1
|
Tunç A, Elçİ Ö, Akbas A, Oncel S. Concurrent myasthenia gravis and neuromyelitis optica spectrum disorder: a rare intersection of autoimmune pathologies. BMJ Case Rep 2025; 18:e263081. [PMID: 39755557 DOI: 10.1136/bcr-2024-263081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
This case report describes a woman in her 50s with a rare coexistence of neuromyelitis optica spectrum disorder (NMOSD) and myasthenia gravis (MG), highlighting the diagnostic challenges and therapeutic considerations. Initially diagnosed with acetylcholine receptor antibody-positive MG, she later developed progressive visual impairment, leading to a diagnosis of NMOSD. Rituximab treatment was effective in managing both conditions, demonstrating the benefits of targeted therapies in reducing complications related to polypharmacy. This case underscores the importance of clinical vigilance and a multidisciplinary approach in managing overlapping autoimmune disorders, offering insights into their inter-relationships and therapeutic strategies.
Collapse
Affiliation(s)
- Abdulkadir Tunç
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Ömer Elçİ
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Alihan Akbas
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Samet Oncel
- Department of Neurology, Ministry of Health Sakarya Education and Research Hospital, Adapazari, Sakarya, Turkey
| |
Collapse
|
2
|
Ou Yang WY, Tsai YS, Liu YH, Wang YF, Hsiao CT, Lai KL, Lee YC, Liao YC. Preceding hepatitis B virus infection is highly prevalent in patients with neuromyelitis optica spectrum disorder in Taiwan. Mult Scler Relat Disord 2024; 92:105923. [PMID: 39418777 DOI: 10.1016/j.msard.2024.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system, characterized by pathogenic anti-Aquaporin-4 antibodies (AQP4-Ab). Given that infections can trigger autoimmune responses, we investigated the association between Hepatitis B virus (HBV) infection and NMOSD. METHODS HBV and hepatitis C virus serologies were analyzed in 105 NMOSD patients, 85 multiple sclerosis (MS) patients, and 1,661 healthy Taiwanese controls. Participants were classified into four HBV infection statuses (acute, chronic, resolved, and never infected), and further grouped by vaccination status. Logistic regression was used to estimate odds ratios (OR) for NMOSD development in individuals with chronic or resolved HBV infection. RESULTS Among those born before the Taiwan's universal vaccination program, 63.4 % of NMOSD patients had resolved HBV infection, compared to 30.6 % of MS patients and 16.4 % of controls. Resolved HBV infection was associated with a 2.3-fold increased risk for NMOSD development (95 % CI, 1.4-3.8), but not with MS risk. In the post-vaccination cohort, resolved HBV infection remained more frequent in NMOSD patients (8.7 %) than in MS (0 %) and controls (1.8 %). NMOSD patients with resolved HBV infection had later disease onset by 14.6 years and higher Expanded Disability Status Scale (EDSS) scores compared to those without HBV infection, even after adjusting for age and sex (3.5 ± 1.9 vs. 2.2 ± 1.8, p < 0.001). CONCLUSION Preceding HBV infection is prevalent among Taiwanese NMOSD patients and is associated with increased disease risk, older age at onset, and greater disability. Screening for HBV is essential for NMOSD patients, particularly in endemic regions.
Collapse
Affiliation(s)
- Wen-Yu Ou Yang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hong Liu
- Department of Neurology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Dong L, Yan L, Li Y, Li M, Feng W, Li X, Yue J, Zhang E, Luo Y, Bai Y. The monitoring of B lymphocytes in non-lymphoma patients following rituximab treatment. Front Immunol 2024; 15:1513303. [PMID: 39654895 PMCID: PMC11625799 DOI: 10.3389/fimmu.2024.1513303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
RTX was initially used for non-Hodgkin's lymphoma treatment and has been used in the clinical treatment of various autoimmune diseases as well as in antirejection and immune induction therapy for kidney transplant recipients. Following RTX treatment, the time for B cell regeneration varies among patients, but there is no unified recommendation for the frequency of B cell monitoring. This study aimed to investigate the clinical significance of periodic monitoring of peripheral blood B lymphocytes in individualized immunotherapy following rituximab (RTX) treatment in patients with different diseases. This study included 488 patients with different diseases divided in four groups who were hospitalized and followed up from April 2017 to March 2024 (including 77, 161, 120, and 130 cases of neuromyelitis optica, pemphigus, membranous nephropathy, and kidney transplant recipients, respectively). Dynamic changes in percentage and absolute count of peripheral blood B lymphocytes before and after RTX treatment were investigated in the four groups, as well as the number of B cell subsets in 32 patients with optic neuromyelitis after RTX treatment. Although most patients showed high expression of B cells after 24 weeks, less than 6.8% of patients still began to experience B cell regeneration within 4 weeks. Thus, regular B cell monitoring following RTX treatment is helpful to better track the remission and recurrence of the disease and provide effective laboratory support for the selection and implementation of individualized immunotherapy.
Collapse
Affiliation(s)
- Linjie Dong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Meishan City People’s Hospital, Meishan, Sichuan, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weihua Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqiong Li
- Department of Laboratory Medicine, Meishan City People’s Hospital, Meishan, Sichuan, China
| | - Jiaxi Yue
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Erdi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangjuan Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Lee HL, Seok JM, Hwang SY, Cho EB, Kim H, Shin HY, Kim BJ, Baek SH, Seok HY, Kang SY, Kwon O, Lim YM, Lee SS, Oh J, Huh SY, Kim JK, Yoon BA, Sohn EH, Kim S, Cho JY, Min JH, Kim BJ. Potential prognostic value of rheumatoid factor in anti-aquaporin 4-immunoglobin G-positive neuromyelitis optica spectrum disorders. J Neurol Sci 2024; 466:123215. [PMID: 39243603 DOI: 10.1016/j.jns.2024.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is the central nervous system demyelinating disease differentiated from multiple sclerosis by the presence of anti-aquaporin 4-antibody (AQP4-ab), which is sometimes accompanied by non-organ-specific autoantibodies. METHODS We prospectively collected clinical information and profiles of non-organ-specific autoantibodies such as fluorescent antinuclear (FANA), anti-Sjögren's syndrome A (SSA)/Ro, anti-SS B (SSB)/La, anti-neutrophil cytoplasmatic (ANCA), lupus anticoagulant (LA), anti-cardiolipin (ACA), anti-double-stranded DNA (dsDNA), rheumatoid factor (RF), anti-thyroperoxidase, and anti-thyroglobulin antibodies in patients with NMOSD. Clinical characteristics and laboratory findings of patients with NMOSD with or without autoantibodies were analyzed. Cox proportional hazard models were used to identify independent risk factors predicting high disability in patients with NMOSD. RESULTS A total of 158 patients with NMOSD (Female: Male = 146:12; age, 36.11 ± 14.7) were included. FANA was observed most frequently (33.3 %), followed by anti-SSA (28.6 %), anti-SSB (10.0 %), RF (8.5 %), anti-dsDNA (7.0 %), LA (4.7 %), ACA (4.8 %), and ANCA (2.4 %). High disability (Expanded Disability Status Scale (EDSS) score ≥ 6) was observed more frequently in patients with RF (45.5 %) than in those without RF (14.5 %) (p = 0.02). RF was a significant predictive factor for the high disability (hazard ratio [HR], 3.763; 95 % confidence interval [CI], 1.086-13.038; p = 0.037), age at onset (HR, 1.093; 95 % CI, 1.05-1.14; p ≤0.001), and annual relapse rate (ARR) (HR, 4.212; 95 % CI, 1.867-9.503; p = 0.001). CONCLUSION Organ-specific and non-organ-specific autoantibodies are frequently observed in Korean patients with AQP4-ab-positive NMOSD. RF may be an independent predictor of high disability, along with age at onset and ARR.
Collapse
Affiliation(s)
- Hye Lim Lee
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Soon-Young Hwang
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Bin Cho
- Department of Neurology, Changwon Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, Changwon, Republic of Korea
| | - Hojin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung-Jo Kim
- Department of Neurology, Korea University Anam Hospital, Korea College of Medicine, Seoul, Republic of Korea
| | - Seol-Hee Baek
- Department of Neurology, Korea University Anam Hospital, Korea College of Medicine, Seoul, Republic of Korea
| | - Hung Youl Seok
- Department of Neurology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sa-Yoon Kang
- Department of Neurology, College of Medicine, Jeju National University, Cheju, Republic of Korea
| | - Ohyun Kwon
- Department of Neurology, Eulji University College of Medicine, Daejeon, Republic of Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Soo Lee
- Department of Neurology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Jeeyoung Oh
- Department of Neurology, Konkuk University College of Medicine, Seoul, Republic of Korea
| | - So-Young Huh
- Department of Neurology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jong Kuk Kim
- Department of Neurology, Dong-A University Hospital, Busan, Republic of Korea
| | - Byeol-A Yoon
- Department of Neurology, Dong-A University Hospital, Busan, Republic of Korea
| | - Eun-Hee Sohn
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sooyoung Kim
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Joong-Yang Cho
- Department of Neurology, Inje University College of Medicine, Ilsan, Republic of Korea
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, South Korea..
