1
|
Cholidis P, Kranas D, Chira A, Galouni EA, Adamantidi T, Anastasiadou C, Tsoupras A. Shrimp Lipid Bioactives with Anti-Inflammatory, Antithrombotic, and Antioxidant Health-Promoting Properties for Cardio-Protection. Mar Drugs 2024; 22:554. [PMID: 39728129 DOI: 10.3390/md22120554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. This review refers to the lipid composition of a large number of shrimp species, as well as the effects that can alternate the lipid content of these crustaceans. Emphasis is given to the potent anti-inflammatory, antioxidant, and antithrombotic properties of shrimp bioactives, as well as the effects that these bioactives hold in other diseases, such as cancer, diabetes, neurodegenerative disorders, and more. The various health-promoting effects deriving from the consumption of shrimp lipid bioactives and the usage of products containing shrimp lipid extracts are also addressed in this study, through the exploration of several mechanisms of action and the interference of shrimp lipids in these biochemical pathways. Nevertheless, further research on this cultivatable edible species is needed, due to their existing limitations and future prospects which are discussed in this paper.
Collapse
Affiliation(s)
- Paschalis Cholidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Dimitrios Kranas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Aggeliki Chira
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Evangelia Aikaterini Galouni
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| |
Collapse
|
2
|
Kaur D, Grewal AK, Fouad D, Kumar A, Singh V, Alexiou A, Papadakis M, Batiha GES, Welson NN, Singh TG. Exploring the Neuroprotective Effects of Rufinamide in a Streptozotocin-Induced Dementia Model. Cell Mol Neurobiol 2024; 45:4. [PMID: 39661258 PMCID: PMC11634951 DOI: 10.1007/s10571-024-01521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Due to the complex pathophysiology of AD (Alzheimer's Disease), there are currently no effective clinical treatments available, except for acetylcholinesterase inhibitors. However, CREB (cyclic AMP-responsive element binding protein) has been identified as the critical factor for the transcription in memory formation. Understanding the effect of potential drugs on the CREB pathway could lead to the development of new therapeutic molecules. Rufinamide has shown promise in improving memory in animal models, and these effects may be associated with modulation of the CREB pathway, however, this has not been previously reported. Thus, the present study aimed to determine the involvement of the CREB pathway in the cognitive improvement effects of rufinamide in STZ (streptozotocin) induced mouse model of dementia. Administration of STZ [3 mg/kg, i.c.v. (intracerebroventricular) bilaterally] significantly impaired cognitive performance in step-down passive avoidance and Morris water maze tests in animals, reduced brain endogenous antioxidant levels (GSH, superoxide dismutase, and catalase), and increased marker of brain oxidative stress [TBARS (thiobarbituric acid reactive substances)] and inflammation [IL-1β (Interleukin-1 beta), IL-6 (Interleukin-6), TNF-α (Tumor necrosis factor alpha) and NF-κB (Nuclear factor kappa B)], along with neurodegeneration. These effects were markedly reversed by rufinamide (50 and 100 mg/kg) when administered to STZ animals. However, the pre-treatment with the CREB inhibitor (666-15) in STZ and rufinamide-administered animals neutralized the beneficial influence of rufinamide. Our data suggest that rufinamide, acting via CREB signaling, reduced oxidative stress and inflammatory markers while elevating anti-oxidant levels. Our study has established that rufinamide may act through CREB signaling in an investigational AD model, which could be crucial for developing new treatments beneficial in progressive neurological disorders.
