1
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
2
|
Nissenkorn A, Bar L, Ben-Bassat A, Rothstein L, Abdelrahim H, Sokol R, Gabis LV, Attali B. Donepezil as a new therapeutic potential in KCNQ2- and KCNQ3-related autism. Front Cell Neurosci 2024; 18:1380442. [PMID: 39175503 PMCID: PMC11338814 DOI: 10.3389/fncel.2024.1380442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The KCNQ2/KCNQ3 genes encode the voltage-gated K channel underlying the neuronal M-current, regulating neuronal excitability. Loss-of-function (LoF) variants cause neonatal epilepsy, treatable with the M-current-opener retigabine, which is no longer marketed due to side effects. Gain-of-function (GoF) variants cause developmental encephalopathy and autism that could be amenable to M-current, but such therapies are not clinically available. In this translational project, we investigated whether donepezil, a cholinergic drug used in Alzheimer's, suppresses M currents in vitro and improves cognitive symptoms in patients with GoF variants. Methods (1) The effect of 1 μM donepezil on the amplitude of the M-current was measured in excitatory and inhibitory neurons of mouse primary cultured hippocampal cells. M-current was measured using the standard deactivation protocol (holding at 0 mV and deactivation at -60 mV) in the voltage-clamp configuration of the whole-cell patch clamp technique. The impact of donepezil was also examined on the spontaneous firing activity of hippocampal neurons in the current-clamp configuration. (2) Four children with autism, aged 2.5-8 years, with the following GoF variants were enrolled: KCNQ2 (p. Arg144Gln) and KCNQ 3 (p.Arg227Gln, p.Arg230Cys). Patients were treated off-label with donepezil 2.5-5 mg/d for 12 months and assessed with: clinical Global Impression of Change (CGI-c), Childhood Autism Rating Scale 2 (CARS-2), Adaptive Behavior Assessment System-II (ABAS-II), and Child Development Inventory (CDI). Results (1) Application of donepezil for at least 6 min produced a significant inhibition of the M-current with an IC50 of 0.4 μM. At 1 μM, donepezil reduced by 67% the M-current density of excitatory neurons (2.4 ± 0.46 vs. 0.89 ± 0.15 pA/pF, p < 0.05*). In inhibitory neurons, application of 1 μM donepezil produced a lesser inhibition of 59% of the M-current density (1.39 ± 0.43 vs. 0.57 ± 0.21, p > 0.05). Donepezil (1 μM) potently increased by 2.6-fold the spontaneous firing frequency, which was prevented by the muscarinic receptor antagonist atropine (10 μM). (2) The CARS-2 decreased by 3.8 ± 4.9 points (p > 0.05), but in two patients with KCNQ3 variants, the improvement was over the 4.5 clinically relevant threshold. The global clinical change was also clinically significant in these patients (CGI-c = 1). The CDI increased by 65% (p < 0.05*), while the ABAS-II remained unchanged. Discussion Donepezil should be repurposed as a novel alternative treatment for GoF variants in KCNQ2/KCNQ3 encephalopathy.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
- Department of Pediatric, School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Lior Bar
- Department of Electrophysiology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ben-Bassat
- Department of Electrophysiology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lynn Rothstein
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
| | - Hoda Abdelrahim
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
| | - Riki Sokol
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Lidia V. Gabis
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
- Department of Pediatric, School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Bernard Attali
- Department of Electrophysiology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Abreo TJ, Thompson EC, Madabushi A, Soh H, Varghese N, Vanoye CG, Springer K, Park KL, Johnson J, Sims S, Ji Z, Chavez AG, Jankovic MJ, Habte B, Zuberi AR, Lutz C, Wang Z, Krishnan V, Dudler L, Einsele-Scholz S, Noebels JL, George AL, Maheshwari A, Tzingounis AV, Cooper EC. Plural molecular and cellular mechanisms of pore domain KCNQ2 encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574177. [PMID: 38260608 PMCID: PMC10802467 DOI: 10.1101/2024.01.04.574177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
KCNQ2 variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and KCNQ2 G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. G256W/+ mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies provide evidence for an unexpected and novel role for the KCNQ2 pore turret and introduce a valid animal model of KCNQ2 encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of KCNQ2 encephalopathy patients share variants near the selectivity filter.
Collapse
Affiliation(s)
- Timothy J. Abreo
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Emma C. Thompson
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Anuraag Madabushi
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Nissi Varghese
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kristen Springer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Kristen L. Park
- Department of Pediatrics, Childrens Colorado, University of Colorado, Aurora, CO, USA
- Department of Neurology, Childrens Colorado, University of Colorado, Aurora, CO, USA
| | | | | | - Zhigang Ji
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Ana G. Chavez
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Bereket Habte
- Department of Pediatrics, Childrens Colorado, University of Colorado, Aurora, CO, USA
- Department of Neurology, Childrens Colorado, University of Colorado, Aurora, CO, USA
| | - Aamir R. Zuberi
- The Rare Disease Translational Center & Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Cathleen Lutz
- The Rare Disease Translational Center & Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Zhao Wang
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- CryoEM Core, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Lisa Dudler
- Center for Human Genetics Tübingen, Tübingen, Germany
| | | | - Jeffrey L. Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Edward C. Cooper
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
5
|
Saez-Matia A, Ibarluzea MG, M-Alicante S, Muguruza-Montero A, Nuñez E, Ramis R, Ballesteros OR, Lasa-Goicuria D, Fons C, Gallego M, Casis O, Leonardo A, Bergara A, Villarroel A. MLe-KCNQ2: An Artificial Intelligence Model for the Prognosis of Missense KCNQ2 Gene Variants. Int J Mol Sci 2024; 25:2910. [PMID: 38474157 DOI: 10.3390/ijms25052910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Despite the increasing availability of genomic data and enhanced data analysis procedures, predicting the severity of associated diseases remains elusive in the absence of clinical descriptors. To address this challenge, we have focused on the KV7.2 voltage-gated potassium channel gene (KCNQ2), known for its link to developmental delays and various epilepsies, including self-limited benign familial neonatal epilepsy and epileptic encephalopathy. Genome-wide tools often exhibit a tendency to overestimate deleterious mutations, frequently overlooking tolerated variants, and lack the capacity to discriminate variant severity. This study introduces a novel approach by evaluating multiple machine learning (ML) protocols and descriptors. The combination of genomic information with a novel Variant Frequency Index (VFI) builds a robust foundation for constructing reliable gene-specific ML models. The ensemble model, MLe-KCNQ2, formed through logistic regression, support vector machine, random forest and gradient boosting algorithms, achieves specificity and sensitivity values surpassing 0.95 (AUC-ROC > 0.98). The ensemble MLe-KCNQ2 model also categorizes pathogenic mutations as benign or severe, with an area under the receiver operating characteristic curve (AUC-ROC) above 0.67. This study not only presents a transferable methodology for accurately classifying KCNQ2 missense variants, but also provides valuable insights for clinical counseling and aids in the determination of variant severity. The research context emphasizes the necessity of precise variant classification, especially for genes like KCNQ2, contributing to the broader understanding of gene-specific challenges in the field of genomic research. The MLe-KCNQ2 model stands as a promising tool for enhancing clinical decision making and prognosis in the realm of KCNQ2-related pathologies.
Collapse
Affiliation(s)
| | - Markel G Ibarluzea
- Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
- Donostia International Physics Center, 20018 Donostia, Spain
| | - Sara M-Alicante
- Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain
- Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
| | | | - Eider Nuñez
- Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain
- Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
| | - Rafael Ramis
- Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
- Donostia International Physics Center, 20018 Donostia, Spain
| | - Oscar R Ballesteros
- Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
- Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018 Donostia, Spain
| | | | - Carmen Fons
- Pediatric Neurology Department, Sant Joan de Déu Hospital, Institut de Recerca Sant Joan de Déu, Barcelona University, 08950 Barcelona, Spain
| | - Mónica Gallego
- Departamento de Fisiología, Universidad del País Vasco, UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Oscar Casis
- Departamento de Fisiología, Universidad del País Vasco, UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Aritz Leonardo
- Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
- Donostia International Physics Center, 20018 Donostia, Spain
| | - Aitor Bergara
- Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
- Donostia International Physics Center, 20018 Donostia, Spain
- Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018 Donostia, Spain
| | | |
Collapse
|
6
|
Innes EA, Marne FAL, Macintosh R, Nevin SM, Briggs NE, Vivekanandarajah S, Webster RI, Sachdev RK, Bye AME. Neurodevelopmental outcomes in a cohort of Australian families with self-limited familial epilepsy of neonatal/infantile onset. Seizure 2024; 115:1-13. [PMID: 38160512 DOI: 10.1016/j.seizure.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES To determine: i) seizure recurrence; ii) developmental disability; iii) co-morbidities and risk factors in self-limited familial neonatal and/or infantile epilepsy (SeLFE) in a multigenerational study. METHODS Families were retrospectively recruited from epilepsy databases (2021-2022) in 2 paediatric hospitals, Sydney, Australia. Eligible families had 2 first degree relatives with seizures and underwent genetic testing. Demographics/clinical data were collected from interviews and medical records. Vineland Adaptive Behaviour Scales-Third Edition measured adaptive function. RESULTS Fifteen families participated. Fourteen had a genetic diagnosis (93%): 11 pathogenic; PRRT2 (n=4), KCNQ2 (n=3), SCN2A (n=4), 3 likely pathogenic; KCNQ2 (n=1), SCN8A (n=2). Seizures affected 73 individuals (ages 1-76 years); 30 children and 20 adults had in-depth phenotyping. Ten of 50 individuals (20%) had seizure recurrence, aged 8-65 years. Median time from last neonatal/infantile seizure was 11.8/12.8 years. Predictors of recurrence were high seizure number (p=0.05) and longer treatment duration (p=0.03). Seven children had global developmental delay (GDD): mild (n=4), moderate (n=1) and severe (n=2). Vineland-3 identified 3 had low-average and 3 had mild-moderately impaired functioning. The majority (82%) were average. GDD was associated with older age at last seizure (p=0.03), longer epilepsy duration (p=0.02), and higher number of anti-seizure medications (p=0.05). Four children had speech delay, 5 (10%) had Autism Spectrum Disorder. Paroxysmal kinesiogenic dyskinesia (n=5) occurred in 4 families and hemiplegic migraine (n=8) in 3 families. CONCLUSIONS Individuals with SeLFE have a small risk of recurrent seizures (20%) and neurodevelopmental disability. Significant predictors are higher seizure number and longer epilepsy duration. Developmental surveillance is imperative.
Collapse
Affiliation(s)
- Emily A Innes
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; TY Nelson Department of Neurology and Neurosurgery, Sydney Children's Hospital Network, Westmead, Australia; School of Medicine Sydney, The University of Notre Dame, Australia; Kids Research Centre, The Children's Hospital at Westmead, Australia.
| | - Fleur Annette Le Marne
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia
| | - Rebecca Macintosh
- School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, Australia
| | - Suzanne M Nevin
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, Australia
| | - Nancy E Briggs
- Stats Central, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Sinthu Vivekanandarajah
- School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Liverpool Community Paediatrics, Liverpool Community Health Centre, Liverpool, Australia
| | - Richard I Webster
- TY Nelson Department of Neurology and Neurosurgery, Sydney Children's Hospital Network, Westmead, Australia; Kids Research Centre, The Children's Hospital at Westmead, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Rani K Sachdev
- School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, Australia
| | - Ann M E Bye
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia
| |
Collapse
|
7
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Shorthouse D, Zhuang L, Rahrmann EP, Kosmidou C, Wickham Rahrmann K, Hall M, Greenwood B, Devonshire G, Gilbertson RJ, Fitzgerald RC, Hall BA. KCNQ potassium channels modulate Wnt activity in gastro-oesophageal adenocarcinomas. Life Sci Alliance 2023; 6:e202302124. [PMID: 37748809 PMCID: PMC10520261 DOI: 10.26508/lsa.202302124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Voltage-sensitive potassium channels play an important role in controlling membrane potential and ionic homeostasis in the gut and have been implicated in gastrointestinal (GI) cancers. Through large-scale analysis of 897 patients with gastro-oesophageal adenocarcinomas (GOAs) coupled with in vitro models, we find KCNQ family genes are mutated in ∼30% of patients, and play therapeutically targetable roles in GOA cancer growth. KCNQ1 and KCNQ3 mediate the WNT pathway and MYC to increase proliferation through resultant effects on cadherin junctions. This also highlights novel roles of KCNQ3 in non-excitable tissues. We also discover that activity of KCNQ3 sensitises cancer cells to existing potassium channel inhibitors and that inhibition of KCNQ activity reduces proliferation of GOA cancer cells. These findings reveal a novel and exploitable role of potassium channels in the advancement of human cancer, and highlight that supplemental treatments for GOAs may exist through KCNQ inhibitors.
