1
|
Shao W, Liu L, Gu J, Yang Y, Wu Y, Zhang Z, Xu Q, Wang Y, Shen Y, Gu L, Cheng Y, Zhang H. Spotlight on mechanism of sudden unexpected death in epilepsy in Dravet syndrome. Transl Psychiatry 2025; 15:84. [PMID: 40097380 PMCID: PMC11914262 DOI: 10.1038/s41398-025-03304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Dravet syndrome (DS) is a severe and catastrophic epilepsy with childhood onset. The incidence and prevalence of sudden unexpected death in epilepsy (SUDEP) are significantly higher in DS patients than in general epileptic populations. Although extensive research conducted, the underlying mechanisms of SUDEP occurring in DS patients remain unclear. This review focuses on the link between DS and SUDEP and analyzes the potential pathogenesis. We summarize the genetic basis of DS and SUDEP and elucidate the pathophysiological mechanisms of SUDEP in DS. Furthermore, given the drug-resistant nature of this disorder, the pharmacological approach has limited efficacy and often causes side effects, therefore, the non-pharmacological approaches and precise treatment can reduce the risk of SUDEP in this condition, open a new window to cure this disease, and provide a widened landscape of treatment options for patients.
Collapse
Affiliation(s)
- WeiHui Shao
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China
| | - LeYuan Gu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuan Cheng
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Najafi S, Alavi MS, Sadeghnia HR. A meta-analytic evaluation of the efficacy and safety of levetiracetam for treating myoclonic seizures. Heliyon 2025; 11:e42244. [PMID: 39931469 PMCID: PMC11808687 DOI: 10.1016/j.heliyon.2025.e42244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Levetiracetam (LEV) is a broad-spectrum antiseizure medication that is effective and safe in myoclonic seizures. This study aims to systematically review and meta-analyze the literature using LEV in myoclonic seizures and its efficacy and safety profile. The included literature is updated till February 2024. Joanna Briggs Institute checklists were utilized for quality assessment. Publication details, general characteristics, and the details of the LEV treatment were extracted from the included papers. Finally, the data was meta-analyzed and publication bias was assessed. 52 studies were included in the meta-analysis. Considering the reduction of seizures by more than 50 % after the administration of LEV as a responder rate, 59.72 % of patients with myoclonic seizures significantly responded. Moreover, a significant percentage of the patients (37.82 %) became seizure-free after the treatment. 13.86 % of the patients discontinued the consumption of LEV due to adverse effects, lack of remission of the seizure, or unwillingness. Pre-to post-data analysis in the LEV group demonstrated a significant decline of 0.9 times in the mean number of myoclonic seizures per month. LEV significantly reduced the occurrence of myoclonic seizures. Furthermore, it is well-tolerated and responsible for a few side-effects. However, it is necessary to monitor carefully LEV's individual response.
Collapse
Affiliation(s)
- Sara Najafi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Lersch R, Jannadi R, Grosse L, Wagner M, Schneider MF, von Stülpnagel C, Heinen F, Potschka H, Borggraefe I. Targeted Molecular Strategies for Genetic Neurodevelopmental Disorders: Emerging Lessons from Dravet Syndrome. Neuroscientist 2023; 29:732-750. [PMID: 35414300 PMCID: PMC10623613 DOI: 10.1177/10738584221088244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dravet syndrome is a severe developmental and epileptic encephalopathy mostly caused by heterozygous mutation of the SCN1A gene encoding the voltage-gated sodium channel α subunit Nav1.1. Multiple seizure types, cognitive deterioration, behavioral disturbances, ataxia, and sudden unexpected death associated with epilepsy are a hallmark of the disease. Recently approved antiseizure medications such as fenfluramine and cannabidiol have been shown to reduce seizure burden. However, patients with Dravet syndrome are still medically refractory in the majority of cases, and there is a high demand for new therapies aiming to improve behavioral and cognitive outcome. Drug-repurposing approaches for SCN1A-related Dravet syndrome are currently under investigation (i.e., lorcaserin, clemizole, and ataluren). New therapeutic concepts also arise from the field of precision medicine by upregulating functional SCN1A or by activating Nav1.1. These include antisense nucleotides directed against the nonproductive transcript of SCN1A with the poison exon 20N and against an inhibitory noncoding antisense RNA of SCN1A. Gene therapy approaches such as adeno-associated virus-based upregulation of SCN1A using a transcriptional activator (ETX101) or CRISPR/dCas technologies show promising results in preclinical studies. Although these new treatment concepts still need further clinical research, they offer great potential for precise and disease modifying treatment of Dravet syndrome.
Collapse
Affiliation(s)
- Robert Lersch
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Rawan Jannadi
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Leonie Grosse
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Matias Wagner
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute for Neurogenomics, Helmholtz Centre Munich, German Research Center for Health and Environment (GmbH), Munich, Germany
| | - Marius Frederik Schneider
- Metabolic Biochemistry, Biomedical Center Munich, Medical Faculty, Ludwig Maximilians University, Munich, Germany
- International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Celina von Stülpnagel
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical Private University (PMU), Salzburg, Austria
| | - Florian Heinen
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilians University, Munich, Germany
| | - Ingo Borggraefe
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Comprehensive Epilepsy Center, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
4
|
Strzelczyk A, Schubert-Bast S. Psychobehavioural and Cognitive Adverse Events of Anti-Seizure Medications for the Treatment of Developmental and Epileptic Encephalopathies. CNS Drugs 2022; 36:1079-1111. [PMID: 36194365 PMCID: PMC9531646 DOI: 10.1007/s40263-022-00955-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
The developmental and epileptic encephalopathies encompass a group of rare syndromes characterised by severe drug-resistant epilepsy with onset in childhood and significant neurodevelopmental comorbidities. The latter include intellectual disability, developmental delay, behavioural problems including attention-deficit hyperactivity disorder and autism spectrum disorder, psychiatric problems including anxiety and depression, speech impairment and sleep problems. Classical examples of developmental and epileptic encephalopathies include Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. The mainstay of treatment is with multiple anti-seizure medications (ASMs); however, the ASMs themselves can be associated with psychobehavioural adverse events, and effects (negative or positive) on cognition and sleep. We have performed a targeted literature review of ASMs commonly used in the treatment of developmental and epileptic encephalopathies to discuss the latest evidence on their effects on behaviour, mood, cognition, sedation and sleep. The ASMs include valproate (VPA), clobazam, topiramate (TPM), cannabidiol (CBD), fenfluramine (FFA), levetiracetam (LEV), brivaracetam (BRV), zonisamide (ZNS), perampanel (PER), ethosuximide, stiripentol, lamotrigine (LTG), rufinamide, vigabatrin, lacosamide (LCM) and everolimus. Bromide, felbamate and other sodium channel ASMs are discussed briefly. Overall, the current evidence suggest that LEV, PER and to a lesser extent BRV are associated with psychobehavioural adverse events including aggressiveness and irritability; TPM and to a lesser extent ZNS are associated with language impairment and cognitive dulling/memory problems. Patients with a history of behavioural and psychiatric comorbidities may be more at risk of developing psychobehavioural adverse events. Topiramate and ZNS may be associated with negative effects in some aspects of cognition; CBD, FFA, LEV, BRV and LTG may have some positive effects, while the remaining ASMs do not appear to have a detrimental effect. All the ASMs are associated with sedation to a certain extent, which is pronounced during uptitration. Cannabidiol, PER and pregabalin may be associated with improvements in sleep, LTG is associated with insomnia, while VPA, TPM, LEV, ZNS and LCM do not appear to have detrimental effects. There was variability in the extent of evidence for each ASM: for many first-generation and some second-generation ASMs, there is scant documented evidence; however, their extensive use suggests favourable tolerability and safety (e.g. VPA); second-generation and some third-generation ASMs tend to have the most robust evidence documented over several years of use (TPM, LEV, PER, ZNS, BRV), while evidence is still being generated for newer ASMs such as CBD and FFA. Finally, we discuss how a variety of factors can affect mood, behaviour and cognition, and untangling the associations between the effects of the underlying syndrome and those of the ASMs can be challenging. In particular, there is enormous heterogeneity in cognitive, behavioural and developmental impairments that is complex and can change naturally over time; there is a lack of standardised instruments for evaluating these outcomes in developmental and epileptic encephalopathies, with a reliance on subjective evaluations by proxy (caregivers); and treatment regimes are complex involving multiple ASMs as well as other drugs.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.,Department of Neuropediatrics, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Riva A, D'Onofrio G, Amadori E, Tripodi D, Balagura G, Iurilli V, Vari MS, Verrotti A, Striano P. Current and promising therapeutic options for Dravet syndrome. Expert Opin Pharmacother 2022; 23:1727-1736. [PMID: 36124778 DOI: 10.1080/14656566.2022.2127089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dravet Syndrome (DS) is a developmental and epileptic encephalopathy carrying high-level psychobehavioral burdens. Although the disease has been known for almost 4 decades, and despite significant progress in the understanding of its physiopathology and natural course, the pharmacological treatment leaves patients and caregivers with significant unmet needs. This review provides a summary of the current and promising therapeutic options for DS. AREAS COVERED PubMed and ClinicalTrials.gov were screened using 'Dravet Syndrome' OR 'DS,' AND 'pharmacotherapy,' AND 'treatments.' Randomized clinical trials, structured reviews, and meta-analyses were selected for in-human application of well-known anti-seizure medications; while in-vivo experiments on models of DS were selected to evaluate the potential of new therapeutic strategies. EXPERT OPINION The search for new pharmacological treatment options is led by the need for care and defeat of the natural course of the disease, an aspect still largely neglected by the available therapeutic strategies. Yet, the last 6 years have led to a climate of increased interest and availability of clinical trials. Particularly, gene therapy could hopefully prevent DS evolution by directly relieving the specific genetic defect, although the possibility of off-target editing, and the uneasy administration route have still largely prevented its use.