Collapse
Affiliation(s)
- Darshpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, 11495, Riyadh, Saudi Arabia
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
- Department of Research & Development, Funogen, 11741, Athens, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | | |
Collapse
|
3
|
Kim HK, Biessels GJ, Yu MH, Hong N, Lee YH, Lee BW, Kang ES, Cha BS, Lee EJ, Lee M. SGLT2 Inhibitor Use and Risk of Dementia and Parkinson Disease Among Patients With Type 2 Diabetes. Neurology 2024; 103:e209805. [PMID: 39292986 DOI: 10.1212/wnl.0000000000209805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Despite the mechanistic potential of sodium-glucose cotransporter 2 inhibitor (SGLT2i) to improve neurologic outcomes, the efficacy of SGLT2i in neurodegenerative disorders among patients with type 2 diabetes is not well established. This population-based cohort study aimed to investigate the association of SGLT2i use with risks of incident dementia and Parkinson disease (PD) in patients with type 2 diabetes. METHODS This was a retrospective examination of data from a cohort of 1,348,362 participants with type 2 diabetes (≥40 years), who started antidiabetic drugs from 2014 to 2019, evaluated using the Korean National Health Insurance Service Database. Propensity score matching (1:1; SGLT2i to other oral antidiabetic drugs [OADs]) produced a cohort of 358,862 participants. Primary outcomes were the individual incidence of Alzheimer disease (AD), vascular dementia (VaD), and PD. Secondary outcomes were all-cause dementia (AD, VaD, and other dementia) and a composite of all-cause dementia and PD. Cox proportional hazards models were used to investigate the association between SGLT2i use and the risks of dementia and PD. RESULTS From the 358,862 participants analyzed (mean [SD] age, 57.8 [9.6] years; 58.0% male), 6,837 incident dementia or PD events occurred. Regarding the individual endpoints, SGLT2i use was associated with reduced risks of AD (adjusted hazard ratio [aHR] 0.81, 95% CI 0.76-0.87), VaD (aHR 0.69, 95% CI 0.60-0.78), and PD (aHR 0.80, 95% CI 0.69-0.91) with a 6-month drug use lag period. In addition, use of SGLT2i was associated with a 21% lower risk of all-cause dementia (aHR 0.79, 95% CI 0.69-0.90) and a 22% lower risk of all-cause dementia and PD than use of other OADs (aHR 0.78, 95% CI 0.73-0.83). The association between the use of SGLT2i and the lowered risk of these neurodegenerative disorders was not affected by sex, Charlson Comorbidity Index, diabetic complications, comorbidities, and medications. Sensitivity analysis further adjusting for bioclinical variables from health screening tests, including blood pressure, glucose, lipid profiles, and kidney function, yielded generally consistent results. DISCUSSION In this nationwide population-based study, SGLT2i use significantly reduced the risks of neurodegenerative disorders in patients with type 2 diabetes independent of various factors including comorbidities and bioclinical parameters. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that SGLT2 antidiabetic drugs decrease the risk of dementia and PD in people with diabetes.
Collapse
Affiliation(s)
- Hae Kyung Kim
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Geert Jan Biessels
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Heui Yu
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Namki Hong
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Ho Lee
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Byung-Wan Lee
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Seok Kang
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Bong-Soo Cha
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jig Lee
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Minyoung Lee
- From the Department of Internal Medicine (H.K.K., M.H.Y., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Institute of Endocrine Research (H.K.K., N.H., Y.-h.L., B.-W.L., E.S.K., B.-S.C., E.J.L., M.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (G.J.B.), University Medical Center (UMC) Utrecht Brain Center, UMC Utrecht, the Netherlands; and SENTINEL Team (M.H.Y.), Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Park HH, Armstrong MJ, Gorin FA, Lein PJ. Air Pollution as an Environmental Risk Factor for Alzheimer's Disease and Related Dementias. MEDICAL RESEARCH ARCHIVES 2024; 12:5825. [PMID: 39822906 PMCID: PMC11736697 DOI: 10.18103/mra.v12i10.5825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Alzheimer's disease and related dementias are a leading cause of morbidity in our aging populations. Although influenced by genetic factors, fewer than 5% of Alzheimer's disease and related dementia cases are due solely to genetic causes. There is growing scientific consensus that these dementias arise from complex gene by environment interactions. The 2020 Lancet Commission on dementia prevention, intervention, and care identified 12 modifiable risk factors of dementia, including lifestyle, educational background, comorbidities, and environmental exposures to environmental contaminants. In this review, we summarize the current understanding and data gaps regarding the role(s) of environmental pollutants in the etiology of Alzheimer's disease and related dementias with a focus on air pollution. In addition to summarizing findings from epidemiological and experimental animal studies that link airborne exposures to environmental contaminants to increased risk and/or severity of Alzheimer's disease and related dementias, we discuss currently hypothesized mechanism(s) underlying these associations, including peripheral inflammation, neuroinflammation and epigenetic changes. Key data gaps in this rapidly expanding investigative field and approaches for addressing these gaps are also addressed.