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Xue B, Li J, Xie D, Weng Y, Zhang X, Li X, Xia J, Lin J. Effects of early intervention in neuromyelitis optica spectrum disorder patients with seropositive AQP4 antibodies. Front Immunol 2024; 15:1458556. [PMID: 39555058 PMCID: PMC11563946 DOI: 10.3389/fimmu.2024.1458556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Background The impact of early intervention with immunosuppressive treatment (IST) in anti-Aquaporin4-antibody (AQP4-ab) seropositive neuromyelitis optica spectrum disorder (NMOSD) has not been thoroughly evaluated. Objective This study aims to assess the effects of early IST intervention in patients with NMOSD. Methods This retrospective cohort study included 174 treatments from 137 NMOSD patients seropositive for AQP4-antibody, treated with ISTs such as rituximab, mycophenolate mofetil, azathioprine, or tacrolimus. Multiple statistical analyses, including regression discontinuity design (RDD), kaplan-meier analyze, Cox proportional hazards regression model, were employed to evaluate the effects of early IST intervention on annualized relapse rate (ARR) change, Expanded Disability Status Scale (EDSS) change, and time to next relapse. Results A total of 174 treatments from 137 patients were analyzed. Patients exhibited significant improvement in ARR[1.95 vs.0, IQR (0.70-6.0 vs. 0-0.42), p<0.001] and EDSS [3.0 vs. 2.5, IQR (2.0-4.0 vs. 1.0-3.0) p<0.001]after IST, although the ARR change was not significant in patients treated with TAC. Early IST initiation was associated with greater improvements in both ARR and EDSS compared to later initiation. RDD analysis demonstrated a time-dependent effect of ARR-change, indicating greater efficacy with early IST intervention. Conclusions Early intervention with ISTs in AQP4-antibody-positive NMOSD patients is associated with better outcomes in terms of reducing relapse rate and improving disability. These findings underscore the importance of early treatment in NMOSD.
Collapse
Affiliation(s)
- Binbin Xue
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dewei Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junhui Xia
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Liu J, Wang G, Shi M, Guo RY, Yuan C, Wang Y, Mehmood A, Zhang L, Li B. BTK and YKL-40 Levels and Their Association with Acute AQP4-IgG-Positive Neuromyelitis Optica Spectrum Disorder. Mol Neurobiol 2024:10.1007/s12035-024-04588-5. [PMID: 39485631 DOI: 10.1007/s12035-024-04588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
This study investigated the potential correlation between BTK/YKL-40 levels and the severity of AQP4-IgG + NMOSD, aiming to identify biomarkers for disease monitoring and treatment assessment. Plasma YKL-40 expression was measured in 135 AQP4-IgG + NMOSD patients using ELISA. Patients were categorized into pre- and post-IVMP treatment acute phases, as well as during remission, with a healthy control group included. BTK and NF-κB mRNA levels in PBMCs were detected via q-PCR, and BTK/P-BTK protein expression was assessed using Western blotting. Disability was evaluated using the EDSS score, and clinical characteristics were evaluated alongside laboratory tests. Acute-phase NMOSD patients receiving pre-IVMP therapy presented significantly elevated plasma YKL-40 concentrations compared with those of post-treatment patients, patients in remission, and healthy controls. Additionally, these patients presented significantly higher levels of PBMC BTK mRNA, NF-κB mRNA, BTK, and P-BTK protein expression than remission patients and healthy controls. Plasma YKL-40 levels and PBMC BTK/P-BTK protein levels were positively correlated with EDSS scores. The plasma YKL-40 concentration significantly contributes to disease severity and serves as an independent risk factor for acute NMOSD. Elevated BTK, P-BTK, NF-κB, and YKL-40 levels were observed in acute-phase AQP4-IgG + NMOSD patients. These biomarkers are related to disease activity and may predict treatment efficacy. There is a connection among YKL-40, BTK, and P-BTK levels and disease severity, suggesting their potential involvement in the pathogenic mechanism of AQP4-IgG + NMOSD.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Gaoning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Yulin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China.
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
| |
Collapse
|
7
|
Wang G, Jing L, Wang Y, Mehmood A, Zhang H, Guo R, Zhang L, Li B. Interferon Regulatory Factor 5 Gene Polymorphisms and mRNA Expression Levels Are Associated with Neuromyelitis Optica Spectrum Disorder. Mol Neurobiol 2024; 61:7989-7999. [PMID: 38451436 DOI: 10.1007/s12035-024-04072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Interferon regulatory factor 5 (IRF5) is a critical transcription factor in the toll-like receptor signaling pathway. It is associated with autoimmune disorders, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease. However, the relationship between the functional single nucleotide polymorphisms (SNPs) of IRF5 and its mRNA expression level in patients with neuromyelitis optica spectrum disorder remains unclear. The present study aimed to investigate the relationship between polymorphisms and mRNA expression levels of the IRF5 gene with the incidence of neuromyelitis optica spectrum disorder (NMOSD) in northern Chinese Han people. Two loci of the IRF5 gene (rs2004640 and rs2280714) of 164 patients with NMOSD and 269 healthy subjects were genotyped using the multiple SNaPshot technique. The frequencies of alleles, genotypes, and haplotypes were compared. Stratified analysis was performed according to age, sex, AQP4 status, onset age, and Expanded Disability Status Scale (EDSS) score. The IRF5 mRNA levels in peripheral blood mononuclear cells (PBMCs) of 64 NMOSD patients (32 patients in the acute stage and 32 patients in the remission stage) and 35 healthy subjects were detected by real-time PCR. The association of SNP polymorphisms with the mRNA expression level was determined by nonparametric tests. Allele and genotype frequency distributions of rs2004640 showed significant differences between both groups. Compared to healthy controls, the frequency of rs2004640 T allele markedly increased in patients (OR = 1.51, 95% CI = 1.09-2.08, P = 0.005). Minor allele T and GT genotype of rs2004640 that significantly increases the risk of NMOSD were discovered using genetic inheritance models (codominant, dominant, and overdominant) and haplotype analyses. Subsequent haplotype analyses revealed that the major haplotype "T-A" containing the risk alleles (the SNP sequence of the alleles was rs2004640 and rs2280714) had adverse effects on NMOSD. Based on the stratification analysis according to the EDSS score, the GT genotype frequency in the EDSS ≥ 4 group (38.2%) was markedly lower than that in the EDSS < 4 group (61.8%) (OR = 0.32, 95% CI = 0.15-0.68, P = 0.0054), with a significant difference. The IRF5 mRNA expression level was increased in NMOSD patients compared to that in normal subjects. IRF5 gene polymorphisms may be tightly associated with the genesis and progression of NMOSD in northern Chinese Han people. IRF5 mRNA expression was increased in patients with NMOSD and significantly increased in patients with acute phase. Perhaps IRF5 expression levels can be used as a predictor of disease activity in the future.