Collapse
Affiliation(s)
- David Shorthouse
- https://ror.org/02jx3x895 Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London, UK
| | - Lizhe Zhuang
- Institute for Early Detection, CRUK Cambridge Centre, Cambridge, UK
| | - Eric P Rahrmann
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | | | - Michael Hall
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Benedict Greenwood
- https://ror.org/02jx3x895 Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Benjamin A Hall
- https://ror.org/02jx3x895 Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London, UK
| |
Collapse
|
9
|
Novelli V, Faultless T, Cerrone M, Care M, Manzoni M, Bober SL, Adler A, De-Giorgio F, Spears D, Gollob MH. Enhancing the interpretation of genetic observations in KCNQ1 in unselected populations: relevance to secondary findings. Europace 2023; 25:euad317. [PMID: 37897496 PMCID: PMC10637310 DOI: 10.1093/europace/euad317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
AIMS Rare variants in the KCNQ1 gene are found in the healthy population to a much greater extent than the prevalence of Long QT Syndrome type 1 (LQTS1). This observation creates challenges in the interpretation of KCNQ1 rare variants that may be identified as secondary findings in whole exome sequencing.This study sought to identify missense variants within sub-domains of the KCNQ1-encoded Kv7.1 potassium channel that would be highly predictive of disease in the context of secondary findings. METHODS AND RESULTS We established a set of KCNQ1 variants reported in over 3700 patients with diagnosed or suspected LQTS sent for clinical genetic testing and compared the domain-specific location of identified variants to those observed in an unselected population of 140 000 individuals. We identified three regions that showed a significant enrichment of KCNQ1 variants associated with LQTS at an odds ratio (OR) >2: the pore region, and the adjacent 5th (S5) and 6th (S6) transmembrane (TM) regions. An additional segment within the carboxyl terminus of Kv7.1, conserved region 2 (CR2), also showed an increased OR of disease association. Furthermore, the TM spanning S5-Pore-S6 region correlated with a significant increase in cardiac events. CONCLUSION Rare missense variants with a clear phenotype of LQTS have a high likelihood to be present within the pore and adjacent TM segments (S5-Pore-S6) and a greater tendency to be present within CR2. This data will enhance interpretation of secondary findings within the KCNQ1 gene. Further, our data support a more severe phenotype in LQTS patients with variants within the S5-Pore-S6 region.
Collapse
Affiliation(s)
- Valeria Novelli
- Centro Cardiologico Monzino, IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Trent Faultless
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Canada
| | - Marina Cerrone
- Inherited Arrhythmia Clinic and Heart Rhythm Center, ‘Leon Charney’ Division of Cardiology NYU Grossman School of Medicine, NewYork, NY, USA
| | - Melanie Care
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, 200 Elizabeth St.Rm 3GW-360, Toronto M5G 2C4, Ontario, Canada
| | - Martina Manzoni
- Centro Cardiologico Monzino, IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Sara L Bober
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Canada
| | - Arnon Adler
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Canada
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A.Gemelli IRCCS,Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Danna Spears
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, 200 Elizabeth St.Rm 3GW-360, Toronto M5G 2C4, Ontario, Canada
| | - Michael H Gollob
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Canada
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, 200 Elizabeth St.Rm 3GW-360, Toronto M5G 2C4, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Almohaish S, Cook AM, Brophy GM, Rhoney DH. Personalized antiseizure medication therapy in critically ill adult patients. Pharmacotherapy 2023; 43:1166-1181. [PMID: 36999346 DOI: 10.1002/phar.2797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
Precision medicine has the potential to have a significant impact on both drug development and patient care. It is crucial to not only provide prompt effective antiseizure treatment for critically ill patients after seizures start but also have a proactive mindset and concentrate on epileptogenesis and the underlying cause of the seizures or seizure disorders. Critical illness presents different treatment issues compared with the ambulatory population, which makes it challenging to choose the best antiseizure medications and to administer them at the right time and at the right dose. Since there is a paucity of information available on antiseizure medication dosing in critically ill patients, therapeutic drug monitoring is a useful tool for defining each patient's personal therapeutic range and assisting clinicians in decision-making. Use of pharmacogenomic information relating to pharmacokinetics, hepatic metabolism, and seizure etiology may improve safety and efficacy by individualizing therapy. Studies evaluating the clinical implementation of pharmacogenomic information at the point-of-care and identification of biomarkers are also needed. These studies may make it possible to avoid adverse drug reactions, maximize drug efficacy, reduce drug-drug interactions, and optimize medications for each individual patient. This review will discuss the available literature and provide future insights on precision medicine use with antiseizure therapy in critically ill adult patients.
Collapse
Affiliation(s)
- Sulaiman Almohaish
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pharmacy Practice, Clinical Pharmacy College, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aaron M Cook
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Gretchen M Brophy
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Denise H Rhoney
- Division of Practice Advancement and Clinical Education, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Borggraefe I, Wagner M. Precision Therapy in KCNQ2-Related Epilepsy. Neuropediatrics 2023; 54:295-296. [PMID: 37722392 DOI: 10.1055/s-0043-1772667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Affiliation(s)
- Ingo Borggraefe
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Comprehensive Epilepsy Center for Children and Adolescents, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Matias Wagner
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Centrum, Munich, Germany
| |
Collapse
|
12
|
Varghese N, Moscoso B, Chavez A, Springer K, Ortiz E, Soh H, Santaniello S, Maheshwari A, Tzingounis AV. KCNQ2/3 Gain-of-Function Variants and Cell Excitability: Differential Effects in CA1 versus L2/3 Pyramidal Neurons. J Neurosci 2023; 43:6479-6494. [PMID: 37607817 PMCID: PMC10513074 DOI: 10.1523/jneurosci.0980-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Gain-of-function (GOF) pathogenic variants in the potassium channels KCNQ2 and KCNQ3 lead to hyperexcitability disorders such as epilepsy and autism spectrum disorders. However, the underlying cellular mechanisms of how these variants impair forebrain function are unclear. Here, we show that the R201C variant in KCNQ2 has opposite effects on the excitability of two types of mouse pyramidal neurons of either sex, causing hyperexcitability in layer 2/3 (L2/3) pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. Similarly, the homologous R231C variant in KCNQ3 leads to hyperexcitability in L2/3 pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. However, the effects of KCNQ3 gain-of-function on excitability are specific to superficial CA1 pyramidal neurons. These findings reveal a new level of complexity in the function of KCNQ2 and KCNQ3 channels in the forebrain and provide a framework for understanding the effects of gain-of-function variants and potassium channels in the brain.SIGNIFICANCE STATEMENT KCNQ2/3 gain-of-function (GOF) variants lead to severe forms of neurodevelopmental disorders, but the mechanisms by which these channels affect neuronal activity are poorly understood. In this study, using a series of transgenic mice we demonstrate that the same KCNQ2/3 GOF variants can lead to either hyperexcitability or hypoexcitability in different types of pyramidal neurons [CA1 vs layer (L)2/3]. Additionally, we show that expression of the recurrent KCNQ2 GOF variant R201C in forebrain pyramidal neurons could lead to seizures and SUDEP. Our data suggest that the effects of KCNQ2/3 GOF variants depend on specific cell types and brain regions, possibly accounting for the diverse range of phenotypes observed in individuals with KCNQ2/3 GOF variants.
Collapse
Affiliation(s)
- Nissi Varghese
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Bruno Moscoso
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Ana Chavez
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Kristen Springer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Erika Ortiz
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Sabato Santaniello
- Department of Biomedical Engineering and Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
13
|
Millevert C, Weckhuysen S. ILAE Genetic Literacy Series: Self-limited familial epilepsy syndromes with onset in neonatal age and infancy. Epileptic Disord 2023; 25:445-453. [PMID: 36939707 DOI: 10.1002/epd2.20026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 03/21/2023]
Abstract
The self-limited (familial) epilepsies with onset in neonates or infants, formerly called benign familial neonatal and/or infantile epilepsies, are autosomal dominant disorders characterized by neonatal- or infantile-onset focal motor seizures and the absence of neurodevelopmental complications. Seizures tend to remit during infancy or early childhood and are therefore called "self-limited". A positive family history for epilepsy usually suggests the genetic etiology, but incomplete penetrance and de novo inheritance occur. Here, we review the phenotypic spectrum and the genetic architecture of self-limited (familial) epilepsies with onset in neonates or infants. Using an illustrative case study, we describe important clues in recognition of these syndromes, diagnostic steps including genetic testing, management, and genetic counseling.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, University Hospital, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Yang GM, Tian FY, Shen YW, Yang CY, Yuan H, Li P, Gao ZB. Functional characterization and in vitro pharmacological rescue of KCNQ2 pore mutations associated with epileptic encephalopathy. Acta Pharmacol Sin 2023; 44:1589-1599. [PMID: 36932231 PMCID: PMC10374643 DOI: 10.1038/s41401-023-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/26/2023] [Indexed: 03/19/2023] Open
Abstract
Mutations in the KCNQ2 gene encoding KV7.2 subunit that mediates neuronal M-current cause a severe form of developmental and epileptic encephalopathy (DEE). Electrophysiological evaluation of KCNQ2 mutations has been proved clinically useful in improving outcome prediction and choosing rational anti-seizure medications (ASMs). In this study we described the clinical characteristics, electrophysiological phenotypes and the in vitro response to KCNQ openers of five KCNQ2 pore mutations (V250A, N258Y, H260P, A265T and G290S) from seven patients diagnosed with KCNQ2-DEE. The KCNQ2 variants were transfected into Chinese hamster ovary (CHO) cells alone, in combination with KCNQ3 (1:1) or with wild-type KCNQ2 (KCNQ2-WT) and KCNQ3 in a ratio of 1:1:2, respectively. Their expression and electrophysiological function were assessed. When transfected alone or in combination with KCNQ3, none of these mutations affected the membrane expression of KCNQ2, but most failed to induce a potassium current except A265T, in which trace currents were observed when co-transfected with KCNQ3. When co-expressed with KCNQ2-WT and KCNQ3 (1:1:2), the currents at 0 mV of these mutations were decreased by 30%-70% compared to the KCNQ2/3 channel, which could be significantly rescued by applying KCNQ openers including the approved antiepileptic drug retigabine (RTG, 10 μM), as well as two candidates subjected to clinical trials, pynegabine (HN37, 1 μM) and XEN1101 (1 μM). These newly identified pathologic variants enrich the KCNQ2-DEE mutation hotspots in the pore-forming domain. This electrophysiological study provides a rational basis for personalized therapy with KCNQ openers in DEE patients carrying loss-of-function (LOF) mutations in KCNQ2.