Collapse
Affiliation(s)
- Heui Hye Park
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Matthew J. Armstrong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A. Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, and Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Raket LL, Cummings J, Moscoso A, Villain N, Schöll M. Scenarios for the long-term efficacy of amyloid-targeting therapies in the context of the natural history of Alzheimer's disease. Alzheimers Dement 2024; 20:6374-6383. [PMID: 39073291 PMCID: PMC11497713 DOI: 10.1002/alz.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Recent clinical trials of amyloid beta (Aβ)-targeting therapies in Alzheimer's disease (AD) have demonstrated a clinical benefit over 18 months, but their long-term impact on disease trajectory is not yet understood. We propose a framework for evaluating realistic long-term scenarios. METHODS Results from recent phase 3 trials of Aβ-targeting antibodies were integrated with an estimate of the long-term patient-level natural history trajectory of the Clinical Dementia Rating-Sum of Boxes (CDR-SB) score to explore realistic long-term efficacy scenarios. RESULTS Three distinct long-term efficacy scenarios were examined, ranging from conservative to optimistic. These extrapolations of positive phase 3 trials suggested treatments delayed onset of severe dementia by 0.3 to 0.6 years (conservative), 1.1 to 1.9 years (intermediate), and 2.0 to 4.2 years (optimistic). DISCUSSION Our study provides a common language for long-term impact of disease-modifying treatments. Our work calls for studies with longer follow-up and results from early intervention trials to provide a comprehensive assessment of these therapies' true long-term impact. HIGHLIGHTS We present long-term scenarios of the efficacy of AD therapies. In this framework, scenarios are defined relative to the natural history of AD. Long-term projections with different levels of optimism can be compared. It provides a common language for expressing beliefs about long-term efficacy.
Collapse
Affiliation(s)
- Lars Lau Raket
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
| | - Jeffrey Cummings
- Chambers‐Grundy Center for Transformative NeurosciencePam Quirk Brain Health and Biomarker LaboratoryDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and NeurochemistryUniversity of GothenburgHuvudbyggnad Vasaparken, Universitetsplatsen 1GothenburgSweden
| | - Nicolas Villain
- Department of NeurologyInstitute of Memory and Alzheimer's DiseaseAP‐HP Sorbonne UniversitéPitié‐Salpêtrière HospitalParisFrance
- Sorbonne UniversitéINSERM U1127Institut du Cerveau ‐ ICMParisFrance
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and NeurochemistryUniversity of GothenburgHuvudbyggnad Vasaparken, Universitetsplatsen 1GothenburgSweden
- Department of Clinical PhysiologySahlgrenska University HospitalGothenburgSweden
- Dementia Research CentreQueen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
6
|
Zahr NM. Alcohol Use Disorder and Dementia: A Review. Alcohol Res 2024; 44:03. [PMID: 38812709 PMCID: PMC11135165 DOI: 10.35946/arcr.v44.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
PURPOSE By 2040, 21.6% of Americans will be over age 65, and the population of those older than age 85 is estimated to reach 14.4 million. Although not causative, older age is a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately one-third of those older than age 85 are diagnosed with dementia. As current alcohol consumption among older adults is significantly higher compared to previous generations, a pressing question is whether drinking alcohol increases the risk for Alzheimer's disease or other forms of dementia. SEARCH METHODS Databases explored included PubMed, Web of Science, and ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption on dementia risk, the literature covered included clinical diagnoses, epidemiology, neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and translational studies. Searches conducted between January 12 and August 1, 2023, included the following terms and combinations: "aging," "alcoholism," "alcohol use disorder (AUD)," "brain," "CNS," "dementia," "Wernicke," "Korsakoff," "Alzheimer," "vascular," "frontotemporal," "Lewy body," "clinical," "diagnosis," "epidemiology," "pathology," "autopsy," "postmortem," "histology," "cognitive," "motor," "neuropsychological," "magnetic resonance," "imaging," "PET," "ligand," "degeneration," "atrophy," "translational," "rodent," "rat," "mouse," "model," "amyloid," "neurofibrillary tangles," "α-synuclein," or "presenilin." When relevant, "species" (i.e., "humans" or "other animals") was selected as an additional filter. Review articles were avoided when possible. SEARCH RESULTS The two terms "alcoholism" and "aging" retrieved about 1,350 papers; adding phrases-for example, "postmortem" or "magnetic resonance"-limited the number to fewer than 100 papers. Using the traditional term, "alcoholism" with "dementia" resulted in 876 citations, but