Collapse
Affiliation(s)
- Gaoning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Liu Jing
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Ying Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Huining Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Cree BAC, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, Fujihara K, Paul F, Cutter GR, Marignier R, Green AJ, Aktas O, Hartung HP, She D, Rees W, Smith M, Cimbora D, Katz E, Bennett JL. Safety and efficacy of inebilizumab for the treatment of neuromyelitis optica spectrum disorder: end-of-study results from the open-label period of the N-MOmentum trial. Lancet Neurol 2024; 23:588-602. [PMID: 38760098 DOI: 10.1016/s1474-4422(24)00077-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Inebilizumab, an anti-CD19 B-cell-depleting antibody, demonstrated safety and efficacy in neuromyelitis optica spectrum disorder in the randomised controlled period of the N-MOmentum trial. Here, end-of-study data, including the randomised controlled period and open-label extension period, are reported. METHODS In the double-blind, randomised, placebo-controlled, phase 2/3 N-MOmentum trial, adults aged 18 years and older with an neuromyelitis optica spectrum disorder diagnosis, Expanded Disability Status Scale score of 8·0 or less, and history of either at least one acute inflammatory attack requiring rescue therapy in the past year or two attacks requiring rescue therapy in the past 2 years, were recruited from 81 outpatient specialty clinics or hospitals in 24 countries. Eligible participants were randomly assigned (3:1), using a central interactive voice system or interactive web response system, and a permuted block randomisation scheme (block size of 4), to receive intravenous inebilizumab (300 mg) or identical placebo on days 1 and 15 of the randomised period, which lasted up to 197 days. Participants and all study staff were masked to treatment assignment. The primary endpoint of the randomised period of the trial was time to onset of adjudicated neuromyelitis optica spectrum disorder attack on or before day 197. Participants in the randomised controlled period who had an adjudicated attack, completed 197 days in the study, or were in the randomised controlled period when enrolment stopped, could voluntarily enter the open-label period. In the open-label period, participants either initiated inebilizumab if assigned placebo (receiving 300 mg on days 1 and 15 of the open-label period) or continued treatment if assigned inebilizumab (receiving 300 mg on day 1 and placebo on day 15, to maintain B-cell depletion and masking of the randomised controlled period). All participants subsequently received inebilizumab 300 mg every 6 months for a minimum of 2 years. The end-of-study analysis endpoints were time to adjudicated attack and annualised attack rate (assessed in all participants who received inebilizumab at any point during the randomised controlled period or open-label period [any inebilizumab population] and the aquaporin-4 [AQP4]-IgG seropositive subgroup [any inebilizumab-AQP4-IgG seropositive population]) and safety outcomes (in all participants who were exposed to inebilizumab, analysed as-treated). This study is registered with ClinicalTrials.gov, NCT02200770, and is now complete. FINDINGS Between Jan 6, 2015, and Sept 24, 2018, 467 individuals were screened, 231 were randomly assigned, and 230 received at least one dose of inebilizumab (n=174) or placebo (n=56). Between May 19, 2015, and Nov 8, 2018, 165 (95%) of 174 participants in the inebilizumab group and 51 (91%) of 56 in the placebo group entered the open-label period (mean age 42·9 years [SD 12·4], 197 [91%] of 216 were female, 19 [9%] were male, 115 [53%] were White, 45 [21%] were Asian, 19 [9%] were American Indian or Alaskan Native, and 19 [9%] were Black or African American). As of data cutoff for this end of study analysis (Dec 18, 2020; median exposure 1178 days [IQR 856-1538], total exposure of 730 person-years) 225 participants formed the any inebilizumab population, and 208 (92%) participants were AQP4-IgG seropositive. Overall, 63 adjudicated neuromyelitis optica spectrum disorder attacks occurred in 47 (21%) of 225 treated participants (60 attacks occurred in 44 [21%] of 208 in the AQP4-IgG seropositive subgroup); 40 (63%) of 63 attacks occurred in 34 (15%) of 225 treated participants during the first year of treatment. Of individuals who had an adjudicated attack while receiving inebilizumab, 36 (77%) of 47 were subsequently attack-free at the end of 4 years. Annualised attack rates decreased year-on-year, with end-of-study adjusted annualised attack rates being similar in the any inebilizumab-AQP4-IgG seropositive subgroup (0·097 [95% CI 0·070-0·14]) and any inebilizumab populations (0·092 [0·067-0·13]). Overall, 208 (92%) of 225 participants who received any inebilizumab had at least one treatment-emergent adverse event, the most frequent of which were urinary tract infection (59 [26%]), nasopharyngitis (47 [21%]), and arthralgia (39 [17%]). Infection rates did not increase over 4 years. Three (1%) of 225 participants in the any inebilizumab population died during the open-label period (one each due to a CNS event of unknown cause and pneumonia, respiratory insufficiency resulting from an neuromyelitis optica spectrum disorder attack and viral pneumonia related to COVID-19), all of which were deemed to be unrelated to treatment. INTERPRETATION Data from the end-of-study analysis of the N-MOmentum trial showed continued and sustained clinical benefits of long-term inebilizumab treatment in individuals with neuromyelitis optica spectrum disorder, which supports the role of inebilizumab as a CD19+ B-cell-depleting therapy in neuromyelitis optica spectrum disorder. FUNDING MedImmune and Viela Bio/Horizon Therapeutics, now part of Amgen.
Collapse
Affiliation(s)
- Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Ho Jin Kim
- Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | | | - Sean J Pittock
- Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Japan; Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gary R Cutter
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Romain Marignier
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuroinflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Ari J Green
- Department of Ophthalmology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Brain and Mind Center, University of Sydney, Sydney, NSW, Australia; Department of Neurology, Medical University of Vienna, Vienna, Austria; Department of Neurology, Palacký University Olomouc, Olomouc, Czech Republic
| | - Dewei She
- Horizon Therapeutics/Amgen, Deerfield, IL, USA
| | | | | | | | | | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| |
Collapse
|
9
|
Arellano G, Loda E, Chen Y, Neef T, Cogswell AC, Primer G, Joy G, Kaschke K, Wills S, Podojil JR, Popko B, Balabanov R, Miller SD. Interferon-γ controls aquaporin 4-specific Th17 and B cells in neuromyelitis optica spectrum disorder. Brain 2024; 147:1344-1361. [PMID: 37931066 PMCID: PMC10994540 DOI: 10.1093/brain/awad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a CNS autoimmune inflammatory disease mediated by T helper 17 (Th17) and antibody responses to the water channel protein, aquaporin 4 (AQP4), and associated with astrocytopathy, demyelination and axonal loss. Knowledge about disease pathogenesis is limited and the search for new therapies impeded by the absence of a reliable animal model. In our work, we determined that NMOSD is characterized by decreased IFN-γ receptor signalling and that IFN-γ depletion in AQP4201-220-immunized C57BL/6 mice results in severe clinical disease resembling human NMOSD. Pathologically, the disease causes autoimmune astrocytic and CNS injury secondary to cellular and humoral inflammation. Immunologically, the absence of IFN-γ allows for increased expression of IL-6 in B cells and activation of Th17 cells, and generation of a robust autoimmune inflammatory response. Consistent with NMOSD, the experimental disease is exacerbated by administration of IFN-β, whereas repletion of IFN-γ, as well as therapeutic targeting of IL-17A, IL-6R and B cells, ameliorates it. We also demonstrate that immune tolerization with AQP4201-220-coupled poly(lactic-co-glycolic acid) nanoparticles could both prevent and effectively treat the disease. Our findings enhance the understanding of NMOSD pathogenesis and provide a platform for the development of immune tolerance-based therapies, avoiding the limitations of the current immunosuppressive therapies.
Collapse
Affiliation(s)
- Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eileah Loda
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yanan Chen
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Tobias Neef
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew C Cogswell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Grant Primer
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Godwin Joy
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Kevin Kaschke
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Samantha Wills
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- COUR Pharmaceutical Development Company, Inc., Northbrook, IL 60077, USA
| | - Brian Popko
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Roumen Balabanov
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Yao M, Wang W, Sun J, Guo T, Bian J, Xiao F, Li Y, Cong H, Wei Y, Zhang X, Liu J, Yin L. The landscape of PBMCs in AQP4-IgG seropositive NMOSD and MOGAD, assessed by high dimensional mass cytometry. CNS Neurosci Ther 2024; 30:e14608. [PMID: 38334017 PMCID: PMC10853888 DOI: 10.1111/cns.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVES Data on peripheral blood mononuclear cells (PBMCs) characteristics of aquaporin-4 (AQP4)-IgG seropositive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are lacking. In this study, we describe the whole PBMCs landscape of the above diseases using cytometry by time-of-flight mass spectrometry (CyTOF). METHODS The immune cell populations were phenotyped and clustered using CyTOF isolated from 27 AQP4-IgG seropositive NMOSD, 11 MOGAD patients, and 15 healthy individuals. RNA sequencing was employed to identify critical genes. Fluorescence cytometry and qPCR analysis were applied to further validate the algorithm-based results that were obtained. RESULTS We identified an increased population of CD11b+ mononuclear phagocytes (MNPs) in patients with high expression of CCR2, whose abundance may correlate with brain inflammatory infiltration. Using fluorescence cytometry, we confirmed the CCR2+ monocyte subsets in a second cohort of patients. Moreover, there was a wavering of B, CD4+ T, and NKT cells between AQP4-IgG seropositive NMOSD and MOGAD. CONCLUSIONS Our findings describe the whole landscape of PBMCs in two similar demyelinated diseases and suggest that, besides MNPs, T, NK and B, cells were all involved in the pathogenesis. The identified cell population may be used as a predictor for monitoring disease development or treatment responses.
Collapse
Affiliation(s)
- Mengyuan Yao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan HospitalCapital Medical UniversityBeijingChina
| | - Jiali Sun
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tianshu Guo
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jiangping Bian
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Fuyao Xiao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuanyuan Li
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hengri Cong
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuzhen Wei
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xinghu Zhang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianghong Liu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Linlin Yin
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Keehn CC, Yazdian A, Hunt PJ, Davila-Siliezar P, Laylani NA, Lee AG. Monoclonal antibodies in neuro-ophthalmology. Saudi J Ophthalmol 2024; 38:13-24. [PMID: 38628411 PMCID: PMC11017005 DOI: 10.4103/sjopt.sjopt_256_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 04/19/2024] Open
Abstract
Neuro-ophthalmologic diseases include a broad range of disorders affecting the afferent and efferent visual pathways. Recently, monoclonal antibody (mAb) therapies have emerged as a promising targeted approach in the management of several of these complex conditions. Here, we describe the mechanism-specific applications and advancements in neuro-ophthalmologic mAb therapies. The application of mAbs in neuro-ophthalmologic diseases highlights our increasing understanding of disease-specific mechanisms in autoimmune conditions such as neuromyelitis optica, thyroid eye disease, and myasthenia gravis. Due to the specificity of mAb therapies, applications in neuro-ophthalmologic diseases have yielded exceptional clinical outcomes, including both reduced rate of relapse and progression to disability, visual function preservation, and quality of life improvement. These advancements have not only expanded the range of treatable neuro-ophthalmologic diseases but also reduced adverse events and increased the response rate to treatment. Further research into neuro-ophthalmologic disease mechanisms will provide accurate and specific targeting of important disease mediators through applications of future mAbs. As our understanding of these diseases and the relevant therapeutic targets evolve, we will continue to build on our understanding of how mAbs interfere with disease pathogenesis, and how these changes improve clinical outcomes and quality of life for patients.
