitut de Myologie, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Céline Tard
- U1172, centre de référence des maladies neuromusculaires Nord/Est/Ile‐de‐FranceCHU de LilleLilleFrance
| | - Guilhem Solé
- Centre de référence des maladies neuromusculaires AOC CHU de Bordeaux Hôpital PellegrinBordeauxFrance
| | - Emmanuelle Salort‐Campana
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
- Marseille Medical GeneticsAix‐Marseille University–Inserm UMR 1251MarseilleFrance
| | - Françoise Bouhour
- Service d'Electroneuromyographie et Pathologies Neuromusculaires, Hospices Civils de LyonLyonFrance
| | - Philippe Latour
- PGNM, Institut NeuroMyoGèneUniversité Lyon1‐CNRS UMR5261‐INSERMLyonFrance
- Unité fonctionnelle de neurogénétique moléculaireCHU de Lyon‐HCL groupement EstBronFrance
| | - Tanya Stojkovic
- APHP, Centre de référence des maladies neuromusculaires Nord/Est/Ile‐de‐FranceInstitut de Myologie, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALSAPHM, CHU La Timone, Filnemus, ERN Neuro‐NMDMarseilleFrance
- Marseille Medical GeneticsAix‐Marseille University–Inserm UMR 1251MarseilleFrance
| |
Collapse
|
4
|
Butler J, Dale N. X-linked Charcot Marie Tooth mutations alter CO 2 sensitivity of connexin32 hemichannels. Front Cell Neurosci 2023; 17:1330983. [PMID: 38188670 PMCID: PMC10771293 DOI: 10.3389/fncel.2023.1330983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Connexin32 (Cx32) is expressed in myelinating Schwann cells. It forms both reflexive gap junctions, to facilitate transfer of molecules from the outer to the inner myelin layers and hemichannels at the paranode to permit action potential-evoked release of ATP into the extracellular space. Loss of function mutations in Cx32 cause X-linked Charcot Marie Tooth disease (CMTX), a slowly developing peripheral neuropathy. The mechanistic links between Cx32 mutations and CMTX are not well understood. As Cx32 hemichannels can be opened by increases in PCO2, we have examined whether CMTX mutations alter this CO2 sensitivity. By using Ca2+ imaging, dye loading and genetically encoded ATP sensors to measure ATP release, we have found 5 CMTX mutations that abolish the CO2 sensitivity of Cx32 hemichannels (A88D, 111-116 Del, C179Y, E102G, V139M). Others cause a partial loss (L56F, R220Stop, and R15W). Some CMTX mutations have no apparent effect on CO2 sensitivity (R15Q, L9F, G12S, V13L, V84I, W133R). The mutation R15W alters multiple additional aspects of hemichannel function including Ca2+ and ATP permeability. The mutations that abolish CO2 sensitivity are transdominant and abolish CO2 sensitivity of co-expressed Cx32WT. We have shown that Schwannoma RT4 D6P2T cells can release ATP in response to elevated PCO2 via the opening of Cx32. This is consistent with the hypothesis that the CO2 sensitivity of Cx32 may be important for maintenance of healthy myelin. Our data, showing a transdominant effect of certain CMTX mutations on CO2 sensitivity, may need to be taken into account in any future gene therapies for this condition.
Collapse
Affiliation(s)
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
5
|
Record CJ, Skorupinska M, Laura M, Rossor AM, Pareyson D, Pisciotta C, Feely SME, Lloyd TE, Horvath R, Sadjadi R, Herrmann DN, Li J, Walk D, Yum SW, Lewis RA, Day J, Burns J, Finkel RS, Saporta MA, Ramchandren S, Weiss MD, Acsadi G, Fridman V, Muntoni F, Poh R, Polke JM, Zuchner S, Shy ME, Scherer SS, Reilly MM. Genetic analysis and natural history of Charcot-Marie-Tooth disease CMTX1 due to GJB1 variants. Brain 2023; 146:4336-4349. [PMID: 37284795 PMCID: PMC10545504 DOI: 10.1093/brain/awad187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Shawna M E Feely
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina W Yum
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John Day
- Department of Neurology, Stanford University, Stanford, CA 94304, USA
| | - Joshua Burns
- University of Sydney School of Health Sciences, Faculty of Medicine and Health; Paediatric Gait Analysis Service of New South Wales, Sydney Children’s Hospitals Network, Sydney, 2145Australia
| | - Richard S Finkel
- Department of Neurology, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sindhu Ramchandren
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Titusville, NJ 08560, USA
| | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, WA, 98195USA
| | - Gyula Acsadi
- Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London, WC1N 1EH, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
6
|
Cavalcanti EBU, Leal RDCC, Marques Junior W, Nascimento OJMD. Charcot-Marie-Tooth disease: from historical landmarks in Brazil to current care perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:913-921. [PMID: 37611635 PMCID: PMC10631856 DOI: 10.1055/s-0043-1770348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/16/2023] [Indexed: 08/25/2023]
Abstract
Hereditary motor and sensory neuropathy, also known as Charcot-Marie-Tooth disease (CMT), traditionally refers to a group of genetic disorders in which neuropathy is the main or sole feature. Its prevalence varies according to different populations studied, with an estimate between 1:2,500 to 1:10,000. Since the identification of PMP22 gene duplication on chromosome 17 by Vance et al., in 1989, more than 100 genes have been related to this group of disorders, and we have seen advances in the care of patients, with identification of associated conditions and better supportive treatments, including clinical and surgical interventions. Also, with discoveries in the field of genetics, including RNA interference and gene editing techniques, new treatment perspectives begin to emerge. In the present work, we report the most import landmarks regarding CMT research in Brazil and provide a comprehensive review on topics such as frequency of different genes associated with CMT in our population, prevalence of pain, impact on pregnancy, respiratory features, and development of new therapies.
Collapse
Affiliation(s)
| | | | - Wilson Marques Junior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurologia, Ribeirão Preto SP, Brazil.
| | | |
Collapse
|
7
|
Barbat du Closel L, Bonello-Palot N, Péréon Y, Echaniz-Laguna A, Camdessanche JP, Nadaj-Pakleza A, Chanson JB, Frachet S, Magy L, Cassereau J, Cintas P, Choumert A, Devic P, Leonard Louis S, Gravier Dumonceau R, Delmont E, Salort-Campana E, Bouhour F, Latour P, Stojkovic T, Attarian S. Clinical and electrophysiological characteristics of women with X-linked Charcot-Marie-Tooth disease. Eur J Neurol 2023; 30:3265-3276. [PMID: 37335503 DOI: 10.1111/ene.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND X-Linked Charcot-Marie-Tooth disease type 1 (CMTX1) is characterized by gender differences in clinical severity. Women are usually clinically affected later and less severely than men. However, their clinical presentation appears to be heterogenous. Our aim was to extend the phenotypic description in a large series of women with CMTX1. METHODS We retrospectively evaluated 263 patients with CMTX1 from 11 French reference centers. Demographic, clinical, and nerve conduction data were collected. The severity was assessed by CMT Examination Score (CMTES) and Overall Neuropathy Limitations Scale (ONLS) scores. We looked for asymmetrical strength, heterogeneous motor nerve conduction velocity (MNCV), and motor conduction blocks (CB). RESULTS The study included 137 women and 126 men from 151 families. Women had significantly more asymmetric motor deficits and MNCV than men. Women with an age of onset after 19 years were milder. Two groups of women were identified after 48 years of age. The first group represented 55%, with women progressing as severely as men, however, with a later onset age. The second group had mild or no symptoms. Some 39% of women had motor CB. Four women received intravenous immunoglobulin before being diagnosed with CMTX1. CONCLUSIONS We identified two subgroups of women with CMTX1 who were over 48 years of age. Additionally, we have demonstrated that women with CMTX can exhibit an atypical clinical presentation, which may result in misdiagnosis. Therefore, in women presenting with chronic neuropathy, the presence of clinical asymmetry, heterogeneous MNCV, and/or motor CB should raise suspicion for X-linked CMT, particularly CMTX1, and be included in the differential diagnosis.