using the currently accepted term "alcohol use disorder (AUD)" with "dementia" produced only 87 papers. Similarly, whereas the terms "Alzheimer's" and "alcoholism" yielded 318 results, "Alzheimer's" and "alcohol use disorder (AUD)" returned only 40 citations. As pertinent postmortem pathology papers were published in the 1950s and recent animal models of Alzheimer's disease were created in the early 2000s, articles referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; about 400 are herein referenced. DISCUSSION AND CONCLUSIONS Chronic alcohol misuse accelerates brain aging and contributes to cognitive impairments, including those in the mnemonic domain. The consensus among studies from multiple disciplines, however, is that alcohol misuse can increase the risk for dementia, but not necessarily Alzheimer's disease. Key issues to consider include the reversibility of brain damage following abstinence from chronic alcohol misuse compared to the degenerative and progressive course of Alzheimer's disease, and the characteristic presence of protein inclusions in the brains of people with Alzheimer's disease, which are absent in the brains of those with AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California. Center for Health Sciences, SRI International, Menlo Park, California
| |
Collapse
|
7
|
Pszczołowska M, Walczak K, Miśków W, Mroziak M, Kozłowski G, Beszłej JA, Leszek J. Association between Female Reproductive Factors and Risk of Dementia. J Clin Med 2024; 13:2983. [PMID: 38792524 PMCID: PMC11122498 DOI: 10.3390/jcm13102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Women have an over 50% greater risk of dementia than men, which is a main topic of much research. This review aims to investigate the impact of a woman's reproductive history on dementia risk. The consequences of stillbirth are long-term health and psychosocial problems for women. Because of the awareness of an endangered pregnancy, many parents experience deep anxiety and stress in subsequent pregnancies. There are contradictory conclusions from research about abortion and the risk of dementia correlation. When it comes to the late age of first birth, which is said to be above 35 years old, it was observed that older mothers have a decreased risk of dementia compared to those who gave birth in their 20s; however, being a child of the older mother is connected with a higher risk of developing dementia. Using hormonal contraception can result in decreased risk of dementia as estrogen stimulates microglia-related Aβ removal and reduces tau hyperphosphorylation. The influence of postmenopausal hormonal therapy and the duration of the reproductive period on developing dementia remains unclear. Although female disorders like endometriosis and polycystic ovary syndrome are reported to increase the risk of dementia, the research on this topic is very limited, especially when it comes to endometriosis, and needs further investigation. Interestingly, there is no conclusion on whether hypertensive disorders of pregnancy increase the risk of dementia, but most articles seem to confirm this theory.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Weronika Miśków
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Magdalena Mroziak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Gracjan Kozłowski
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jan Aleksander Beszłej
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
8
|
Kim B, Yannatos I, Blam K, Wiebe D, Xie SX, McMillan CT, Mechanic‐Hamilton D, Wolk DA, Lee EB. Neighborhood disadvantage reduces cognitive reserve independent of neuropathologic change. Alzheimers Dement 2024; 20:2707-2718. [PMID: 38400524 PMCID: PMC11032541 DOI: 10.1002/alz.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Individuals in socioeconomically disadvantaged neighborhoods exhibit increased risk for impaired cognitive function. Whether this association relates to the major dementia-related neuropathologies is unknown. METHODS This cross-sectional study included 469 autopsy cases from 2011 to 2023. The relationships between neighborhood disadvantage measured by Area Deprivation Index (ADI) percentiles categorized into tertiles, cognition evaluated by the last Mini-Mental State Examination (MMSE) scores before death, and 10 dementia-associated proteinopathies and cerebrovascular disease were assessed using regression analyses. RESULTS Higher ADI was significantly associated with lower MMSE score. This was mitigated by increasing years of education. ADI was not associated with an increase in dementia-associated neuropathologic change. Moreover, the significant association between ADI and cognition remained even after controlling for changes in major dementia-associated proteinopathies or cerebrovascular disease. DISCUSSION Neighborhood disadvantage appears to be associated with decreased cognitive reserve. This association is modified by education but is independent of the major dementia-associated neuropathologies.