Collapse
Affiliation(s)
- Caroline C. Keehn
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Arman Yazdian
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Patrick J. Hunt
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Pamela Davila-Siliezar
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
| | - Noor A. Laylani
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
| | - Andrew G. Lee
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
- Department of Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, USA
- Department of Ophthalmology, Texas A and M College of Medicine, Bryan, Texas, USA
- Department of Ophthalmology, University of Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
13
|
Emami Nejad A, Mostafavi Zadeh SM, Nickho H, Sadoogh Abbasian A, Forouzan A, Ahmadlou M, Nedaeinia R, Shaverdi S, Manian M. The role of microRNAs involved in the disorder of blood-brain barrier in the pathogenesis of multiple sclerosis. Front Immunol 2023; 14:1281567. [PMID: 38193092 PMCID: PMC10773759 DOI: 10.3389/fimmu.2023.1281567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024] Open
Abstract
miRNAs are involved in various vital processes, including cell growth, development, apoptosis, cellular differentiation, and pathological cellular activities. Circulating miRNAs can be detected in various body fluids including serum, plasma, saliva, and urine. It is worth mentioning that miRNAs remain stable in the circulation in biological fluids and are released from membrane-bound vesicles called exosomes, which protect them from RNase activity. It has been shown that miRNAs regulate blood-brain barrier integrity by targeting both tight junction and adherens junction molecules and can also influence the expression of inflammatory cytokines. Some recent studies have examined the impact of certain commonly used drugs in Multiple Sclerosis on miRNA levels. In this review, we will focus on the recent findings on the role of miRNAs in multiple sclerosis, including their role in the cause of MS and molecular mechanisms of the disease, utilizing miRNAs as diagnostic and clinical biomarkers, using miRNAs as a therapeutic modality or target for Multiple Sclerosis and drug responses in patients, elucidating their importance as prognosticators of disease progression, and highlighting their potential as a future treatment for MS.
Collapse
Affiliation(s)
| | - Seyed Mostafa Mostafavi Zadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Nickho
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sadoogh Abbasian
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azim Forouzan
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Ahmadlou
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saham Shaverdi
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medicine, Islamic Azad University, Kermanshah, Iran
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Kim HJ, Aktas O, Patterson KR, Korff S, Kunchok A, Bennett JL, Weinshenker BG, Paul F, Hartung H, Cimbora D, Smith MA, Mittereder N, Rees WA, She D, Cree BAC. Inebilizumab reduces neuromyelitis optica spectrum disorder risk independent of FCGR3A polymorphism. Ann Clin Transl Neurol 2023; 10:2413-2420. [PMID: 37804003 PMCID: PMC10723240 DOI: 10.1002/acn3.51911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023] Open
Abstract
Inebilizumab, a humanized, glycoengineered, IgG1 monoclonal antibody that depletes CD19+ B-cells, is approved to treat aquaporin 4 (AQP4) IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD). Inebilizumab is afucosylated and engineered for enhanced affinity to Fc receptor III-A (FCGR3A) receptors on natural killer cells to maximize antibody-dependent cellular cytotoxicity. Previously, the F allele polymorphism at amino acid 158 of the FCGR3A gene (F158) was shown to decrease IgG-binding affinity and reduce rituximab (anti-CD20) efficacy for NMOSD attack prevention. In contrast, our current findings from inebilizumab-treated NMOSD patients indicate similar clinical outcomes between those with F158 and V158 allele genotypes.
Collapse
Affiliation(s)
- Ho Jin Kim
- Department of NeurologyResearch Institute and Hospital of National Cancer CenterGoyangSouth Korea
| | - Orhan Aktas
- Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | | | - Amy Kunchok
- Department of NeurologyMellen Center for Multiple Sclerosis, Cleveland ClinicOhioClevelandUSA
| | - Jeffrey L. Bennett
- Department of Neurology, Programs in Neuroscience and ImmunologyUniversity of Colorado School of Medicine, Anschutz Medical CampusColoradoAuroraUSA
| | | | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and CharitéUniversitätsmedizin Berlin, Corporate Member of Freie Universitat Berlin and Humboldt‐Universitat zu BerlinBerlinGermany
| | - Hans‐Peter Hartung
- Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
- Brain and Mind CentreUniversity of SydneyNew South WalesSydneyAustralia
- Department of NeurologyMedical University ViennaViennaAustria
- Department of NeurologyPalacky University in OlomoucOlomoucCzech Republic
| | | | | | | | | | - Dewei She
- Horizon TherapeuticsIllinoisDeerfieldUSA
| | - Bruce A. C. Cree
- Department of Neurology, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoCaliforniaSan FranciscoUSA
| |
Collapse
|
15
|
Kim HJ, Park JE, Shin W, Seo D, Kim S, Kim H, Noh J, Lee Y, Kim H, Lim YM, Kim H, Lee EJ. Distinct features of B cell receptors in neuromyelitis optica spectrum disorder among CNS inflammatory demyelinating diseases. J Neuroinflammation 2023; 20:225. [PMID: 37794409 PMCID: PMC10548735 DOI: 10.1186/s12974-023-02896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) stands out among CNS inflammatory demyelinating diseases (CIDDs) due to its unique disease characteristics, including severe clinical attacks with extensive lesions and its association with systemic autoimmune diseases. We aimed to investigate whether characteristics of B cell receptors (BCRs) differ between NMOSD and other CIDDs using high-throughput sequencing. METHODS From a prospective cohort, we recruited patients with CIDDs and categorized them based on the presence and type of autoantibodies: NMOSD with anti-aquaporin-4 antibodies, myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) with anti-myelin oligodendrocyte glycoprotein antibodies, double-seronegative demyelinating disease (DSN), and healthy controls (HCs). The BCR features, including isotype class, clonality, somatic hypermutation (SHM), and the third complementarity-determining region (CDR3) length, were analyzed and compared among the different disease groups. RESULTS Blood samples from 33 patients with CIDDs (13 NMOSD, 12 MOGAD, and 8 DSN) and 34 HCs were investigated for BCR sequencing. Patients with NMOSD tended to have more activated BCR features compare to the other disease groups. They showed a lower proportion of unswitched isotypes (IgM and IgD) and a higher proportion of switched isotypes (IgG), increased clonality of BCRs, higher rates of SHM, and shorter lengths of CDR3. Notably, advanced age was identified as a clinical factor associated with these activated BCR features, including increased levels of clonality and SHM rates in the NMOSD group. Conversely, no such clinical factors were found to be associated with activated BCR features in the other CIDD groups. CONCLUSIONS NMOSD patients, among those with CIDDs, displayed the most pronounced B cell activation, characterized by higher levels of isotype class switching, clonality, SHM rates, and shorter CDR3 lengths. These findings suggest that B cell-mediated humoral immune responses and characteristics in NMOSD patients are distinct from those observed in the other CIDDs, including MOGAD. Age was identified as a clinical factor associated with BCR activation specifically in NMOSD, implying the significance of persistent B cell activation attributed to anti-aquaporin-4 antibodies, even in the absence of clinical relapses throughout an individual's lifetime.
Collapse
Affiliation(s)
- Hyo Jae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Wangyong Shin
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dayoung Seo
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seungmi Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyunji Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinsung Noh
- Bio-MAX Institute, Seoul National University, Seoul, South Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, Ulsan University of Medicine, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, Ulsan University of Medicine, Seoul, South Korea
| | - Hyori Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.
| | - Eun-Jae Lee
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.
- Department of Neurology, Asan Medical Center, Ulsan University of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Grebenciucova E, VanHaerents S. Interleukin 6: at the interface of human health and disease. Front Immunol 2023; 14:1255533. [PMID: 37841263 PMCID: PMC10569068 DOI: 10.3389/fimmu.2023.1255533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Interleukin 6 (IL-6) is a pleiotropic cytokine executing a diverse number of functions, ranging from its effects on acute phase reactant pathways, B and T lymphocytes, blood brain barrier permeability, synovial inflammation, hematopoiesis, and embryonic development. This cytokine empowers the transition between innate and adaptive immune responses and helps recruit macrophages and lymphocytes to the sites of injury or infection. Given that IL-6 is involved both in the immune homeostasis and pathogenesis of several autoimmune diseases, research into therapeutic modulation of IL-6 axis resulted in the approval of a number of effective treatments for several autoimmune disorders like neuromyelitis optica spectrum disorder (NMOSD), rheumatoid arthritis, juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis (GCA), and cytokine release syndrome, associated with SARS-CoV2 pneumonia. This review discusses downstream inflammatory pathways of IL-6 expression and therapeutic applications of IL-6 blockade, currently investigated for the treatment of several other autoimmune conditions such as autoimmune encephalitis, autoimmune epilepsy, as well as myelin oligodendrocyte glycoprotein associated demyelination (MOGAD). This review further highlights the need for clinical trials to evaluate IL-6 blockade in disorders such neuropsychiatric lupus erythematosus (SLE), sarcoidosis and Behcet's.
