1
|
Golec E, Olsson R, Tuysuz EC, Karlsson M, Serjieh Y, King BC, Wennström M, Blom AM. Neuronal CD59 isoforms IRIS-1 and IRIS-2 as regulators of neurotransmitter release with implications for Alzheimer's disease. Alzheimers Res Ther 2025; 17:11. [PMID: 39773760 PMCID: PMC11705862 DOI: 10.1186/s13195-024-01660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
We have previously demonstrated that the intracellular, non-GPI anchored CD59 isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2) are necessary for insulin secretion from pancreatic β-cells. While investigating their expression across human tissues, we identified IRIS-1 and IRIS-2 mRNA in the human brain, though their protein expression and function remained unclear. This study shows the presence of both IRIS-1 and 2 proteins in the human brain, specifically in neurons and astrocytes. In the neuroblastoma cell line (SH-SY5Y), both isoforms are intracellular, and their expression increases upon differentiation into mature neurons. Silencing IRIS-1 and 2 in SH-SY5Y cells reduces the SNARE complex formation, essential for synaptic vesicle exocytosis, leading to a reduction in noradrenaline secretion. Notably, we observed diminished expression of neuronal IRIS-1 and 2 in patients with Alzheimer's disease (AD) and non-demented individuals with type 2 diabetes (T2D). In SH-SY5Y cells, knockdown of all isoforms of CD59 including IRIS-1 and 2 not only elevates phosphorylated tau but also increases cyclin-dependent kinase 5 (CDK5) expression, known promoter of hyperphosphorylation and accumulation of tau, a key pathological feature of AD. Additionally, we found that prolonged exposure to high glucose or cytokines markedly reduces the expression of IRIS-1 and 2 in SH-SY5Y cells, suggesting a link between AD pathology and metabolic stress through modulation of these isoforms.
Collapse
Affiliation(s)
- Ewelina Golec
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden
| | - Robin Olsson
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden
| | - Emre Can Tuysuz
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden
| | - Maja Karlsson
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden
| | - Yasmin Serjieh
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden
| | - Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 214-28, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden.
| |
Collapse
|
2
|
Whinnery CD, Nie Y, Boskovic DS, Soriano S, Kirsch WM. CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex. Brain Sci 2024; 14:601. [PMID: 38928601 PMCID: PMC11202098 DOI: 10.3390/brainsci14060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Cerebral amyloid angiopathy is characterized by a weakening of the small- and medium-sized cerebral arteries, as their smooth muscle cells are progressively replaced with acellular amyloid β, increasing vessel fragility and vulnerability to microhemorrhage. In this context, an aberrant overactivation of the complement system would further aggravate this process. The surface protein CD59 protects most cells from complement-induced cytotoxicity, but expression levels can fluctuate due to disease and varying cell types. The degree to which CD59 protects human cerebral vascular smooth muscle (HCSM) cells from complement-induced cytotoxicity has not yet been determined. To address this shortcoming, we selectively blocked the activity of HCSM-expressed CD59 with an antibody, and challenged the cells with complement, then measured cellular viability. Unblocked HCSM cells proved resistant to all tested concentrations of complement, and this resistance decreased progressively with increasing concentrations of anti-CD59 antibody. Complete CD59 blockage, however, did not result in a total loss of cellular viability, suggesting that additional factors may have some protective functions. Taken together, this implies that CD59 plays a predominant role in HCSM cellular protection against complement-induced cytotoxicity. The overexpression of CD59 could be an effective means of protecting these cells from excessive complement system activity, with consequent reductions in the incidence of microhemorrhage. The precise extent to which cellular repair mechanisms and other complement repair proteins contribute to this resistance has yet to be fully elucidated.
Collapse
Affiliation(s)
- Carson D. Whinnery
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (C.D.W.); (D.S.B.); (W.M.K.)
- Neurosurgery Center for Research, Training and Education, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Ying Nie
- Neurosurgery Center for Research, Training and Education, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (C.D.W.); (D.S.B.); (W.M.K.)
| | - Salvador Soriano
- Laboratory of Neurodegenerative Diseases, Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Wolff M. Kirsch
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (C.D.W.); (D.S.B.); (W.M.K.)