Collapse
Affiliation(s)
- Luce Barbat du Closel
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
| | | | - Yann Péréon
- CHU Nantes, Laboratoire d'Explorations Fonctionnelles, Reference Center for NMD AOC, Filnemus, Euro-NMD, Nantes, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
- French National Reference Center for Rare Neuropathies, Le Kremlin-Bicêtre, France
- Inserm U1195 and Paris-Saclay University, Le Kremlin-Bicêtre, France
| | | | - Aleksandra Nadaj-Pakleza
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-Baptiste Chanson
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Simon Frachet
- Service et Laboratoire de Neurologie, Centre de Référence Neuropathies Périphériques rares (NNERF), UR, Limoges, France
| | - Laurent Magy
- Service et Laboratoire de Neurologie, Centre de Référence Neuropathies Périphériques rares (NNERF), UR, Limoges, France
| | - Julien Cassereau
- Reference Center for Neuromuscular Disorders AOC and National Reference Center for Neurogenetic Diseases, Angers University Hospital, Angers, France
| | - Pascal Cintas
- Centre de référence de pathologie neuromusculaire de ToulouseHôpital Purpan, Toulouse, France
| | - Ariane Choumert
- Service des Maladies Neurologiques Rares, CHU de la Réunion, Saint-Pierre, France
| | - Perrine Devic
- Department of Neurology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | | | - Robinson Gravier Dumonceau
- APHM, Hop Timone, BioSTIC, Biostatistique et Technologies de l'Information et de la Communication, Marseille, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
| | - Emmanuelle Salort-Campana
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
- Marseille Medical Genetics, Aix-Marseille University-Inserm UMR 1251, Marseille, France
| | - Françoise Bouhour
- Service d'Electroneuromyographie et Pathologies Neuromusculaires, Hospices Civils de Lyon, Lyon, France
| | - Philippe Latour
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France
- Unité fonctionnelle de Neurogénétique Moléculaire, CHU de Lyon-HCL groupement Est, Bron, France
| | - Tanya Stojkovic
- Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
- Marseille Medical Genetics, Aix-Marseille University-Inserm UMR 1251, Marseille, France
| |
Collapse
|
8
|
Kagiava A, Karaiskos C, Lapathitis G, Heslegrave A, Sargiannidou I, Zetterberg H, Bosch A, Kleopa KA. Gene replacement therapy in two Golgi-retained CMT1X mutants before and after the onset of demyelinating neuropathy. Mol Ther Methods Clin Dev 2023; 30:377-393. [PMID: 37645436 PMCID: PMC10460951 DOI: 10.1016/j.omtm.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
X-linked Charcot-Marie-Tooth disease type 1 (CMT1X) is a demyelinating neuropathy resulting from loss-of-function mutations affecting the GJB1/connexin 32 (Cx32) gene. We previously showed functional and morphological improvement in Gjb1-null mice following AAV9-mediated delivery of human Cx32 driven by the myelin protein zero (Mpz) promoter in Schwann cells. However, CMT1X mutants may interfere with virally delivered wild-type (WT) Cx32. To confirm the efficacy of this vector also in the presence of CMT1X mutants, we delivered AAV9-Mpz-GJB1 by lumbar intrathecal injection in R75W/Gjb1-null and N175D/Gjb1-null transgenic lines expressing Golgi-retained mutations, before and after the onset of the neuropathy. Widespread expression of virally delivered Cx32 was demonstrated in both genotypes. Re-establishment of WT Cx32 function resulted in improved muscle strength and increased sciatic nerve motor conduction velocities in all treated groups from both mutant lines when treated before as well as after the onset of the neuropathy. Furthermore, morphological analysis showed improvement of myelination and reduction of inflammation in lumbar motor roots and peripheral nerves. In conclusion, this study provides proof of principle for a clinically translatable gene therapy approach to treat CMT1X before and after the onset of the neuropathy, even in the presence of endogenously expressed Golgi-retained Cx32 mutants.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - George Lapathitis
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 40530 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 40530 Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Assumpció Bosch
- Department of Biochemistry & Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Bellatera, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 028029 Madrid, Spain
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| |
Collapse
|
9
|
Tadenev ALD, Hatton CL, Pattavina B, Mullins T, Schneider R, Bogdanik LP, Burgess RW. Two new mouse models of Gjb1-associated Charcot-Marie-Tooth disease type 1X. J Peripher Nerv Syst 2023; 28:317-328. [PMID: 37551045 DOI: 10.1111/jns.12588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1X is caused by mutations in GJB1, which is the second most common gene associated with inherited peripheral neuropathy. The GJB1 gene encodes connexin 32 (CX32), a gap junction protein expressed in myelinating glial cells. The gene is X-linked, and the mutations cause a loss of function. AIMS A large number of disease-associated variants have been identified, and many result in mistrafficking and mislocalization of the protein. An existing knockout mouse lacking Gjb1 expression provides a valid animal model of CMT1X, but the complete lack of protein may not fully recapitulate the disease mechanisms caused by aberrant CX32 proteins. To better represent the spectrum of human CMT1X-associated mutations, we have generated a new Gjb1 knockin mouse model. METHODS CRISPR/Cas9 genome editing was used to produce mice carrying the R15Q mutation in Gjb1. In addition, we identified a second allele with an early frame shift mutation in codon 7 (del2). Mice were analyzed using clinically relevant molecular, histological, neurophysiological, and behavioral assays. RESULTS Both alleles produce protein detectable by immunofluorescence in Schwann cells, with some protein properly localizing to nodes of Ranvier. However, both alleles also result in peripheral neuropathy with thinly myelinated and demyelinated axons, as well as degenerating and regenerating axons, predominantly in distal motor nerves. Nerve conduction velocities were only mildly reduced at later ages and compound muscle action potential amplitudes were not reduced. Levels of neurofilament light chain in plasma were elevated in both alleles. The del2 mice have an onset at ~3 months of age, whereas the R15Q mice had a later onset at 5-6 months of age, suggesting a milder loss of function. Both alleles performed comparably to wild type littermates in accelerating rotarod and grip strength tests of neuromuscular performance. INTERPRETATION We have generated and characterized two new mouse models of CMT1X that will be useful for future mechanistic and preclinical studies.
Collapse
Affiliation(s)
| | - C L Hatton
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - B Pattavina
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - T Mullins
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - R Schneider
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | |
Collapse
|
10
|
Dale N, Butler J, Dospinescu VM, Nijjar S. Channel-mediated ATP release in the nervous system. Neuropharmacology 2023; 227:109435. [PMID: 36690324 DOI: 10.1016/j.neuropharm.2023.109435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
ATP is well established as a transmitter and modulator in the peripheral and central nervous system. While conventional exocytotic release of ATP at synapses occurs, this transmitter is unusual in also being released into the extracellular space via large-pored plasma membrane channels. This review considers the channels that are known to be permeable to ATP and some of the functions of channel-mediated ATP release. While the possibility of ATP release via channels mediating volume transmission has been known for some time, localised ATP release via channels at specialised synapses made by taste cells to the afferent nerve has recently been documented in taste buds. This raises the prospect that "channel synapses" may occur in other contexts. However, volume transmission and channel synapses are not necessarily mutually exclusive. We suggest that certain glial cells in the brain stem and hypothalamus, which possess long processes and are known to release ATP, may be candidates for both modes of ATP release -channel-mediated volume transmission in the region of their somata and more localised transmission possibly via either conventional or channel synapses from their processes at distal targets. Finally, we consider the different characteristics of vesicular and channel synapses and suggest that channel synapses may be advantageous in requiring less energy than their conventional vesicular counterparts. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK.
| | - Jack Butler
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| | | | - Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| |
Collapse
|
11
|
Abrams CK, Lancaster E, Li JJ, Dungan G, Gong D, Scherer SS, Freidin MM. Knock-in mouse models for CMTX1 show a loss of function phenotype in the peripheral nervous system. Exp Neurol 2023; 360:114277. [PMID: 36403785 DOI: 10.1016/j.expneurol.2022.114277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMTX1) is the second most common form of CMT. In this study we used CRISPR/Cas9 to develop new "knock-in" models of CMTX1 that are more representative of the spectrum of mutations seen with CMTX1 than the Cx32 knockout (KO) mouse model used previously. We compared mice of four genotypes - wild-type, Cx32KO, p.T55I, and p.R75W. Sciatic motor conduction velocity slowing was the most robust electrophysiologic indicator of neuropathy, showing reductions in the Cx32KO by 3 months and in the p.T55I and p.R75W mice by 6 months. At both 6 and 12 months, all three mutant genotypes showed reduced four limb and hind limb grip strength compared to WT mice. Performance on 6 and 12 mm width balance beams revealed deficits that were most pronounced at on the 6 mm balance beam at 6 months of age. There were pathological changes of myelinated axons in the femoral motor nerve in all three mutant lines by 3 months of age, and these became more pronounced at 6 and 12 months of age; sensory nerves (femoral sensory and the caudal nerve of the tail) appeared normal at all ages examined. Our results demonstrate that mice can be used to show the pathogenicity of human GJB1 mutations, and these new models for CMTX1 should facilitate the preclinical work for developing treatments for CMTX1.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60657, USA; Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, USA.
| | - Eunjoo Lancaster
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA..
| | - Jian J Li
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA..
| | - Gabriel Dungan
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60657, USA
| | - David Gong
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, USA.
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA..
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60657, USA.