Collapse
Affiliation(s)
- Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Gianluca D'Onofrio
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Domenico Tripodi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Genoa, Italy
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU), de Boelelaan, Amsterdam, Netherlands
| | | | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Zhao B, Liao S, Zhong X, Luo Y, Hong S, Cheng M, Zhang J, Li T, Jiang L. Effectiveness and Safety of Oxcarbazepine vs. Levetiracetam as Monotherapy for Infantile Focal Epilepsy: A Longitudinal Cohort Study. Front Neurol 2022; 13:909191. [PMID: 35720076 PMCID: PMC9198356 DOI: 10.3389/fneur.2022.909191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study aimed to compare the effectiveness and safety of oxcarbazepine (OXC) vs. levetiracetam (LEV) for treating infantile focal epilepsy in a longitudinal cohort study.MethodsWe enrolled 187 consecutive patients aged 2–24 months who received OXC or LEV as initial monotherapy; 161 patients completed the study. The longitudinal analysis involved anti-seizure medication (ASM) responsiveness, safety, the establishment of epilepsy syndrome, and etiology over a median follow-up of 2 years (interquartile range [IQR] 1.6–2.4). The relative efficacy and retention rates of OXC vs. LEV were evaluated using generalized linear regression models and the Cox proportional hazards model.ResultsThe 161 patients who completed the study had comparable baseline demographics and clinical variables between the OXC group (n = 83) and LEV group (n = 78). Overall, the mean age at onset was 6 months (IQR 4.3–9). The most common epilepsy syndrome was self-limited familial/non-familial infantile epilepsy (54.7%). Epilepsy was related to genetic and unknown causes in 34.2 and 52.2% of the patients, respectively. OXC achieved significantly higher responses than LEV for seizure freedom (risk ratio [RR] = 1.71, 95% confidence interval [CI] = 1.28–2.73, P < 0.001) and 12-month retention rate after onset (hazard ratio [HR] = 1.84, 95% CI = 1.15–2.95, P = 0.007). Moreover, OXC showed more obvious effects for patients aged < 1 year diagnosed with self-limited familial/non-familial infantile epilepsy and non-syndromic epilepsy with genetic or unknown causes. The adverse events related to both OXC and LEV were well-tolerated.SignificanceOXC could be an alternative to LEV for treating infantile focal epilepsy. OXC monotherapy can be considered first-line treatment for patients aged <12 months and those with epilepsy without developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Binyang Zhao
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurology, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University (CHCMU), Chongqing, China
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Liao
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurology, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University (CHCMU), Chongqing, China
| | - Xuefei Zhong
- Editorial Department of Journal of Pediatric Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Luo
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurology, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University (CHCMU), Chongqing, China
| | - Siqi Hong
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurology, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University (CHCMU), Chongqing, China
| | - Min Cheng
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurology, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University (CHCMU), Chongqing, China
| | - Jie Zhang
- Liangping Maternal and Child Health Hospital, Chongqing, China
| | - Tingsong Li
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tingsong Li ; orcid.org/0000-0003-4536-3211
| | - Li Jiang
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurology, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University (CHCMU), Chongqing, China
| |
Collapse
|
7
|
Martinez O, Lagos L, Ernst G, Ebner R. Reduction of photoparoxysmal response from patients with drug-resistant photosensitive epilepsy by using Z1 filters. NEUROLOGÍA (ENGLISH EDITION) 2022; 37:79-81. [DOI: 10.1016/j.nrleng.2020.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022] Open
|
8
|
Martinez OA, Lagos L, Ernst G, Ebner R. Reduction of photoparoxysmal response from patients with drug-resistant photosensitive epilepsy by using Z1 filters. Neurologia 2022; 37:79-81. [PMID: 33541802 DOI: 10.1016/j.nrl.2020.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022] Open
Affiliation(s)
- O A Martinez
- Neurology Department. Hospital Británico de Buenos Aires, Argentina.
| | - L Lagos
- Ophthalmology Department, Hospital Británico de Buenos Aires, Argentina
| | - G Ernst
- Scientific Advisory Committee, Hospital Británico de Buenos Aires, Argentina
| | - R Ebner
- Ophthalmology Department, Hospital Británico de Buenos Aires, Argentina
| |
Collapse
|
9
|
Initial levetiracetam versus valproate monotherapy in antiseizure medicine (ASM)-naïve pediatric patients with idiopathic generalized epilepsy with tonic-clonic seizures. Seizure 2021; 91:263-270. [PMID: 34246881 DOI: 10.1016/j.seizure.2021.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Levetiracetam (LEV) is a second-generation antiseizure medicine (ASM) with broad-spectrum efficacy and tolerability. Few studies have compared the efficacy of valproate (VPA) and LEV as monotherapy in the pediatric population. Herein, we compare the efficacy, tolerability and safety of LEV monotherapy with those of VPA monotherapy in ASM-naïve pediatric patients with idiopathic generalized epilepsy with tonic-clonic (GTC) seizures. METHODS We retrospectively analyzed the clinical and electroencephalographic (EEG) data of these ASM-naïve pediatric patients who were treated with either oral VPA or oral LEV as monotherapy for over 2 years at our center. RESULTS This study included 60 patients with a seizure onset age between 2 months and 12 years. The patients on VPA (29 patients) and LEV monotherapy (31 patients) showed similar favorable 6-month treatment outcomes (complete seizure control in 79.31% vs 80.64%, p = 0.468052). Age at epilepsy onset, epilepsy syndrome, EEG features and ASM dose were not significant predictors of the 6-month treatment outcomes in either group. Lower seizure frequency at presentation was a predictor of favorable 6-month treatment outcomes in the LEV group but not in the VPA group. VPA and LEV treatment showed similar favorable 6-month treatment outcomes in the febrile seizures plus and patients with unidentified epilepsy syndrome subgroups. None of the patients discontinued VPA or LEV due to treatment-associated adverse effects. DISCUSSION Our study showed that compared to VPA monotherapy, LEV monotherapy in ASM-naïve infants and children with idiopathic generalized epilepsy with GTC seizures has a similarly favorable efficacy and tolerability, independent of age, EEG features and epilepsy syndrome.
Collapse
|
10
|
Pernici CD, Mensah JA, Dahle EJ, Johnson KJ, Handy L, Buxton L, Smith MD, West PJ, Metcalf CS, Wilcox KS. Development of an antiseizure drug screening platform for Dravet syndrome at the NINDS contract site for the Epilepsy Therapy Screening Program. Epilepsia 2021; 62:1665-1676. [PMID: 34002394 PMCID: PMC8360068 DOI: 10.1111/epi.16925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Dravet syndrome (DS) is a rare but catastrophic genetic epilepsy, with 80% of patients carrying a mutation in the SCN1A gene. Currently, no antiseizure drug (ASD) exists that adequately controls seizures. In the clinic, individuals with DS often present first with a febrile seizure and, subsequently, generalized tonic-clonic seizures that can continue throughout life. To facilitate the development of ASDs for DS, the contract site of the National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP) has evaluated a mouse model of DS using the conditional knock-in Scn1aA1783V/WT mouse. METHODS Survival rates and temperature thresholds for Scn1aA1783V/WT were determined. Prototype ASDs were administered via intraperitoneal injections at the time-to-peak effect, which was previously determined, prior to the induction of hyperthermia-induced seizures. ASDs were considered effective if they significantly increased the temperature at which Scn1aA1783V/WT mice had seizures. RESULTS Approximately 50% of Scn1aA1783V/WT survive to adulthood and all have hyperthermia-induced seizures. The results suggest that hyperthermia-induced seizures in this model of DS are highly refractory to a battery of ASDs. Exceptions were clobazam, tiagabine, levetiracetam, and the combination of clobazam and valproic acid with add-on stiripentol, which elevated seizure thresholds. SIGNIFICANCE Overall, the data demonstrate that the proposed model for DS is suitable for screening novel compounds for the ability to block hyperthermia-induced seizures and that heterozygous mice can be evaluated repeatedly over the course of several weeks, allowing for higher throughput screening.
Collapse
Affiliation(s)
- Chelsea D. Pernici
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Jeffrey A. Mensah
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - E. Jill Dahle
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Kristina J. Johnson
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
| | - Laura Handy
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
| | - Lauren Buxton
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Misty D. Smith
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Peter J. West
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Cameron S. Metcalf
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Karen S. Wilcox
- Epilepsy Therapy Screening Program (ETSP) Contract SiteUniversity of UtahSalt Lake CityUTUSA
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
11
|
Nabbout R, Chemaly N, Chiron C, Kuchenbuch M. Safety considerations selecting antiseizure medications for the treatment of individuals with Dravet syndrome. Expert Opin Drug Saf 2021; 20:561-576. [PMID: 33645379 DOI: 10.1080/14740338.2021.1890025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Management of individuals with Dravet Syndrome has evolved significantly over the past 10 years. Progress has been made in understanding the pathophysiology, the long-term outcome and possible consequences of inappropriate therapies, new drugs have been approved by the regulatory authorities and patients and families expressed their needs beyond seizures' control.Areas covered: The authors aimed at providing an overview of the main antiseizure medications used in Dravet syndrome with a particular focus on safety considerations. As the highly active phase of seizures takes place before the age of 5 years, the characteristics of antiseizure medications in infancy and childhood have also been considered due to their impact on antiseizure medication safety.Expert opinion: Recent treatments, evaluated via randomized clinical trials, are promising in terms of efficacy and safety in individuals with DS. However, the balance between expected benefits and risks taken must be accurately assessed on an individual basis. There is a lack of data to understand the needs of patients and families, a major point particularly in this population, where the evaluation of efficacy and safety beyond seizures is difficult due to cognitive delay and behavioral disorders and where this evaluation is coming almost exclusively from caregivers.