- Neurosurgery Center for Research, Training and Education, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| |
Collapse
|
3
|
Whinnery C, Nie Y, Boskovic DS, Soriano S, Kirsch WM. CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex. RESEARCH SQUARE 2024:rs.3.rs-4165045. [PMID: 38645247 PMCID: PMC11030535 DOI: 10.21203/rs.3.rs-4165045/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cerebral amyloid angiopathy is characterized by a weakening of the small and medium sized cerebral arteries, as their smooth muscle cells are progressively replaced with acellular amyloid β, increasing vessel fragility and vulnerability to microhemorrhage. In this context, an aberrant overactivation of the complement system would further aggravate this process. The surface protein CD59 protects most cells from complement-induced cytotoxicity, but expression levels can fluctuate due to disease and vary between cell types. The degree to which CD59 protects human cerebral vascular smooth muscle (HCSM) cells from complement-induced cytotoxicity has not yet been determined. To address this shortcoming, we selectively blocked the activity of HCSM-expressed CD59 with an antibody and challenged the cells with complement, then measured cellular viability. Unblocked HCSM cells proved resistant to all tested concentrations of complement, and this resistance decreased progressively with increasing concentrations of anti-CD59 antibody. Complete CD59 blockage, however, did not result in total loss of cellular viability, suggesting that additional factors may have some protective functions. Taken together, this implies that CD59 plays a predominant role in HCSM cellular protection against complement-induced cytotoxicity. Over-expression of CD59 could be an effective means of protecting these cells from excessive complement system activity, with consequent reduction in the incidence of microhemorrhage. The precise extent to which cellular repair mechanisms and other complement repair proteins contribute to this resistance has yet to be fully elucidated.
Collapse
|
4
|
Karbian N, Eshed-Eisenbach Y, Zeibak M, Tabib A, Sukhanov N, Vainshtein A, Morgan BP, Fellig Y, Peles E, Mevorach D. Complement-membrane regulatory proteins are absent from the nodes of Ranvier in the peripheral nervous system. J Neuroinflammation 2023; 20:245. [PMID: 37875972 PMCID: PMC10594684 DOI: 10.1186/s12974-023-02920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Homozygous CD59-deficient patients manifest with recurrent peripheral neuropathy resembling Guillain-Barré syndrome (GBS), hemolytic anemia and recurrent strokes. Variable mutations in CD59 leading to loss of function have been described and, overall, 17/18 of patients with any mutation presented with recurrent GBS. Here we determine the localization and possible role of membrane-bound complement regulators, including CD59, in the peripheral nervous systems (PNS) of mice and humans. METHODS We examined the localization of membrane-bound complement regulators in the peripheral nerves of healthy humans and a CD59-deficient patient, as well as in wild-type (WT) and CD59a-deficient mice. Cross sections of teased sciatic nerves and myelinating dorsal root ganglia (DRG) neuron/Schwann cell cultures were examined by confocal and electron microscopy. RESULTS We demonstrate that CD59a-deficient mice display normal peripheral nerve morphology but develop myelin abnormalities in older age. They normally express myelin protein zero (P0), ankyrin G (AnkG), Caspr, dystroglycan, and neurofascin. Immunolabeling of WT nerves using antibodies to CD59 and myelin basic protein (MBP), P0, and AnkG revealed that CD59 was localized along the internode but was absent from the nodes of Ranvier. CD59 was also detected in blood vessels within the nerve. Finally, we show that the nodes of Ranvier lack other complement-membrane regulatory proteins, including CD46, CD55, CD35, and CR1-related gene-y (Crry), rendering this area highly exposed to complement attack. CONCLUSION The Nodes of Ranvier lack CD59 and are hence not protected from complement terminal attack. The myelin unit in human PNS is protected by CD59 and CD55, but not by CD46 or CD35. This renders the nodes and myelin in the PNS vulnerable to complement attack and demyelination in autoinflammatory Guillain-Barré syndrome, as seen in CD59 deficiency.
Collapse
Affiliation(s)
- Netanel Karbian
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, Jerusalem, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Marian Zeibak
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, Jerusalem, Israel
| | - Adi Tabib
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, Jerusalem, Israel
| | - Natasha Sukhanov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anya Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - B. Paul Morgan
- Systems Immunity Research Institute, Cardiff University, Cardiff, Wales UK
| | - Yakov Fellig
- Department of Pathology, School of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Dror Mevorach
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, Jerusalem, Israel
- The Institute of Rheumatology-Immunology-Allergology, The Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, POB 12000, 91120 Jerusalem, Israel
| |
Collapse
|
5
|
Sarmoko, Ramadhanti M, Zulkepli NA. CD59: Biological function and its potential for drug target action. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
King BC, Blom AM. Intracellular complement: Evidence, definitions, controversies, and solutions. Immunol Rev 2023; 313:104-119. [PMID: 36100972 PMCID: PMC10086947 DOI: 10.1111/imr.13135] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The term "intracellular complement" has been introduced recently as an umbrella term to distinguish functions of complement proteins that take place intracellularly, rather than in the extracellular environment. However, this rather undefined term leaves some confusion as to the classification of what intracellular complement really is, and as to which intracellular compartment(s) it should refer to. In this review, we will describe the evidence for both canonical and non-canonical functions of intracellular complement proteins, as well as the current controversies and unanswered questions as to the nature of the intracellular complement. We also suggest new terms to facilitate the accurate description and discussion of specific forms of intracellular complement and call for future experiments that will be required to provide more definitive evidence and a better understanding of the mechanisms of intracellular complement activity.