Collapse
Affiliation(s)
- Elena Grebenciucova
- Feinberg School of Medicine, Department of Neurology, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
17
|
Balazs I, Horvath A, Heschl B, Khalil M, Enzinger C, Stadlbauer V, Seifert-Held T. Anti-CD20 treatment and neutrophil function in central nervous system demyelinating diseases. J Neuroimmunol 2023; 381:578136. [PMID: 37364519 DOI: 10.1016/j.jneuroim.2023.578136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION A contribution of neutrophil granulocytes to the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) is recognized. Anti-CD20 treatments applied in these diseases are associated with infectious complications and neutropenia. No data is available about functional characteristics of neutrophils obtained from patients with anti-CD20 treatments. METHODS In neutrophils isolated from 13 patients with anti-CD20 treatment (9 MS, 4 NMOSD), 11 patients without anti-CD20 treatment (9 MS, 2 NMOSD) and 5 healthy controls, we analyzed chemotaxis, production of reactive oxygen species (ROS), phagocytosis, and formation of neutrophil extracellular traps (NET) in vitro. RESULTS Chemotaxis and ROS production were found unchanged between patients with and without anti-CD20 treatment or between patients and healthy controls. We found a higher proportion of non-phagocytosing cells in patients without anti-CD20 treatment compared to patients with anti-CD20 treatment and healthy controls. As compared to healthy controls, a higher proportion of neutrophils from patients without anti-CD20 treatments underwent NET formation, either unstimulated or stimulated with phorbol 12-myristate 3-acetate for 3 h. In about half of patients with anti-CD20 treatment (n = 7), NET formation of unstimulated neutrophils occurred already within 20 min of incubation. This was not observed in patients without anti-CD20 treatment and healthy controls. CONCLUSION Anti-CD20 treatment in MS and NMOSD patients does not alter chemotaxis and ROS production of neutrophils in vitro but might restore their impaired phagocytosis in these diseases. Our study reveals a predisposition to early NET formation in vitro of neutrophils obtained from patients with anti-CD20 treatment. This may contribute to associated risks of neutropenia and infections.
Collapse
Affiliation(s)
- Irina Balazs
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Bettina Heschl
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Thomas Seifert-Held
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria; Department of Neurology, Hospital Murtal, Gaaler Strasse 10, 8720 Knittelfeld, Austria.
| |
Collapse
|
18
|
Zhan Y, Zhao M, Li X, Ouyang H, Du C, Chen G, Lou Z, Chen H, Zhao Y, Xu H. A meaningful exploration of ofatumumab in refractory NMOSD: a case report. Front Immunol 2023; 14:1208017. [PMID: 37449206 PMCID: PMC10337780 DOI: 10.3389/fimmu.2023.1208017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To report the case of a patient with refractory neuromyelitis optica spectrum disorder (NMOSD), who, despite showing poor response or intolerance to multiple immunosuppressants, was successfully treated with Ofatumumab. Case presentation A 42-year-old female was diagnosed with NMOSD in the first episode of the disease. Despite treatment with intravenous methylprednisolone, immunoglobulin, rituximab and immunoadsorption, together with oral steroids, azathioprine, mycophenolate mofetil and tacrolimus, she underwent various adverse events, such as abnormal liver function, repeated infections, fever, rashes, hemorrhagic shock, etc., and experienced five relapses over the ensuing four years. Finally, clinicians decided to initiate Ofatumumab to control the disease. The patient received 9 doses of Ofatumumab over the next 10 months at customized intervals. Her symptoms were stable and there was no recurrence or any adverse events. Conclusion Ofatumumab might serve as an effective and safe alternative for NMOSD patients who are resistant to other current immunotherapies.
Collapse
Affiliation(s)
- Yibo Zhan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaojun Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiying Ouyang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chenghao Du
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guixian Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenzhen Lou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoxuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanqi Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Haoyou Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Shen X. Research progress on pathogenesis and clinical treatment of neuromyelitis optica spectrum disorders (NMOSDs). Clin Neurol Neurosurg 2023; 231:107850. [PMID: 37390569 DOI: 10.1016/j.clineuro.2023.107850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/11/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) are characteristically referred to as various central nervous system (CNS)-based inflammatory and astrocytopathic disorders, often manifested by the axonal damage and immune-mediated demyelination targeting optic nerves and the spinal cord. This review article presents a detailed view of the etiology, pathogenesis, and prescribed treatment options for NMOSD therapy. Initially, we present the epidemiology of NMOSDs, highlighting the geographical and ethnical differences in the incidence and prevalence rates of NMOSDs. Further, the etiology and pathogenesis of NMOSDs are emphasized, providing discussions relevant to various genetic, environmental, and immune-related factors. Finally, the applied treatment strategies for curing NMOSD are discussed, exploring the perspectives for developing emergent innovative treatment strategies.
Collapse
Affiliation(s)
- Xinyu Shen
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, PR China.
| |
Collapse
|
20
|
Dresser L, Chaar WA, Reder AT, Abuaf AF, Cipriani VP, Javed A. Effectiveness of rituximab versus oral immunosuppressive therapies in neuromyelitis optica spectrum disorder in a racially diverse cohort of subjects: A single-center retrospective study. Mult Scler Relat Disord 2023; 74:104718. [PMID: 37086634 DOI: 10.1016/j.msard.2023.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune, inflammatory disorder characterized by severe relapses and high level of disability. In clinical trials of NMOSD, Black patients are under-represented, < 12%, compared to a relatively high prevalence of NMSOD in this population, 10/100,000. Despite the higher prevalence of NMOSD in Black and Asian patients, there is limited knowledge of the effectiveness of disease modifying treatments across racially diverse groups. OBJECTIVE To assess the effectiveness of rituximab and oral immunosuppressive agents in a cohort of NMOSD patients, the majority of whom are Black, in a real-world, clinical setting. METHODS A single-center retrospective study was conducted at the University of Chicago Medical Center. INCLUSION CRITERIA (1) diagnosis according to the 2015 International Panel for NMO Diagnosis (IPND) Criteria, (2) positive anti-aquaporin-4 antibodies on ELISA or cell-based tests, (3) initiation of immunosuppressant therapy within 5 years of disease onset, (4) first-line treatment with rituximab, mycophenolate (MMF), or azathioprine (AZA). Patients with negative anti-AQP4 titers were excluded. Kaplan-Meier survival analysis was used to estimate proportion of relapse-free patients following initiation of first line immunosuppressive therapy. A Cox proportional hazards regression model assessed the association of risk of relapsing with first-line immunosuppressive treatments with and without adjustments of pre-specified factors (age at disease onset, duration of disease, sex, race, CNS location of relapse). RESULTS 7 of 29 patients (24%) receiving rituximab experienced a relapse within the first 3 years of treatment vs. 13 of 23 patients (57%) receiving either AZA or MMF. Within the first 6 months of treatment, 2 (6.9%) patients treated with rituximab experienced a relapse vs. 7 (30.4%) patients treated with either MMF or AZA. In the 29 patients treated with rituximab, the 1-year and 3-year proportion of relapse-free patients was 88.8% and 70.9%. For the 23 patients treated with either AZA or MMF, the 1-year and 3-year proportion of relapse-free patients was 69.5% and 38.7%. In the univariate analysis, the risk of relapse was significantly higher in patients treated with AZA or MMF compared to those treated with rituximab (hazard ratio [HR] of 2.48 [0.99 - 6.21]; p = 0.046). CONCLUSION In this real-world study involving a majority of Black NMOSD patients, rituximab was relatively more effective in preventing relapses within 3 years of therapy initiation than AZA and MMF. Rituximab remains an effective option for treating NMOSD, especially when there are delays in treatment due to access and economic issues associated with newer treatments.