Collapse
Affiliation(s)
- Gui-Mei Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Fu-Yun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yan-Wen Shen
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Beijing, 100853, China
- Department of Pediatric neurology, Children's Hospital of Fudan university at Xiamen, Xiamen, 361006, China
| | - Chuan-Yan Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Ping Li
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhao-Bing Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Ye J, Tang S, Miao P, Gong Z, Shu Q, Feng J, Li Y. Clinical analysis and functional characterization of KCNQ2-related developmental and epileptic encephalopathy. Front Mol Neurosci 2023; 16:1205265. [PMID: 37497102 PMCID: PMC10366601 DOI: 10.3389/fnmol.2023.1205265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background Developmental and epileptic encephalopathy (DEE) is a condition characterized by severe seizures and a range of developmental impairments. Pathogenic variants in KCNQ2, encoding for potassium channel subunit, cause KCNQ2-related DEE. This study aimed to examine the relationships between genotype and phenotype in KCNQ2-related DEE. Methods In total, 12 patients were enrolled in this study for genetic testing, clinical analysis, and developmental evaluation. Pathogenic variants of KCNQ2 were characterized through a whole-cell electrophysiological recording expressed in Chinese hamster ovary (CHO) cells. The expression levels of the KCNQ2 subunit and its localization at the plasma membrane were determined using Western blot analysis. Results Seizures were detected in all patients. All DEE patients showed evidence of developmental delay. In total, 11 de novo KCNQ2 variants were identified, including 10 missense variants from DEE patients and one truncating variant from a patient with self-limited neonatal epilepsy (SeLNE). All variants were found to be loss of function through analysis of M-currents using patch-clamp recordings. The functional impact of variants on M-current in heteromericKCNQ2/3 channels may be associated with the severity of developmental disorders in DEE. The variants with dominant-negative effects in heteromeric channels may be responsible for the profound developmental phenotype. Conclusion The mechanism underlying KCNQ2-related DEE involves a reduction of the M-current through dominant-negative effects, and the severity of developmental disorders in DEE may be predicted by the impact of variants on the M-current of heteromericKCNQ2/3 channels.
Collapse
Affiliation(s)
- Jia Ye
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyang Tang
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Miao
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhefeng Gong
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Feng
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhou Li
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Milh M. Before the first seizure: The developmental imprint of infant epilepsy on neurodevelopment. Rev Neurol (Paris) 2023; 179:330-336. [PMID: 36907712 DOI: 10.1016/j.neurol.2023.01.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 03/12/2023]
Abstract
In light of the heterogeneity of epilepsy, both from a clinical and from an etiological perspective, it is difficult to establish a link between epilepsy and development that can be generalized to all infantile epilepsies. In general however, early-onset epilepsy has a poor developmental prognosis that is significantly linked to several parameters: age at first seizure, drug resistance, treatment, and etiology. This paper discusses the relationship between visible epilepsy parameters (those that allow the diagnosis of epilepsy) and neurodevelopment in infants, with special focus on Dravet syndrome and KCNQ2-related epilepsy, two common developmental and epileptic encephalopathies; and focal epilepsy caused by focal cortical dysplasia, which often begins during infancy. There are a number of reasons why it is difficult to dissect the relationship between seizures and their causes, and we suggest a conceptual model in which epilepsy is a neurodevelopmental disorder whose severity is determined by how the disease imprints itself on the developmental process rather than by the symptoms or etiology. The precocity of this developmental imprint may explain why treating seizures once they occur can have a very slight beneficial effect on development.
Collapse
Affiliation(s)
- M Milh
- Service de neurologie pédiatrique, Timone children hospital, Aix-Marseille université, AP-HM, 264, rue Saint Pierre, 13005 Marseille, France.
| |
Collapse
|
17
|
Falsaperla R, Marino SD, Salomone G, Madia F, Marino S, Tardino LG, Scalia B, Ruggieri M. Impressive efficacy of the ketogenic diet in a KCNQ2 encephalopathy infant: a case report and exhaustive literature review. Transl Pediatr 2023; 12:292-300. [PMID: 36891363 PMCID: PMC9986782 DOI: 10.21037/tp-22-258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND KCNQ2 encephalopathy is characterized by neonatal-onset epilepsy and developmental impairment, due to "de novo" KCNQ2 pathogenic variants. According to literature data, sodium channel blocking agents appear to be the best treatment options for the disease. Reports describing the use of ketogenic diet (KD) in the KCNQ2 pediatric population are limited. The non-conservative amino acid substitution p.Ser122Leu in KCNQ2 is associated with a broad spectrum of inheritance modalities, clinical phenotypes and outcomes; no previous reports of the same variant treated with KD are available in literature. CASE DESCRIPTION We described a 22-month-old female with seizure onset on day 2 of life. At three months of age, she presented refractory status epilepticus (SE) that did not respond to midazolam and carbamazepine, which was added once a "de novo" p.Ser122Leu KCNQ2 variant was demonstrated. KD was the only treatment that led to cessation of seizures. The baby maintained seizures remission and achieved neurodevelopmental milestones. CONCLUSIONS To define an overt genotype-phenotype correlation for KCNQ2 pathogenic variants is a challenge; we propose the KD as a valuable treatment for refractory seizures and impaired neurodevelopment in infants harboring "de novo" mutations in the KCNQ2 gene.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatology and Neonatal Intensive Care Unit, Hospital Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy.,Unit of Pediatrics and Pediatric Emergency, Hospital Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Unit of Pediatrics and Pediatric Emergency, Hospital Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | | | - Francesca Madia
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Marino
- Unit of Pediatrics and Pediatric Emergency, Hospital Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Lucia Giovanna Tardino
- Unit of Pediatrics and Pediatric Emergency, Hospital Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Bruna Scalia
- Neonatology and Neonatal Intensive Care Unit, Hospital Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Chokvithaya S, Caengprasath N, Buasong A, Jantasuwan S, Santawong K, Leela-adisorn N, Tongkobpetch S, Ittiwut C, Saengow VE, Kamolvisit W, Boonsimma P, Bongsebandhu-phubhakdi S, Shotelersuk V. Nine patients with KCNQ2-related neonatal seizures and functional studies of two missense variants. Sci Rep 2023; 13:3328. [PMID: 36849527 PMCID: PMC9971330 DOI: 10.1038/s41598-023-29924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Mutations in KCNQ2 encoding for voltage-gated K channel subunits underlying the neuronal M-current have been associated with infantile-onset epileptic disorders. The clinical spectrum ranges from self-limited neonatal seizures to epileptic encephalopathy and delayed development. Mutations in KCNQ2 could be either gain- or loss-of-function which require different therapeutic approaches. To better understand genotype-phenotype correlation, more reports of patients and their mutations with elucidated molecular mechanism are needed. We studied 104 patients with infantile-onset pharmacoresistant epilepsy who underwent exome or genome sequencing. Nine patients with neonatal-onset seizures from unrelated families were found to harbor pathogenic or likely pathogenic variants in the KCNQ2 gene. The p.(N258K) was recently reported, and p. (G279D) has never been previously reported. Functional effect of p.(N258K) and p.(G279D) has never been previously studied. The cellular localization study demonstrated that the surface membrane expression of Kv7.2 carrying either variant was decreased. Whole-cell patch-clamp analyses revealed that both variants significantly impaired Kv7.2 M-current amplitude and density, conductance depolarizing shift in voltage dependence of activation, membrane resistance, and membrane time constant (Tau), indicating a loss-of-function in both the homotetrameric and heterotetrameric with Kv7.3 channels. In addition, both variants exerted dominant-negative effects in heterotetrameric with Kv7.3 channels. This study expands the mutational spectrum of KCNQ2- related epilepsy and their functional consequences provide insights into their pathomechanism.
Collapse
Affiliation(s)
- Suphalak Chokvithaya
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand ,grid.415584.90000 0004 0576 1386Department of Clinical Pathology and Medical Technology Laboratory, Queen Sirikit National Institute of Child Health, Ministry of Public Health, Bangkok, Thailand
| | - Natarin Caengprasath
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Aayalida Buasong
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Supavadee Jantasuwan
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Kanokwan Santawong
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Netchanok Leela-adisorn
- grid.7922.e0000 0001 0244 7875Department of Stem Cell and Cell, Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siraprapa Tongkobpetch
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Chupong Ittiwut
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Vitchayaporn Emarach Saengow
- grid.416297.f0000 0004 0388 8201Department of Pediatrics, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, Thailand
| | - Wuttichart Kamolvisit
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. .,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Saknan Bongsebandhu-phubhakdi
- grid.7922.e0000 0001 0244 7875Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| |
Collapse
|
19
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
20
|
Haviland I, Daniels CI, Greene CA, Drew J, Love-Nichols JA, Swanson LC, Smith L, Nie DA, Benke T, Sheidley BR, Zhang B, Poduri A, Olson HE. Genetic Diagnosis Impacts Medical Management for Pediatric Epilepsies. Pediatr Neurol 2023; 138:71-80. [PMID: 36403551 PMCID: PMC10099530 DOI: 10.1016/j.pediatrneurol.2022.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Evidence of the impact of genetic diagnosis on medical management in individuals with previously unexplained epilepsy is lacking in the literature. Our goal was to determine the impact of genetic diagnosis on medical management in a cohort of individuals with early-onset epilepsy. METHODS We performed detailed phenotyping of individuals with epilepsy who underwent clinical genetic testing with an epilepsy panel and/or exome sequencing at Boston Children's Hospital between 2012 and 2019. We assessed the impact of genetic diagnosis on medical management. RESULTS We identified a genetic etiology in 152 of 602 (25%) individuals with infantile- or childhood-onset epilepsy who underwent next-generation sequencing. Diagnosis impacted medical management in at least one category for 72% of patients (110 of 152) and in more than one category in 34%. Treatment was impacted in 45% of individuals, including 36% with impact on antiseizure medication choice, 7% on use of disease-specific vitamin or metabolic treatments, 3% on pathway-driven off-label use of medications, and 10% on discussion of gene-specific clinical trials. Care coordination was impacted in 48% of individuals. Counseling on a change in prognosis was reported in 28% of individuals, and 1% of individuals had a correction of diagnosis. Impact was documented in 13 of 13 individuals with neurotypical development and in 55% of those with epilepsy onset after age two years. CONCLUSION We demonstrated meaningful impact of genetic diagnosis on medical care and prognosis in over 70% of individuals, including those with neurotypical development and age of epilepsy onset after age two years.
Collapse
Affiliation(s)
- Isabel Haviland
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Carolyn I Daniels
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Caitlin A Greene
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jacqueline Drew
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Boston University Clinical Investigation Master's Program, Boston, Massachusetts
| | - Jamie A Love-Nichols
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Genetics, Seattle Children's Hospital, Seattle, Washington
| | - Lindsay C Swanson
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lacey Smith
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Duyu A Nie
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Departments of Pediatrics, Neurology and Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island; Division of Pediatric Neurology and the Children's Neurodevelopment Center (CNDC), Hasbro Children's Hospital, Providence, Rhode Island
| | - Timothy Benke
- Departments of Pediatrics, Neurology, Pharmacology, and Otolaryngology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Beth R Sheidley
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Heather E Olson
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Operto FF, Pastorino GMG, Viggiano A, Dell’Isola GB, Dini G, Verrotti A, Coppola G. Epilepsy and Cognitive Impairment in Childhood and Adolescence: A Mini-Review. Curr Neuropharmacol 2023; 21:1646-1665. [PMID: 35794776 PMCID: PMC10514538 DOI: 10.2174/1570159x20666220706102708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Managing epilepsy in people with an intellectual disability remains a therapeutic challenge and must take into account additional issues such as diagnostic difficulties and frequent drug resistance. Advances in genomic technologies improved our understanding of epilepsy and raised the possibility to develop patients-tailored treatments acting on the key molecular mechanisms involved in the development of the disease. In addition to conventional antiseizure medications (ASMs), ketogenic diet, hormone therapy and epilepsy surgery play an important role, especially in cases of drugresistance. This review aims to provide a comprehensive overview of the mainfactors influencing cognition in children and adolescents with epilepsy and the main therapeutic options available for the epilepsies associated with intellectual disability.