Collapse
Affiliation(s)
- Ben C King
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
7
|
Wiltbank AT, Steinson ER, Criswell SJ, Piller M, Kucenas S. Cd59 and inflammation regulate Schwann cell development. eLife 2022; 11:e76640. [PMID: 35748863 PMCID: PMC9232220 DOI: 10.7554/elife.76640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.
Collapse
Affiliation(s)
- Ashtyn T Wiltbank
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Emma R Steinson
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Stacey J Criswell
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Melanie Piller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
8
|
Chai JN, Azad AK, Kuan K, Guo X, Wang Y. A Splice Site Mutation Associated with Congenital CD59 Deficiency. Hematol Rep 2022; 14:172-178. [PMID: 35735736 PMCID: PMC9222317 DOI: 10.3390/hematolrep14020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital CD59 deficiency is a recently described rare autosomal recessive disease associated with CD59 gene mutations that lead to deficient or dysfunctional CD59 protein on the cell surface. The disease is characterized by the early onset of chronic hemolysis, relapsing peripheral demyelinating neuropathy, and recurrent ischemic strokes. To date, there are 14 patients with 4 exon mutations reported globally. A young boy with early onset peripheral neuropathy and atypical hemolytic uremic syndrome is presented. Next-generation sequencing (NGS) identified a homozygous splice site variant in intron 1 of the CD59 gene (c.67 + 1G > T). This variant alters a consensus donor splicing site. Quantitative reverse transcription PCR showed that CD59 mRNA expression in the patient is significantly reduced to 0.017-fold compared to the controls. Flow cytometry showed the lack of CD59 protein on the surface of the patient’s red blood cells. This variant is the first splice site mutation reported to be associated with congenital CD59 deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Yanhua Wang
- Correspondence: ; Tel.: +1-718-920-4976; Fax: +1-718-920-7611
| |
Collapse
|
9
|
Recurrent Blistering Skin Lesions and Reversible Monocular Abducens Paralysis in a Patient with CD59 Deficiency. Neuropediatrics 2022; 53:140-142. [PMID: 35098522 DOI: 10.1055/s-0041-1742160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Congenital CD59 deficiency is an autosomal recessive disease characterized by mild-to-moderate chronic intravascular hemolysis, relapsing demyelinating peripheral neuropathies, and recurrent ischemic central nervous system strokes. We report a 2-year-old Turkish girl with a history of two episodes of Guillain-Barré syndrome-like acute weakness, reversible monocular abducens paralysis, and recurrent blistering skin lesions during periods of upper respiratory tract infections. Reversible monocular abducens palsy and recurrent blistering skin lesions have not been reported previously in cases of congenital CD59 deficiency.
Collapse
|
10
|
Weinstock C. Association of Blood Group Antigen CD59 with Disease. Transfus Med Hemother 2022; 49:13-24. [PMID: 35221864 PMCID: PMC8832213 DOI: 10.1159/000521174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/25/2021] [Indexed: 08/01/2023] Open
Abstract
In 2014, the membrane-bound protein CD59 became a blood group antigen. CD59 has been known for decades as an inhibitor of the complement system, located on erythrocytes and on many other cell types. In paroxysmal nocturnal haemoglobinuria (PNH), a stem cell clone with acquired deficiency to express GPI-anchored molecules, including the complement inhibitor CD59, causes severe and life-threatening disease. The lack of CD59, which is the only membrane-bound inhibitor of the membrane attack complex, contributes a major part of the intravascular haemolysis observed in PNH patients. This crucial effect of CD59 in PNH disease prompted studies to investigate its role in other diseases. In this review, the role of CD59 in inflammation, rheumatic disease, and age-related macular degeneration is investigated. Further, the pivotal role of CD59 in PNH and congenital CD59 deficiency is reviewed.