| |
Collapse
|
12
|
Younger DS. On the path to evidence-based therapy in neuromuscular disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:315-358. [PMID: 37562877 DOI: 10.1016/b978-0-323-98818-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuromuscular disorders encompass a diverse group of acquired and genetic diseases characterized by loss of motor functionality. Although cure is the goal, many therapeutic strategies have been envisioned and are being studied in randomized clinical trials and entered clinical practice. As in all scientific endeavors, the successful clinical translation depends on the quality and translatability of preclinical findings and on the predictive value and feasibility of the clinical models. This chapter focuses on five exemplary diseases: childhood spinal muscular atrophy (SMA), Charcot-Marie-Tooth (CMT) disorders, chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), acquired autoimmune myasthenia gravis (MG), and Duchenne muscular dystrophy (DMD), to illustrate the progress made on the path to evidenced-based therapy.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
13
|
Jennings MJ, Kagiava A, Vendredy L, Spaulding EL, Stavrou M, Hathazi D, Grüneboom A, De Winter V, Gess B, Schara U, Pogoryelova O, Lochmüller H, Borchers CH, Roos A, Burgess RW, Timmerman V, Kleopa KA, Horvath R. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 2022; 145:3999-4015. [PMID: 35148379 PMCID: PMC9679171 DOI: 10.1093/brain/awac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT. The severity of neuropathy in the patients was assessed by the CMT Neuropathy Examination Score (CMTES). We performed multitargeted proteomics on both sample sets to identify proteins elevated across multiple mouse models and CMT patients. Selected proteins and additional potential biomarkers, such as growth differentiation factor 15 (GDF15) and cell free mitochondrial DNA, were validated by ELISA and quantitative PCR, respectively. We propose that neural cell adhesion molecule 1 (NCAM1) is a candidate biomarker for CMT, as it was elevated in Gjb1-null, Hspb8K141N, GarsC201R and GarsP278KY mice as well as in patients with both demyelinating (CMT1A) and axonal (CMT2D, CMT2N) forms of CMT. We show that NCAM1 may reflect disease severity, demonstrated by a progressive increase in mouse models with time and a significant positive correlation with CMTES neuropathy severity in patients. The increase in NCAM1 may reflect muscle regeneration triggered by denervation, which could potentially track disease progression or the effect of treatments. We found that member proteins of the complement system were elevated in Gjb1-null and Hspb8K141N mouse models as well as in patients with both demyelinating and axonal CMT, indicating possible complement activation at the impaired nerve terminals. However, complement proteins did not correlate with the severity of neuropathy measured on the CMTES scale. Although the complement system does not seem to be a prognostic biomarker, we do show complement elevation to be a common disease feature of CMT, which may be of interest as a therapeutic target. We also identify serum GDF15 as a highly sensitive diagnostic biomarker, which was elevated in all CMT genotypes as well as in Hspb8K141N, Gjb1-null, GarsC201R and GarsP278KY mouse models. Although we cannot fully explain its origin, it may reflect increased stress response or metabolic disturbances in CMT. Further large and longitudinal patient studies should be performed to establish the value of these proteins as diagnostic and prognostic molecular biomarkers for CMT.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexia Kagiava
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Marina Stavrou
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Dortmund, Germany
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Burkhard Gess
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Ulrike Schara
- Centre for Neuromuscular Disorders in Children, University of Duisburg-Essen, Essen, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andreas Roos
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Kleopas A Kleopa
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Chu F, Xu J, Wang Y, Li Y, Wang Y, Liu Z, Li C. Novel mutations in GJB1 trigger intracellular aggregation and stress granule formation in X-linked Charcot-Marie-Tooth Disease. Front Neurosci 2022; 16:972288. [PMID: 36225735 PMCID: PMC9548587 DOI: 10.3389/fnins.2022.972288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
X-linked Charcot-Marie-Tooth Disease type 1(CMT1X) is the second most common form of inherited peripheral neuropathy that is caused by mutations in the gap junction beta-1 (GJB1) gene. Using targeted exome-sequencing, we investigated four CMT families from central-southern China and identified two novel missense variants (p.F31S and p.W44G) and two previously reported variants (p.R220Pfs*23 and p.R164Q) of GJB1. All four probands presented typical early-onset peripheral neuropathy, of which the R220Pfs*23 carrier also had neurologic manifestations in the central nervous system. We then constructed GJB1 expression vectors and performed cell biological analysis in vitro. Expression of FLAG-tagged GJB1 at various time points after transfection revealed evident protein aggregation with both wild-type and mutant forms, indicated with immunostaining and immunoblotting. Detergent-based sequential fractionation confirmed that all mutants were higher expressed and more prone to aggregate than the wild-type, whereas the R220Pfs*23 mutant showed the greatest amount of SDS-soluble multimers and monomers among groups. Moreover, intracellular aggregation probably occurs in the endoplasmic reticulum compartment rather than the Golgi apparatus. Gap junction plaques were present in all groups and were only compromised in frameshift mutant. Further evidence reveals significant intracellular stress granule formation induced by mutated GJB1 and impaired cell viability indicative of cytotoxicity of self-aggregates. Together, our findings demonstrate novel GJB1 variants-induced cell stress and dysfunction and provide insights into understanding the pathomechanisms of GJB1-CMTX1 and other related disorders.
Collapse
Affiliation(s)
- Fan Chu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Karakaya T, Turkyilmaz A, Sager G, Inan R, Yarali O, Cebi AH, Akin Y. Molecular characterization of Turkish patients with demyelinating Charcot-Marie-Tooth disease. Neurogenetics 2022; 23:213-221. [DOI: 10.1007/s10048-022-00693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
16
|
Yalcouyé A, Diallo SH, Cissé L, Karembé M, Diallo S, Coulibaly T, Diarra S, Coulibaly D, Keita M, Guinto CO, Fischbeck KH, Wonkam A, Landouré G. GJB1 variants in Charcot-Marie-Tooth disease X-linked type 1 in Mali. J Peripher Nerv Syst 2022; 27:113-119. [PMID: 35383424 PMCID: PMC11000073 DOI: 10.1111/jns.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
X-linked Charcot-Marie-Tooth type 1 (CMTX1) disease is one of the most common subtypes of inherited neuropathies and is caused by mutations in the GJB1 gene. To date, more than 400 mutations have been reported in GJB1 worldwide but none in sub-Saharan Africa (SSA). We aimed to clinically characterize patients with CMTX1 and identify the genetic defects. All patients were examined thoroughly, and Nerve Conduction Studies (NCS) were done. EEG and pure tone audiometry (PTA) were also done in select individuals having additional symptoms. DNA was extracted for CMT gene panel testing (50 genes + mtDNA and PMP22 duplication), and putative variants were screened in available relatives. The predominant starting symptom was tingling, and the chief complaint was gait difficulty. Neurological examination found a distal muscle weakness and atrophy, and sensory loss, skeletal deformities, decreased or absent reflexes and steppage gait. The inheritance pattern was consistent with dominant X-linked. NCS showed no response in most of the tested nerves in lower limbs, and normal or reduced amplitudes in upper limbs. A severe sensorineural hearing impairment and a focal epileptic seizure were observed in one patient each. A high intra and inter-familial clinical variability was observed. Genetic testing found three pathogenic missense variants in GJB1, one in each of the families (Val91Met, Arg15Trp, and Phe235Cys). This is the first report of genetically confirmed cases of CMTX1 in SSA, and confirms its clinical and genetic heterogeneity.
Collapse
Affiliation(s)
- Abdoulaye Yalcouyé
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
| | - Seybou H. Diallo
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire Gabriel Touré, Bamako, Mali
| | - Lassana Cissé
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Mamadou Karembé
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Salimata Diallo
- Service de Neurologie, Centre Hospitalier Universitaire Gabriel Touré, Bamako, Mali
| | - Thomas Coulibaly
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Salimata Diarra
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Dramane Coulibaly
- Service de Médecine, Centre Hospitalier Universitaire Mère-Enfant le “Luxembourg”, Bamako, Mali
| | - Mohamed Keita
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service d’ORL, Centre Hospitalier Universitaire Gabriel Touré, Bamako, Mali
| | - Cheick O. Guinto
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Kenneth H. Fischbeck
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Guida Landouré
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | |
Collapse
|
17
|
Connexin Mutations and Hereditary Diseases. Int J Mol Sci 2022; 23:ijms23084255. [PMID: 35457072 PMCID: PMC9027513 DOI: 10.3390/ijms23084255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot–Marie–Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the pathology and pathogenesis of diseases of different organs. Because the structures of different connexins are highly homologous and the functions of gap junctions formed by these connexins are similar, connexin-related hereditary diseases may share the same pathogenic mechanism. Here, we analyze the similarities and differences of the pathology and pathogenesis in animal models and find that connexin mutations in gap junction genes expressed in the ear, eye, heart, skin, and peripheral nerves can affect cellular proliferation and differentiation of corresponding organs. Additionally, some dominant mutations (e.g., Cx43 p.Gly60Ser, Cx32 p.Arg75Trp, Cx32 p.Asn175Asp, and Cx32 p.Arg142Trp) are identified as gain-of-function variants in vivo, which may play a vital role in the onset of dominant inherited diseases. Specifically, patients with these dominant mutations receive no benefits from gene therapy. Finally, the complete loss of gap junctional function or altered channel function including permeability (ions, adenosine triphosphate (ATP), Inositol 1,4,5-trisphosphate (IP3), Ca2+, glucose, miRNA) and electric activity are also identified in vivo or in vitro.
Collapse
|
18
|
Kagiava A, Karaiskos C, Richter J, Tryfonos C, Jennings MJ, Heslegrave AJ, Sargiannidou I, Stavrou M, Zetterberg H, Reilly MM, Christodoulou C, Horvath R, Kleopa KA. AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy. Gene Ther 2021; 28:659-675. [PMID: 33692503 PMCID: PMC8599011 DOI: 10.1038/s41434-021-00250-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/31/2023]
Abstract
Mutations in the GJB1 gene, encoding the gap junction (GJ) protein connexin32 (Cx32), cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited demyelinating neuropathy. We developed a gene therapy approach for CMT1X using an AAV9 vector to deliver the GJB1/Cx32 gene under the myelin protein zero (Mpz) promoter for targeted expression in Schwann cells. Lumbar intrathecal injection of the AAV9-Mpz.GJB1 resulted in widespread biodistribution in the peripheral nervous system including lumbar roots, sciatic and femoral nerves, as well as in Cx32 expression in the paranodal non-compact myelin areas of myelinated fibers. A pre-, as well as post-onset treatment trial in Gjb1-null mice, demonstrated improved motor performance and sciatic nerve conduction velocities along with improved myelination and reduced inflammation in peripheral nerve tissues. Blood biomarker levels were also significantly ameliorated in treated mice. This study provides evidence that a clinically translatable AAV9-mediated gene therapy approach targeting Schwann cells could potentially treat CMT1X.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Jan Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Amanda J Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Christina Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
19
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
20
|
Peinado A, Asche-Godin SL, Freidin MM, Abrams CK. Effects of early crush on aging wild type and Connexin 32 knockout mice: Evidence for a neuroprotective state in CMT1X mouse nerve. J Peripher Nerv Syst 2021; 26:167-176. [PMID: 33624350 DOI: 10.1111/jns.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
The long-term sequelae of nerve injury as well as age-related neurodegeneration have been documented in numerous studies, however the role of Cx32 in these processes is not well understood. There is a need for better understanding of the molecular mechanisms that underlie long-term suboptimal nerve function and for approaches to prevent or improve it. In this communication we describe our studies using whole animal electrophysiology to examine the long-term sequelae of sciatic nerve crush in both WT and Cx32KO mice, a model of X-linked Charcot Marie Tooth disease, a subtype of inherited peripheral neuropathies. We present results from electrical nerve recordings done 14 to 27 days and 18 to 20 months after a unilateral sciatic nerve crush performed on 35 to 37-day old mice. Contrary to expectations, we find that whereas crush injury leads to a degradation of WT nerve function relative to uninjured nerves at 18 to 20 months, previously crushed Cx32KO nerves perform at the same level as their uninjured counterparts. Thus, 18 to 20 months after injury, WT nerves perform below the level of normal (uninjured) WT nerves in both motor and sensory nerve function. In contrast, measures of nerve function in Cx32KO mice are degraded for sensory axons but exhibit no additional dysfunction in motor axons. Early nerve injury has no negative electrophysiologic effect on the Cx32 KO motor nerves. Based on our prior demonstration that the transcriptomic profile of uninjured Cx32KO and injured WT sciatic nerves are very similar, the lack of an additional effect of crush on Cx32KO motor nerve parameters suggests that Cx32 knockout may implement a form of neuroprotection that limits the effects of subsequent injury.