Collapse
Affiliation(s)
- Boram Kim
- Translational Neuropathology Research LaboratoryDepartment of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Isabel Yannatos
- Penn Frontotemporal Degeneration CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kaitlin Blam
- Translational Neuropathology Research LaboratoryDepartment of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Douglas Wiebe
- Department of Emergency MedicineDepartment of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Sharon X. Xie
- Department of BiostatisticsEpidemiology and InformaticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dawn Mechanic‐Hamilton
- Penn Memory CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Penn Memory CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Translational Neuropathology Research LaboratoryDepartment of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
Spence H, Waldron FM, Saleeb RS, Brown AL, Rifai OM, Gilodi M, Read F, Roberts K, Milne G, Wilkinson D, O'Shaughnessy J, Pastore A, Fratta P, Shneider N, Tartaglia GG, Zacco E, Horrocks MH, Gregory JM. RNA aptamer reveals nuclear TDP-43 pathology is an early aggregation event that coincides with STMN-2 cryptic splicing and precedes clinical manifestation in ALS. Acta Neuropathol 2024; 147:50. [PMID: 38443601 PMCID: PMC10914926 DOI: 10.1007/s00401-024-02705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
TDP-43 is an aggregation-prone protein which accumulates in the hallmark pathological inclusions of amyotrophic lateral sclerosis (ALS). However, the analysis of deeply phenotyped human post-mortem samples has shown that TDP-43 aggregation, revealed by standard antibody methods, correlates poorly with symptom manifestation. Recent identification of cryptic-splicing events, such as the detection of Stathmin-2 (STMN-2) cryptic exons, are providing evidence implicating TDP-43 loss-of-function as a potential driving pathomechanism but the temporal nature of TDP-43 loss and its relation to the disease process and clinical phenotype is not known. To address these outstanding questions, we used a novel RNA aptamer, TDP-43APT, to detect TDP-43 pathology and used single molecule in situ hybridization to sensitively reveal TDP-43 loss-of-function and applied these in a deeply phenotyped human post-mortem tissue cohort. We demonstrate that TDP-43APT identifies pathological TDP-43, detecting aggregation events that cannot be detected by classical antibody stains. We show that nuclear TDP-43 pathology is an early event, occurring prior to cytoplasmic accumulation and is associated with loss-of-function measured by coincident STMN-2 cryptic splicing pathology. Crucially, we show that these pathological features of TDP-43 loss-of-function precede the clinical inflection point and are not required for region specific clinical manifestation. Furthermore, we demonstrate that gain-of-function in the form of extensive cytoplasmic accumulation, but not loss-of-function, is the primary molecular correlate of clinical manifestation. Taken together, our findings demonstrate implications for early diagnostics as the presence of STMN-2 cryptic exons and early TDP-43 aggregation events could be detected prior to symptom onset, holding promise for early intervention in ALS.
Collapse
Affiliation(s)
- Holly Spence
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Fergal M Waldron
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Rebecca S Saleeb
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Olivia M Rifai
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Martina Gilodi
- RNA System Biology Lab, Instituto Italiano di Tecnologia, Genoa, Italy
| | - Fiona Read
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kristine Roberts
- Department of Pathology, NHS Grampian Tissue Biorepository, Aberdeen, UK
| | - Gillian Milne
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Debbie Wilkinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Judi O'Shaughnessy
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Neil Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | | | - Elsa Zacco
- RNA System Biology Lab, Instituto Italiano di Tecnologia, Genoa, Italy
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Jenna M Gregory
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
- Department of Pathology, NHS Grampian Tissue Biorepository, Aberdeen, UK.
| |
Collapse
|
10
|
Ruíz-González C, González-López MDC, García-Ramón MJ, Ruiz-Fernández MD, Rebollo-Lavado B, Andújar-Rodríguez E, Ventura-Miranda MI. A description of risk associated with use of antipsychotics among community dwelling older adults: A descriptive cross-sectional study. Geriatr Nurs 2024; 55:362-367. [PMID: 38171187 DOI: 10.1016/j.gerinurse.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
The objective of this research was to analyze the risk of adverse effects in patients older than 65 years with dementia and in concomitant treatment with antidementia and antipsychotic drugs and who are cared for by community nurses. A retrospective cross-sectional descriptive study was carried out. A total of 332 patients who were cared for by primary care teams participated. Most of the patients were women, totally dependent for the basic activities of daily living and residing in the family home. They were polymedicated and there was poor therapeutic adherence. The risk of adverse effects was higher in polymedicated patients who had been taking antipsychotics for longer periods and in those who had a main caregiver. However, those patients who had been assessed by the community nurse were protected from suffering adverse effects. This study demonstrates how integrated and continuous nursing care can reduce adverse effects in this type of patient.