Collapse
|
11
|
de Boer ECW, van Mourik AG, Jongerius I. Therapeutic Lessons to be Learned From the Role of Complement Regulators as Double-Edged Sword in Health and Disease. Front Immunol 2020; 11:578069. [PMID: 33362763 PMCID: PMC7758290 DOI: 10.3389/fimmu.2020.578069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The complement system is an important part of the innate immune system, providing a strong defense against pathogens and removing apoptotic cells and immune complexes. Due to its strength, it is important that healthy human cells are protected against damage induced by the complement system. To be protected from complement, each cell type relies on a specific combination of both soluble and membrane-bound regulators. Their importance is indicated by the amount of pathologies associated with abnormalities in these complement regulators. Here, we will discuss the current knowledge on complement regulatory protein polymorphisms and expression levels together with their link to disease. These diseases often result in red blood cell destruction or occur in the eye, kidney or brain, which are tissues known for aberrant complement activity or regulation. In addition, complement regulators have also been associated with different types of cancer, although their mechanisms here have not been elucidated yet. In most of these pathologies, treatments are limited and do not prevent the complement system from attacking host cells, but rather fight the consequences of the complement-mediated damage, using for example blood transfusions in anemic patients. Currently only few drugs targeting the complement system are used in the clinic. With further demand for therapeutics rising linked to the wide range of complement-mediated disease we should broaden our horizon towards treatments that can actually protect the host cells against complement. Here, we will discuss the latest insights on how complement regulators can benefit therapeutics. Such therapeutics are currently being developed extensively, and can be categorized into full-length complement regulators, engineered complement system regulators and antibodies targeting complement regulators. In conclusion, this review provides an overview of the complement regulatory proteins and their links to disease, together with their potential in the development of novel therapeutics.
Collapse
Affiliation(s)
- Esther C W de Boer
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Anouk G van Mourik
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
12
|
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 2020; 16:601-617. [PMID: 33005040 PMCID: PMC7528717 DOI: 10.1038/s41582-020-0400-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
The complement system consists of a network of plasma and membrane proteins that modulate tissue homeostasis and contribute to immune surveillance by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement components contribute to the pathogenesis of some autoimmune neurological disorders and could even contribute to neurodegenerative diseases. In this Review, we summarize current knowledge about the main functions of the complement pathways and the involvement of complement in neurological disorders. We describe the complex network of complement proteins that target muscle, the neuromuscular junction, peripheral nerves, the spinal cord or the brain and discuss the autoimmune mechanisms of complement-mediated myopathies, myasthenia, peripheral neuropathies, neuromyelitis and other CNS disorders. We also consider the emerging role of complement in some neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis and even schizophrenia. Finally, we provide an overview of the latest complement-targeted immunotherapies including monoclonal antibodies, fusion proteins and peptidomimetics that have been approved, that are undergoing phase I–III clinical trials or that show promise for the treatment of neurological conditions that respond poorly to existing immunotherapies. In this Review, Dalakas et al. discuss the complement system, the role it plays in autoimmune neurological disease and neurodegenerative disease, and provide an overview of the latest therapeutics that target complement and that can be used for or have potential in neurological disorders. Complement has an important physiological role in host immune defences and tissue remodelling. The physiological role of complement extends to the regulation of synaptic development. Complement has a key pathophysiological role in autoimmune neurological diseases and mediates the actions of pathogenic autoantibodies, such as acetylcholine receptor antibodies and aquaporin 4 antibodies. For some autoimmune neurological diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, approved complement-targeted treatments are now available. Complement also seems to be of pathogenic relevance in neurodegenerative diseases such as Alzheimer disease, in which innate immune-driven inflammation is receiving increasing attention. The field of complement-targeted therapeutics is rapidly expanding, with several FDA-approved agents and others currently in phase II and phase III clinical trials.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA. .,Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter J Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Golec E, Rosberg R, Zhang E, Renström E, Blom AM, King BC. A cryptic non-GPI-anchored cytosolic isoform of CD59 controls insulin exocytosis in pancreatic β-cells by interaction with SNARE proteins. FASEB J 2019; 33:12425-12434. [PMID: 31412214 DOI: 10.1096/fj.201901007r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CD59 is a glycosylphosphatidylinositol (GPI)-anchored cell surface inhibitor of the complement membrane attack complex (MAC). We showed previously that CD59 is highly expressed in pancreatic islets but is down-regulated in rodent models of diabetes. CD59 knockdown but not enzymatic removal of cell surface CD59 led to a loss of glucose-stimulated insulin secretion (GSIS), suggesting that an intracellular pool of CD59 is required. In this current paper, we now report that non-GPI-anchored CD59 is present in the cytoplasm, colocalizes with exocytotic protein vesicle-associated membrane protein 2, and completely rescues GSIS in cells lacking endogenous CD59 expression. The involvement of cytosolic non-GPI-anchored CD59 in GSIS is supported in phosphatidylinositol glycan class A knockout GPI anchor-deficient β-cells, in which GSIS is still CD59 dependent. Furthermore, site-directed mutagenesis demonstrated different structural requirements of CD59 for its 2 functions, MAC inhibition and GSIS. Our results suggest that CD59 is retrotranslocated from the endoplasmic reticulum to the cytosol, a process mediated by recognition of trimmed N-linked oligosaccharides, supported by the partial glycosylation of non-GPI-anchored cytosolic CD59 as well as the failure of N-linked glycosylation site mutant CD59 to reach the cytosol or rescue GSIS. This study thus proposes the previously undescribed existence of non-GPI-anchored cytosolic CD59, which is required for insulin secretion.-Golec, E., Rosberg, R., Zhang, E., Renström, E., Blom, A. M., King, B. C. A cryptic non-GPI-anchored cytosolic isoform of CD59 controls insulin exocytosis in pancreatic β-cells by interaction with SNARE proteins.