Collapse
Affiliation(s)
- Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, Université De Paris, Paris, France.,Institut National De La Santé Et De La Recherche Médicale (INSERM), UMR 1163, Institut Imagine, Université De Paris, Paris, France
| | - N Chemaly
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, Université De Paris, Paris, France.,Institut National De La Santé Et De La Recherche Médicale (INSERM), UMR 1163, Institut Imagine, Université De Paris, Paris, France
| | - C Chiron
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, Université De Paris, Paris, France.,INSERM U1141, Paris, France & Neurospin, CEA, Gif/Yvette, France
| | - M Kuchenbuch
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, Université De Paris, Paris, France.,Institut National De La Santé Et De La Recherche Médicale (INSERM), UMR 1163, Institut Imagine, Université De Paris, Paris, France
| |
Collapse
|
12
|
Brancheck L, Klein P, Hogan RE. Photosensitive Epilepsy: Treatment and Prevention: How? THE IMPORTANCE OF PHOTOSENSITIVITY FOR EPILEPSY 2021:377-385. [DOI: 10.1007/978-3-319-05080-5_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Symonds JD, Zuberi SM, Stewart K, McLellan A, O'Regan M, MacLeod S, Jollands A, Joss S, Kirkpatrick M, Brunklaus A, Pilz DT, Shetty J, Dorris L, Abu-Arafeh I, Andrew J, Brink P, Callaghan M, Cruden J, Diver LA, Findlay C, Gardiner S, Grattan R, Lang B, MacDonnell J, McKnight J, Morrison CA, Nairn L, Slean MM, Stephen E, Webb A, Vincent A, Wilson M. Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort. Brain 2020; 142:2303-2318. [PMID: 31302675 PMCID: PMC6658850 DOI: 10.1093/brain/awz195] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 01/24/2023] Open
Abstract
Epilepsy is common in early childhood. In this age group it is associated with high rates of therapy-resistance, and with cognitive, motor, and behavioural comorbidity. A large number of genes, with wide ranging functions, are implicated in its aetiology, especially in those with therapy-resistant seizures. Identifying the more common single-gene epilepsies will aid in targeting resources, the prioritization of diagnostic testing and development of precision therapy. Previous studies of genetic testing in epilepsy have not been prospective and population-based. Therefore, the population-incidence of common genetic epilepsies remains unknown. The objective of this study was to describe the incidence and phenotypic spectrum of the most common single-gene epilepsies in young children, and to calculate what proportion are amenable to precision therapy. This was a prospective national epidemiological cohort study. All children presenting with epilepsy before 36 months of age were eligible. Children presenting with recurrent prolonged (>10 min) febrile seizures; febrile or afebrile status epilepticus (>30 min); or with clusters of two or more febrile or afebrile seizures within a 24-h period were also eligible. Participants were recruited from all 20 regional paediatric departments and four tertiary children’s hospitals in Scotland over a 3-year period. DNA samples were tested on a custom-designed 104-gene epilepsy panel. Detailed clinical information was systematically gathered at initial presentation and during follow-up. Clinical and genetic data were reviewed by a multidisciplinary team of clinicians and genetic scientists. The pathogenic significance of the genetic variants was assessed in accordance with the guidelines of UK Association of Clinical Genetic Science (ACGS). Of the 343 patients who met inclusion criteria, 333 completed genetic testing, and 80/333 (24%) had a diagnostic genetic finding. The overall estimated annual incidence of single-gene epilepsies in this well-defined population was 1 per 2120 live births (47.2/100 000; 95% confidence interval 36.9–57.5). PRRT2 was the most common single-gene epilepsy with an incidence of 1 per 9970 live births (10.0/100 000; 95% confidence interval 5.26–14.8) followed by SCN1A: 1 per 12 200 (8.26/100 000; 95% confidence interval 3.93–12.6); KCNQ2: 1 per 17 000 (5.89/100 000; 95% confidence interval 2.24–9.56) and SLC2A1: 1 per 24 300 (4.13/100 000; 95% confidence interval 1.07–7.19). Presentation before the age of 6 months, and presentation with afebrile focal seizures were significantly associated with genetic diagnosis. Single-gene disorders accounted for a quarter of the seizure disorders in this cohort. Genetic testing is recommended to identify children who may benefit from precision treatment and should be mainstream practice in early childhood onset epilepsy.
Collapse
Affiliation(s)
- Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kirsty Stewart
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow, UK
| | - Ailsa McLellan
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh, UK
| | - Mary O'Regan
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Stewart MacLeod
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Alice Jollands
- Paediatric Neurology, Tayside Children's Hospital, Dundee, UK
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow, UK
| | | | - Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Daniela T Pilz
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow, UK
| | - Jay Shetty
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh, UK
| | - Liam Dorris
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Ishaq Abu-Arafeh
- Department of Paediatrics, Forth Valley Royal Hospital, Larbert, UK
| | - Jamie Andrew
- Department of Paediatrics, University Hospital Wishaw, Netherton Street, Wishaw, UK
| | - Philip Brink
- Paediatric Neurology, Tayside Children's Hospital, Dundee, UK
| | - Mary Callaghan
- Department of Paediatrics, University Hospital Wishaw, Netherton Street, Wishaw, UK
| | - Jamie Cruden
- Department of Paediatrics, Victoria Hospital, Kirkcaldy, UK
| | - Louise A Diver
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow, UK
| | - Christine Findlay
- Department of Paediatrics, University Hospital Crosshouse, Kilmarnock, UK
| | - Sarah Gardiner
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow, UK
| | - Rosemary Grattan
- Department of Paediatrics, Forth Valley Royal Hospital, Larbert, UK
| | - Bethan Lang
- Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Jane MacDonnell
- Department of Paediatrics, Borders General Hospital, Melrose, UK
| | - Jean McKnight
- Department of Paediatrics, Dumfries and Galloway Royal Infirmary, Dumfries, UK
| | - Calum A Morrison
- Department of Paediatrics, University Hospital Crosshouse, Kilmarnock, UK
| | - Lesley Nairn
- Department of Paediatrics, Royal Alexandra Hospital, Paisley, UK
| | - Meghan M Slean
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Elma Stephen
- Department of Paediatrics, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Alan Webb
- Department of Paediatrics, Raigmore Hospital, Inverness, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Margaret Wilson
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| |
Collapse
|
14
|
Aeby A. Infantile and Early Childhood Epileptic Syndromes. CLINICAL CHILD NEUROLOGY 2020:831-861. [DOI: 10.1007/978-3-319-43153-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Recent advances in treatment of epilepsy-related sodium channelopathies. Eur J Paediatr Neurol 2020; 24:123-128. [PMID: 31889633 DOI: 10.1016/j.ejpn.2019.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022]
Abstract
Voltage-gated sodium channels (VGSCs) play a crucial role in generation of action potentials. Pathogenic variants in the five human brain expressed VGSC genes, SCN1A, SCN2A, SCN3A, SCN8A and SCN1B have been associated with a spectrum of epilepsy phenotypes and neurodevelopmental disorders. In the last decade, next generation sequencing techniques have revolutionized the way we diagnose these channelopathies, which is paving the way towards precision medicine. Knowing the functional effect (Loss-of-function versus Gain-of-function) of a variant is not only important for understanding the underlying pathophysiology, but it is particularly crucial to orient therapeutic decisions. Here we provide a review of the literature dealing with treatment options in epilepsy-related sodium channelopathies, including the current and emerging medications.
Collapse
|
16
|
Abstract
Dravet syndrome is a rare but severe epilepsy syndrome that begins in the first year of life with recurrent seizures triggered by fever that are typically prolonged and hemiclonic. The epilepsy is highly drug resistant. Although development is normal at onset, over time, most patients develop moderate-to-severe intellectual disability, behavior disorders, and a characteristic crouch gait. There is a significant mortality, predominantly owing to sudden unexpected death in epilepsy. Complete seizure control is rarely attainable. Initial therapy includes valproic acid and clobazam, but response is typically inadequate. The results of new drugs for Dravet syndrome, including stiripentol, cannabidiol, and fenfluramine, are very promising. Stiripentol was associated with a greater than 50% reduction in convulsive seizure frequency in 71% of cases, when added to valproic acid and clobazam, and also markedly reduced status epilepticus. Pharmaceutical-grade cannabidiol resulted in a median change in monthly motor seizures from baseline of - 36.5%. Fenfluramine was associated with a greater than 50% reduction in seizures of 70%, with one quarter of cases achieving near seizure freedom over the duration of the trial. These agents are generally well tolerated, with few patients discontinuing for adverse effects. There is limited evidence to date regarding improvement in cognition with these newer agents; however, a meaningful change is challenging to assess over short trial periods and requires longer follow-up studies. While current treatments focus predominantly on seizure control, newer therapies including genetic treatments and antisense oligonucleotides can target the SCN1A channelopathy, and thus, may also significantly impact the important co-morbidities associated with this syndrome.
Collapse
Affiliation(s)
- Elaine C Wirrell
- Child and Adolescent Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| | - Rima Nabbout
- Hôpital Necker Enfants Malades, Université Paris Descartes, Paris, France
| |
Collapse
|
17
|
Brigo F, Striano P, Balagura G, Belcastro V. Emerging drugs for the treatment of Dravet syndrome. Expert Opin Emerg Drugs 2018; 23:261-269. [DOI: 10.1080/14728214.2018.1552937] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Francesco Brigo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Division of Neurology, “Franz Tappeiner” Hospital, Merano, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, “G. Gaslini” Institute, Genova, Italy
| | - Ganna Balagura
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, “G. Gaslini” Institute, Genova, Italy
| | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Dravet syndrome is a rare but severe genetic epilepsy that has unique treatment challenges. This is a review of current and future potential treatment options. RECENT FINDINGS Treatment for Dravet syndrome should encompass many aspects of the syndrome such as gait, behavior, and nutrition, as well as focus on seizure control. Many sodium channel blockers should be avoided as they are likely to exacerbate seizures. Current options for treatment include valproic acid, clobazam, stiripentol, and ketogenic diet. Testing is underway for several new treatment options with unique mechanisms of action and therapeutic targets, including the serotonin system and genetic modulation. Accurate and early diagnosis of Dravet syndrome will lead to avoidance of medications that may exacerbate seizures. Additionally, a multi-disciplinary approach and careful planning for management of episodes of status epilepticus may lead to improved outcomes. Ongoing research for novel approaches to treatment creates optimism for future improvement in outcomes.
Collapse
|
19
|
Viteva E, Zahariev Z. Comparative effectiveness of add-on therapy with newer-generation antiepileptic drugs in Bulgarian patients with refractory epilepsy. Epilepsy Behav 2018; 87:137-145. [PMID: 30097339 DOI: 10.1016/j.yebeh.2018.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES The objective of this study is to perform an open, prospective study on various aspects of comparative effectiveness of newer-generation antiepileptic drugs as add-on therapy in Bulgarian patients with drug-resistant epilepsy. METHODS The study was performed with the participation of 1259 patients with epilepsy who attended the Clinic of Neurology at the University Hospital in Plovdiv, Bulgaria for regular visits and completed diaries about seizure frequency, severity, and adverse events. RESULTS Oxcarbazepine was used in 82 patients, topiramate in 120 patients, lamotrigine in 73 patients, levetiracetam in 135 patients, pregabalin in 47 patients, tiagabine in 43 patients, gabapentin in 18 patients, lacosamide in 12 patients, and retigabine in 6 patients. During the first 24 months of study, improvement of seizure severity and frequency was most frequent in patients on treatment with pregabalin and levetiracetam and rarest in those on treatment with oxcarbazepine. The retention rate of patients on pregabalin and tiagabine was significantly lower compared to the retention rate of patients on most of the other antiepileptic drugs. The frequency of adverse events was higher in patients on treatment with tiagabine and pregabalin. CONCLUSION Despite some similar characteristics of newer-generation antiepileptic drugs' effectiveness, levetiracetam stands out with better dynamic improvement of seizure severity and frequency and satisfactory tolerability; typical for pregabalin is a very good dynamic improvement of seizure severity and frequency mainly in patients with focal seizures, but a lower tolerability, and the main advantage of oxcarbazepine is a good tolerability, efficacy, however, is less satisfactory.