Collapse
Affiliation(s)
- Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | | | - Gianluca Dini
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129 Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129 Perugia, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
22
|
Brun L, Viemari J, Villard L. Mouse models of Kcnq2 dysfunction. Epilepsia 2022; 63:2813-2826. [PMID: 36047730 PMCID: PMC9828481 DOI: 10.1111/epi.17405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
Variants in the Kv7.2 channel subunit encoded by the KCNQ2 gene cause epileptic disorders ranging from a benign form with self-limited epileptic seizures and normal development to severe forms with intractable epileptic seizures and encephalopathy. The biological mechanisms involved in these neurological diseases are still unclear. The disease remains intractable in patients affected by the severe form. Over the past 20 years, KCNQ2 models have been developed to elucidate pathological mechanisms and to identify new therapeutic targets. The diversity of Kcnq2 mouse models has proven invaluable to access neuronal networks and evaluate the associated cognitive deficits. This review summarizes the available models and their contribution to our current understanding of KCNQ2 epileptic disorders.
Collapse
Affiliation(s)
- Lucile Brun
- Aix Marseille Univ, Inserm, MMGMarseilleFrance
| | | | - Laurent Villard
- Aix Marseille Univ, Inserm, MMGMarseilleFrance,Service de Génétique Médicale, AP‐HM, Hôpital de La TimoneMarseilleFrance
| |
Collapse
|
23
|
Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, Lerche H, Lowenstein D, Møller RS, Poduri A, Sadleir L, Sisodiya SM, Weckhuysen S, Wilmshurst JM, Weber Y, Lemke JR. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord 2022; 24:765-786. [PMID: 35830287 PMCID: PMC10752379 DOI: 10.1684/epd.2022.1448] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2022] [Indexed: 01/19/2023]
Abstract
Epilepsy genetics is a rapidly developing field, in which novel disease-associated genes, novel mechanisms associated with epilepsy, and precision medicine approaches are continuously being identified. In the past decade, advances in genomic knowledge and analysis platforms have begun to make clinical genetic testing accessible for, in principle, people of all ages with epilepsy. For this reason, the Genetics Commission of the International League Against Epilepsy (ILAE) presents this update on clinical genetic testing practice, including current techniques, indications, yield of genetic testing, recommendations for pre- and post-test counseling, and follow-up after genetic testing is completed. We acknowledge that the resources vary across different settings but highlight that genetic diagnostic testing for epilepsy should be prioritized when the likelihood of an informative finding is high. Results of genetic testing, in particular the identification of causative genetic variants, are likely to improve individual care. We emphasize the importance of genetic testing for individuals with epilepsy as we enter the era of precision therapy.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alina Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Heidelberg, VIC, Australia
| | - Ingo Helbig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Building C, Arnold-Heller-Straße 3, 24105 Kiel, Germany
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg and Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Holger Lerche
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel Lowenstein
- Department of Neurology, University of California, San Francisco, USA
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology London, UK and Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Sarah Weckhuysen
- Center for Molecular Neurology, VIB-University of Antwerp, VIB, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Jo M. Wilmshurst
- Department of Paediatric Neurology, Paediatric and Child Health, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Yvonne Weber
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Germany
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
24
|
Chen J, Tao Q, Fan L, Shen Y, Liu J, Luo H, Yang Z, Liang M, Gan J. Pyridoxine-responsive KCNQ2 epileptic encephalopathy: Additional cases and literature review. Mol Genet Genomic Med 2022; 10:e2024. [PMID: 35906921 PMCID: PMC9544210 DOI: 10.1002/mgg3.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Typical patients with KCNQ2 (OMIM# 602235) epileptic encephalopathy present early neonatal-onset intractable seizures with a burst suppression EEG pattern and severe developmental delay or regression, and those patients always fail first-line treatment with sodium channel blockers. Vitamin B6, either pyridoxine or pyridoxal 50-phosphate, has been demonstrated to improve seizure control in intractable epilepsy. METHODS Here, we collected and summarized the clinical data for four independent cases diagnosed with pyridoxine-responsive epileptic encephalopathy, and their exome sequencing data. Moreover, we reviewed all published cases and summarized the clinical features, genetic variants, and treatment of pyridoxine-responsive KCNQ2 epileptic encephalopathy. RESULTS All four cases showed refractory seizures during the neonatal period or infancy, accompanied by global development delay. Four pathogenetic variants of KCNQ2 were uncovered and confirmed by Sanger sequencing: KCNQ2 [NM_172107.4: c.2312C > T (p.Thr771Ile), c.873G > C (p.Arg291Ser), c.652 T > A (p.Trp218Arg) and c.913-915del (p. Phe305del)]. Sodium channel blockers and other anti-seizure medications failed to control their seizures. The frequency of seizures gradually decreased after treatment with high-dose pyridoxine. In case 1, case 2, and case 4, clinical seizures relapsed when pyridoxine was withdrawn, and seizures were controlled again when pyridoxine treatment was resumed. CONCLUSION Our study suggests that pyridoxine may be a promising adjunctive treatment option for patients with KCNQ2 epileptic encephalopathy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of EducationSichuan UniversityChengduChina
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan ProvinceChengduChina
| | - Qiuji Tao
- Department of Pediatrics, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of EducationSichuan UniversityChengduChina
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan ProvinceChengduChina
| | - Lijuan Fan
- Department of Pediatrics, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of EducationSichuan UniversityChengduChina
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan ProvinceChengduChina
| | - Yajun Shen
- Department of Pediatrics, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of EducationSichuan UniversityChengduChina
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan ProvinceChengduChina
| | - Jinfeng Liu
- Department of Pediatrics, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of EducationSichuan UniversityChengduChina
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan ProvinceChengduChina
| | - Huan Luo
- Department of Pediatrics, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of EducationSichuan UniversityChengduChina
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan ProvinceChengduChina
| | | | | | - Jing Gan
- Department of Pediatrics, West China Second University HospitalSichuan UniversityChengduChina
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of EducationSichuan UniversityChengduChina
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan ProvinceChengduChina
| |
Collapse
|
25
|
Syrbe S. Developmental and epileptic encephalopathies - therapeutic consequences of genetic testing. MED GENET-BERLIN 2022; 34:215-224. [PMID: 38835873 PMCID: PMC11006352 DOI: 10.1515/medgen-2022-2145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Developmental and epileptic encephalopathies comprise a heterogeneous group of monogenic neurodevelopmental disorders characterized by early-onset seizures, marked epileptic activity and abnormal neurocognitive development. The identification of an increasing number of underlying genetic alterations and their pathophysiological roles in cellular signaling drives the way toward novel precision therapies. The implementation of novel treatments that target the underlying mechanisms gives hope for disease modification that will improve not only the seizure burden but also the neurodevelopmental outcome of affected children. So far, beneficial effects are mostly reported in individual trials and small numbers of patients. There is a need for international collaborative studies to define the natural history and relevant outcome measures and to test novel pharmacological approaches.
Collapse
Affiliation(s)
- Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Tian F, Cao B, Xu H, Zhan L, Nan F, Li N, Taglialatela M, Gao Z. Epilepsy phenotype and response to KCNQ openers in mice harboring the Kcnq2 R207W voltage-sensor mutation. Neurobiol Dis 2022; 174:105860. [PMID: 36113748 DOI: 10.1016/j.nbd.2022.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022] Open
Abstract
KCNQ2-encoded Kv7.2 subunits play a critical role in balancing neuronal excitability. Mutations in KCNQ2 are responsible for highly-heterogenous epileptic and neurodevelopmental phenotypes ranging from self-limited familial neonatal epilepsy (SeLFNE) to severe developmental and epileptic encephalopathy (DEE). Pathogenic KCNQ2 variants cluster at the voltage sensor domain (VSD), the pore domain, and the C-terminal tail. Although several knock-in mice harboring Kcnq2 pore variants have been developed, no mouse line carrying Kcnq2 voltage-sensor mutations has been described. KCNQ2-R207W is an epilepsy-causing mutation located in the VSD, mainly affecting voltage-dependent channel gating. To study the physiological consequence of Kcnq2 VSD dysfunction, we generated a Kcnq2-R207W mouse line and analyzed the pathological and pharmacological phenotypes of mutant mice. As a result, both homozygous (Kcnq2RW/RW) and heterozygous (Kcnq2RW/+) mice were viable. While Kcnq2RW/RW mice displayed a short lifespan, growth retardation, and spontaneous seizures, Kcnq2RW/+ mice survived and developed normally, although only a fraction (9/64; 14%) of them showed behavioral- and ECoG-confirmed spontaneous seizures. Kcnq2RW/+ mice displayed increased susceptibility to evoked seizures, which was dramatically ameliorated by treatment with the novel KCNQ opener pynegabine (HN37). Our results show that the Kcnq2-R207W mouse line, the first harboring a Kcnq2 voltage-sensor mutation, exhibits a unique epileptic phenotype with both spontaneous seizures and increased susceptibility to evoked seizures. In Kcnq2-R207W mice, the potent KCNQ opener HN37, currently in clinical phase I, shows strong anticonvulsant activity, suggesting it may represent a valuable option for the severe phenotypes of KCNQ2-related epilepsy.
Collapse
Affiliation(s)
- Fuyun Tian
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Birong Cao
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fajun Nan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples "Federico II", 80131 Naples, Italy.
| | - Zhaobing Gao
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Perucca P, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI): I. Drugs in preclinical and early clinical development. Epilepsia 2022; 63:2865-2882. [PMID: 35946083 DOI: 10.1111/epi.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
The Eilat Conferences have provided a forum for discussion of novel treatments of epilepsy among basic and clinical scientists, clinicians, and representatives from regulatory agencies as well as from the pharmaceutical industry for 3 decades. Initially with a focus on pharmacological treatments, the Eilat Conferences now also include sessions dedicated to devices for treatment and monitoring. The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain, on May 22-25, 2022 and was attended by 157 delegates from 26 countries. As in previous Eilat Conferences, the core of EILAT XVI consisted of a sequence of sessions where compounds under development were presented and discussed. This progress report summarizes preclinical and, when available, phase 1 clinical data on five different investigational compounds in preclinical or early clinical development, namely GAO-3-02, GRT-X, NBI-921352 (formerly XEN901), OV329, and XEN496 (a pediatric granular formulation of retigabine/ezogabine). Overall, the data presented in this report illustrate novel strategies for developing antiseizure medications, including an interest in novel molecular targets, and a trend to pursue potential new treatments for rare and previously neglected severe epilepsy syndromes.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine and David R. Bloom Center for Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Yang ND, Kanyo R, Zhao L, Li J, Kang PW, Dou AK, White KM, Shi J, Nerbonne JM, Kurata HT, Cui J. Electro-mechanical coupling of KCNQ channels is a target of epilepsy-associated mutations and retigabine. SCIENCE ADVANCES 2022; 8:eabo3625. [PMID: 35857840 PMCID: PMC9299555 DOI: 10.1126/sciadv.abo3625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
KCNQ2 and KCNQ3 form the M-channels that are important in regulating neuronal excitability. Inherited mutations that alter voltage-dependent gating of M-channels are associated with neonatal epilepsy. In the homolog KCNQ1 channel, two steps of voltage sensor activation lead to two functionally distinct open states, the intermediate-open (IO) and activated-open (AO), which define the gating, physiological, and pharmacological properties of KCNQ1. However, whether the M-channel shares the same mechanism is unclear. Here, we show that KCNQ2 and KCNQ3 feature only a single conductive AO state but with a conserved mechanism for the electro-mechanical (E-M) coupling between voltage sensor activation and pore opening. We identified some epilepsy-linked mutations in KCNQ2 and KCNQ3 that disrupt E-M coupling. The antiepileptic drug retigabine rescued KCNQ3 currents that were abolished by a mutation disrupting E-M coupling, suggesting that modulating the E-M coupling in KCNQ channels presents a potential strategy for antiepileptic therapy.