Collapse
Affiliation(s)
- Alejandro Peinado
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Samantha L Asche-Godin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY and The Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Jagathesan T, OBrien M, Rattray A. Certification of a Pilot with Charcot-Marie-Tooth Disease. Aerosp Med Hum Perform 2021; 92:124-126. [PMID: 33468294 DOI: 10.3357/amhp.5711.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a rare hereditary motor and sensory neuropathy. This is a report of a pilot with this condition with a discussion of the challenges for the regulator in the assessment for medical certification of pilots with a neurological disability.CASE REPORT: A pilot with CMTX1 declared his condition to the United Kingdom Civil Aviation Authority when his brother was diagnosed with the same condition. Apart from high arched feet and some difficulty playing sports, he had no problems until his mid-forties, when he very slowly developed increasing weakness with foot dorsiflexion and later wasting and weakness of the small hand muscles. He reported no problems with any flying activity. On clinical examination, it seemed likely that the disability would have an impact on his ability to undertake all the flying tasks of a commercial pilot, including those required in emergencies.DISCUSSION: A modified Medical Flight Test (MFT) specifically tailored by the regulator to test areas of functional impairment allowed the successful certificatory assessment of a pilot with this condition; an approach which could apply to any pilot with a rare neurological disability.Jagathesan T, OBrien M, Rattray A. Certification of a pilot with Charcot-Marie-Tooth disease. Aerosp Med Hum Perform. 2021; 92(2):124126.
Collapse
|
22
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
23
|
Boso F, Taioli F, Cabrini I, Cavallaro T, Fabrizi GM. Aberrant Splicing in GJB1 and the Relevance of 5' UTR in CMTX1 Pathogenesis. Brain Sci 2020; 11:brainsci11010024. [PMID: 33375465 PMCID: PMC7824018 DOI: 10.3390/brainsci11010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
The second most common form of Charcot-Marie-Tooth disease (CMT) follows an X-linked dominant inheritance pattern (CMTX1), referring to mutations in the gap junction protein beta 1 gene (GJB1) that affect connexin 32 protein (Cx32) and its ability to form gap junctions in the myelin sheath of peripheral nerves. Despite the advances of next-generation sequencing (NGS), attention has only recently also focused on noncoding regions. We describe two unrelated families with a c.-17+1G>T transversion in the 5' untranslated region (UTR) of GJB1 that cosegregates with typical features of CMTX1. As suggested by in silico analysis, the mutation affects the regulatory sequence that controls the proper splicing of the intron in the corresponding mRNA. The retention of the intron is also associated with reduced levels of the transcript and the loss of immunofluorescent staining for Cx32 in the nerve biopsy, thus supporting the hypothesis of mRNA instability as a pathogenic mechanism in these families. Therefore, our report corroborates the role of 5' UTR of GJB1 in the pathogenesis of CMTX1 and emphasizes the need to include this region in routine GJB1 screening, as well as in NGS panels.
Collapse
Affiliation(s)
- Federica Boso
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Federica Taioli
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
| | - Ilaria Cabrini
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
| | - Tiziana Cavallaro
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy;
| | - Gian Maria Fabrizi
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-0458124286
| |
Collapse
|
24
|
Tian D, Zhao Y, Zhu R, Li Q, Liu X. Systematic review of CMTX1 patients with episodic neurological dysfunction. Ann Clin Transl Neurol 2020; 8:213-223. [PMID: 33314704 PMCID: PMC7818278 DOI: 10.1002/acn3.51271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE X-linked Charcot-Marie-Tooth type 1 (CMTX1) is an inherited peripheral neuropathy caused by mutations in the gap junction beta 1 (GJB1) gene, which encodes the connexin32 protein. A small number of patients with GJB1 mutations present with episodic neurological dysfunction and reversible white matter lesions, which has not been adequately reported. Here, we aim to enable clinicians to further understand this particular situation through systematically reviewing all published relevant cases. METHODS We conducted a comprehensive search of the PubMed electronic database for medical literature relevant to CMTX1 patients with episodic neurological dysfunction and then fully analyzed the general information, clinical manifestations, and characteristics of magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, and nerve conduction study (NCS). RESULTS We identified 47 cases of CMTX1 associated with episodic central nervous system (CNS) dysfunction from 38 publications. CMTX1 patients experienced episodic CNS deficits at a young age, ranging from infancy to 26 years, and 45 (95.7%) of them were male. The CNS symptoms manifested as facial, lingual, or limb weakness in 44 (93.6%), dysarthria or dysphagia in 39 (83.0%), facial or limb numbness in 15 (31.9%), and ataxia in 10 (21.3%) patients. The duration of episodic symptoms ranged from 3 minutes to 6 months. Thirty (63.8%) CMTX1 cases have reported obvious predisposing factors, among which the most common factors were infection or fever (27.7%), travel to high altitude (12.8%), and intensive exercise (8.5%). As for brain MRI, most abnormal signals were found in bilateral deep white matter (88.9%) and corpus callosum (80.0%). In addition, most of the NCS results were abnormal, including prolonged latency, reduced amplitude, and slowed conduction velocity. The motor nerve conduction velocity (MNCV) of median nerve was the most detectable and valuable, ranging from 25 to 45 m/s. INTERPRETATION We have reported the most comprehensive summary of the demographic and clinical profile from 47 CMTX1 patients with episodic CNS deficits and provided new insight into the phenotype spectrum of CMTX1. We hope that our study can help clinicians make early diagnosis and implement the best prevention and treatment strategies for CMTX1 patients with episodic CNS deficits.
Collapse
Affiliation(s)
- Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qu Li
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
25
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
26
|
Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease. Int J Mol Sci 2020; 21:ijms21197419. [PMID: 33049996 PMCID: PMC7582988 DOI: 10.3390/ijms21197419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism.
Collapse
|
27
|
Sargiannidou I, Kagiava A, Kleopa KA. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res 2020; 1728:146572. [PMID: 31790684 DOI: 10.1016/j.brainres.2019.146572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses numerous genetically heterogeneous inherited neuropathies, which together are one of the commonest neurogenetic disorders. Axonal CMT types result from mutations in neuronally expressed genes, whereas demyelinating CMT forms mostly result from mutations in genes expressed by myelinating Schwann cells. The demyelinating forms are the most common, and may be caused by dominant mutations and gene dosage effects (as in CMT1), as well as by recessive mutations and loss of function mechanisms (as in CMT4). The discovery of causative genes and increasing insights into molecular mechanisms through the study of experimental disease models has provided the basis for the development of gene therapy approaches. For demyelinating CMT, gene silencing or gene replacement strategies need to be targeted to Schwann cells. Progress in gene replacement for two different CMT forms, including CMT1X caused by GJB1 gene mutations, and CMT4C, caused by SH3TC2 gene mutations, has been made through the use of a myelin-specific promoter to restrict expression in Schwann cells, and by lumbar intrathecal delivery of lentiviral viral vectors to achieve more widespread biodistribution in the peripheral nervous system. This review summarizes the molecular-genetic mechanisms of selected demyelinating CMT neuropathies and the progress made so far, as well as the remaining challenges in the path towards a gene therapy to treat these disorders through the use of optimal gene therapy tools including clinically translatable delivery methods and adeno-associated viral (AAV) vectors.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
28
|
Li Q, Chen C, Ren Y, Liu X. Recurrent Stroke-Like Symptoms After Cesarean Section Deliveries in a Female Patient With X-Linked Charcot-Marie-Tooth Type 1. Front Neurol 2020; 11:8. [PMID: 32047472 PMCID: PMC6997334 DOI: 10.3389/fneur.2020.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 01/12/2023] Open
Abstract
Background: X-linked Charcot-Marie-Tooth type 1 (CMTX1) is the second most frequent form of CMT, which is caused by mutations in the gap junction beta 1 gene (GJB1) coding for connexin 32 protein. In addition to typical peripheral neuropathy, central nervous system (CNS) involvement in patients with CMTX1 has been reported as a special feature, but female patients are rarely affected. Case presentation: We describe a 29-year-old female who had a history of two cesarean deliveries. After each delivery, she presented transient and recurrent slurred speech and limb weakness. Magnetic resonance imaging (MRI) showed diffuse abnormal signals in the corpus callosum, posterior limbs of bilateral internal capsule, and centrum semiovale. Electromyogram showed sensorimotor peripheral neuropathy with the characteristics of intermediate CMT. The C.622G>A mutation (p.Glu208Lys) in the GJB1 gene was detected by PCR-sequencing. Conclusion: The diagnosis of CMTX1 should be considered, even in female patients, when the disease presents with recurrent stroke-like symptoms and abnormal white matter signals on MRI. The puerperium after delivery may be one of the precipitating factors.