Collapse
Affiliation(s)
- Carlos Ruíz-González
- Primary Health Care District of Almeria, Andalusian Health Service, 04006 Almería, Spain
| | | | | | - María Dolores Ruiz-Fernández
- Department of Nursing, Physiotherapy and Medicine, University of Almería, Almería, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia, Chile.
| | | | | | | |
Collapse
|
11
|
Vicidomini C, Borbone N, Roviello V, Roviello GN, Oliviero G. Summary of the Current Status of DNA Vaccination for Alzheimer Disease. Vaccines (Basel) 2023; 11:1706. [PMID: 38006038 PMCID: PMC10674988 DOI: 10.3390/vaccines11111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer disease (AD) is one of the most common and disabling neuropathies in the ever-growing aged population around the world, that especially affects Western countries. We are in urgent need of finding an effective therapy but also a valid prophylactic means of preventing AD. There is a growing attention currently paid to DNA vaccination, a technology particularly used during the COVID-19 era, which can be used also to potentially prevent or modify the course of neurological diseases, including AD. This paper aims to discuss the main features and hurdles encountered in the immunization and therapy against AD using DNA vaccine technology. Ultimately, this work aims to effectively promote the efforts in research for the development of safe and effective DNA and RNA vaccines for AD.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Valentina Roviello
- Center for Life Sciences and Technologies (CESTEV), University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
12
|
Perna A, Montine KS, White LR, Montine TJ, Cholerton BA. Paradigm Shift: Multiple Potential Pathways to Neurodegenerative Dementia. Neurotherapeutics 2023; 20:1641-1652. [PMID: 37733209 PMCID: PMC10684852 DOI: 10.1007/s13311-023-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
Neurodegenerative dementia can result from multiple underlying abnormalities, including neurotransmitter imbalances, protein aggregation, and other neurotoxic events. A major complication in identifying effective treatment targets is the frequent co-occurrence of multiple neurodegenerative processes, occurring either in parallel or sequentially. The path towards developing effective treatments for Alzheimer's disease (AD) and other dementias has been relatively slow and until recently has focused on disease symptoms. Aducanumab and lecanemab, recently approved by the FDA, are meant to target disease structures but have only modest benefit on symptom progression and remain unproven in reversing or preventing dementia. A third, donanemab, appears more promising but awaits FDA approval. Ongoing trials include potential cognition enhancers, new combinations of known drugs for synergistic effects, prodrugs with less toxicity, and increasing interest in drugs targeting neuroinflammation or microbiome. Scientific and technological advances offer the opportunity to move in new therapy directions, such as modifying microglia to prevent or suppress underlying disease. A major challenge, however, is that underlying comorbidities likely influence the effectiveness of therapies. Indeed, the full range of comorbidity, today only definitively identified postmortem, likely contributes to failed clinical trials and overmedication of older adults, since it is difficult to exclude (during life) people unlikely to respond. Our current knowledge thus signals that a paradigm shift towards individualized and multimodal treatments is necessary to effectively advance the field of dementia therapeutics.
Collapse
Affiliation(s)
- Amalia Perna
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA.
| | - Kathleen S Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Lon R White
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Brenna A Cholerton
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Lou K, Liu S, Zhang F, Sun W, Su X, Bi W, Yin Q, Qiu Y, Zhang Z, Jing M, Ma S. The effect of hyperthyroidism on cognitive function, neuroinflammation, and necroptosis in APP/PS1 mice. J Transl Med 2023; 21:657. [PMID: 37740205 PMCID: PMC10517505 DOI: 10.1186/s12967-023-04511-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Increasing evidence has linked the thyroid dysfunction to the pathogenesis of dementia. Evidence from clinical studies has demonstrated that hypothyroidism is related to an increased risk of dementia. But the association of hyperthyroidism with dementia is largely unknown. METHODS We used the adenovirus containing thyrotropin receptor (TSHR) amino acid residues 1-289 (Ad-TSHR289)-induced Graves' disease (GD) phenotype in Alzheimer's disease (AD) model mice (APP/PS1 mice) to evaluate the effect of hyperthyroidism on the cognitive function and β-amyloid (Aβ) accumulation. RESULTS GD mice exhibited a stable long-term hyperthyroidism and cognitive deficits. Single Cell RNA-sequencing analysis indicated that microglia function played a critical role in the pathophysiological processes in GD mice. Neuroinflammation and polarization of microglia (M1/M2 phenotype) and activated receptor-interacting serine/threonine protein kinase 3 (RIPK3)/mixed lineage kinase domain-like pseudo-kinase (MLKL)-mediated necroptosis contributed to the pathological process, including Aβ deposition and neuronal loss. RIPK3 inhibitor could inhibit GD-mediated Aβ accumulation and neuronal loss. CONCLUSIONS Our findings reveal that GD hyperthyroidism aggravates cognitive deficits in AD mice and induces Aβ deposition and neuronal loss by inducing neuroinflammation and RIPK3/MLKL-mediated necroptosis.