Collapse
Affiliation(s)
- Nien-Du Yang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Richard Kanyo
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Lu Zhao
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jingru Li
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Po Wei Kang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Alex Kelly Dou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Kelli McFarland White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jeanne M. Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harley T. Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
29
|
Miceli F, Millevert C, Soldovieri MV, Mosca I, Ambrosino P, Carotenuto L, Schrader D, Lee HK, Riviello J, Hong W, Risen S, Emrick L, Amin H, Ville D, Edery P, de Bellescize J, Michaud V, Van-Gils J, Goizet C, Willemsen MH, Kleefstra T, Møller RS, Bayat A, Devinsky O, Sands T, Korenke GC, Kluger G, Mefford HC, Brilstra E, Lesca G, Milh M, Cooper EC, Taglialatela M, Weckhuysen S. KCNQ2 R144 variants cause neurodevelopmental disability with language impairment and autistic features without neonatal seizures through a gain-of-function mechanism. EBioMedicine 2022; 81:104130. [PMID: 35780567 PMCID: PMC9254340 DOI: 10.1016/j.ebiom.2022.104130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background Prior studies have revealed remarkable phenotypic heterogeneity in KCNQ2-related disorders, correlated with effects on biophysical features of heterologously expressed channels. Here, we assessed phenotypes and functional properties associated with KCNQ2 missense variants R144W, R144Q, and R144G. We also explored in vitro blockade of channels carrying R144Q mutant subunits by amitriptyline. Methods Patients were identified using the RIKEE database and through clinical collaborators. Phenotypes were collected by a standardized questionnaire. Functional and pharmacological properties of variant subunits were analyzed by whole-cell patch-clamp recordings. Findings Detailed clinical information on fifteen patients (14 novel and 1 previously published) was analyzed. All patients had developmental delay with prominent language impairment. R144Q patients were more severely affected than R144W patients. Infantile to childhood onset epilepsy occurred in 40%, while 67% of sleep-EEGs showed sleep-activated epileptiform activity. Ten patients (67%) showed autistic features. Activation gating of homomeric Kv7.2 R144W/Q/G channels was left-shifted, suggesting gain-of-function effects. Amitriptyline blocked channels containing Kv7.2 and Kv7.2 R144Q subunits. Interpretation Patients carrying KCNQ2 R144 gain-of-function variants have developmental delay with prominent language impairment, autistic features, often accompanied by infantile- to childhood-onset epilepsy and EEG sleep-activated epileptiform activity. The absence of neonatal seizures is a robust and important clinical differentiator between KCNQ2 gain-of-function and loss-of-function variants. The Kv7.2/7.3 channel blocker amitriptyline might represent a targeted treatment. Funding Supported by FWO, GSKE, KCNQ2-Cure, Jack Pribaz Foundation, European Joint Programme on Rare Disease 2020, the Italian Ministry for University and Research, the Italian Ministry of Health, the European Commission, the University of Antwerp, NINDS, and Chalk Family Foundation.
Collapse
|
30
|
Mosca I, Rivolta I, Labalme A, Ambrosino P, Castellotti B, Gellera C, Granata T, Freri E, Binda A, Lesca G, DiFrancesco JC, Soldovieri MV, Taglialatela M. Functional Characterization of Two Variants at the Intron 6—Exon 7 Boundary of the KCNQ2 Potassium Channel Gene Causing Distinct Epileptic Phenotypes. Front Pharmacol 2022; 13:872645. [PMID: 35770094 PMCID: PMC9234691 DOI: 10.3389/fphar.2022.872645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants in KCNQ2 encoding for Kv7.2 potassium channel subunits have been found in patients affected by widely diverging epileptic phenotypes, ranging from Self-Limiting Familial Neonatal Epilepsy (SLFNE) to severe Developmental and Epileptic Encephalopathy (DEE). Thus, understanding the pathogenic molecular mechanisms of KCNQ2 variants and their correlation with clinical phenotypes has a relevant impact on the clinical management of these patients. In the present study, the genetic, biochemical, and functional effects prompted by two variants, each found in a non-familial SLNE or a DEE patient but both affecting nucleotides at the KCNQ2 intron 6-exon 7 boundary, have been investigated to test whether and how they affected the splicing process and to clarify whether such mechanism might play a pathogenetic role in these patients. Analysis of KCNQ2 mRNA splicing in patient-derived lymphoblasts revealed that the SLNE-causing intronic variant (c.928-1G > C) impeded the use of the natural splice site, but lead to a 10-aa Kv7.2 in frame deletion (Kv7.2 p.G310Δ10); by contrast, the DEE-causing exonic variant (c.928G > A) only had subtle effects on the splicing process at this site, thus leading to the synthesis of a full-length subunit carrying the G310S missense variant (Kv7.2 p.G310S). Patch-clamp recordings in transiently-transfected CHO cells and primary neurons revealed that both variants fully impeded Kv7.2 channel function, and exerted strong dominant-negative effects when co-expressed with Kv7.2 and/or Kv7.3 subunits. Notably, Kv7.2 p.G310S, but not Kv7.2 p.G310Δ10, currents were recovered upon overexpression of the PIP2-synthesizing enzyme PIP5K, and/or CaM; moreover, currents from heteromeric Kv7.2/Kv7.3 channels incorporating either Kv7.2 mutant subunits were differentially regulated by changes in PIP2 availability, with Kv7.2/Kv7.2 G310S/Kv7.3 currents showing a greater sensitivity to PIP2 depletion when compared to those from Kv7.2/Kv7.2 G310Δ10/Kv7.3 channels. Altogether, these results suggest that the two variants investigated differentially affected the splicing process at the intron 6-exon 7 boundary, and led to the synthesis of Kv7.2 subunits showing a differential sensitivity to PIP2 and CaM regulation; more studies are needed to clarify how such different functional properties contribute to the widely-divergent clinical phenotypes.
Collapse
Affiliation(s)
- Ilaria Mosca
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza-Center for Neuroscience (NeuroMI), Milan, Italy
| | - Audrey Labalme
- Department of Medical Genetics, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Paolo Ambrosino
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza-Center for Neuroscience (NeuroMI), Milan, Italy
| | - Gaetan Lesca
- Department of Medical Genetics, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jacopo C. DiFrancesco
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurology, ASST “San Gerardo” Hospital, University of Milano-Bicocca, Monza, Italy
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, Campobasso, Italy
- *Correspondence: Maria Virginia Soldovieri, ; Maurizio Taglialatela,
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Maria Virginia Soldovieri, ; Maurizio Taglialatela,
| |
Collapse
|
31
|
Specchio N, Pietrafusa N, Perucca E, Cross JH. New paradigms for the treatment of pediatric monogenic epilepsies: Progressing toward precision medicine. Epilepsy Behav 2022; 131:107961. [PMID: 33867301 DOI: 10.1016/j.yebeh.2021.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
Despite the availability of 28 antiseizure medications (ASMs), one-third of people with epilepsy fail to achieve sustained freedom from seizures. Clinical outcome is even poorer for children with developmental and epileptic encephalopathies (DEEs), many of which are due to single-gene mutations. Discovery of causative genes, however, has paved the way to understanding the molecular mechanism underlying these epilepsies, and to the rational application, or development, of precision treatments aimed at correcting the specific functional defects or their consequences. This article provides an overview of current progress toward precision medicine (PM) in the management of monogenic pediatric epilepsies, by focusing on four different scenarios, namely (a) rational selection of ASMs targeting specifically the underlying pathogenetic mechanisms; (b) development of targeted therapies based on novel molecules; (c) use of dietary treatments or food constituents aimed at correcting specific metabolic defects; and (d) repurposing of medications originally approved for other indications. This article is part of the Special Issue "Severe Infantile Epilepsies".
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy.
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
32
|
Zuberi SM, Wirrell E, Yozawitz E, Wilmshurst JM, Specchio N, Riney K, Pressler R, Auvin S, Samia P, Hirsch E, Galicchio S, Triki C, Snead OC, Wiebe S, Cross JH, Tinuper P, Scheffer IE, Perucca E, Moshé SL, Nabbout R. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1349-1397. [PMID: 35503712 DOI: 10.1111/epi.17239] [Citation(s) in RCA: 278] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
The International League Against Epilepsy (ILAE) Task Force on Nosology and Definitions proposes a classification and definition of epilepsy syndromes in the neonate and infant with seizure onset up to 2 years of age. The incidence of epilepsy is high in this age group and epilepsy is frequently associated with significant comorbidities and mortality. The licensing of syndrome specific antiseizure medications following randomized controlled trials and the development of precision, gene-related therapies are two of the drivers defining the electroclinical phenotypes of syndromes with onset in infancy. The principal aim of this proposal, consistent with the 2017 ILAE Classification of the Epilepsies, is to support epilepsy diagnosis and emphasize the importance of classifying epilepsy in an individual both by syndrome and etiology. For each syndrome, we report epidemiology, clinical course, seizure types, electroencephalography (EEG), neuroimaging, genetics, and differential diagnosis. Syndromes are separated into self-limited syndromes, where there is likely to be spontaneous remission and developmental and epileptic encephalopathies, diseases where there is developmental impairment related to both the underlying etiology independent of epileptiform activity and the epileptic encephalopathy. The emerging class of etiology-specific epilepsy syndromes, where there is a specific etiology for the epilepsy that is associated with a clearly defined, relatively uniform, and distinct clinical phenotype in most affected individuals as well as consistent EEG, neuroimaging, and/or genetic correlates, is presented. The number of etiology-defined syndromes will continue to increase, and these newly described syndromes will in time be incorporated into this classification. The tables summarize mandatory features, cautionary alerts, and exclusionary features for the common syndromes. Guidance is given on the criteria for syndrome diagnosis in resource-limited regions where laboratory confirmation, including EEG, MRI, and genetic testing, might not be available.