Collapse
Affiliation(s)
- Qu Li
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chen Chen
- Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, The Research Center for Medical Genomics, School of Life Sciences, China Medical University, Shenyang, China
| | - Yan Ren
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Kagiava A, Richter J, Tryfonos C, Karaiskos C, Heslegrave AJ, Sargiannidou I, Rossor AM, Zetterberg H, Reilly MM, Christodoulou C, Kleopa KA. Gene replacement therapy after neuropathy onset provides therapeutic benefit in a model of CMT1X. Hum Mol Genet 2019; 28:3528-3542. [PMID: 31411673 DOI: 10.1093/hmg/ddz199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X), one of the commonest forms of inherited demyelinating neuropathy, results from GJB1 gene mutations causing loss of function of the gap junction protein connexin32 (Cx32). The aim of this study was to examine whether delayed gene replacement therapy after the onset of peripheral neuropathy can provide a therapeutic benefit in the Gjb1-null/Cx32 knockout model of CMT1X. After delivery of the LV-Mpz.GJB1 lentiviral vector by a single lumbar intrathecal injection into 6-month-old Gjb1-null mice, we confirmed expression of Cx32 in lumbar roots and sciatic nerves correctly localized at the paranodal myelin areas. Gjb1-null mice treated with LV-Mpz.GJB1 compared with LV-Mpz.Egfp (mock) vector at the age of 6 months showed improved motor performance at 8 and 10 months. Furthermore, treated mice showed increased sciatic nerve conduction velocities, improvement of myelination and reduced inflammation in lumbar roots and peripheral nerves at 10 months of age, along with enhanced quadriceps muscle innervation. Plasma neurofilament light (NEFL) levels, a clinically relevant biomarker, were also ameliorated in fully treated mice. Intrathecal gene delivery after the onset of peripheral neuropathy offers a significant therapeutic benefit in this disease model, providing a proof of principle for treating patients with CMT1X at different ages.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A J Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - H Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - M M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
30
|
Nueva mutación genética en un caso de enfermedad de Charcot-Marie-Tooth. Neurologia 2019; 34:546-547. [DOI: 10.1016/j.nrl.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 01/08/2017] [Indexed: 11/20/2022] Open
|
31
|
Domínguez Díez F, López Alburquerque J. New mutation in a patient with Charcot-Marie-Tooth disease. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2017.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
32
|
Zhao ZH, Chen ZT, Zhou RL, Wang YZ. A Chinese pedigree with a novel mutation in GJB1 gene and a rare variation in DHTKD1 gene for diverse Charcot‑Marie‑Tooth diseases. Mol Med Rep 2019; 19:4484-4490. [PMID: 30896807 DOI: 10.3892/mmr.2019.10058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/07/2019] [Indexed: 11/05/2022] Open
Abstract
Charcot‑Marie‑Tooth (CMT) disease is a group of motor and sensory neuropathies with a high degree of pathological and genetic heterogenicity. The present study described 2 patients with CMT in a Chinese Han pedigree. The proband exhibited the classic manifestation of CMT with slowly progressing muscular atrophy and weakness. Electrophysiological examination highlighted axonal and demyelinating features. His mother did not have any symptoms, but did exhibit abnormal electrophysiological results. Next‑generation sequencing technology was employed to screen mutations in the genes associated with inherited motor never diseases. A novel mutation, c.528_530delAGT, in the gap junction protein beta 1 (GJB1) gene for CMTX, and a rare variation, c.2369C>T, in the dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) gene for CMT disease type 2Q (CMT2Q), were identified in the proband and his mother. The results were verified by Sanger sequencing. Although the in silico analysis predicted no change in the 3‑dimensional structure, the clinical and electrophysiological presentation in the pedigree and the high evolutionary conservation of the affected amino acid supported the hypothesis that the c.528_530delAGT mutation in the GJB1 gene may be pathogenic in this pedigree. In silico analysis and high evolutionary conservation suggested the pathogenicity of the c.2369C>T mutation in the DHTKD1 gene; however, the clinical and electrophysiological performances of the proband and his mother did not conform to those of CMT2Q caused by the DHTKD1 gene. The present study provided additional information concerning the range of mutations of the GJB1 gene, which facilitated the understanding of the genotype‑phenotype association of CMT.
Collapse
Affiliation(s)
- Zhen-Hua Zhao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhi-Ting Chen
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Rui-Ling Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yin-Zhou Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
33
|
Affiliation(s)
- Jonathan D Santoro
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tanuja Chitnis
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
34
|
Diseases of connexins expressed in myelinating glia. Neurosci Lett 2019; 695:91-99. [DOI: 10.1016/j.neulet.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
35
|
Murakami T, Sunada Y. Schwann Cell and the Pathogenesis of Charcot–Marie–Tooth Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:301-321. [DOI: 10.1007/978-981-32-9636-7_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Abstract
PURPOSE OF REVIEW Genetic polyneuropathies are rare and clinically heterogeneous. This article provides an overview of the clinical features, neurologic and electrodiagnostic findings, and management strategies for Charcot-Marie-Tooth disease and other genetic polyneuropathies as well as an algorithm for genetic testing. RECENT FINDINGS In the past 10 years, many of the mutations causing genetic polyneuropathies have been identified. International collaborations have led to the development of consortiums that are undertaking careful genotype-phenotype correlations to facilitate the development of targeted therapies and validation of outcome measures for future clinical trials. Clinical trials are currently under way for some genetic polyneuropathies. SUMMARY Readers are provided a framework to recognize common presentations of various genetic polyneuropathies and a rationale for current diagnostic testing and management strategies in genetic polyneuropathies.
Collapse
|
37
|
Bortolozzi M. What's the Function of Connexin 32 in the Peripheral Nervous System? Front Mol Neurosci 2018; 11:227. [PMID: 30042657 PMCID: PMC6048289 DOI: 10.3389/fnmol.2018.00227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Connexin 32 (Cx32) is a fundamental protein in the peripheral nervous system (PNS) as its mutations cause the X-linked form of Charcot–Marie–Tooth disease (CMT1X), the second most common form of hereditary motor and sensory neuropathy and a demyelinating disease for which there is no effective therapy. Since mutations of the GJB1 gene encoding Cx32 were first reported in 1993, over 450 different mutations associated with CMT1X including missense, frameshift, deletion and non-sense ones have been identified. Despite the availability of a sizable number of studies focusing on normal and mutated Cx32 channel properties, the crucial role played by Cx32 in the PNS has not yet been elucidated, as well as the molecular pathogenesis of CMT1X. Is Cx32 fundamental during a particular phase of Schwann cell (SC) life? Are Cx32 paired (gap junction, GJ) channels in myelinated SCs important for peripheral nerve homeostasis? The attractive hypothesis that short coupling of adjacent myelin layers by Cx32 GJs is required for efficient diffusion of K+ and signaling molecules is still debated, while a growing body of evidence is supporting other possible functions of Cx32 in the PNS, mainly related to Cx32 unpaired channels (hemichannels), which could be involved in a purinergic-dependent pathway controlling myelination. Here we review the intriguing puzzle of findings about Cx32 function and dysfunction, discussing possible directions for future investigation.
Collapse
Affiliation(s)
- Mario Bortolozzi
- Department of Physics and Astronomy G. Galilei, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy.,Padova Neuroscience Center (PNC), Padua, Italy
| |
Collapse
|
38
|
Chen DH, Ma M, Scavina M, Blue E, Wolff J, Karna P, Dorschner MO, Raskind WH, Bird TD. An 8-generation family with X-linked Charcot-Marie-Tooth: Confirmation Of the pathogenicity Of a 3' untranslated region mutation in GJB1 and its clinical features. Muscle Nerve 2018; 57:859-862. [PMID: 29236290 PMCID: PMC5910283 DOI: 10.1002/mus.26037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Mutations in gap junction protein beta 1 (GJB1) on the X chromosome represent one of the most common causes of hereditary neuropathy. We assessed manifestations associated with a rare 3' untranslated region mutation (UTR) of GJB1 in a large family with X-linked Charcot-Marie-Tooth disease (CMTX). METHODS Clinical, electrophysiological, and molecular genetic analyses were performed on an 8-generation family with CMTX. RESULTS There were 22 affected males and 19 symptomatic females, including an 83-year-old woman followed for 40 years. Electrophysiological studies showed a primarily axonal neuropathy. The c.*15C>T mutation in the GJB1 3' UTR was identified in 4 branches of the family with a log of odds (LOD) of 4.91. This created a BstE II enzyme recognition site that enabled detection by restriction digestion. DISCUSSION The c.*15C>T mutation in the GJB1 3' UTR segregates with CMTX1 in 8 generations. Penetrance in males and females is essentially complete. A straightforward genetic method to detect this mutation is described. Muscle Nerve 57: 859-862, 2018.