Collapse
Affiliation(s)
- Ekaterina Viteva
- Department of Neurology, Medical University - Plovdiv, Bulgaria, 15A Vasil Aprilov str., 4002 Plovdiv, Bulgaria.
| | - Zahari Zahariev
- Department of Neurology, Medical University - Plovdiv, Bulgaria, 15A Vasil Aprilov str., 4002 Plovdiv, Bulgaria
| |
Collapse
|
20
|
Kong Y, Yan K, Hu L, Wang M, Dong X, Lu Y, Wu B, Wang H, Yang L, Zhou W. Association between SCN1A and SCN2A mutations and clinical/EEG features in Chinese patients from epilepsy or severe seizures. Clin Chim Acta 2018; 483:14-19. [PMID: 29649454 DOI: 10.1016/j.cca.2018.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND We investigated the association between SCN1A and SCN2A mutations and clinical phenotype and electroencephalography (EEG) features. METHODS In this study, 48 patients suffered from epilepsy or severe seizures with SCN1A and SCN2A mutations were recruited. Medical data and molecular diagnosis were analyzed. RESULTS A total of 47 mutations were identified, including 33 novel mutations. The onset of most epilepsy caused by SCN1A mutations (1-6 m) was later than that of SCN2A mutations (neonatal). SCN1A mutations included truncating mutations and missense mutations occurred in the crucial region were associated with more severe phenotypes and developmental delay (85.7%, P = 0.020). De novo mutations or truncating mutations of SCN2A mutations are mainly associated with severe phenotypes. The proportion of initial abnormal EEG of SCN2A mutation was higher than that of SCN1A mutation (54.2%, 100%). Patients with SCN1A mutations showed more focal epileptiform discharges (69.2%), while patients with SCN2A mutations had more multifocal epileptiform discharges (53.8%). Sodium channel blockers were less effective for patients with SCN1A mutations and SCN2A mutations with early seizures onset. CONCLUSIONS Our study expanded the mutation spectrum of the SCN1A and SCN2A, and led to a better understanding of the similarities and difference in the genetic and clinical features between the two genes.
Collapse
Affiliation(s)
- Yanting Kong
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Kai Yan
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Liyuan Hu
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Mingbang Wang
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Yulan Lu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Division of Endocrinology, Genetics and Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China.
| | - Wenhao Zhou
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Abstract
Dravet syndrome (DS) is a medically refractory epilepsy that onsets in the first year of life with prolonged seizures, often triggered by fever. Over time, patients develop other seizure types (myoclonic, atypical absences, drops), intellectual disability, crouch gait and other co-morbidities (sleep problems, autonomic dysfunction). Complete seizure control is generally not achievable with current therapies, and the goals of treatment are to balance reduction of seizure burden with adverse effects of therapies. Treatment of co-morbidities must also be addressed, as they have a significant impact on the quality of life of patients with DS. Seizures are typically worsened with sodium-channel agents. Accepted first-line agents include clobazam and valproic acid, although these rarely provide adequate seizure control. Benefit has also been noted with stiripentol, topiramate, levetiracetam, the ketogenic diet and vagal nerve stimulation. Several agents presently in development, specifically fenfluramine and cannabidiol, have shown efficacy in clinical trials. Status epilepticus is a recurring problem for patients with DS, particularly in their early childhood years. All patients should be prescribed a home rescue therapy (usually a benzodiazepine) but should also have a written seizure action plan that outlines when rescue should be given and further steps to take in the local hospital if the seizure persists despite home rescue therapy.
Collapse
|
22
|
Abstract
Dravet Syndrome is a devastating childhood epilepsy disorder with high incidence of premature death plus comorbidities of ataxia, circadian rhythm disorder, impaired sleep quality, autistic-like social-interaction deficits and severe cognitive impairment. It is primarily caused by heterozygous loss-of-function mutations in the SCN1A gene that encodes brain voltage-gated sodium channel type-1, termed NaV1.1. Here I review experiments on mouse genetic models that implicate specific loss of sodium currents and action potential firing in GABAergic inhibitory interneurons as the fundamental cause of Dravet Syndrome. The resulting imbalance of excitatory to inhibitory neurotransmission in neural circuits causes both epilepsy and co-morbidities. Promising therapeutic approaches involving atypical sodium channel blockers, novel drug combinations, and cannabidiol give hope for improved outcomes for Dravet Syndrome patients.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280 USA
| |
Collapse
|
23
|
Hawkins NA, Anderson LL, Gertler TS, Laux L, George AL, Kearney JA. Screening of conventional anticonvulsants in a genetic mouse model of epilepsy. Ann Clin Transl Neurol 2017; 4:326-339. [PMID: 28491900 PMCID: PMC5420810 DOI: 10.1002/acn3.413] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Epilepsy is a common neurological disorder that affects 1% of the population. Approximately, 30% of individuals with epilepsy are refractory to treatment, highlighting the need for novel therapies. Conventional anticonvulsant screening relies predominantly on induced seizure models. However, these models may not be etiologically relevant for genetic epilepsies. Mutations in SCN1A are a common cause of Dravet Syndrome, a severe epileptic encephalopathy. Dravet syndrome typically begins in infancy with seizures provoked by fever and then progresses to include afebrile pleomorphic seizure types. Affected children respond poorly to available anticonvulsants. Scn1a+/- heterozygous knockout mice recapitulate features of Dravet syndrome and provide a potential screening platform to investigate novel therapeutics. In this study, we conducted a screening of conventional anticonvulsants in Scn1a+/- mice to establish assays that most closely correlate with human response data. METHODS On the basis of clinical response data from a large, single center, retrospective survey of Dravet syndrome case records, we selected nine drugs for screening in Scn1a+/- mice to determine which phenotypic measures correlate best with human therapeutic response. We evaluated several screening paradigms and incorporated pharmacokinetic monitoring to establish drug exposure levels. RESULTS Scn1a+/- mice exhibited responses to anticonvulsant treatment similar to those observed clinically. Sodium channel blockers were not effective or exacerbated seizures in Scn1a+/- mice. Overall, clobazam was the most effective anticonvulsant in Scn1a+/- mice, consistent with its effect in Dravet syndrome. INTERPRETATION Genetic models of spontaneous epilepsy provide alternative screening platforms and may augment the AED development process. In this study, we established an effective screening platform that pharmacologically validated Scn1a+/- mice for preclinical screening of potential Dravet syndrome therapeutics.
Collapse
Affiliation(s)
- Nicole A Hawkins
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois
| | - Lyndsey L Anderson
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois
| | - Tracy S Gertler
- Department of Pediatrics Northwestern University Feinberg School of Medicine Division of Neurology Ann & Robert H. Lurie Children's Hospital of Chicago Chicago Illinois
| | - Linda Laux
- Department of Pediatrics Northwestern University Feinberg School of Medicine Division of Neurology Ann & Robert H. Lurie Children's Hospital of Chicago Chicago Illinois
| | - Alfred L George
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois
| | - Jennifer A Kearney
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois
| |
Collapse
|
24
|
Poleon S, Szaflarski JP. Photosensitivity in generalized epilepsies. Epilepsy Behav 2017; 68:225-233. [PMID: 28215998 DOI: 10.1016/j.yebeh.2016.10.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 11/24/2022]
Abstract
Photosensitivity, which is the hallmark of photosensitive epilepsy (PSE), is described as an abnormal EEG response to visual stimuli known as a photoparoxysmal response (PPR). The PPR is a well-recognized phenomenon, occurring in 2-14% of patients with epilepsy but its pathophysiology is not clearly understood. PPR is electrographically described as 2-5Hz spike, spike-wave, or slow wave complexes with frontal and paracentral prevalence. Diagnosis of PPR is confirmed using intermittent photic stimulation (IPS) as well as video monitoring. The PPR can be elicited by certain types of visual stimuli including flicker, high contrast gratings, moving patterns, and rapidly modulating luminance patterns which may be encountered during e.g., watching television, playing video games, or attending discotheques. Photosensitivity may present in different idiopathic (genetic) epilepsy syndromes e.g. juvenile myoclonic epilepsy (JME) as well as non-IGE syndromes e.g. severe myoclonic epilepsy of infancy. Consequently, PPR is present in patients with diverse seizure types including absence, myoclonic, and generalized tonic-clonic (GTC) seizures. Across syndromes, abnormalities in structural connectivity, functional connectivity, cortical excitability, cortical morphology, and behavioral and neuropsychological function have been reported. Treatment of photosensitivity includes antiepileptic drug administration, and the use of non-pharmacological agents, e.g. tinted or polarizing glasses, as well as occupational measures, e.g. avoidance of certain stimuli.
Collapse
Affiliation(s)
- Shervonne Poleon
- University of Alabama at Birmingham, Department of Neurology and UAB Epilepsy Center, Birmingham, AL, USA.
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham, Department of Neurology and UAB Epilepsy Center, Birmingham, AL, USA
| |
Collapse
|
25
|
Optimizing the Diagnosis and Management of Dravet Syndrome: Recommendations From a North American Consensus Panel. Pediatr Neurol 2017; 68:18-34.e3. [PMID: 28284397 DOI: 10.1016/j.pediatrneurol.2017.01.025] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To establish standards for early, cost-effective, and accurate diagnosis; optimal therapies for seizures; and recommendations for evaluation and management of comorbidities for children and adults with Dravet syndrome, using a modified Delphi process. METHODS An expert panel was convened comprising epileptologists with nationally recognized expertise in Dravet syndrome and parents of children with Dravet syndrome, whose experience and understanding was enhanced by their active roles in Dravet syndrome associations. Panelists were asked to base their responses to questions both on their clinical expertise and results of a literature review that was forwarded to each panelist. Three rounds of online questionnaires were conducted to identify areas of consensus and strength of that consensus, as well as areas of contention. RESULTS The panel consisted of 13 physicians and five family members. Strong consensus was reached regarding typical clinical presentation of Dravet syndrome, range of electroencephalography and magnetic resonance imaging findings, need for genetic testing, critical information that should be conveyed to families at diagnosis, priorities for seizure control and typical degree of control, seizure triggers and recommendations for avoidance, first- and second-line therapies for seizures, requirement and indications for rescue therapy, specific recommendations for comorbidity screening, and need for family support. Consensus was not as strong regarding later therapies, including vagus nerve stimulation and callosotomy, and for specific therapies of associated comorbidities. Beyond the initial treatment with benzodiazepines and use of valproate, there was no consensus on the optimal in-hospital management of convulsive status epilepticus. CONCLUSIONS We were able to identify areas where there was strong consensus that we hope will (1) inform health care providers on optimal diagnosis and management of patients with Dravet syndrome, (2) support reimbursement from insurance companies for genetic testing and Dravet syndrome-specific therapies, and (3) improve quality of life for patients with Dravet syndrome and their families by avoidance of unnecessary testing and provision of an early accurate diagnosis allowing optimal selection of therapeutic strategies.