Collapse
Affiliation(s)
- Laura Dresser
- MS & Neuromuscular Center of Excellence, Tampa, FL, United States of America
| | - Widad Abou Chaar
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Anthony T Reder
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Amanda Frisosky Abuaf
- Department of Neurology, The University of Wisconsin, Madison, WI, United States of America
| | - Veronica P Cipriani
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Adil Javed
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America.
| |
Collapse
|
21
|
Cao S, Wang X, Ji X, Tian J, Zhu Y, Wang X, Gu Y, Duan X, Xiao X, Fang Q, Zhang X, Xue Q. B-cell proliferation characteristics and monitoring significance under the modified reduced-dose rituximab regimen for NMOSD: A real-world case series study. Mult Scler Relat Disord 2023; 70:104524. [PMID: 36701910 DOI: 10.1016/j.msard.2023.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/02/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To explore the B-cell proliferation characteristics and monitoring significance under the modified reduced-dose rituximab (mRTX) regimen for neuromyelitis optica spectrum disorder (NMOSD). METHODS NMOSD patients treated with mRTX were recruited, and the percentages of total CD19+ B cells and CD27+ memory B cells were dynamically detected by flow cytometry. The annualized relapse rate (ARR) and expanded disability status scale (EDSS) scores were compared before and after mRTX treatment, and the differences in B-cell values were compared between groups. RESULTS A total of 34 patients with NMOSD were ultimately enrolled. The EDSS score decreased from 2.5 (1.5, 3.0) to 1.3 (1.0, 2.0), and the ARR decreased from 1.0 (0, 2.0) to 0 (0, 0) (p < 0.001). Relapses occurred in 6 patients, with total CD19+ B-cell percentages of 3.25% (2.7%, 3.7%) and CD27+ memory B-cell percentages of 0.3% (0.2%, 0.3%) at initial relapse. Twenty-eight patients (82.4%) remained relapse-free with 84 doses of mRTX. Before 56 repeated doses, the total CD19+ B cells and CD27+ memory B cells were 4.00% (3.14%, 5.32%) and 0.26% (0.17%, 0.40%), respectively. The mean dosing interval was 9.2 months. Both total CD19+ B cells and CD27+ memory B cells proliferated over time after mRTX use, with significantly faster proliferation rates in the later stages. In 28 relapse-free patients, the mean time to reach 1% for total CD19+ B cells was 210 days, and the mean time to reach 3% was 240 days, with the mean interval from 1% to 3% of 65 days. Twenty-five relapse-free patients had no significant differences in maximum, minimum, and mean B-cell values compared to those of 6 patients with relapse. CONCLUSION The high rate of B-cell proliferation under the mRTX regimen indicates that closer dynamic B-cell monitoring is required to guide repeated mRTX dosing. Sustained depletion of total CD19+ B cells targeting < 3% of lymphocytes may be feasible, enabling extended dosing intervals.
Collapse
Affiliation(s)
- Shugang Cao
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Neurology, Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230011, China
| | - Xiaoyuan Wang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaopei Ji
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jingluan Tian
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yunfei Zhu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xin Wang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Suzhou Clinical Medical Centre of Neurological Disorders, Suzhou 215004, China
| | - Xiaoyu Duan
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xinyi Xiao
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Suzhou Clinical Medical Centre of Neurological Disorders, Suzhou 215004, China
| | - Qun Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Suzhou Clinical Medical Centre of Neurological Disorders, Suzhou 215004, China.
| |
Collapse
|
22
|
Shinoda K, Li R, Rezk A, Mexhitaj I, Patterson KR, Kakara M, Zuroff L, Bennett JL, von Büdingen HC, Carruthers R, Edwards KR, Fallis R, Giacomini PS, Greenberg BM, Hafler DA, Ionete C, Kaunzner UW, Lock CB, Longbrake EE, Pardo G, Piehl F, Weber MS, Ziemssen T, Jacobs D, Gelfand JM, Cross AH, Cameron B, Musch B, Winger RC, Jia X, Harp CT, Herman A, Bar-Or A. Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication of CD20-expressing CD8 T cells in MS disease activity. Proc Natl Acad Sci U S A 2023; 120:e2207291120. [PMID: 36634138 PMCID: PMC9934304 DOI: 10.1073/pnas.2207291120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A small proportion of multiple sclerosis (MS) patients develop new disease activity soon after starting anti-CD20 therapy. This activity does not recur with further dosing, possibly reflecting deeper depletion of CD20-expressing cells with repeat infusions. We assessed cellular immune profiles and their association with transient disease activity following anti-CD20 initiation as a window into relapsing disease biology. Peripheral blood mononuclear cells from independent discovery and validation cohorts of MS patients initiating ocrelizumab were assessed for phenotypic and functional profiles using multiparametric flow cytometry. Pretreatment CD20-expressing T cells, especially CD20dimCD8+ T cells with a highly inflammatory and central nervous system (CNS)-homing phenotype, were significantly inversely correlated with pretreatment MRI gadolinium-lesion counts, and also predictive of early disease activity observed after anti-CD20 initiation. Direct removal of pretreatment proinflammatory CD20dimCD8+ T cells had a greater contribution to treatment-associated changes in the CD8+ T cell pool than was the case for CD4+ T cells. Early disease activity following anti-CD20 initiation was not associated with reconstituting CD20dimCD8+ T cells, which were less proinflammatory compared with pretreatment. Similarly, this disease activity did not correlate with early reconstituting B cells, which were predominantly transitional CD19+CD24highCD38high with a more anti-inflammatory profile. We provide insights into the mode-of-action of anti-CD20 and highlight a potential role for CD20dimCD8+ T cells in MS relapse biology; their strong inverse correlation with both pretreatment and early posttreatment disease activity suggests that CD20-expressing CD8+ T cells leaving the circulation (possibly to the CNS) play a particularly early role in the immune cascades involved in relapse development.
Collapse
Affiliation(s)
- Koji Shinoda
- aDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- bCenter for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Rui Li
- aDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- bCenter for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ayman Rezk
- aDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- bCenter for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ina Mexhitaj
- aDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- bCenter for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kristina R. Patterson
- aDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- bCenter for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Mihir Kakara
- aDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- bCenter for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Leah Zuroff
- aDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- bCenter for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jeffrey L. Bennett
- cDepartments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Aurora, CO80045
| | | | - Robert Carruthers
- eDepartment of Medicine, University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Keith R. Edwards
- fMultiple Sclerosis Center of Northeastern New York, Comprehensive MS Care Center Affiliated with the National MS Society, Latham, NY12110
| | - Robert Fallis
- gDepartment of Neurology, Ohio State University Medical Center, Columbus, OH43210
| | - Paul S. Giacomini
- hDepartment of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Benjamin M. Greenberg
- iDepartment of Neurology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - David A. Hafler
- jDepartments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT06510
| | - Carolina Ionete
- kDepartment of Neurology, University of Massachusetts Medical School, Worcester, MA01655
| | - Ulrike W. Kaunzner
- lJudith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York, NY10021
| | - Christopher B. Lock
- mDepartment of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA94304
| | | | - Gabriel Pardo
- oOklahoma Medical Research Foundation, Multiple Sclerosis Center of Excellence, Oklahoma City, OK73104
| | - Fredrik Piehl
- pDepartment of Clinical Neuroscience, Karolinska Institute, SE-171 76Stockholm, Sweden
- qDepartment of Neurology, Karolinska University Hospital, SE-171 77Stockholm, Sweden
- rNeuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, SE-171 77Stockholm, Sweden
| | - Martin S. Weber
- sInstitute of Neuropathology, University Medical Center, 37075Göttingen, Germany
- tDepartment of Neurology, University Medical Center, 37075Göttingen, Germany
- uFraunhofer-Institute for Translational Medicine and Pharmackology ITMP, 37075Göttingen, Germany
| | - Tjalf Ziemssen
- vDepartment of Neurology, Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307Dresden, Germany
| | - Dina Jacobs
- aDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- bCenter for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jeffrey M. Gelfand
- wWeill Institute for Neurosciences, University of California, San Francisco, CA94158
- xDepartment of Neurology, University of California, San Francisco, CA94158
| | - Anne H. Cross
- yDepartment of Neurology, Washington University School of Medicine, Saint Louis, MO63110
| | | | - Bruno Musch
- zGenentech, Inc., South San Francisco, CA94080
| | | | | | | | - Ann Herman
- zGenentech, Inc., South San Francisco, CA94080
| | - Amit Bar-Or
- aDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- bCenter for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- aaChildren's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- 1To whom correspondence may be addressed.
| |
Collapse
|
23
|
Fazlinejad N, Hosseini S, Yaghoobpoor S, Dehghani M, Bazrafshan H, Khanzadeh S, Lucke-Wold B. The Diagnostic Value of Neutrophil to Lymphocyte Ratio as an Effective Biomarker for Neuromyelitis Optica Spectrum Disorder. JOURNAL OF PHYSICAL MEDICINE AND REHABILITATION (WILMINGTON, DEL.) 2023; 5:16-25. [PMID: 37654690 PMCID: PMC10469024 DOI: 10.33696/rehabilitation.5.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Background Neuromyelitis Optica (NMO) is a serious condition associated with inflammation. Early diagnosis and detection are critical for early intervention. In this systematic review, we investigate the role of the neutrophil to lymphocyte ratio (NLR) as an important biomarker for NMO. Methods Ten studies were selected that were sufficiently high quality and then checked for quality. The studies were organized by English language and selective inclusion criteria. Results NLR was significantly increased in NMO patients compared to controls. The ratio was specifically proportional to severity of disease. More severe disease had a higher ratio. Conclusion NLR offers a reliable and affordable method for early detection of disease severity. This can help guide appropriate treatment selection and monitor treatment response.