Collapse
Affiliation(s)
- Kai Lou
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, 250013, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, 271000, Shandong, China
| | - Xinhuan Su
- Department of Geriatrics Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaxin Qiu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Zhenyuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Mengzhe Jing
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| |
Collapse
|
14
|
Clausen AR, Stokholm L, Blaabjerg M, Frederiksen KH, Pedersen FN, Grauslund J. Retinal artery occlusion does not act as an independent marker of upcoming dementia: results from a Danish 20-year cohort study. Int J Retina Vitreous 2023; 9:50. [PMID: 37644557 PMCID: PMC10466746 DOI: 10.1186/s40942-023-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE Retinal artery occlusion (RAO) is a vision threatening disease associated with cerebral vascular dysfunction, which may reflect initial signs of cerebral pathology. Early detection of patients in risk of dementia could allow for preventative treatment. Hence, this study aimed to investigate RAO as an independent biomarker of incident dementia. METHODS This study was a nationwide, 20-year longitudinal cohort study in Denmark with inclusion from 1998 to 2020 and follow up until the end of 2022. We identified 2 205 159 individuals aged 65 or older through the Danish national health registers and monitored RAO (exposure) and dementia (outcome) status. We calculated incidence rate and performed a Cox regression analysis with hazard ratio (HR) and 95% confidence interval (CI) for RAO as a marker of dementia in a crude, a semi-adjusted (age and sex), and a fully adjusted model (furthermore adjusted for marital status and systemic comorbidity.) RESULTS: We identified 8 863 individuals with RAO. Incidence rates were higher among exposed compared to unexposed individuals (12.28 and 8.18 per 1000 person-years at risk, respectively). Individuals with RAO were more likely to be male and older at inclusion, to have hypertension, dyslipidaemia, cardiovascular disease, chronic kidney disease, and diabetes (p < 0.001). RAO was not associated with all-cause dementia in the crude analysis (HR 1.07 CI [1.00-1.17]) or in the fully adjusted analysis (HR 0.98 CI [0.91-1.06]. CONCLUSION Although individuals with RAO had a higher incidence of dementia compared to unexposed individuals, these associations were lost when confounders were taken into account.
Collapse
Affiliation(s)
- Anna Rebien Clausen
- Department of Ophthalmology, Odense University Hospital, Kløvervaenget 5, Odense, 5000, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Lonny Stokholm
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN-Open Patient data Explorative Network, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Morten Blaabjerg
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | | | - Frederik Nørregaard Pedersen
- Department of Ophthalmology, Odense University Hospital, Kløvervaenget 5, Odense, 5000, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Kløvervaenget 5, Odense, 5000, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Gut Microbes and Neuropathology: Is There a Causal Nexus? Pathogens 2022; 11:pathogens11070796. [PMID: 35890040 PMCID: PMC9319901 DOI: 10.3390/pathogens11070796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a virtual organ which produces a myriad of molecules that the brain and other organs require. Humans and microbes are in a symbiotic relationship, we feed the microbes, and in turn, they provide us with essential molecules. Bacteroidetes and Firmicutes phyla account for around 80% of the total human gut microbiota, and approximately 1000 species of bacteria have been identified in the human gut. In adults, the main factors influencing microbiota structure are diet, exercise, stress, disease and medications. In this narrative review, we explore the involvement of the gut microbiota in Parkinson’s disease, Alzheimer’s disease, multiple sclerosis and autism, as these are such high-prevalence disorders. We focus on preclinical studies that increase the understanding of disease pathophysiology. We examine the potential for targeting the gut microbiota in the development of novel therapies and the limitations of the currently published clinical studies. We conclude that while the field shows enormous promise, further large-scale studies are required if a causal link between these disorders and gut microbes is to be definitively established.
Collapse
|