Collapse
|
26
|
Abstract
Dravet syndrome is among the most challenging electroclinical syndromes. There is a high likelihood of recurrent status epilepticus; seizures are medically refractory; and patients have multiple co-morbidities, including intellectual disability, behaviour and sleep problems, and crouch gait. Additionally, they are at significant risk of sudden unexplained death. This review will focus predominantly on the prophylactic medical management of seizures, addressing both first-line therapies (valproate and clobazam) as well as second-line (stiripentol, topiramate, ketogenic diet) or later options (levetiracetam, bromides, vagus nerve stimulation). Sodium channel agents-including carbamazepine, oxcarbazepine, phenytoin and lamotrigine-should be avoided, as they typically exacerbate seizures. Several agents in development may show promise, specifically fenfluramine and cannabidiol, but they need further evaluation in randomized, controlled trials. In addition to prophylactic treatment, all patients need home-rescue medication and a status epilepticus protocol that can be carried out in their local hospital. Families must be counselled on non-pharmacologic strategies to reduce seizure risk, including avoidance of triggers that commonly induce seizures (including hyperthermia, flashing lights and patterns). In addition to addressing seizures, holistic care for a patient with Dravet syndrome must involve a multidisciplinary team that includes specialists in physical, occupational and speech therapy, neuropsychology, social work and physical medicine.
Collapse
|
27
|
Inoue S, Yazawa S, Murahara T, Yamauchi R, Shimohama S. [Dramatic seizure reduction with levetiracetam in adult Dravet syndrome: a case report]. Rinsho Shinkeigaku 2016; 55:151-4. [PMID: 25786750 DOI: 10.5692/clinicalneurol.55.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 28 year-old man who had been diagnosed as having Dravet syndrome (DS) since his childhood by a pediatric hospital was referred to our department from the local pediatric clinic. Until then, his seizures were medically intractable, and generalized tonic-clonic convulsions had occurred monthly even when administered enough valproate, zonisamide and clorazepate. After adding levetiracetam (LEV) to his drug regimen at the age of 29, the seizures disappeared for more than one year. LEV was found to be effective in this adult patient as well as in a series of children affected with DS.
Collapse
Affiliation(s)
- Shuko Inoue
- Department of Neurology, Sapporo edical University School of Medicine; Sapporo Miyanosawa Neurosurgical Hospital
| | | | | | | | | |
Collapse
|
28
|
Abstract
Dravet syndrome (DS) is an intractable pediatric epilepsy syndrome, starting in early childhood. This disorder typically manifests with febrile status epilepticus, and progresses to a multifocal epilepsy with febrile and non-febrile seizures with encephalopathy. Most cases are due to a mutation in the SCN1A gene. This article reviews treatments for DS, with an emphasis on pharmacotherapy. While many medications are used in treating the seizures associated with DS, these patients typically have medically refractory epilepsy, and polytherapy is often required. First-line agents include valproate and clobazam, although there are supportive data for topiramate, levetiracetam, stiripentol and the ketogenic diet. Other agents such as fenfluramine are promising therapies for Dravet syndrome. Sodium channel-blocking anticonvulsants such as carbamazepine and lamotrigine are generally contraindicated in this syndrome. Nonpharmacologic therapies (such as neurostimulation or surgery) are understudied in DS. Because DS is a global encephalopathy, pharmacologic treatment of non-epileptic manifestations of the disease is often necessary. Attention-deficit hyperactivity disorder is often encountered in patients with DS, and psychostimulants can be helpful for this indication. Other psychoactive drugs are less studied in this context. Extrapyramidal and gait disorders are often encountered in DS as well. While DS is a severe epileptic encephalopathy with a high (up to 15 %) mortality rate in childhood, careful pharmacologic management can improve these patients' clinical picture and quality of life.
Collapse
|
29
|
Kurbatova P, Wendling F, Kaminska A, Rosati A, Nabbout R, Guerrini R, Dulac O, Pons G, Cornu C, Nony P, Chiron C, Benquet P. Dynamic changes of depolarizing GABA in a computational model of epileptogenic brain: Insight for Dravet syndrome. Exp Neurol 2016; 283:57-72. [PMID: 27246997 DOI: 10.1016/j.expneurol.2016.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/12/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
Abnormal reemergence of depolarizing GABAA current during postnatal brain maturation may play a major role in paediatric epilepsies, Dravet syndrome (DS) being among the most severe. To study the impact of depolarizing GABA onto distinct patterns of EEG activity, we extended a neural mass model as follows: one sub-population of pyramidal cells was added as well as two sub-populations of interacting interneurons, perisomatic-projecting interneurons (basket-like) with fast synaptic kinetics GABAA (fast, I1) and dendritic-projecting interneurons with slow synaptic kinetics GABAA (slow, I2). Basket-like cells were interconnected to reproduce mutual inhibition mechanisms (I1➔I1). The firing rate of interneurons was adapted to mimic the genetic alteration of voltage gated sodium channels found in DS patients, SCN1A(+/-). We implemented the "dynamic depolarizing GABAA" mediated post-synaptic potential in the model, as some studies reported that the chloride reversal potential can switch from negative to more positive value depending on interneuron activity. The "shunting inhibition" promoted by GABAA receptor activation was also implemented. We found that increasing the proportion of depolarizing GABAA mediated IPSP (I1➔I1 and I1➔P) only (i.e., other parameters left unchanged) was sufficient to sequentially switch the EEG activity from background to (1) interictal isolated polymorphic epileptic spikes, (2) fast onset activity, (3) seizure like activity and (4) seizure termination. The interictal and ictal EEG patterns observed in 4 DS patients were reproduced by the model via tuning the amount of depolarizing GABAA postsynaptic potential. Finally, we implemented the modes of action of benzodiazepines and stiripentol, two drugs recommended in DS. Both drugs blocked seizure-like activity, partially and dose-dependently when applied separately, completely and with a synergic effect when combined, as has been observed in DS patients. This computational modeling study constitutes an innovative approach to better define the role of depolarizing GABA in infantile onset epilepsy and opens the way for new therapeutic hypotheses, especially in Dravet syndrome.
Collapse
Affiliation(s)
- P Kurbatova
- University Lyon 1, UMR 5558, CRNS, Lyon, France
| | - F Wendling
- UMR 1099, Inserm-University Rennes1, LTSI, Rennes, France
| | - A Kaminska
- UMR 1129, Inserm-Paris Descartes University-CEA, Paris, France
| | - A Rosati
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Firenze, Italy
| | - R Nabbout
- UMR 1129, Inserm-Paris Descartes University-CEA, Paris, France
| | - R Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Firenze, Italy; IRCCS Fondazione Stella Maris, Pisa, Italy
| | - O Dulac
- UMR 1129, Inserm-Paris Descartes University-CEA, Paris, France
| | - G Pons
- UMR 1129, Inserm-Paris Descartes University-CEA, Paris, France
| | - C Cornu
- Hôpital Louis Pradel, Centre d'Investigation Clinique, INSERM CIC201/UMR5558, Bron, France; CHU Lyon, Service de Pharmacologie Clinique, Lyon, France; University Lyon 1, UMR 5558, CRNS, Lyon, France
| | - P Nony
- CHU Lyon, Service de Pharmacologie Clinique, Lyon, France; University Lyon 1, UMR 5558, CRNS, Lyon, France
| | | | - C Chiron
- UMR 1129, Inserm-Paris Descartes University-CEA, Paris, France
| | - P Benquet
- UMR 1099, Inserm-University Rennes1, LTSI, Rennes, France
| |
Collapse
|
30
|
|
31
|
Shi XY, Tomonoh Y, Wang WZ, Ishii A, Higurashi N, Kurahashi H, Kaneko S, Hirose S. Efficacy of antiepileptic drugs for the treatment of Dravet syndrome with different genotypes. Brain Dev 2016; 38:40-6. [PMID: 26183863 DOI: 10.1016/j.braindev.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 06/28/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Evaluation of the efficacy of antiepileptic drugs (AEDs) used in the treatment of Dravet syndrome (DS) with different genotypes. METHODS Patients with DS were recruited from different tertiary hospitals. Using a direct sequencing method and Multiplex Ligation-Dependent Probe Amplification (MLPA), genetic abnormalities were assessed within the exons and flanking introns of SCN1A gene, which encodes the α1 subunit of neuronal sodium channels. Patients were divided into SCN1A-positive and SCN1A-negative groups according to the results of genetic tests. Medical records, including detailed treatment information, were surveyed to compare the effect of different AEDs on clonic or tonic-clonic seizures (GTCS). Efficacy variable was responder rate with regard to seizure reduction. RESULTS One hundred and sixty of 276 (57.97%) patients had mutation in SCN1A gene (only 128 of them had provided detailed medical records). Among the 116 patients without SCN1A mutations, 87 had provided detailed medical records. Both older AEDs (valproate, phenobarbital, bromide, carbamazepine, clonazepam, and clobazam) and newer AEDs such as zonisamide were used in these patients. Valproate was the most frequently used AED (86.72% in the SCN1A-positive group, 78.16% in the SCN1A-negative group), with 52.25% and 41.18% responder rates in SCN1A-positive and SCN1A-negative patients, respectively (P=0.15). Bromide was used in 40.63% of the SCN1A-positive patients and 20.69% of the SCN1A-negative patients, and its responder rates were 71.15% and 94.44% in SCN1A-positive and SCN1A-negative patients, respectively (P=0.05). Efficacy rates of clonazepam, clobazam, phenobarbital, and zonisamide ranged from 30% to 50%, and these rates were not correlated with different genotypes (P>0.05). Carbamazepine had either no effect or aggravated seizures in all SCN1A-positive patients. SIGNIFICANCE Bromide is most effective and is a well-tolerated drug among DS patients, especially among SCN1A-negative patients. Carbamazepine should be avoided in patients with SCN1A mutations.