Collapse
Affiliation(s)
| | - Samaneh Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Dehghani
- School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Bazrafshan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokoufeh Khanzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Brandon Lucke-Wold
- Endovascular Fellow, University of Florida, Department of Neurosurgery, Gainesville, FL, USA
| |
Collapse
|
24
|
Kim W, Kim HJ. An update on biologic treatments for neuromyelitis optica spectrum disorder. Expert Rev Clin Immunol 2023; 19:111-121. [PMID: 36414430 DOI: 10.1080/1744666x.2023.2151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the central nervous system mediated by antibodies targeting the aquaporin-4 (AQP4) water channel expressed on astrocytes. The binding of specific antibodies to AQP4 causes complement-dependent cytotoxicity, leading to inflammation and demyelination. Several recent phase 2 and 3 randomized placebo-controlled trials showed the efficacy and safety of monoclonal antibody therapies targeting B-cells, interleukin-6 receptor, and complement. AREAS COVERED Current biologic treatments for NMOSD and developments therein, and unresolved issues in NMOSD treatment. EXPERT OPINION New biologic treatments demonstrate high efficacy and good safety for patients with AQP4-IgG-positive NMOSD. The optimal therapeutics for seronegative NMOSD, pediatric patients, and female patients who are pregnant or wish to be are unclear, and further research is needed. Also, real-world studies of new biological agents and the data on the durability of their beneficial effects and their long-term safety are required. Effective rescue therapy for an acute attack is critical given permanent disability in NMOSD is attack-related, and biologic agents that treat acute attack are emerging. If such treatments are to become widely applied, studies on the most cost-effective treatment strategies are needed.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| |
Collapse
|
25
|
Zouali M. B Cells at the Cross-Roads of Autoimmune Diseases and Auto-Inflammatory Syndromes. Cells 2022; 11:cells11244025. [PMID: 36552788 PMCID: PMC9777531 DOI: 10.3390/cells11244025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Whereas autoimmune diseases are mediated primarily by T and B cells, auto-inflammatory syndromes (AIFS) involve natural killer cells, macrophages, mast cells, dendritic cells, different granulocyte subsets and complement components. In contrast to autoimmune diseases, the immune response of patients with AIFS is not associated with a breakdown of immune tolerance to self-antigens. Focusing on B lymphocyte subsets, this article offers a fresh perspective on the multiple cross-talks between both branches of innate and adaptive immunity in mounting coordinated signals that lead to AIFS. By virtue of their potential to play a role in adaptive immunity and to exert innate-like functions, B cells can be involved in both promoting inflammation and mitigating auto-inflammation in disorders that include mevalonate kinase deficiency syndrome, Kawasaki syndrome, inflammatory bone disorders, Schnitzler syndrome, Neuro-Behçet's disease, and neuromyelitis optica spectrum disorder. Since there is a significant overlap between the pathogenic trajectories that culminate in autoimmune diseases, or AIFS, a more detailed understanding of their respective roles in the development of inflammation could lead to designing novel therapeutic avenues.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
26
|
Bennett JL, Aktas O, Rees WA, Smith MA, Gunsior M, Yan L, She D, Cimbora D, Pittock SJ, Weinshenker BG, Paul F, Marignier R, Wingerchuk D, Cutter G, Green A, Hartung HP, Kim HJ, Fujihara K, Levy M, Katz E, Cree BA. Association between B-cell depletion and attack risk in neuromyelitis optica spectrum disorder: An exploratory analysis from N-MOmentum, a double-blind, randomised, placebo-controlled, multicentre phase 2/3 trial. EBioMedicine 2022; 86:104321. [DOI: 10.1016/j.ebiom.2022.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
|
27
|
Lotan I, Levy M. New treatment perspectives for acute relapses in neuromyelitis optica spectrum disorder. Transfus Med Rev 2022; 36:230-232. [DOI: 10.1016/j.tmrv.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
|
28
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
29
|
Rituximab abrogates aquaporin-4-specific germinal center activity in patients with neuromyelitis optica spectrum disorders. Proc Natl Acad Sci U S A 2022; 119:e2121804119. [PMID: 35666871 PMCID: PMC9214492 DOI: 10.1073/pnas.2121804119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By studying paired blood and deep cervical lymph node samples from patients with neuromyelitis optica spectrum disorders, our data provide evidence for a germinal center–based generation of aquaporin-4 antibodies. Frequent serum aquaporin-4 immunoglobulin Ms (IgMs) and shifts in IgG subclasses were observed alongside preferential synthesis of aquaporin-4 IgGs and aquaporin-4–reactive B cells within lymph nodes. Both intranodal synthesis of aquaporin-4 antibodies and intranodal aquaporin-4–reactive B cells were robustly eliminated with rituximab administration. This study systematically explores lymph nodes that drain the central nervous system (CNS) in patients with CNS autoimmunity and offers a potential explanation as to why rituximab is clinically highly efficacious in autoantibody-mediated diseases despite no accompanying reduction in serum autoantibody levels. Neuromyelitis optica spectrum disorders (NMOSDs) are caused by immunoglobulin G (IgG) autoantibodies directed against the water channel aquaporin-4 (AQP4). In NMOSDs, discrete clinical relapses lead to disability and are robustly prevented by the anti-CD20 therapeutic rituximab; however, its mechanism of action in autoantibody-mediated disorders remains poorly understood. We hypothesized that AQP4-IgG production in germinal centers (GCs) was a core feature of NMOSDs and could be terminated by rituximab. To investigate this directly, deep cervical lymph node (dCLN) aspirates (n = 36) and blood (n = 406) were studied in a total of 63 NMOSD patients. Clinical relapses were associated with AQP4-IgM generation or shifts in AQP4-IgG subclasses (odds ratio = 6.0; range of 3.3 to 10.8; P < 0.0001), features consistent with GC activity. From seven dCLN aspirates of patients not administered rituximab, AQP4-IgGs were detected alongside specific intranodal synthesis of AQP4-IgG. AQP4-reactive B cells were isolated from unmutated naive and mutated memory populations in both blood and dCLNs. After rituximab administration, fewer clinical relapses (annual relapse rate of 0.79 to 0; P < 0.001) were accompanied by marked reductions in both AQP4-IgG (fourfold; P = 0.004) and intranodal B cells (430-fold; P < 0.0001) from 11 dCLNs. Our findings implicate ongoing GC activity as a rituximab-sensitive driver of AQP4 antibody production. They may explain rituximab’s clinical efficacy in several autoantibody-mediated diseases and highlight the potential value of direct GC measurements across autoimmune conditions.
Collapse
|
30
|
McNaughton P, Payne R, Michael S, Leahy T, Nicols A, Fower A, Hambleton S, Pang K, Gennery A, Irani SR. Naïve B cells followed by aquaporin-4 antibodies characterise the onset of neuromyelitis optica: evidence from stem cell transplantation. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328982. [PMID: 35606107 PMCID: PMC9606486 DOI: 10.1136/jnnp-2022-328982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Peter McNaughton
- Paediatric Immunology, Newcastle upon Tyne Hospital Trusts, Newcastle upon Tyne, UK
- Department of Paediatrics, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Rebecca Payne
- Paediatric Immunology, Newcastle upon Tyne Hospital Trusts, Newcastle upon Tyne, UK
| | - Sophia Michael
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Timothy Leahy
- Children's Health Ireland at Crumlin, Trinity College Dublin, Dublin, Ireland
| | - Alexander Nicols
- Paediatric Immunology, Newcastle upon Tyne Hospital Trusts, Newcastle upon Tyne, UK
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Sophie Hambleton
- Paediatric Immunology, Newcastle upon Tyne Hospital Trusts, Newcastle upon Tyne, UK
| | - Ki Pang
- Department of Paediatric Neurology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew Gennery
- Paediatric Immunology, Newcastle upon Tyne Hospital Trusts, Newcastle upon Tyne, UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
31
|
Abbadessa G, Miele G, Maida E, Minervini G, Lavorgna L, Bonavita S. Optimal retreatment schedule of rituximab for neuromyelitis optica spectrum disorder: a systematic review. Mult Scler Relat Disord 2022; 63:103926. [DOI: 10.1016/j.msard.2022.103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
|
32
|
Redenbaugh V, Flanagan EP. Monoclonal Antibody Therapies Beyond Complement for NMOSD and MOGAD. Neurotherapeutics 2022; 19:808-822. [PMID: 35267170 PMCID: PMC9294102 DOI: 10.1007/s13311-022-01206-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Aquaporin-4 (AQP4)-IgG seropositive neuromyelitis optica spectrum disorders (AQP4-IgG seropositive NMOSD) and myelin oligodendrocyte glycoprotein (MOG)-IgG-associated disease (MOGAD) are inflammatory demyelinating disorders distinct from each other and from multiple sclerosis (MS).While anti-CD20 treatments can be used to treat MS and AQP4-IgG seropositive NMOSD, some MS medications are ineffective or could exacerbate AQP4-IgG seropositive NMOSD including beta-interferons, natalizumab, and fingolimod. AQP4-IgG seropositive NMOSD has a relapsing course in most cases, and preventative maintenance treatments should be started after the initial attack. Rituximab, eculizumab, inebilizumab, and satralizumab all have class 1 evidence for use in AQP4-IgG seropositive NMOSD, and the latter three have been approved by the US Food and Drug Administration (FDA). MOGAD is much more likely to be monophasic than AQP4-IgG seropositive NMOSD, and preventative therapy is usually reserved for those who have had a disease relapse. There is a lack of any class 1 evidence for MOGAD preventative treatment. Observational benefit has been suggested from oral immunosuppressants, intravenous immunoglobulin (IVIg), rituximab, and tocilizumab. Randomized placebo-controlled trials are urgently needed in this area.