Collapse
Affiliation(s)
- Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Institute of Health & Wellbeing, Collaborating Centre of European Reference Network EpiCARE, University of Glasgow, Glasgow, UK
| | - Elaine Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu' Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Ronit Pressler
- Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK.,Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Member of European Reference Network EpiCARE, London, UK
| | - Stephane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, Member of European Reference Network EpiCARE, Université de Paris, Paris, France
| | - Pauline Samia
- Department of Paediatrics and Child Health, Aga Khan University, Nairobi, Kenya
| | - Edouard Hirsch
- Neurology Epilepsy Unit "Francis Rohmer", INSERM 1258, FMTS, Strasbourg University, Strasbourg, France
| | - Santiago Galicchio
- Child Neurology Department, Victor J Vilela Child Hospital of Rosario, Santa Fe, Argentina
| | - Chahnez Triki
- Child Neurology Department, LR19ES15 Neuropédiatrie, Sfax Medical School, University of Sfax, Sfax, Tunisia
| | - O Carter Snead
- Pediatric Neurology, Hospital for Sick Children, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Samuel Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - J Helen Cross
- Programme of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, Member of European Reference Network EpiCARE, London, UK.,Young Epilepsy, Lingfield, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Bronx, New York, USA.,Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.,Montefiore Medical Center, Bronx, New York, USA
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades University Hospital, APHP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université Paris cité, Paris, France
| |
Collapse
|
33
|
Xiao T, Chen X, Xu Y, Chen H, Dong X, Yang L, Wu B, Chen L, Li L, Zhuang D, Chen D, Zhou Y, Wang H, Zhou W. Clinical Study of 30 Novel KCNQ2 Variants/Deletions in KCNQ2-Related Disorders. Front Mol Neurosci 2022; 15:809810. [PMID: 35557555 PMCID: PMC9088225 DOI: 10.3389/fnmol.2022.809810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background KCNQ2-related disorder is typically characterized as neonatal onset seizure and epileptic encephalopathy. The relationship between its phenotype and genotype is still elusive. This study aims to provide clinical features, management, and prognosis of patients with novel candidate variants of the KCNQ2 gene. Methods We enrolled patients with novel variants in the KCNQ2 gene from the China Neonatal Genomes Project between January 2018 and January 2021. All patients underwent next-generation sequencing tests and genetic data were analyzed by an in-house pipeline. The pathogenicity of variants was classified according to the guideline of the American College of Medical Genetics. Each case was evaluated by two geneticists back to back. Patients' information was acquired from clinical records. Results A total of 30 unrelated patients with novel variants in the KCNQ2 gene were identified, including 19 patients with single-nucleotide variants (SNVs) and 11 patients with copy number variants (CNVs). For the 19 SNVs, 12 missense variants and 7 truncating variants were identified. Of them, 36.8% (7/19) of the KCNQ2 variants were located in C-terminal regions, 15.7% (3/19) in segment S2, and 15.7% (3/19) in segment S4. Among them, 18 of 19 patients experienced seizures in the early neonatal period. However, one patient presented neurodevelopmental delay (NDD) as initial phenotype when he was 2 months old, and he had severe NDD when he was 3 years old. This patient did not present seizure but had abnormal electrographic background activity and brain imaging. Moreover, for the 11 patients with CNVs, 20q13.3 deletions involving EEF1A2, KCNQ2, and CHRNA4 genes were detected. All of them presented neonatal-onset seizures, responded to antiepileptic drugs, and had normal neurological development. Conclusion In this study, patients with novel KCNQ2 variants have variable phenotypes, whereas patients with 20q13.3 deletion involving EEF1A2, KCNQ2, and CHRNA4 genes tend to have normal neurological development.
Collapse
Affiliation(s)
- Tiantian Xiao
- Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiang Chen
- Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yan Xu
- Division of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Liping Chen
- Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Long Li
- Department of Neonatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | | | - Dongmei Chen
- Quanzhou Women and Children's Hospital, Quanzhou, China
| | - Yuanfeng Zhou
- Division of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
- *Correspondence: Yuanfeng Zhou
| | - Huijun Wang
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
- Huijun Wang
| | - Wenhao Zhou
- Department of Neonatology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
- Center for Molecular Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
34
|
Siracusano M, Marcovecchio C, Riccioni A, Dante C, Mazzone L. Autism Spectrum Disorder and a De Novo Kcnq2 Gene Mutation: A Case Report. Pediatr Rep 2022; 14:200-206. [PMID: 35645364 PMCID: PMC9149837 DOI: 10.3390/pediatric14020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
The KCNQ2 gene, encoding for the Kv7.2 subunits of the Kv7 voltage potassium channel, is involved in the modulation of neuronal excitability and plays a crucial role in brain morphogenesis and maturation during embryonic life. De novo heterozygous mutations in KCNQ2 genes are associated with early-onset epileptic encephalopathy and neurodevelopmental disorders including developmental delay and intellectual disability. However, little is known about the socio-communicative phenotype of children affected by the KCNQ2 mutation, and a detailed behavioral characterization focused on autistic symptoms has not yet been conducted. This case report describes the clinical behavioral phenotype of a 6-year-old boy carrying a de novo heterozygous KCNQ2 mutation, affected by early-onset seizures and autism spectrum disorder (ASD). We performed a neuropsychiatric assessment of cognitive, adaptive, socio-communicative and autistic symptoms through the administration of standardized tools. The main contribution of this case report is to provide a detailed developmental and behavioral characterization focused on ASD symptoms in a child with [c.812 G > A; p. (Gly271Asp)]mutation in the KCNQ2 gene.
Collapse
Affiliation(s)
- Martina Siracusano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, 00133 Rome, Italy; (C.M.); (A.R.); (C.D.); (L.M.)
- Correspondence: or
| | - Claudia Marcovecchio
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, 00133 Rome, Italy; (C.M.); (A.R.); (C.D.); (L.M.)
| | - Assia Riccioni
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, 00133 Rome, Italy; (C.M.); (A.R.); (C.D.); (L.M.)
- Systems Medicine Department, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Caterina Dante
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, 00133 Rome, Italy; (C.M.); (A.R.); (C.D.); (L.M.)
| | - Luigi Mazzone
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, 00133 Rome, Italy; (C.M.); (A.R.); (C.D.); (L.M.)
- Systems Medicine Department, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
35
|
Amore G, Butera A, Spoto G, Valentini G, Saia MC, Salpietro V, Calì F, Di Rosa G, Nicotera AG. KCNQ2-Related Neonatal Epilepsy Treated With Vitamin B6: A Report of Two Cases and Literature Review. Front Neurol 2022; 13:826225. [PMID: 35401395 PMCID: PMC8992372 DOI: 10.3389/fneur.2022.826225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Potassium Voltage-Gated Channel Subfamily Q Member 2 (KCNQ2) gene has been initially associated with "Benign familial neonatal epilepsy" (BFNE). Amounting evidence arising by next-generation sequencing techniques have led to the definition of new phenotypes, such as neonatal epileptic encephalopathy (NEE), expanding the spectrum of KCNQ2-related epilepsies. Pyridoxine (PN) dependent epilepsies (PDE) are a heterogeneous group of autosomal recessive disorders associated with neonatal-onset seizures responsive to treatment with vitamin B6 (VitB6). Few cases of neonatal seizures due to KCNQ2 pathogenic variants have been reported as successfully responding to VitB6. We reported two cases of KCNQ2-related neonatal epilepsies involving a 5-year-old male with a paternally inherited heterozygous mutation (c.1639C>T; p.Arg547Trp), and a 10-year-old female with a de novo heterozygous mutation (c.740C>T; p.Ser247Leu). Both children benefited from VitB6 treatment. Although the mechanisms explaining the efficacy of VitB6 in such patients remain unclear, this treatment option in neonatal-onset seizures is easily taken into account in Neonatal Intensive Care Units (NICUs). Further studies should be conducted to better define clinical guidelines and treatment protocols.
Collapse
Affiliation(s)
- Greta Amore
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Ambra Butera
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giulia Spoto
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giulia Valentini
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Maria Concetta Saia
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom.,Pediatric Neurology and Muscular Diseases Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesco Calì
- Oasi Research Institute-Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Troina, Italy
| | - Gabriella Di Rosa
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| |
Collapse
|
36
|
Namdari R, Luzon C, Cadieux JA, Leung J, Beatch GN. Pharmacokinetics of XEN496, a Novel Pediatric Formulation of Ezogabine, Under Fed and Fasted Conditions: A Phase 1 Trial. Neurol Ther 2022; 11:781-796. [PMID: 35380370 PMCID: PMC9095778 DOI: 10.1007/s40120-022-00343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION XEN496 is a novel, granular, immediate-release formulation of ezogabine intended for pediatric use. The objective of this study was to assess the effect of food on the pharmacokinetics (PK) of XEN496 and its N-acetyl metabolite (NAMR) in healthy volunteers. METHODS Twenty-four adult subjects were enrolled in this phase 1, single center, open-label, randomized, single-dose, two-way crossover study. Subjects received 400 mg XEN496 as an oral suspension in both fed and fasted states separated by a 6-day washout period. Serial blood samples were collected up to 48 h post-administration. PK parameters evaluated included maximum observed plasma concentration (Cmax), time of maximum observed plasma concentration (Tmax), and area under the concentration-time curve (AUC(0-t) and AUCinf). Safety was assessed by laboratory evaluations, physical exam, and adverse event monitoring. RESULTS For XEN496, median Tmax was 3 and 2 h in the fed and fasted states, respectively. AUC parameters in the fed and fasted states were equivalent, whereas food decreased Cmax of XEN496 by 32% compared to the fasted state. The ratio of geometric means [90% CI] for Cmax was 72% [64-82%]. For NAMR, food delayed Tmax by 1 h, while Cmax and AUC parameters were equivalent in the fed and fasted states. The safety profile of XEN496 in this study appeared comparable to that previously reported for ezogabine tablets. CONCLUSION The biopharmaceutical performance of XEN496 in this study was as expected for an immediate-release, granular dosage formulation, and generally comparable to that reported for ezogabine tablets. Future studies are needed to characterize the efficacy, safety, and PK of XEN496 in a pediatric population.
Collapse
Affiliation(s)
- Rostam Namdari
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, BC, V5G 4W8, Canada.
| | - Constanza Luzon
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, BC, V5G 4W8, Canada
| | - Jay A Cadieux
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, BC, V5G 4W8, Canada
| | - Jennifer Leung
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, BC, V5G 4W8, Canada
| | - Gregory N Beatch
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, BC, V5G 4W8, Canada
| |
Collapse
|
37
|
Perry LD, Hogg SL, Bowdin S, Ambegaonkar G, Parker AP. Fifteen-minute consultation: The efficient investigation of infantile and childhood epileptic encephalopathies in the era of modern genomics. Arch Dis Child Educ Pract Ed 2022; 107:80-87. [PMID: 33414255 DOI: 10.1136/archdischild-2020-320606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 11/03/2022]
Abstract
The investigation of children presenting with infantile and childhood epileptic encephalopathies (ICEE) is challenging due to diverse aetiologies, overlapping phenotypes and the relatively low diagnostic yield of MRI, electroencephalography (EEG) and biochemical investigations. Careful history and thorough examination remain essential as these may identify an acquired cause or indicate more targeted investigation for a genetic disorder. Whole exome sequencing (WES) with analysis of a panel of candidate epilepsy genes has increased the diagnostic yield. Whole genome sequencing (WGS), particularly as a trio with both parents' DNA, is likely to supersede WES. Modern genomic investigation impacts on the timing and necessity of other testing. We propose a structured approach for children presenting with ICEE where there is diagnostic uncertainty, emphasising the importance of WGS or, if unavailable, WES early in the investigative process. We note the importance of expert review of all investigations, including radiology, neurophysiology and biochemistry, to confirm the technique used was appropriate as well as the results. It is essential to counsel families on the risks associated with the procedures, the yield of the procedures, findings that are difficult to interpret and implication of 'negative' results. Where children remain without a diagnosis despite comprehensive investigation, we note the importance of ongoing multidisciplinary care.