Collapse
Affiliation(s)
- Ewelina Golec
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Rebecca Rosberg
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Enming Zhang
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Malmö, Sweden
| | - Erik Renström
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
14
|
Schröder-Braunstein J, Kirschfink M. Complement deficiencies and dysregulation: Pathophysiological consequences, modern analysis, and clinical management. Mol Immunol 2019; 114:299-311. [PMID: 31421540 DOI: 10.1016/j.molimm.2019.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023]
Abstract
Complement defects are associated with an enhanced risk of a broad spectrum of infectious as well as systemic or local inflammatory and thrombotic disorders. Inherited complement deficiencies have been described for virtually all complement components but can be mimicked by autoantibodies, interfering with the activity of specific complement components, convertases or regulators. While being rare, diseases related to complement deficiencies are often severe with a frequent but not exclusive manifestation during childhood. Whereas defects of early components of the classical pathway significantly increase the risk of autoimmune disorders, lack of components of the terminal pathway as well as of properdin are associated with an enhanced susceptibility to meningococcal infections. The impaired synthesis or function of C1 inhibitor results in the development of hereditary angioedema (HAE). Furthermore, complement dysregulation causes renal disorders such as atypical hemolytic uremic syndrome (aHUS) or C3 glomerulopathy (C3G) but also age-related macular degeneration (AMD). While paroxysmal nocturnal hemoglobinuria (PNH) results from the combined deficiency of the regulatory complement proteins CD55 and CD59, which is caused by somatic mutation of a common membrane anchor, isolated CD55 or CD59 deficiency is associated with the CHAPLE syndrome and polyneuropathy, respectively. Here, we provide an overview on clinical disorders related to complement deficiencies or dysregulation and describe diagnostic strategies required for their comprehensive molecular characterization - a prerequisite for informed decisions on the therapeutic management of these disorders.
Collapse
Affiliation(s)
- Jutta Schröder-Braunstein
- University of Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Michael Kirschfink
- University of Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Leth JM, Leth-Espensen KZ, Kristensen KK, Kumari A, Lund Winther AM, Young SG, Ploug M. Evolution and Medical Significance of LU Domain-Containing Proteins. Int J Mol Sci 2019; 20:ijms20112760. [PMID: 31195646 PMCID: PMC6600238 DOI: 10.3390/ijms20112760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proteins containing Ly6/uPAR (LU) domains exhibit very diverse biological functions and have broad taxonomic distributions in eukaryotes. In general, they adopt a characteristic three-fingered folding topology with three long loops projecting from a disulfide-rich globular core. The majority of the members of this protein domain family contain only a single LU domain, which can be secreted, glycolipid anchored, or constitute the extracellular ligand binding domain of type-I membrane proteins. Nonetheless, a few proteins contain multiple LU domains, for example, the urokinase receptor uPAR, C4.4A, and Haldisin. In the current review, we will discuss evolutionary aspects of this protein domain family with special emphasis on variations in their consensus disulfide bond patterns. Furthermore, we will present selected cases where missense mutations in LU domain-containing proteins leads to dysfunctional proteins that are causally linked to genesis of human disease.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anni Kumari
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anne-Marie Lund Winther
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Ploug
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|