Collapse
Affiliation(s)
- Xiu-Yu Shi
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan; Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Yuko Tomonoh
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Wen-Ze Wang
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan; Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Norimichi Higurashi
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan; Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Hirokazu Kurahashi
- Department of Pediatric Neurology, Central Hospital of Aichi Welfare Center for Persons with Developmental Disabilities, Kasugai, Japan
| | - Sunao Kaneko
- Department of Neuropsychiatry, School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan.
| | | |
Collapse
|
32
|
Schoonjans AS, Lagae L, Ceulemans B. Low-dose fenfluramine in the treatment of neurologic disorders: experience in Dravet syndrome. Ther Adv Neurol Disord 2015; 8:328-38. [PMID: 26600876 DOI: 10.1177/1756285615607726] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this paper, we review the experience with fenfluramine in epileptic and other paroxysmal disorders. Since the best available data are from the treatment of Dravet syndrome, we will focus primarily on this condition. Originally fenfluramine was launched as an anorectic agent. As early as 1985, seizure reduction in children could be demonstrated in a few cases with photosensitive, self-induced epilepsy. Hereafter, a small study was launched in patients with self-induced epilepsy. Results showed a significant seizure reduction, and review of the patient data showed that 5 of the 12 patients had Dravet syndrome. During that observation period, fenfluramine was withdrawn from the market because of cardiovascular side effects associated with prescribing higher doses in combination with phentermine for weight loss. In March 2002, a Belgian Royal Decree was issued permitting further study of fenfluramine in pediatric patients with intractable epilepsy. In 2011 under the Royal Decree, a prospective study of patients with Dravet syndrome treated with low-dose fenfluramine was initiated and is currently ongoing. The initial results are promising in terms of reduction of seizure frequency and overall tolerability.
Collapse
Affiliation(s)
- An-Sofie Schoonjans
- Department of Neurology-Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Belgium
| | - Lieven Lagae
- Department of Pediatric Neurology, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Berten Ceulemans
- Department of Neurology-Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium
| |
Collapse
|
33
|
Long-term safety and efficacy of stiripentol for the treatment of Dravet syndrome: A multicenter, open-label study in Japan. Epilepsy Res 2015; 113:90-7. [DOI: 10.1016/j.eplepsyres.2015.03.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/06/2015] [Accepted: 03/28/2015] [Indexed: 11/22/2022]
|
34
|
Aras LM, Isla J, Mingorance-Le Meur A. The European patient with Dravet syndrome: results from a parent-reported survey on antiepileptic drug use in the European population with Dravet syndrome. Epilepsy Behav 2015; 44:104-9. [PMID: 25666511 DOI: 10.1016/j.yebeh.2014.12.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 01/22/2023]
Abstract
Dravet syndrome is a rare form of epilepsy largely refractory to current antiepileptic medications. The only precedents of randomized placebo-controlled trials in Dravet syndrome are the two small trials that led to the approval of stiripentol. With the arrival of new clinical trials for Dravet syndrome, we sought to determine the characteristics of the patient population with Dravet syndrome in Europe today, which has possibly evolved subsequent to the approval of stiripentol and the ability to diagnose milder clinical cases via genetic testing. From May to June 2014, we conducted an online parent-reported survey to collect information about the demographics, disease-specific clinical characteristics, as well as current and past use of antiepileptic medications by European patients with Dravet syndrome. We present data from 274 patients with Dravet syndrome from 15 European countries. Most patients were between 4 and 8years of age, and 90% had known mutations in SCN1A. Their epilepsy was characterized by multiple seizure types, although only 45% had more than 4 tonic-clonic seizures per month on average. The most common drug combination was valproate, clobazam, and stiripentol, with 42% of the total population currently taking stiripentol. Over a third of patients with Dravet syndrome had taken sodium channel blockers in the past, and most had motor and behavioral comorbidities. Our study helps define the current typical European patient with Dravet syndrome. The results from this survey may have important implications for the design of future clinical trials that investigate new treatments for Dravet syndrome.
Collapse
Affiliation(s)
| | - Julián Isla
- Dravet Syndrome Foundation Spain, Madrid, Spain.
| | | |
Collapse
|
35
|
Makke Y, Hmaimess G, Nasreddine W, Fawaz A, Beydoun A. Paradoxical exacerbation of myoclonic-astatic seizures by levetiracetam in myoclonic astatic epilepsy. BMC Pediatr 2015; 15:6. [PMID: 25884503 PMCID: PMC4329645 DOI: 10.1186/s12887-015-0330-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/07/2015] [Indexed: 12/04/2022] Open
Abstract
Background Levetiracetam is a broad spectrum antiepileptic drug (AED) with proven efficacy when used as adjunctive therapy against myoclonic seizures. We report two patients suffering from epilepsy with myoclonic-astatic epilepsy (MAE) who experienced a paradoxical worsening of seizures after initiation of treatment with LEV, a finding not previously described. Case presentation Patients included were enrolled in an ongoing large prospective study evaluating children and adults with new onset epilepsy in Lebanon conducted at the American University of Beirut Medical Center in association with the Lebanese Chapter of the International League against Epilepsy. Based on an extensive evaluation, these patients were stratified into idiopathic partial, idiopathic generalized, symptomatic partial or symptomatic generalized epilepsies. Whenever possible the electroclinical syndrome was identified according to the ILAE classification of epilepsy syndromes. Patients were subsequently followed up on regular intervals and were assessed for adverse events, and seizure recurrence. MAE was diagnosed in five (1.6%) out of 307 consecutive children enrolled in this study. LEV was used as adjunctive therapy in four of those children with two experiencing a substantial and dose related worsening in the frequency of their myoclonic and atonic seizures. Conclusion LEV should be used with caution in children with MAE and an exacerbation of seizure frequency temporally related to the introduction of LEV should alert the clinician to the possibility of a paradoxical seizure exacerbation.
Collapse
Affiliation(s)
- Yamane Makke
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Ghassan Hmaimess
- Department of Pediatric, St George Hospital Medical University Center, University of Balamand, Beirut, Lebanon.
| | - Wassim Nasreddine
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Ahmad Fawaz
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Ahmad Beydoun
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
36
|
Xu X, Zhang Y, Sun H, Liu X, Yang X, Xiong H, Jiang Y, Bao X, Wang S, Yang Z, Wu Y, Qin J, Lin Q, Wu X. Early clinical features and diagnosis of Dravet syndrome in 138 Chinese patients with SCN1A mutations. Brain Dev 2014; 36:676-681. [PMID: 24168886 DOI: 10.1016/j.braindev.2013.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/23/2013] [Accepted: 10/09/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To summarize the early clinical features of Dravet syndrome (DS) patients with SCN1A gene mutations before the age of one. METHODS SCN1A gene mutation screening was performed by PCR-DNA sequencing and multiple ligation-dependent probe amplication (MLPA). The early clinical features of DS patients with SCN1A mutations were reviewed with attention to the seizures induced by fever and other precipitating factors before the first year of life. RESULTS The clinical data of 138 DS patients with SCN1A gene mutations were reviewed. The median seizure onset age was 5.3 months. Ninety-nine patients (71.7%) experienced seizures with duration more than 15 min in the first year of life. Two or more seizures induced by fever within 24h or the same febrile illness were observed in 93 patients (67.4%). 111 patients (80.4%) had hemi-clonic and (or) focal seizures. Seizures had been triggered by fever of low degree (T<38 °C) in 62.3% (86/138) before the first year of life. Vaccine-related seizures were observed in 34.8% (48/138). Seizures in 22.5% (31/138) of patients were triggered by hot bath. Carbamazepine, oxcarbazepine, lamotrigine, phenobarbital and phenytoin showed either no effect or exacerbating the seizures in our group. CONCLUSION The seizure onset age in DS patients was earlier than that was in common febrile seizures. When a baby exhibits two or more features of complex febrile seizures in the first year of life, a diagnosis of DS should be considered, and SCN1A gene mutation screening should be performed as early as possible. Early diagnosis of DS will help clinicians more effectively prescribe antiepileptic drugs for stronger prognosis.
Collapse
Affiliation(s)
- Xiaojing Xu
- Department of Pediatrics, Peking University First Hospital, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, China.
| | - Huihui Sun
- Department of Pediatrics, Beijing Ji Shui Tan Hospital, China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, China
| | - Shuang Wang
- Department of Pediatrics, Peking University First Hospital, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, China
| | - Jiong Qin
- Department of Pediatrics, Peking University First Hospital, China
| | - Qing Lin
- Department of Pediatrics, Peking University First Hospital, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, China
| |
Collapse
|
37
|
Striano P, de Jonghe P, Zara F. Genetic epileptic encephalopathies: is all written into the DNA? Epilepsia 2014; 54 Suppl 8:22-6. [PMID: 24571113 DOI: 10.1111/epi.12419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epileptic encephalopathy is a condition in which epileptic activity, clinical or subclinical, is thought to be responsible for any disturbance of cognition, behavior, or motor control. However, experimental evidence supporting this clinical observation are still poor and the causal relationship between pharmacoresistant seizures and cognitive outcome is controversial. In the past two decades, genetic studies shed new light onto complex mechanisms underlying different severe epileptic conditions associated with intellectual disability and behavioral abnormalities, thereby providing important clues on the relationship between seizures and cognitive outcome. Dravet syndrome is a childhood disorder associated with loss-of-function mutations in SCN1A and is characterized by frequent seizures and severe cognitive impairment, thus well illustrating the concept of epileptic encephalopathy. However, it is difficult to determine the causative role of the underlying sodium channel dysfunction and that of the consequent seizures in influencing cognitive outcome in these children. It is also difficult to demonstrate whether a recognizable profile of cognitive impairment or a definite behavioral phenotype exists. Data from the laboratory and the clinics may provide greater insight into the degree to which epileptic activity may contribute to cognitive impairment in individual syndromes.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, Institute "G. Gaslini", University of Genova, Genoa, Italy
| | | | | |
Collapse
|
38
|
Hu LY, Zou LP, Zhong JM, Gao L, Zhao JB, Xiao N, Zhou H, Zhao M, Shi XY, Liu YJ, Ju J, Zhang WN, Yang XF, Kwan P. Febrile seizure recurrence reduced by intermittent oral levetiracetam. Ann Clin Transl Neurol 2014; 1:171-9. [PMID: 25356397 PMCID: PMC4184546 DOI: 10.1002/acn3.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Febrile seizure (FS) is the most common form of childhood seizure disorders. FS is perhaps one of the most frequent causes of admittance to pediatric emergency wards worldwide. We aimed to identify a new, safe, and effective therapy for preventing FS recurrence. METHODS A total of 115 children with a history of two or more episodes of FS were randomly assigned to levetiracetam (LEV) and control (LEV/control ratio = 2:1) groups. At the onset of fever, LEV group was orally administered with a dose of 15-30 mg/kg per day twice daily for 1 week. Thereafter, the dosage was gradually reduced until totally discontinued in the second week. The primary efficacy variable was seizure frequency associated with febrile events and FS recurrence rate (RR) during 48-week follow-up. The second outcome was the cost effectiveness of the two groups. RESULTS The intention-to-treat analysis showed that 78 children in LEV group experienced 148 febrile episodes. Among these 78 children, 11 experienced 15 FS recurrences. In control group, 37 children experienced 64 febrile episodes; among these 37 children, 19 experienced 32 FS recurrences. A significant difference was observed between two groups in FS RR and FS recurrence/fever episode. The cost of LEV group for the prevention of FS recurrence is lower than control group. During 48-week follow-up period, one patient in LEV group exhibited severe drowsiness. No other side effects were observed in the same patient and in other children. INTERPRETATION Intermittent oral LEV can effectively prevent FS recurrence and reduce wastage of medical resources.