Collapse
Affiliation(s)
- Luke Daniel Perry
- Developmental Neurosciences, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Sarah Louise Hogg
- Biochemical Genetics Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah Bowdin
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gautam Ambegaonkar
- Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alasdair Pj Parker
- Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
38
|
Vanoye CG, Desai RR, Ji Z, Adusumilli S, Jairam N, Ghabra N, Joshi N, Fitch E, Helbig KL, McKnight D, Lindy AS, Zou F, Helbig I, Cooper EC, George AL. High-throughput evaluation of epilepsy-associated KCNQ2 variants reveals functional and pharmacological heterogeneity. JCI Insight 2022; 7:156314. [PMID: 35104249 PMCID: PMC8983144 DOI: 10.1172/jci.insight.156314] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hundreds of genetic variants in KCNQ2 encoding the voltage-gated potassium channel KV7.2 are associated with early onset epilepsy and/or developmental disability, but the functional consequences of most variants are unknown. Absent functional annotation for KCNQ2 variants hinders identification of individuals who may benefit from emerging precision therapies. We employed automated patch clamp recordings to assess at, to our knowledge, an unprecedented scale the functional and pharmacological properties of 79 missense and 2 inframe deletion KCNQ2 variants. Among the variants we studied were 18 known pathogenic variants, 24 mostly rare population variants, and 39 disease-associated variants with unclear functional effects. We analyzed electrophysiological data recorded from 9,480 cells. The functional properties of 18 known pathogenic variants largely matched previously published results and validated automated patch clamp for this purpose. Unlike rare population variants, most disease-associated KCNQ2 variants exhibited prominent loss-of-function with dominant-negative effects, providing strong evidence in support of pathogenicity. All variants responded to retigabine, although there were substantial differences in maximal responses. Our study demonstrated that dominant-negative loss-of-function is a common mechanism associated with missense KCNQ2 variants. Importantly, we observed genotype-dependent differences in the response of KCNQ2 variants to retigabine, a proposed precision therapy for KCNQ2 developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Reshma R. Desai
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zhigang Ji
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Sneha Adusumilli
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nirvani Jairam
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nora Ghabra
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nishtha Joshi
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Eryn Fitch
- The Epilepsy NeuroGenetics Initiative (ENGIN), and,Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Katherine L. Helbig
- The Epilepsy NeuroGenetics Initiative (ENGIN), and,Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative (ENGIN), and,Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward C. Cooper
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
39
|
KCNQ2 Selectivity Filter Mutations Cause Kv7.2 M-Current Dysfunction and Configuration Changes Manifesting as Epileptic Encephalopathies and Autistic Spectrum Disorders. Cells 2022; 11:cells11050894. [PMID: 35269516 PMCID: PMC8909571 DOI: 10.3390/cells11050894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
KCNQ2 mutations can cause benign familial neonatal convulsions (BFNCs), epileptic encephalopathy (EE), and mild-to-profound neurodevelopmental disabilities. Mutations in the KCNQ2 selectivity filter (SF) are critical to neurodevelopmental outcomes. Three patients with neonatal EE carry de novo heterozygous KCNQ2 p.Thr287Ile, p.Gly281Glu and p.Pro285Thr, and all are followed-up in our clinics. Whole-cell patch-clamp analysis with transfected mutations was performed. The Kv7.2 in three mutations demonstrated significant current changes in the homomeric-transfected cells. The conduction curves for V1/2, the K slope, and currents in 3 mutations were lower than those for the wild type (WT). The p.Gly281Glu had a worse conductance than the p.Thr287Ile and p.Pro285Thr, the patient compatible with p.Gly281Glu had a worse clinical outcome than patients with p.Thr287Ile and p.Pro285Thr. The p.Gly281Glu had more amino acid weight changes than the p.Gly281Glu and p.Pro285Thr. Among 5 BFNCs and 23 EE from mutations in the SF, the greater weight of the mutated protein compared with that of the WT was presumed to cause an obstacle to pore size, which is one of the most important factors in the phenotype and outcome. For the 35 mutations in the SF domain, using changes in amino acid weight between the WT and the KCNQ2 mutations to predict EE resulted in 80.0% sensitivity and 80% specificity, a positive prediction rate of 96.0%, and a negative prediction rate of 40.0% (p = 0.006, χ2 (1, n = 35) = 7.56; odds ratio 16.0, 95% confidence interval, 1.50 to 170.63). The findings suggest that p.Thr287Ile, p.Gly281Glu and p.Pro285Thr are pathogenic to KCNQ2 EE. In mutations in SF, a mutated protein heavier than the WT is a factor in the Kv7.2 current and outcome.
Collapse
|
40
|
Kamate M, Reddy AN, Detroja M. KCNQ2 Encephalopathy and Effect of Early Treatment on the Clinical Phenotype. Ann Indian Acad Neurol 2022; 25:289-291. [PMID: 35693682 PMCID: PMC9175412 DOI: 10.4103/aian.aian_335_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/05/2021] [Accepted: 07/18/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Mahesh Kamate
- Department of Pediatric Neurology and In-Charge Child Development Clinic, KAHER's J N Medical College, Belagavi, Karnataka State, India
| | - Anuraag N Reddy
- Department of Paediatrics, KAHER's J N Medical College, Belagavi, Karnataka State, India
| | - Mayank Detroja
- Department of Child Development Centre, KLES PK Hospital, Belagavi, Karnataka State, India
| |
Collapse
|
41
|
Zimmern V, Minassian B, Korff C. A Review of Targeted Therapies for Monogenic Epilepsy Syndromes. Front Neurol 2022; 13:829116. [PMID: 35250833 PMCID: PMC8891748 DOI: 10.3389/fneur.2022.829116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Genetic sequencing technologies have led to an increase in the identification and characterization of monogenic epilepsy syndromes. This increase has, in turn, generated strong interest in developing “precision therapies” based on the unique molecular genetics of a given monogenic epilepsy syndrome. These therapies include diets, vitamins, cell-signaling regulators, ion channel modulators, repurposed medications, molecular chaperones, and gene therapies. In this review, we evaluate these therapies from the perspective of their clinical validity and discuss the future of these therapies for individual syndromes.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Vincent Zimmern
| | - Berge Minassian
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| |
Collapse
|
42
|
Kim EC, Zhang J, Tang AY, Bolton EC, Rhodes JS, Christian-Hinman CA, Chung HJ. Spontaneous seizure and memory loss in mice expressing an epileptic encephalopathy variant in the calmodulin-binding domain of K v7.2. Proc Natl Acad Sci U S A 2021; 118:e2021265118. [PMID: 34911751 PMCID: PMC8713762 DOI: 10.1073/pnas.2021265118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Epileptic encephalopathy (EE) is characterized by seizures that respond poorly to antiseizure drugs, psychomotor delay, and cognitive and behavioral impairments. One of the frequently mutated genes in EE is KCNQ2, which encodes the Kv7.2 subunit of voltage-gated Kv7 potassium channels. Kv7 channels composed of Kv7.2 and Kv7.3 are enriched at the axonal surface, where they potently suppress neuronal excitability. Previously, we reported that the de novo dominant EE mutation M546V in human Kv7.2 blocks calmodulin binding to Kv7.2 and axonal surface expression of Kv7 channels via their intracellular retention. However, whether these pathogenic mechanisms underlie epileptic seizures and behavioral comorbidities remains unknown. Here, we report conditional transgenic cKcnq2+/M547V mice, in which expression of mouse Kv7.2-M547V (equivalent to human Kv7.2-M546V) is induced in forebrain excitatory pyramidal neurons and astrocytes. These mice display early mortality, spontaneous seizures, enhanced seizure susceptibility, memory impairment, and repetitive behaviors. Furthermore, hippocampal pathology shows widespread neurodegeneration and reactive astrocytes. This study demonstrates that the impairment in axonal surface expression of Kv7 channels is associated with epileptic seizures, cognitive and behavioral deficits, and neuronal loss in KCNQ2-related EE.
Collapse
Affiliation(s)
- Eung Chang Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Andy Y Tang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Eric C Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
43
|
Boada CM, Grossman SN, Grzeskowiak CL, Dumanis S, French JA. Proceedings of the 2020 Epilepsy Foundation Pipeline Conference: Emerging Drugs and Devices. Epilepsy Behav 2021; 125:108364. [PMID: 34731723 DOI: 10.1016/j.yebeh.2021.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
From August 27-28, 2020 the Epilepsy Foundation hosted the Pipeline Conference, exploring emerging issues related to antiepileptic drug and device development. The conference featured epilepsy therapeutic companies and academic laboratories developing drugs for focal epilepsies, innovations for rare and ultra-rare diseases, and devices both in clinical trials and approved for use. In this paper, we outline the virtual presentations by the authors, including novel data from their development pipeline.
Collapse
Affiliation(s)
- Christina M Boada
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Scott N Grossman
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | | | | | - Jacqueline A French
- Department of Neurology, New York University Langone Health, New York, NY, USA
| |
Collapse
|
44
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
45
|
Inherited Developmental and Epileptic Encephalopathies. Neurol Int 2021; 13:555-568. [PMID: 34842787 PMCID: PMC8628919 DOI: 10.3390/neurolint13040055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Epileptic encephalopathies often have a genetic etiology. The epileptic activity itself exerts a direct detrimental effect on neurodevelopment, which may add to the cognitive impairment induced by the underlying mutation (“developmental and epileptic encephalopathy”). The focus of this review is on inherited syndromes. The phenotypes of genetic disorders affecting ion channels, metabolic signalling, membrane trafficking and exocytosis, cell adhesion, cell growth and proliferation are discussed. Red flags suggesting family of genes or even specific genes are highlighted. The knowledge of the phenotypical spectrum can indeed prompt the clinician to suspect specific etiologies, expediting the diagnosis.
Collapse
|
46
|
Xu Y, Dou YL, Chen X, Dong XR, Wang XH, Wu BB, Cheng GQ, Zhou YF. Early initial video-electro-encephalography combined with variant location predict prognosis of KCNQ2-related disorder. BMC Pediatr 2021; 21:477. [PMID: 34711204 PMCID: PMC8555078 DOI: 10.1186/s12887-021-02946-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The clinical features of KCNQ2-related disorders range from benign familial neonatal seizures 1 to early infantile epileptic encephalopathy 7. The genotype-phenotypic association is difficult to establish. OBJECTIVE To explore potential factors in neonatal period that can predict the prognosis of neonates with KCNQ2-related disorder. METHODS Infants with KCNQ2-related disorder were retrospectively enrolled in our study in Children's Hospital of Fudan University in China from Jan 2015 to Mar 2020. All infants were older than age of 12 months at time of follow-up, and assessed by Bayley Scales of Infant and Toddler Development-Third Edition (BSID-III) or Wechsler preschool and primary scale of intelligence-fourth edition (WPPSI-IV), then divided into three groups based on scores of BSID-III or WPPSI-IV: normal group, mild impairment group, encephalopathy group. We collected demographic variables, clinical characteristics, neuroimaging data. Considered variables include gender, gestational age, birth weight, age of the initial seizures, early interictal VEEG, variant location, delivery type. Variables predicting prognosis were identified using multivariate ordinal logistic regression analysis. RESULTS A total of 52 infants were selected in this study. Early interictal video-electro-encephalography (VEEG) (β = 2.77, 1.20 to 4.34, P = 0.001), and variant location (β = 2.77, 0.03 to 5.5, P = 0.048) were independent risk factors for prognosis. The worse the early interictal VEEG, the worse the prognosis. Patients with variants located in the pore-lining domain or S4 segment are more likely to have a poor prognosis. CONCLUSIONS The integration of early initial VEEG and variant location can predict prognosis. An individual whose KCNQ2 variant located in voltage sensor, the pore domain, with worse early initial VEEG background, often had an adverse outcome.
Collapse
Affiliation(s)
- Yan Xu
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Ya-Lan Dou
- Department of clinical Epidemiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiang Chen
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Xin-Ran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xin-Hua Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Bing-Bing Wu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guo-Qiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Yuan-Feng Zhou
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, NO.399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
47
|
Guerrini R, Balestrini S, Wirrell EC, Walker MC. Monogenic Epilepsies: Disease Mechanisms, Clinical Phenotypes, and Targeted Therapies. Neurology 2021; 97:817-831. [PMID: 34493617 PMCID: PMC10336826 DOI: 10.1212/wnl.0000000000012744] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
A monogenic etiology can be identified in up to 40% of people with severe epilepsy. To address earlier and more appropriate treatment strategies, clinicians are required to know the implications that specific genetic causes might have on pathophysiology, natural history, comorbidities, and treatment choices. In this narrative review, we summarize concepts on the genetic epilepsies based on the underlying pathophysiologic mechanisms and present the current knowledge on treatment options based on evidence provided by controlled trials or studies with lower classification of evidence. Overall, evidence robust enough to guide antiseizure medication (ASM) choices in genetic epilepsies remains limited to the more frequent conditions for which controlled trials and observational studies have been possible. Most monogenic disorders are very rare and ASM choices for them are still based on inferences drawn from observational studies and early, often anecdotal, experiences with precision therapies. Precision medicine remains applicable to only a narrow number of patients with monogenic epilepsies and may target only part of the actual functional defects. Phenotypic heterogeneity is remarkable, and some genetic mutations activate epileptogenesis through their developmental effects, which may not be reversed postnatally. Other genes seem to have pure functional consequences on excitability, acting through either loss- or gain-of-function effects, and these may have opposite treatment implications. In addition, the functional consequences of missense mutations may be difficult to predict, making precision treatment approaches considerably more complex than estimated by deterministic interpretations. Knowledge of genetic etiologies can influence the approach to surgical treatment of focal epilepsies. Identification of germline mutations in specific genes contraindicates surgery while mutations in other genes do not. Identification, quantification, and functional characterization of specific somatic mutations before surgery using CSF liquid biopsy or after surgery in brain specimens will likely be integrated in planning surgical strategies and reintervention after a first unsuccessful surgery as initial evidence suggests that mutational load may correlate with the epileptogenic zone. Promising future directions include gene manipulation by DNA or mRNA targeting; although most are still far from clinical use, some are in early phase clinical development.