Collapse
Affiliation(s)
- Dong-Hui Chen
- Department of Neurology, University of Washington, Seattle, WA
| | - Maxwell Ma
- Department of Neurology, University of Washington, Seattle, WA
- Neurology Section, VA Puget Sound Health Care System, Seattle, WA
| | - Mena Scavina
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Elizabeth Blue
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
| | - John Wolff
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| | - Prasanthi Karna
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
| | - Michael O. Dorschner
- Center for Precision Diagnostics, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| | - Wendy H. Raskind
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| | - Thomas D. Bird
- Department of Neurology, University of Washington, Seattle, WA
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| |
Collapse
|
39
|
Kagiava A, Karaiskos C, Richter J, Tryfonos C, Lapathitis G, Sargiannidou I, Christodoulou C, Kleopa KA. Intrathecal gene therapy in mouse models expressing CMT1X mutations. Hum Mol Genet 2018; 27:1460-1473. [PMID: 29462293 DOI: 10.1093/hmg/ddy056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 11/14/2022] Open
Abstract
Gap junction beta-1 (GJB1) gene mutations affecting the gap junction protein connexin32 (Cx32) cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a common inherited neuropathy. Targeted expression of virally delivered Cx32 in Schwann cells following intrathecal injection of lentiviral vectors in the Cx32 knockout (KO) mouse model of the disease has led to morphological and functional improvement. To examine whether this approach could be effective in CMT1X patients expressing different Cx32 mutants, we treated transgenic Cx32 KO mice expressing the T55I, R75W or N175D CMT1X mutations. All three mutants were localized in the perinuclear compartment of myelinating Schwann cells consistent with retention in the ER (T55I) or Golgi (R75W, N175D) and loss of physiological expression in the non-compact myelin. Following intrathecal delivery of the GJB1 gene we detected the virally delivered wild-type (WT) Cx32 in non-compact myelin of T55I KO mice, but only rarely in N175D KO or R75W KO mice, suggesting dominant-negative effects of the R75W and N175D mutants but not of the T55I mutant on co-expressed WT Cx32. GJB1 treated T55I KO mice showed improved motor performance, lower ratios of abnormally myelinated fibers and reduction of inflammatory cells in spinal roots and peripheral nerves compared with mock-treated littermates. Either partial (N175D KO) or no (R75W KO) improvement was observed in the other two mutant lines. Thus, certain CMT1X mutants may interfere with gene addition therapy for CMT1X. Whereas gene addition can be used for non-interfering CMT1X mutations, further studies will be needed to develop treatments for patients harboring interfering mutations.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - G Lapathitis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| |
Collapse
|
40
|
Kim JK, Han SA, Kim SJ. X-linked Charcot-Marie-Tooth disease with GJB1 mutation presenting as acute disseminated encephalomyelitis-like illness: A case report. Medicine (Baltimore) 2017; 96:e9176. [PMID: 29245364 PMCID: PMC5728979 DOI: 10.1097/md.0000000000009176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Charcot-Marie-Tooth disease (CMT) is typically an autosomal dominant, inherited neuropathy, although there is a rare male X-linked CMT. Such patients show central nervous system (CNS) involvement in addition to peripheral neuropathy. Recently, we encountered a patient who presented with acute disseminated encephalomyelitis (ADEM)-like symptoms, but was later diagnosed as having X-linked CMT (CMTX) due to a mutation. PATIENT CONCERNS A previously healthy 11-year-old boy was admitted for a sudden transient weakness of his left side extremities. DIAGNOSES The patient was diagnosed with left side hemiparesis. Brain magnetic resonance imaging (MRI) showed ADEM-like demyelinating lesions on both centrum semiovale. A diagnosis of probable ADEM was made, and the patient soon recovered. After 4 months, a second MRI showed complete resolution of the brain lesions. However, the symptoms recurred 2 years later. A third MRI revealed white matter abnormalities, and a physical examination demonstrated pes cavus deformities and peripheral muscle wasting of both lower extremities. INTERVENTIONS On the basis of the brain MRI lesions and physical findings, we suspected CMTX. Genotyping confirmed a mutation in the GJB1 gene. OUTCOMES When the symptoms recurred 2 years later, dysarthria and demyelinating MRI lesions were present. We could not identify any triggering factors. LESSONS Differential diagnosis of recurrent ADEM-like lesions in the cerebral white matter and peripheral neuropathy should include the possibility of CMTX disease.
Collapse
|
41
|
Hong YB, Park JM, Yu JS, Yoo DH, Nam DE, Park HJ, Lee JS, Hwang SH, Chung KW, Choi BO. Clinical characterization and genetic analysis of Korean patients with X-linked Charcot-Marie-Tooth disease type 1. J Peripher Nerv Syst 2017; 22:172-181. [PMID: 28448691 DOI: 10.1111/jns.12217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Mutations in the gap junction protein beta 1 gene (GJB1) cause X-linked Charcot-Marie-Tooth disease type 1 (CMTX1). CMTX1 is representative of the intermediate type of CMT, having both demyelinating and axonal neuropathic features. We analyzed the clinical and genetic characterization of 128 patients with CMTX1 from 63 unrelated families. Genetic analysis revealed a total of 43 mutations including 6 novel mutations. Ten mutations were found from two or more unrelated families. p.V95M was most frequently observed. The frequency of CMTX1 was 9.6% of total Korean CMT family and was 14.8% when calculated within genetically identified cases. Among 67 male and 61 female patients, 22 females were asymptomatic. A high-arched foot, ataxia, and tremor were observed in 87%, 41%, and 35% of the patients, respectively. In the male patients, functional disability scale, CMT neuropathy score, and compound muscle action potential of the median/ulnar nerves were more severely affected than in the female patients. This study provides a comprehensive summary of the clinical features and spectrum of GJB1 gene mutations in Korean CMTX1 patients.
Collapse
Affiliation(s)
- Young B Hong
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Jin-Mo Park
- Department of Neurology, College of Medicine, Dongguk University, Gyeongju, Korea
| | - Jin S Yu
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da H Yoo
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da E Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Hyung J Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Ji-Su Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun H Hwang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki W Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
42
|
Panosyan FB, Laura M, Rossor AM, Pisciotta C, Piscosquito G, Burns J, Li J, Yum SW, Lewis RA, Day J, Horvath R, Herrmann DN, Shy ME, Pareyson D, Reilly MM, Scherer SS. Cross-sectional analysis of a large cohort with X-linked Charcot-Marie-Tooth disease (CMTX1). Neurology 2017; 89:927-935. [PMID: 28768847 PMCID: PMC5577965 DOI: 10.1212/wnl.0000000000004296] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To extend the phenotypic description of Charcot-Marie-Tooth disease (CMTX1) and to draw new genotype-phenotype relationships. METHODS Mutations in GJB1 cause the main X-linked form of CMTX (CMTX1). We report cross-sectional data from 160 patients (from 120 different families, with 89 different mutations) seen at the Inherited Neuropathies Consortium centers. RESULTS We evaluated 87 males who had a mean age of 41 years (range 10-78 years) and 73 females who had a mean age of 46 years (range 15-84 years). Sensory-motor polyneuropathy affects both sexes, more severely in males than in females, and there was a strong correlation between age and disease burden in males but not in females. Compared with females, males had more severe reduction in motor and sensory neurophysiology parameters. In contrast to females, the radial nerve sensory response in older males tended to be more severely affected compared with younger males. Median and ulnar nerve motor amplitudes were also more severely affected in older males, whereas ulnar nerve motor potentials tended to be more affected in older females. Conversely, there were no statistical differences between the sexes in other features of the disease, such as problems with balance and hand dexterity. CONCLUSIONS In the absence of a phenotypic correlation with specific GJB1 mutations, sex-specific distinctions and clinically relevant attributes need to be incorporated into the measurements for clinical trials in people with CMTX1. CLINICALTRIALSGOV IDENTIFIER NCT01193075.
Collapse
Affiliation(s)
- Francis B Panosyan
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia.
| | - Matilde Laura
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Alexander M Rossor
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Chiara Pisciotta
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Giuseppe Piscosquito
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Joshua Burns
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Jun Li
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Sabrina W Yum
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Richard A Lewis
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - John Day
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Rita Horvath
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - David N Herrmann
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Michael E Shy
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Davide Pareyson
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Mary M Reilly
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Steven S Scherer
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| |
Collapse
|
43
|
Padua L, Coraci D, Lucchetta M, Paolasso I, Pazzaglia C, Granata G, Cacciavillani M, Luigetti M, Manganelli F, Pisciotta C, Piscosquito G, Pareyson D, Briani C. Different nerve ultrasound patterns in charcot-marie-tooth types and hereditary neuropathy with liability to pressure palsies. Muscle Nerve 2017; 57:E18-E23. [PMID: 28802056 DOI: 10.1002/mus.25766] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Nerve ultrasound in Charcot-Marie-Tooth (CMT) disease has focused mostly on the upper limbs. We performed an evaluation of a large cohort of CMT patients in which we sonographically characterized nerve abnormalities in different disease types, ages, and nerves. METHODS Seventy patients affected by different CMT types and hereditary neuropathy with liability to pressure palsies (HNPP) were evaluated, assessing median, ulnar, fibular, tibial, and sural nerves bilaterally. Data were correlated with age. RESULTS Nerve dimensions were correlated with CMT type, age, and nerve site. Nerves were larger in demyelinating than in axonal neuropathies. Nerve involvement was symmetric. DISCUSSION CMT1 patients had larger nerves than did patients with other CMT types. Patients with HNPP showed enlargement at entrapment sites. Our study confirms the general symmetry of ultrasound nerve patterns in CMT. When compared with ultrasound studies of nerves of the upper limbs, evaluation of the lower limbs did not provide additional information. Muscle Nerve 57: E18-E23, 2018.