Collapse
Affiliation(s)
- Lin-Yan Hu
- Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China ; Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China
| | - Li-Ping Zou
- Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China ; Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China
| | - Jian-Min Zhong
- Department of Neurology, Jiang-Xi Children's Hospital Jiangxi, 330006, China
| | - Lei Gao
- Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China
| | - Jian-Bo Zhao
- Department of Neurology, Beijing Children's Hospital Beijing, 100045, China
| | - Nong Xiao
- Department of Neurology, Children's Hospital of Chongqing Medical University Chongqing, 400014, China
| | - Hong Zhou
- The Beijing new century children's Hospital Beijing, 100045, China
| | - Meng Zhao
- Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China
| | - Xiu-Yu Shi
- Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China
| | - Yu-Jie Liu
- Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China
| | - Jun Ju
- Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China
| | - Wei-Na Zhang
- Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China
| | - Xiao-Fan Yang
- Department of Pediatrics, Chinese PLA General Hospital Beijing, 100583, China
| | - Patrick Kwan
- Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne Melbourne, Australia ; Department of Medicine and Therapeutics, Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
39
|
Striano P, Belcastro V. Treatment of myoclonic seizures. Expert Rev Neurother 2014; 12:1411-7; quiz 1418. [DOI: 10.1586/ern.12.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Dureau-Pournin C, Pédespan JM, Droz-Perroteau C, Lavernhe G, Mann M, Pollet C, Robinson P, Jové J, Moore N, Fourrier-Réglat A. Continuation rates of levetiracetam in children from the EULEVp cohort study. Eur J Paediatr Neurol 2014; 18:19-24. [PMID: 24035600 DOI: 10.1016/j.ejpn.2013.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Since indication extension to children data regarding the effectiveness of levetiracetam in paediatric patients remains limited. AIMS Investigate the real-life effectiveness of levetiracetam in paediatric patients. METHODS Epileptic children (<16 years) who had initiated levetiracetam between 1 October 2006 and 31 March 2007 were included and followed for 1 year by hospital or non-hospital neurologists practising in France. RESULTS Among the 156 identified children, 147 were analysed: 51.7% were female, and mean (SD) age was 9.2 years (4.2). Most patients had either partial symptomatic (30.6%) or partial cryptogenic (26.5%) epilepsy, 92.5% experienced seizures during the 6 months preceding levetiracetam initiation, and 19.2% were on levetiracetam alone at initiation. One-year levetiracetam continuation rate was estimated to be 72.0% (95%CI [63.8; 78.6]). Of the 104 children continuing levetiracetam treatment at end of study, 31.7% were seizure-free during the last six months of follow-up, and 23.1% on levetiracetam alone. Discontinuation of levetiracetam (n = 41) was mainly for insufficient efficacy (58.5% of those concerned). CONCLUSIONS In real-life clinical practice important treatment retention and non-negligible reduction of seizure frequency may be expected.
Collapse
Affiliation(s)
| | | | - Cécile Droz-Perroteau
- Univ. Bordeaux, Bordeaux F-33076, France; INSERM CIC-P 0005, Bordeaux F-33076, France; INSERM U657, Bordeaux F-33076, France
| | | | - Michael Mann
- Private Practice Neurologist, Paris F-75000, France
| | - Clothilde Pollet
- Univ. Bordeaux, Bordeaux F-33076, France; INSERM CIC-P 0005, Bordeaux F-33076, France
| | - Philip Robinson
- Univ. Bordeaux, Bordeaux F-33076, France; INSERM CIC-P 0005, Bordeaux F-33076, France.
| | - Jérémy Jové
- Univ. Bordeaux, Bordeaux F-33076, France; INSERM CIC-P 0005, Bordeaux F-33076, France
| | - Nicholas Moore
- Univ. Bordeaux, Bordeaux F-33076, France; INSERM CIC-P 0005, Bordeaux F-33076, France; CHU de Bordeaux, Bordeaux F-33076, France; INSERM U657, Bordeaux F-33076, France
| | - Annie Fourrier-Réglat
- Univ. Bordeaux, Bordeaux F-33076, France; INSERM CIC-P 0005, Bordeaux F-33076, France; CHU de Bordeaux, Bordeaux F-33076, France; INSERM U657, Bordeaux F-33076, France.
| | | |
Collapse
|
41
|
Abstract
BACKGROUND Severe myoclonic epilepsy in infants (SMEI), also known as Dravet syndrome, is a rare, refractory form of epilepsy, for whose treatment stiripentol (STP) has been recently licensed for add-on use. OBJECTIVES To evaluate the efficacy and tolerability of STP and other antiepileptic drug treatments (including ketogenic diet) as therapy for patients with SMEI. SEARCH METHODS We searched the Cochrane Epilepsy Group Specialised Register (15 May 2013), the Cochrane Central Register of Controlled Trials (CENTRAL, Issue 4 of 12, The Cochrane Library, April 2013), MEDLINE (1946 to May 2013) and SCOPUS (1823 to May 2013). The online trials registries ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform were systematically searched. The bibliographies of any identified study were searched for further references. We handsearched selected journals and conference proceedings. No language restrictions were imposed. SELECTION CRITERIA Randomised controlled trials (RCTs) or quasi-randomised controlled trials; double- or single-blinded or unblinded trials; and parallel-group studies. Administration of at least one antiepileptic drug therapy given singly (monotherapy) or in combination (add-on therapy) compared with add-on placebo or no add-on treatment. DATA COLLECTION AND ANALYSIS Review authors independently selected trials for inclusion according to predefined criteria, extracted relevant data and evaluated the methodological quality of trials. The following outcomes were assessed: at least 50% seizure reduction, seizure freedom, adverse effects, proportion of dropouts and quality of life. Outcomes were assessed using a Mantel-Haenszel meta-analysis to calculate risk ratio (RR) with 95% confidence intervals (95% CIs). MAIN RESULTS No RCTs assessing drugs other than STP were found. Two RCTs evaluating the use of STP (total of 64 children) were included. Both studies were generally at unclear risk of bias. A significantly higher proportion of participants had 50% or greater reduction in seizure frequency in the STP group compared with the placebo group (22/33 vs 2/31; RR 10.40, 95% CI 2.64 to 40.87). A significantly higher proportion of participants achieved seizure freedom in the STP group compared with the placebo group (12/33 vs 1/31; RR 7.93, 95% CI 1.52 to 41.21). No significant difference in the proportion of dropouts was found in the STP group compared with the placebo group (2/33 vs 8/31; RR 0.24, 95% CI 0.06 to 1.03). Only one study explicitly reported the occurrence of side effects; higher proportions of participants were reported to experience side effects in the STP group compared with the placebo group (100% vs 25%; RR 3.73, 95% CI 1.81 to 7.67). AUTHORS' CONCLUSIONS Data derived from two small RCTs indicate that STP is significantly better than placebo with regards to 50% or greater reduction in seizure frequency and seizure freedom. Adverse effects occurred more frequently with STP. Further adequately powered studies with long-term follow-up should be conducted to unequivocally establish the long-term efficacy and tolerability of STP in the treatment of SMEI.
Collapse
Affiliation(s)
- Francesco Brigo
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences. Section of Clinical Neurology, University of Verona, P.le L.A. Scuro, 10, Verona, Italy, 37134
| | | |
Collapse
|
42
|
Striano P, Belcastro V. Treating myoclonic epilepsy in children: state-of-the-art. Expert Opin Pharmacother 2013; 14:1355-61. [DOI: 10.1517/14656566.2013.800045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Oakley JC, Cho AR, Cheah CS, Scheuer T, Catterall WA. Synergistic GABA-enhancing therapy against seizures in a mouse model of Dravet syndrome. J Pharmacol Exp Ther 2013; 345:215-24. [PMID: 23424217 PMCID: PMC3629796 DOI: 10.1124/jpet.113.203331] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/15/2013] [Indexed: 02/02/2023] Open
Abstract
Seizures remain uncontrolled in 30% of patients with epilepsy, even with concurrent use of multiple drugs, and uncontrolled seizures result in increased morbidity and mortality. An extreme example is Dravet syndrome (DS), an infantile-onset severe epilepsy caused by heterozygous loss of function mutations in SCN1A, the gene encoding the brain type-I voltage-gated sodium channel NaV1.1. Studies in Scn1a heterozygous knockout mice demonstrate reduced excitability of GABAergic interneurons, suggesting that enhancement of GABA signaling may improve seizure control and comorbidities. We studied the efficacy of two GABA-enhancing drugs, clonazepam and tiagabine, alone and in combination, against thermally evoked myoclonic and generalized tonic-clonic seizures. Clonazepam, a positive allosteric modulator of GABA-A receptors, protected against myoclonic and generalized tonic-clonic seizures. Tiagabine, a presynaptic GABA reuptake inhibitor, was protective against generalized tonic-clonic seizures but only minimally protective against myoclonic seizures and enhanced myoclonic seizure susceptibility at high doses. Combined therapy with clonazepam and tiagabine was synergistic against generalized tonic-clonic seizures but was additive against myoclonic seizures. Toxicity determined by rotorod testing was additive for combination therapy. The synergistic actions of clonazepam and tiagabine gave enhanced seizure protection and reduced toxicity, suggesting that combination therapy may be well tolerated and effective for seizures in DS.