Collapse
Affiliation(s)
- Renzo Guerrini
- From the Neuroscience Department (R.G., S.B.), Meyer Children's Hospital-University of Florence, Italy; Department of Clinical and Experimental Epilepsy (S.B., M.C.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (S.B.), Buckinghamshire, UK; and Divisions of Child and Adolescent Neurology and Epilepsy (E.C.W.), Department of Neurology, Mayo Clinic, Rochester, MN.
| | - Simona Balestrini
- From the Neuroscience Department (R.G., S.B.), Meyer Children's Hospital-University of Florence, Italy; Department of Clinical and Experimental Epilepsy (S.B., M.C.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (S.B.), Buckinghamshire, UK; and Divisions of Child and Adolescent Neurology and Epilepsy (E.C.W.), Department of Neurology, Mayo Clinic, Rochester, MN
| | - Elaine C Wirrell
- From the Neuroscience Department (R.G., S.B.), Meyer Children's Hospital-University of Florence, Italy; Department of Clinical and Experimental Epilepsy (S.B., M.C.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (S.B.), Buckinghamshire, UK; and Divisions of Child and Adolescent Neurology and Epilepsy (E.C.W.), Department of Neurology, Mayo Clinic, Rochester, MN
| | - Matthew C Walker
- From the Neuroscience Department (R.G., S.B.), Meyer Children's Hospital-University of Florence, Italy; Department of Clinical and Experimental Epilepsy (S.B., M.C.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (S.B.), Buckinghamshire, UK; and Divisions of Child and Adolescent Neurology and Epilepsy (E.C.W.), Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
48
|
PIP 2-dependent coupling of voltage sensor and pore domains in K v7.2 channel. Commun Biol 2021; 4:1189. [PMID: 34650221 PMCID: PMC8517023 DOI: 10.1038/s42003-021-02729-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a signaling lipid which regulates voltage-gated Kv7/KCNQ potassium channels. Altered PIP2 sensitivity of neuronal Kv7.2 channel is involved in KCNQ2 epileptic encephalopathy. However, the molecular action of PIP2 on Kv7.2 gating remains largely elusive. Here, we use molecular dynamics simulations and electrophysiology to characterize PIP2 binding sites in a human Kv7.2 channel. In the closed state, PIP2 localizes to the periphery of the voltage-sensing domain (VSD). In the open state, PIP2 binds to 4 distinct interfaces formed by the cytoplasmic ends of the VSD, the gate, intracellular helices A and B and their linkers. PIP2 binding induces bilayer-interacting conformation of helices A and B and the correlated motion of the VSD and the pore domain, whereas charge-neutralizing mutations block this coupling and reduce PIP2 sensitivity of Kv7.2 channels by disrupting PIP2 binding. These findings reveal the allosteric role of PIP2 in Kv7.2 channel activation. Pant et al. describe the mechanism by which PIP2 might regulate homomeric Kv7.2 channels. They identify sites important in the binding of the PIP2 lipid to Kv7.2 channels and propose that the PIP2 binding to a specific site results in the coupling between the voltage sensor domain (VSD) and pore domain (PD), which stabilizes the open state of the channel.
Collapse
|
49
|
Monni L, Kraus L, Dipper-Wawra M, Soares-da-Silva P, Maier N, Schmitz D, Holtkamp M, Fidzinski P. In vitro and in vivo anti-epileptic efficacy of eslicarbazepine acetate in a mouse model of KCNQ2-related self-limited epilepsy. Br J Pharmacol 2021; 179:84-102. [PMID: 34605012 DOI: 10.1111/bph.15689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The KCNQ2 gene encodes for the Kv 7.2 subunit of non-inactivating potassium channels. KCNQ2-related diseases range from autosomal dominant neonatal self-limited epilepsy, often caused by KCNQ2 haploinsufficiency, to severe encephalopathies caused by KCNQ2 missense variants. In vivo and in vitro effects of the sodium channel blocker eslicarbazepine acetate (ESL) and eslicarbazepine metabolite (S-Lic) in a mouse model of self-limited neonatal epilepsy as a first attempt to assess the utility of ESL in the KCNQ2 disease spectrum was investigated. EXPERIMENTAL APPROACH Effects of S-Lic on in vitro physiological and pathological hippocampal neuronal activity in slices from mice carrying a heterozygous deletion of Kcnq2 (Kcnq2+/- ) and Kcnq2+/+ mice were investigated. ESL in vivo efficacy was investigated in the 6-Hz psychomotor seizure model in both Kcnq2+/- and Kcnq2+/+ mice. KEY RESULTS S-Lic increased the amplitude and decreased the incidence of physiological sharp wave-ripples in a concentration-dependent manner and slightly decreased gamma oscillations frequency. 4-Aminopyridine-evoked seizure-like events were blocked at high S-Lic concentrations and substantially reduced in incidence at lower concentrations. These results were not different in Kcnq2+/+ and Kcnq2+/- mice, although the EC50 estimation implicated higher efficacy in Kcnq2+/- animals. In vivo, Kcnq2+/- mice had a lower seizure threshold than Kcnq2+/+ mice. In both genotypes, ESL dose-dependently displayed protection against seizures. CONCLUSIONS AND IMPLICATIONS S-Lic slightly modulates hippocampal oscillations and blocks epileptic activity in vitro and in vivo. Our results suggest that the increased excitability in Kcnq2+/- mice is effectively targeted by S-Lic high concentrations, presumably by blocking diverse sodium channel subtypes.
Collapse
Affiliation(s)
- Laura Monni
- Clinical and Experimental Epileptology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Centre, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Kraus
- Clinical and Experimental Epileptology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias Dipper-Wawra
- Clinical and Experimental Epileptology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Patricio Soares-da-Silva
- Division of Research and Development, BIAL - Portela & CA S. A, da Siderurgia Nacional, São Mamede do Coronado, Portugal.,Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University Porto, Porto, Portugal.,MedInUP, Centre for Drug Discovery and Innovative Medicines, University Porto, Porto, Portugal
| | - Nikolaus Maier
- Neuroscience Research Centre, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Centre, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Clinical and Experimental Epileptology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Pawel Fidzinski
- Clinical and Experimental Epileptology, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Centre, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
50
|
Balestrini S, Chiarello D, Gogou M, Silvennoinen K, Puvirajasinghe C, Jones WD, Reif P, Klein KM, Rosenow F, Weber YG, Lerche H, Schubert-Bast S, Borggraefe I, Coppola A, Troisi S, Møller RS, Riva A, Striano P, Zara F, Hemingway C, Marini C, Rosati A, Mei D, Montomoli M, Guerrini R, Cross JH, Sisodiya SM. Real-life survey of pitfalls and successes of precision medicine in genetic epilepsies. J Neurol Neurosurg Psychiatry 2021; 92:1044-1052. [PMID: 33903184 PMCID: PMC8458055 DOI: 10.1136/jnnp-2020-325932] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The term 'precision medicine' describes a rational treatment strategy tailored to one person that reverses or modifies the disease pathophysiology. In epilepsy, single case and small cohort reports document nascent precision medicine strategies in specific genetic epilepsies. The aim of this multicentre observational study was to investigate the deeper complexity of precision medicine in epilepsy. METHODS A systematic survey of patients with epilepsy with a molecular genetic diagnosis was conducted in six tertiary epilepsy centres including children and adults. A standardised questionnaire was used for data collection, including genetic findings and impact on clinical and therapeutic management. RESULTS We included 293 patients with genetic epilepsies, 137 children and 156 adults, 162 females and 131 males. Treatment changes were undertaken because of the genetic findings in 94 patients (32%), including rational precision medicine treatment and/or a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms. There was a rational precision medicine treatment for 56 patients (19%), and this was tried in 33/56 (59%) and was successful (ie, >50% seizure reduction) in 10/33 (30%) patients. In 73/293 (25%) patients there was a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms, and this was successful in 24/73 (33%). SIGNIFICANCE Our survey of clinical practice in specialised epilepsy centres shows high variability of clinical outcomes following the identification of a genetic cause for an epilepsy. Meaningful change in the treatment paradigm after genetic testing is not yet possible for many people with epilepsy. This systematic survey provides an overview of the current application of precision medicine in the epilepsies, and suggests the adoption of a more considered approach.
Collapse
Affiliation(s)
- Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, and Chalfont Centre for Epilepsy, Gerrard Cross, UK
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Daniela Chiarello
- Institute of Child Health, University College of London (UCL) Great Ormond Street NIHR BRC, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Maria Gogou
- Institute of Child Health, University College of London (UCL) Great Ormond Street NIHR BRC, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Katri Silvennoinen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, and Chalfont Centre for Epilepsy, Gerrard Cross, UK
| | | | - Wendy D Jones
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, and Chalfont Centre for Epilepsy, Gerrard Cross, UK
- Institute of Child Health, University College of London (UCL) Great Ormond Street NIHR BRC, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Philipp Reif
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
- Department of Neurology, University Hospital Frankfurt and LOEWE Center for Personalized Translational Epilepsy Research (CePTER) Goethe-University Frankfurt, Frankfurt am Main, Germany
- Epilepsy Center Hessen and Department of Neurology, Philipps-University, Marburg, Germany
| | - Karl Martin Klein
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
- Department of Neurology, University Hospital Frankfurt and LOEWE Center for Personalized Translational Epilepsy Research (CePTER) Goethe-University Frankfurt, Frankfurt am Main, Germany
- Epilepsy Center Hessen and Department of Neurology, Philipps-University, Marburg, Germany
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
- Department of Neurology, University Hospital Frankfurt and LOEWE Center for Personalized Translational Epilepsy Research (CePTER) Goethe-University Frankfurt, Frankfurt am Main, Germany
- Epilepsy Center Hessen and Department of Neurology, Philipps-University, Marburg, Germany
| | - Yvonne G Weber
- Department of Neurology and Epileptology, University of Tübingen, Tubingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Holger Lerche
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
- Department of Neurology and Epileptology, University of Tübingen, Tubingen, Germany
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main University of Frankfurt, University of Frankfurt, Frankfurt Rhine Main, Germany
| | - Ingo Borggraefe
- Department of Pediatric Neurology, Dr von Haunerschen Kinderspital, University of Munich, Munich, Germany
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Epilepsy Centre, Federico II University, Naples, Italy
| | - Serena Troisi
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Epilepsy Centre, Federico II University, Naples, Italy
| | - Rikke S Møller
- The Danish Epilepsy Centre Filadelfia, Dianalund, and Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS 'G. Gaslini' Institute, Genova, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS 'G. Gaslini' Institute, Genova, Italy
| | | | - Carla Marini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
- Child Neurology and Psychiatric Unit, Salesi Children's Hospital, Ancona, Italy
| | - Anna Rosati
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Davide Mei
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Martino Montomoli
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Renzo Guerrini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - J Helen Cross
- Institute of Child Health, University College of London (UCL) Great Ormond Street NIHR BRC, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, and Chalfont Centre for Epilepsy, Gerrard Cross, UK
| |
Collapse
|