Collapse
Affiliation(s)
- Luca Padua
- Department of Geriatrics, Neurosciences and Orthopaedics, Università Cattolica del Sacro Cuore, Rome, Italy.,Don Carlo Gnocchi Onlus Foundation, Piazzale Morandi 6, 20121, Milan, Italy
| | - Daniele Coraci
- Don Carlo Gnocchi Onlus Foundation, Piazzale Morandi 6, 20121, Milan, Italy.,Board of Physical Medicine and Rehabilitation, Department of Orthopaedic Science, "Sapienza" University, Rome, Italy
| | - Marta Lucchetta
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Ilaria Paolasso
- Don Carlo Gnocchi Onlus Foundation, Piazzale Morandi 6, 20121, Milan, Italy
| | - Costanza Pazzaglia
- Don Carlo Gnocchi Onlus Foundation, Piazzale Morandi 6, 20121, Milan, Italy
| | - Giuseppe Granata
- Department of Geriatrics, Neurosciences and Orthopaedics, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Marco Luigetti
- Department of Geriatrics, Neurosciences and Orthopaedics, Università Cattolica del Sacro Cuore, Rome, Italy.,Don Carlo Gnocchi Onlus Foundation, Piazzale Morandi 6, 20121, Milan, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | | | | | - Davide Pareyson
- IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Micallef J, Boutouyrie P, Blin O. Pharmacology and drug development in rare diseases: the attractiveness and expertise of the French medical pharmacology. Fundam Clin Pharmacol 2017; 31:685-694. [PMID: 28779530 DOI: 10.1111/fcp.12314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/12/2023]
Abstract
Developing drugs for rare disease can be challenging due to specific rare disease characteristics. The French Medical Pharmacology is structured and positioned to play a major role in orphan drug research and development due to the required expertise concentrated into pharmacology departments, exclusively implemented within the French university hospitals, public hospitals that are linked to a medical school (and often a pharmacy school) with numerous INSERM or CNRS labelled research units. In addition, these structures allow a close collaboration between researchers, academic institutions and biotech start-up (most of them being spin-off of the academic structures). Also, within university hospitals are located the clinical investigation centres, linking to the F-CRIN network and also to Inserm and hospitals, that enable care staff and researchers to be associated and clinical research protocols to be carried out on site, in full respect with ethic and regulatory aspects. As a consequence, this intra and multidisciplinary expertise offers all resource to elaborate a tailored approach for orphan drug development, in new entities as well as in repositioning. For preclinical development: drug screening, candidate selection (taking into account PK, metabolism, variability and potential toxicity) and preclinical models (iPS, animal models) that could allow a better translation to human research. For clinical development, we will mention here dose determination, safety evaluation and Orphan Drug Designation and Protocol Assistance preparation and submission. For post marketing evaluation and surveys, the pharmacovigilance, addictovigilance and pharmacoepidemiology expertise, combined with access to large databases allow a better approach to orphan drug use and safety. As outlined through two success stories (Charcot Marie Tooth, vascular Ehlers-Danlos syndrome), the added value of French Medical Pharmacology structures and expertise has been evidenced in the know-how, multidimensional and multidisciplinary approaches, allowing the development of numerous drugs that have been granted with Orphan Drug Designation and later Market Approval. Even if specific and possibly even more, the field of orphan drugs requires the respect of highest standards of safety and quality. French Medical Pharmacology intends to continue on this way and constantly improve his involvement in this field, committed to a single objective: answer the unmet medical need of patients with rare diseases.
Collapse
Affiliation(s)
- Joëlle Micallef
- Service de Pharmacologie Clinique et Pharmacovigilance, AP-HM, 13385, Marseille, France.,Pharmacologie intégrée et interface clinique et industriel, Orphandev-FCRIN, Institut des Neurosciences Timone - AMU-CNRS 7289, Aix Marseille Université, 13385, Marseille, France
| | - Pierre Boutouyrie
- Service de Pharmacologie, HEGP, Assistance Publique Hôpitaux de Paris, Université Paris Descartes, Sorbonne Paris-cité, INSERM U970, 7598, Paris, France
| | - Olivier Blin
- Service de Pharmacologie Clinique et Pharmacovigilance, AP-HM, 13385, Marseille, France.,Pharmacologie intégrée et interface clinique et industriel, Orphandev-FCRIN, Institut des Neurosciences Timone - AMU-CNRS 7289, Aix Marseille Université, 13385, Marseille, France
| |
Collapse
|
45
|
Panosyan FB, Kirk CA, Marking D, Reilly MM, Scherer SS, Shy ME, Herrmann DN. Carpal tunnel syndrome in inherited neuropathies: A retrospective survey. Muscle Nerve 2017; 57:388-394. [PMID: 28692128 DOI: 10.1002/mus.25742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/16/2017] [Accepted: 07/04/2017] [Indexed: 11/12/2022]
Abstract
INTRODUCTION This study evaluates carpal tunnel syndrome (CTS) symptom severity, functional status, and outcome of CTS therapies in patients with inherited neuropathies. METHODS Validated questionnaires were used to compare symptom severity and functional status in patients with and without a diagnosis of CTS and a diagnosis of an inherited neuropathy. RESULTS 309 patients with inherited neuropathies participated in this study. The CTS symptom severity score (SSS) was found to be the most useful tool in assessing CTS severity in patients with inherited neuropathy. Splint therapy and surgery were associated with significant improvement in carpal tunnel symptoms as measured through the SSS. DISCUSSION This study provides insight into the assessment of CTS symptom severity and patient-reported outcomes to CTS therapy in individuals with inherited neuropathies. The SSS appears useful for evaluation of CTS symptoms and patient-reported outcomes following CTS interventions in individuals with inherited neuropathies. Muscle Nerve 57: 388-394, 2018.
Collapse
Affiliation(s)
- Francis B Panosyan
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, New York, 14642, USA
| | - Callyn A Kirk
- Health Informatics Institute, University of South Florida, Tampa, Florida, USA
| | - Devon Marking
- Health Informatics Institute, University of South Florida, Tampa, Florida, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, New York, 14642, USA
| |
Collapse
|
46
|
Liu L, Li XB, Hu ZHM, Zi XH, Zhao X, Xie YZ, Huang SHX, Xia K, Tang BS, Zhang RX. Phenotypes and cellular effects of GJB1 mutations causing CMT1X in a cohort of 226 Chinese CMT families. Clin Genet 2017; 91:881-891. [PMID: 27804109 DOI: 10.1111/cge.12913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/23/2022]
Abstract
The aim of this study is to explore the phenotypic and genotypic features of X-linked Charcot-Marie-Tooth (CMT) disease in the mainland of China and to study the cellular effects of six novel Gap junction protein beta-1 variants. We identified 25 missense and 1 non-sense mutations of GJB1 in 31 unrelated families out of 226 CMT families. The frequency of GJB1 mutations was 13.7% of the total and 65% of intermediate CMT. Six novel GJB1 variants (c.5A>G, c.8G>A, c.242T>C, c.269T>C, c.317T>C and c.434T>G) were detected in six unrelated intermediate CMT families. Fluorescence revealed that HeLa cells transfected with EGFP-GJB1-V74M, EGFP-GJB1-L81P or EGFP-GJB1-L90P had diffuse endoplasmic reticulum staining, HeLa cells transfected with EGFP-GJB1-L106P had diffuse intracellular staining, and HeLa cells transfected with EGFP-GJB1-N2S had cytoplasmic and nuclear staining. The distribution of Cx32 in HeLa cells transfected with EGFP-GJB1-F145C was similar to that of those transfected with wild-type (WT). These six variants resulted in a higher percentage of apoptosis than did WT as detected by flow cytometry and Hoechst staining. In conclusion, mutation screening should be first performed in intermediate CMT patients, especially those with additional features. The novel GJB1 variants c.5A>G, c.8G>A, c.242T>C and c.269T>C are considered pathogenic, and c.317T>C and c.434T>G are classified as probably pathogenic.