Collapse
Affiliation(s)
- John C Oakley
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
44
|
Faulkner MA, Singh SP. Neurogenetic disorders and treatment of associated seizures. Pharmacotherapy 2013; 33:330-43. [PMID: 23400943 DOI: 10.1002/phar.1201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Seizures are a frequent complication associated with several neurogenetic disorders. Antiepileptic medications remain the mainstay of treatment in these patients. We summarized the available data associated with various antiepileptic therapies used to treat patients with neurogenetic disorders who experienced recurrent seizures. A MEDLINE search was conducted to identify articles and abstracts describing the use of antiepileptic therapy for the treatment of various neurogenetic syndromes. Of all the neurogenetic syndromes, only autism spectrum disorders, Angelman syndrome, Rett syndrome, Dravet syndrome, and tuberous sclerosis complex were identified as having sufficient published information to evaluate therapy. Some efficacy trends were identified, including frequent successes with valproic acid with clonazepam for epilepsy with Angelman syndrome; valproic acid, stiripentol, and clobazam (triple combination therapy) for epilepsy with Dravet syndrome; and vigabatrin for infantile spasms associated with tuberous sclerosis complex. Due to a paucity of information regarding the mechanisms by which seizures are generated in the various disorders, approach to seizure control is primarily based on clinical experience and a limited amount of study data exploring patient outcomes. Although exposure of the developing brain to antiepileptic medications is of some concern, the control of epileptic activity is an important undertaking in these individuals, as the severity of eventual developmental delay often appears to correlate with the severity of seizures. As such, early aggressive therapy is warranted.
Collapse
Affiliation(s)
- Michele A Faulkner
- Departments of Pharmacy Practice and Neurology, Creighton University School of Pharmacy and Health Professions, Omaha, NE68178, USA.
| | | |
Collapse
|
45
|
Abstract
There has been important progress in the identification of antiepileptic compounds and their indications in children over the past 15 years: their number has doubled and specific pediatric trials are being performed to document their effect according to seizures and syndromes as well as their tolerability in pediatrics. The improved understanding of pharmacokinetics and drug-drug interactions has helped to optimize treatment. Specific issues specific of infants have also been studied although new antiepileptic drugs are still dramatically lacking for this age group. Before reaching a syndromic diagnosis, the choice of a first- line agent goes to compounds with the largest range of efficacy and least identified risks. Subsequent choices are mainly based on the epilepsy syndrome and seizure type in addition to good clinical practice to determine dose, adverse effect profile, risk of aggravating seizures and drug interactions, clinician's experience, cultural habits, and availability of drugs. If there are several options, preference is given to the compound that exhibits the best risk/benefit ratio, or the most rapid titration when seizure frequency is the major issue. For new antiepileptic compounds, price is often a limiting factor in countries with poor insurance coverage. Third generation anti-epileptic drugs are emerging which also seem to be promising.
Collapse
Affiliation(s)
- C Chiron
- INSERM UMR663, Université Paris Descartes, Paris and CEA, France.
| | | |
Collapse
|
46
|
Abstract
Severe myoclonic epilepsy in infancy (SMEI) is a rare disease, characterized by febrile and afebrile, generalized and unilateral, clonic or tonic-clonic seizures that occur in the first year of life in an otherwise apparently normal infant. They are later associated with myoclonus, atypical absences, and partial seizures. Developmental delay becomes apparent within the second year of life and is followed by definite cognitive impairment and personality disorders of variable intensity. In the borderline form, children do not present with myoclonic symptoms but have the same general picture. SMEI is a channelopathy and the genetic studies have shown a mutation in the SCN1A gene in 70 to 80% of the patients, including the borderline forms. At present, there are no well-established correlations between genotype and phenotype. The electroencephalograms, often normal at the onset, display both generalized and focal anomalies, without a specific electroencephalographic pattern. As a rule, neuroimaging is normal. All seizure types are resistant to antiepileptic drugs and status epilepticus is frequent. Some drugs have been shown to aggravate the seizures and must be avoided. Two recent drugs have been proved to partially control the convulsive seizures and the status epilepticus. Therefore, it is crucial to diagnose this epilepsy soon after its onset in order to prescribe the most appropriate treatment.
Collapse
|
47
|
Abstract
Stiripentol is an anticonvulsant used as adjunctive therapy with valproate and clobazam in the management of patients with severe myoclonic epilepsy of infancy (SMEI; Dravet syndrome), a rare form of epilepsy that develops in the first year of life and is subsequently associated with significant morbidity and mortality. Results of a randomized, double-blind trial, in which patients (≥3 years of age) whose SMEI was inadequately controlled with valproate and clobazam received adjunctive therapy with stiripentol or placebo for 2 months, showed a significantly higher response rate in the stiripentol group compared with the placebo group (71 % vs. 5 %; p < 0.0001; primary endpoint). Responders were defined as those patients who experienced a ≥50 % reduction in clonic or tonic-clonic seizure frequency during the second month of the double-blind period compared with baseline. Almost half of the stiripentol recipients were seizure free during this period compared with none in the placebo group. Stiripentol was also statistically superior to placebo for secondary efficacy outcomes in the randomized controlled trial, which included the median number of seizures during the second month of the double-blind period and the mean percentage change from baseline in seizure frequency. These results are supported by efficacy data from other studies in patients with SMEI treated with stiripentol as adjunctive therapy, including a long-term retrospective analysis, prospectively conducted open-label studies and a meta-analysis. Drowsiness, loss of appetite and weight loss are the most frequently reported adverse events with stiripentol, and the drug inhibits various cytochrome P450 isoenzymes, potentially leading to clinically significant drug interactions. Stiripentol is an important addition to the limited treatment options available for the management of patients with SMEI.
Collapse
Affiliation(s)
- Greg L Plosker
- Adis, Mairangi Bay, North Shore, Private Bag, Auckland, New Zealand.
| |
Collapse
|
48
|
Epileptic encephalopathies in adults and childhood. EPILEPSY RESEARCH AND TREATMENT 2012; 2012:205131. [PMID: 23056934 PMCID: PMC3465907 DOI: 10.1155/2012/205131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/28/2012] [Accepted: 06/10/2012] [Indexed: 02/02/2023]
Abstract
Epileptic encephalopathies are motor-mental retardations or cognitive disorders secondary to epileptic seizures or epileptiform activities. Encephalopaties due to brain damage, medications, or systemic diseases are generally not in the scope of this definition, but they may rarely accompany the condition. Appropriate differential diagnosis of epileptic seizures as well as subclinical electroencephalographic discharges are crucial for management of seizures and epileptiform discharges and relative regression of cognitive deterioration in long-term followup. Proper antiepileptic drug, hormonal treatment, or i.v. immunoglobulin choice play major role in prognosis. In this paper, we evaluated the current treatment approaches by reviewing clinical electrophysiological characteristics of epileptic encephalopathies.
Collapse
|
49
|
Labiano-Fontcuberta A, Benito-León J. Understanding tremor in multiple sclerosis: prevalence, pathological anatomy, and pharmacological and surgical approaches to treatment. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23439953 PMCID: PMC3500135 DOI: 10.7916/d8z60mr3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/06/2012] [Indexed: 12/01/2022]
Abstract
Background Given that tremor is one of the most prevalent and disabling features of multiple sclerosis (MS), we will review the most significant milestones in tremor in this disease in recent years, focusing on prevalence, clinical features, anatomical basis, and treatment. Methods Data for this review were identified by searching MEDLINE with the search terms “multiple sclerosis” and “tremor”. References were also identified from relevant articles published between January 1966 and May 2012. Results The predominant type of MS tremor is a large-amplitude, postural, and kinetic tremor, which most commonly affects the arms, although tremor can also involve head, neck, vocal cords, and trunk. Involvement of the tongue, jaw, or palate has not been reported. Although the anatomical basis underlying tremor in MS is poorly understood, the link between the cerebellum and the MS-related tremor is supported by clinical and experimental studies. Currently available medication is often unsuccessful in most cases. Surgical treatment can be a satisfactory alternative to treat severe and disabling tremor. Discussion Tremor in MS patients could be considered as an advanced consequence of the disease and its presence suggests a more aggressive course. MS tremor can be severe and very disabling for a small group of patients. Treatment of MS tremor remains a great challenge. Recent studies suggest that dissociating tremor from cerebellar dysfunction using selected clinical tests would be the key issue to successful surgical treatment. Understanding the pathophysiology and biochemistry of tremor production in MS may lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Andrés Labiano-Fontcuberta
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain ; Department of Medicine, Complutense University, Madrid, Spain
| | | |
Collapse
|
50
|
Nabbout R, Chiron C. Stiripentol: an example of antiepileptic drug development in childhood epilepsies. Eur J Paediatr Neurol 2012; 16 Suppl 1:S13-7. [PMID: 22695038 DOI: 10.1016/j.ejpn.2012.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The efficacy of stiripentol (STP) in Dravet Syndrome (DS) was discovered first in an exploratory study in pediatric pharmacoresistant epilepsies. This efficacy signal, used as a proof of concept, led to - two independent multicenter randomized, double-blind, placebo-controlled trials in DS patients: STICLO-France and STICLO-Italy. In adjunction to valproate and clobazam, STP demonstrated marked efficacy and these trials became the basis for the registration of STP as an orphan drug for DS. Although STP had previously shown antiepileptic activity, since it inhibits cytochromes P450, the increased plasma levels of clobazam (CLB), norclobazam (NCLB), and NCLB/CLB ratio reported in STICLO studies brought into question the activity of STP per se. Recent pharmacological studies demonstrated that (i) STP is a direct allosteric modulator of the GABA receptors at a site distinct from benzodiazepines; (ii) STP and CLB/NCLB act independently at GABA(A) receptors; (iii) their combination increases the maximum response beyond that of either drug alone. All these effects are independent of considerations of changes in metabolism. Some responders in STICLO studies failed to display any increase of plasmatic concentrations of NCLB/CLB ratio as STP could not inhibit CYP2C19 because of its inhibition by progabide or due to an inactivating CYP polymorphism. The responder rate proved to be in the same range whether the NCLB/CLB ratio increased or not. These analyses confirmed that the effects of STP cannot result from a simple pharmacokinetic interaction. We propose that the success of STP should serve as a model for AED development in rare pediatric epileptic syndromes.
Collapse
Affiliation(s)
- Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference des Epilepsies Rares, Inserm U663, Hopital Necker Enfants Malades, APHP, Paris Descartes University, Paris, France.
| | | |
Collapse
|