Collapse
Affiliation(s)
- L Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - X B Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Z H M Hu
- National Key Lab of Medical Genetics, Central South University, Changsha, China
| | - X H Zi
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - X Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Y Z Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - S H X Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - K Xia
- National Key Lab of Medical Genetics, Central South University, Changsha, China
| | - B S Tang
- National Key Lab of Medical Genetics, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - R X Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Cornett KMD, Menezes MP, Bray P, Halaki M, Shy RR, Yum SW, Estilow T, Moroni I, Foscan M, Pagliano E, Pareyson D, Laurá M, Bhandari T, Muntoni F, Reilly MM, Finkel RS, Sowden J, Eichinger KJ, Herrmann DN, Shy ME, Burns J. Phenotypic Variability of Childhood Charcot-Marie-Tooth Disease. JAMA Neurol 2017; 73:645-51. [PMID: 27043305 DOI: 10.1001/jamaneurol.2016.0171] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
IMPORTANCE Disease severity of childhood Charcot-Marie-Tooth disease (CMT) has not been extensively characterized, either within or between types of CMT to date. OBJECTIVE To assess the variability of disease severity in a large cohort of children and adolescents with CMT. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional study was conducted among 520 children and adolescents aged 3 to 20 years at 8 universities and hospitals involved in the Inherited Neuropathies Consortium between August 6, 2009, and July 31, 2014, in Australia, Italy, the United Kingdom, and the United States. Data analysis was conducted from August 1, 2014, to December 1, 2015. MAIN OUTCOMES AND MEASURES Scores on the Charcot-Marie-Tooth Disease Pediatric Scale (CMTPedS), a well-validated unidimensional clinical outcome measure to assess disease severity. This instrument includes 11 items assessing fine and gross motor function, sensation, and balance to produce a total score ranging from 0 (unaffected) to 44 (severely affected). RESULTS Among the 520 participants (274 males) aged 3 to 20 years, CMT type 1A (CMT1A) was the most prevalent type (252 [48.5%]), followed by CMT2A (31 [6.0%]), CMT1B (15 [2.9%]), CMT4C (13 [2.5%]), and CMTX1 (10 [1.9%]). Disease severity ranged from 1 to 44 points on the CMTPedS (mean [SD], 21.5 [8.9]), with ankle dorsiflexion strength and functional hand dexterity test being most affected. Participants with CMT1B (mean [SD] CMTPedS score, 24.0 [7.4]), CMT2A (29.7 [7.1]), and CMT4C (29.8 [8.6]) were more severely affected than those with CMT1A (18.9 [7.7]) and CMTX1 (males: 15.3 [7.7]; females: 13.0 [3.6]) (P < .05). Scores on the CMTPedS tended to worsen principally during childhood (ages, 3-10 years) for participants with CMT4C and CMTX1 and predominantly during adolescence for those with CMT1B and CMT2A (ages, 11-20 years), while CMT1A worsened consistently throughout childhood and adolescence. For individual items, participants with CMT4C recorded more affected functional dexterity test scores than did those with all other types of CMT (P < .05). Participants with CMT1A and CMTX1 performed significantly better on the 9-hole peg test and balance test than did those with all other types of CMT (P < .05). Participants with CMT2A had the weakest grip strength (P < .05), while those with CMT2A and CMT4C exhibited the weakest ankle plantarflexion and dorsiflexion strength, as well as the lowest long jump and 6-minute walk test distances (P < .05). Multiple regression modeling identified increasing age (r = 0.356, β = 0.617, P < .001) height (r = 0.251, β = 0.309, P = .002), self-reported foot pain (r = 0.162, β = .114, P = .009), and self-reported hand weakness (r = 0.243, β = 0.203, P < .001) as independent predictors of disease severity. CONCLUSIONS AND RELEVANCE These results highlight the phenotypic variability within CMT genotypes and mutation-specific manifestations between types. This study has identified distinct functional limitations and self-reported impairments to target in future therapeutic trials.
Collapse
Affiliation(s)
- Kayla M D Cornett
- University of Sydney & Children's Hospital at Westmead, Sydney Australia
| | - Manoj P Menezes
- University of Sydney & Children's Hospital at Westmead, Sydney Australia
| | - Paula Bray
- University of Sydney & Children's Hospital at Westmead, Sydney Australia
| | - Mark Halaki
- University of Sydney & Children's Hospital at Westmead, Sydney Australia
| | - Rosemary R Shy
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City
| | - Sabrina W Yum
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania4Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Timothy Estilow
- Neuromucsular Program, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Isabella Moroni
- Istituto di Ricovero e Cura a Carattere Scientifico Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Maria Foscan
- Istituto di Ricovero e Cura a Carattere Scientifico Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Emanuela Pagliano
- Istituto di Ricovero e Cura a Carattere Scientifico Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Davide Pareyson
- Istituto di Ricovero e Cura a Carattere Scientifico Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Matilde Laurá
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology, Queen Square, London, England
| | - Trupti Bhandari
- University College London Institute of Child Health & Great Ormond Street Hospital, London, England
| | - Francesco Muntoni
- University College London Institute of Child Health & Great Ormond Street Hospital, London, England
| | - Mary M Reilly
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology, Queen Square, London, England
| | - Richard S Finkel
- Neuromuscular Program, Division of Neurology, Nemours Children's Hospital, Orlando, Florida
| | - Janet Sowden
- Department of Neurology, University of Rochester, Rochester, New York
| | - Katy J Eichinger
- Department of Neurology, University of Rochester, Rochester, New York
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, New York
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Joshua Burns
- University of Sydney & Children's Hospital at Westmead, Sydney Australia
| | | |
Collapse
|
48
|
Kyriakoudi S, Sargiannidou I, Kagiava A, Olympiou M, Kleopa KA. Golgi-retained Cx32 mutants interfere with gene addition therapy for CMT1X. Hum Mol Genet 2017; 26:1622-1633. [PMID: 28334782 DOI: 10.1093/hmg/ddx064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2023] Open
Abstract
Numerous GJB1 gene mutations cause the X-linked form of Charcot-Marie-Tooth disease (CMT1X). GJB1 encodes connexin32 (Cx32), which forms trans-myelin gap junctions in Schwann cells. Most GJB1 mutations result in loss-of-function mechanisms, supporting the concept of gene replacement therapy. However, interactions between delivered wild type and endogenously expressed mutant Cx32 may potentially occur in the setting of gene replacement therapy. In order to screen for possible interactions of several representative CMT1X mutants with wild type Cx32 that may interfere with the functional gap junction formation, we established an in vitro screening method co-expressing in HeLa cells wild type Cx32 and one of eight different Cx32 mutants including A39P, A39V, T55I, R75W, M93V, L143P, N175D and R183S. Some of the Golgi-retained mutants hindered gap junction plaque assembly by Cx32 on the cell membrane, while co-immunoprecipitation analysis revealed a partial interaction of wild type protein with Golgi-retained mutants. Dye transfer studies confirmed that Golgi-retained R75W, M93V and N175D but not endoplasmic reticulum-retained T55I had a negative effect on wild type Cx32 function. Finally, in vivo intraneural delivery of the gene encoding the wild type Cx32 in mice bearing either the T55I or R75W mutation on Cx32 knockout background showed that virally delivered protein was correctly localized in mice expressing the endoplasmic reticulum-retained T55I whereas it did not traffic normally in mice expressing the Golgi-retained R75W. Thus, certain Golgi-retained Cx32 mutants may interfere with exogenously delivered Cx32. Screening for mutant-wild type Cx32 interactions should be considered prior to planning gene addition therapy for CMT1X.
Collapse
Affiliation(s)
| | | | | | | | - Kleopas A Kleopa
- Neuroscience Laboratory
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| |
Collapse
|
49
|
Srinivas M, Verselis VK, White TW. Human diseases associated with connexin mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:192-201. [PMID: 28457858 DOI: 10.1016/j.bbamem.2017.04.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/11/2023]
Abstract
Gap junctions and hemichannels comprised of connexins impact many cellular processes. Significant advances in our understanding of the functional role of these channels have been made by the identification of a host of genetic diseases caused by connexin mutations. Prominent features of connexin disorders are the inability of other connexins expressed in the same cell type to compensate for the mutated one, and the ability of connexin mutants to dominantly influence the activity of other wild-type connexins. Functional studies have begun to identify some of the underlying mechanisms whereby connexin channel mutation contributes to the disease state. Detailed mechanistic understanding of these functional differences will help to facilitate new pathophysiology driven therapies for the diverse array of connexin genetic disorders. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Miduturu Srinivas
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
50
|
Tomaselli PJ, Rossor AM, Horga A, Jaunmuktane Z, Carr A, Saveri P, Piscosquito G, Pareyson D, Laura M, Blake JC, Poh R, Polke J, Houlden H, Reilly MM. Mutations in noncoding regions of GJB1 are a major cause of X-linked CMT. Neurology 2017; 88:1445-1453. [PMID: 28283593 PMCID: PMC5386440 DOI: 10.1212/wnl.0000000000003819] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/18/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To determine the prevalence and clinical and genetic characteristics of patients with X-linked Charcot-Marie-Tooth disease (CMT) due to mutations in noncoding regions of the gap junction β-1 gene (GJB1). METHODS Mutations were identified by bidirectional Sanger sequence analysis of the 595 bases of the upstream promoter region, and 25 bases of the 3' untranslated region (UTR) sequence in patients in whom mutations in the coding region had been excluded. Clinical and neurophysiologic data were retrospectively collected. RESULTS Five mutations were detected in 25 individuals from 10 kindreds representing 11.4% of all cases of CMTX1 diagnosed in our neurogenetics laboratory between 1996 and 2016. Four pathogenic mutations, c.-17G>A, c.-17+1G>T, c.-103C>T, and c.-146-90_146-89insT were detected in the 5'UTR. A novel mutation, c.*15C>T, was detected in the 3' UTR of GJB1 in 2 unrelated families with CMTX1 and is the first pathogenic mutation in the 3'UTR of any myelin-associated CMT gene. Mutations segregated with the phenotype, were at sites predicted to be pathogenic, and were not present in the normal population. CONCLUSIONS Mutations in noncoding DNA are a major cause of CMTX1 and highlight the importance of mutations in noncoding DNA in human disease. Next-generation sequencing platforms for use in inherited neuropathy should therefore include coverage of these regions.
Collapse
Affiliation(s)
- Pedro J Tomaselli
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Alexander M Rossor
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Alejandro Horga
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Zane Jaunmuktane
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Aisling Carr
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Paola Saveri
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Giuseppe Piscosquito
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Davide Pareyson
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Matilde Laura
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Julian C Blake
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Roy Poh
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - James Polke
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Henry Houlden
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK
| | - Mary M Reilly
- From the MRC Centre for Neuromuscular Diseases (P.J.T., A.M.R., A.H., A.C., M.L., M.M.R.), Department of Neuropathology (Z.J.), and Department of Neurogenetics (R.P., J.P., H.H.), National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK; Clinic of Central and Peripheral Degenerative Neuropathies Unit (P.S., G.P., D.P.), Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy; Department of Clinical Neurophysiology (J.C.B.), Norfolk and Norwich University Hospital, Norfolk, UK.
| |
Collapse
|