Collapse
Affiliation(s)
- Vyanka Redenbaugh
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
33
|
Cai H, Zhou R, Jiang F, Zeng Q, Yang H. Vaccination in neuromyelitis optica spectrum disorders: Friend or enemy? Mult Scler Relat Disord 2022; 58:103394. [PMID: 35216775 DOI: 10.1016/j.msard.2021.103394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) are uncommon antibody-mediated autoimmune diseases of the central nervous system (CNS), mainly occurring in optic nerves and spinal cord, which can cause visual impairment, paralysis, and occasionally bulbar dysfunction. Such neurological deficits can adversely affect pulmonary functions and increase complicated infection risk. Besides, most NMOSD patients undergo immunosuppressive therapy. All these factors make NMOSD patients the potential high-risk group under the current pandemic of coronavirus disease 2019 (COVID-19). Meanwhile, COVID-19 infection has already been demonstrated as a risk factor for NMOSD relapses. This review discusses the basic immunology of vaccination and common problems, including immunogenicity, safety, and efficacy of vaccination on NMOSD patients. Additionally, we offered vaccination recommendations, health care and treatment advice for NMOSD patients under the background of COVID-19.
Collapse
Affiliation(s)
- Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha410008, China
| | - Ran Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha410008, China
| | - Fei Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha410008, China
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha410008, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha410008, China.
| |
Collapse
|
34
|
Jaime-Pérez JC, Meléndez-Flores JD, Ramos-Dávila EM, González-Treviño M, Gómez-Almaguer D. Hematopoietic stem cell transplantation for uncommon immune-mediated neurological disorders: A literature review. Cytotherapy 2022; 24:676-685. [DOI: 10.1016/j.jcyt.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022]
|
35
|
Wang L, Huang W, ZhangBao J, Chang X, Tan H, Zhou L, Lu C, Wang M, Lu J, Zhao C, Quan C. The Alteration of Circulating Lymphocyte Subsets During Tacrolimus Therapy in Neuromyelitis Optica Spectrum Disorder and Its Correlation With Clinical Outcomes. Front Neurol 2022; 12:816721. [PMID: 35126303 PMCID: PMC8809081 DOI: 10.3389/fneur.2021.816721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
ObjectivesWe aimed to explore the alteration of circulating lymphocyte subsets before and after tacrolimus (TAC) therapy in neuromyelitis optica spectrum disorder (NMOSD) and its correlation with clinical outcomes.MethodsAnti-aquaporin-4 antibody (AQP4-ab)-positive patients with NMOSD treated with TAC were followed and clinically evaluated at 0, 3, 6, and 12 months after initiation of TAC. Flow cytometry was employed to detect the proportion of various whole blood lymphocyte subsets at every time point. Correlation analysis was further performed to explore the association between annualized relapse rate (ARR), the Expanded Disability Status Scale (EDSS) score, and the proportion of circulating lymphocyte subsets before and after TAC therapy.ResultsA total of 13 eligible patients with NMOSD were included. The proportion of CD19+CD24hiCD38hi/CD19+ and CD19+CD5+CD1dhi/CD19+ lymphocyte subsets increased significantly after TAC therapy (p = 0.010 and p < 0.001). The proportion of CD19+BAFFR+, CD19+IFN-γ+, and CD19+IL-10+ subsets decreased significantly after TAC therapy (p = 0.015, 0.018, and 0.042, respectively). There was a negative correlation between CD4+CD25hi subset and EDSS score (p = 0.016, r = −0.652).ConclusionPossibly through increasing regulatory B and suppressing BAFFR+ B and interferon (IFN)-γ+ B subsets, TAC could decrease relapse. EDSS score may be correlated with some lymphocyte subsets after TAC therapy.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Wenjuan Huang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jingzi ZhangBao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Xuechun Chang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Hongmei Tan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chuanzhen Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Min Wang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chao Quan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- *Correspondence: Chao Quan
| |
Collapse
|
36
|
Huang TL, Chu YC. What's new in neuromyelitis optica spectrum disorder treatment? Taiwan J Ophthalmol 2022. [DOI: 10.4103/2211-5056.355329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Huang TL, Chu YC. What's new in neuromyelitis optica spectrum disorder treatment? Taiwan J Ophthalmol 2022; 12:249-263. [PMID: 36248092 PMCID: PMC9558477 DOI: 10.4103/2211-5056.355617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022] Open
Abstract
Optic neuritis, an optic nerve inflammatory disease presenting with acute unilateral or bilateral visual loss, is one of the core symptoms of neuromyelitis optica spectrum disorder (NMOSD). The diagnosis of NMOSD-related optic neuritis is challenging, and it is mainly based on clinical presentation, optical coherence tomography, magnetic resonance imaging scans, and the status of serum aquaporin-4 antibodies. In the pathogenesis, aquaporin-4 antibodies target astrocytes in the optic nerves, spinal cord and some specific regions of the brain eliciting a devastating autoimmune response. Current pharmacological interventions are directed against various steps within the immunological response, notably the terminal complement system, B-cells, and the pro-inflammatory cytokine Interleukin 6 (IL6). Conventional maintenance therapies were off-label uses of the unspecific immunosuppressants azathioprine and mycophenolate mofetil as well as the CD20 specific antibody rituximab and the IL6 receptor specific antibody tocilizumab. Recently, four phase III clinical trials demonstrated the safety and efficacy of the three novel biologics eculizumab, inebilizumab, and satralizumab. These monoclonal antibodies are directed against the complement system, CD19 B-cells and the IL6 receptor, respectively. All three have been approved for NMOSD in the US and several other countries worldwide and thus provide convincing treatment options.
Collapse
|
38
|
Valencia-Sanchez C, Flanagan EP. Uncommon inflammatory/immune-related myelopathies. J Neuroimmunol 2021; 361:577750. [PMID: 34715593 DOI: 10.1016/j.jneuroim.2021.577750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 01/03/2023]
Abstract
The differential diagnosis for immune-mediated myelopathies is broad. Although clinical manifestations overlap, certain presentations are suggestive of a particular myelopathy etiology. Spine MRI lesion characteristics including the length and location, and the pattern of gadolinium enhancement, help narrow the differential diagnosis and exclude an extrinsic compressive cause. The discovery of specific antibodies that serve as biomarkers of myelitis such as aquaporin-4-IgG and myelin-oligodendrocyte -glycoprotein-IgG (MOG-IgG), has improved our understanding of myelitis pathophysiology and facilitated diagnosis. In this review we will focus on the pathophysiology, clinical presentation, imaging findings and treatment and outcomes of uncommon immune-mediated myelopathies.
Collapse
|
39
|
AQP4-IgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2021; 57:103356. [DOI: 10.1016/j.msard.2021.103356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
|
40
|
Yin BW, Li B, Mehmood A, Yuan C, Song S, Guo RY, Zhang L, Ma T, Guo L. BLK polymorphisms and expression level in neuromyelitis optica spectrum disorder. CNS Neurosci Ther 2021; 27:1549-1560. [PMID: 34637583 PMCID: PMC8611770 DOI: 10.1111/cns.13738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Aim This study aimed to determine the correlation between B‐lymphoid tyrosine kinase (BLK) polymorphism, mRNA gene expression of BLK, and NMOSD in a Chinese Han population. Background B‐lymphoid tyrosine kinase gene expressed mainly in B cells plays a key role in various autoimmune disorders. However, no studies have investigated the association of BLK polymorphisms with neuromyelitis optica spectrum disorder (NMOSD). Methods Han Chinese population of 310 subjects were recruited to analyze three single nucleotide polymorphisms (rs13277113, rs4840568, and rs2248932) under allele, genotype, and haplotype frequencies, followed by clinical characteristics stratified analysis. Real‐time PCR was used to analyze mRNA expression levels of BLK in the peripheral blood mononuclear cells of 64 subjects. Results Patients with NMOSD showed lower frequencies of the minor allele G of rs2248932 than healthy controls (odds ratio (OR) =0.57, 95% confidence intervals (CI) 0.39–0.83, p = 0.003). The association between minor allele G of rs2248932 and reduced NMOSD susceptibility was found by applying genetic models of inheritance (codominant, dominant, and recessive) and haplotypes analysis. Subsequently, by stratification analysis for AQP4‐positivity, the minor allele G frequencies of rs2248932 in AQP4‐positive subgroup were significantly lower than in the healthy controls (OR =0.46, 95% CI 0.30–0.72, p = 0.001). Notably, the genotype GG of rs2248932 was more frequent in AQP4‐negative subgroup (n = 14) than in AQP4‐positive subgroup (n = 93) (p = 0.003, OR =0.05, 95% CI =0.01–0.57). BLK mRNA expression levels in the NMOSD patients (n = 36) were lower than in healthy controls (n = 28) (p < 0.05). However, the acute non‐treatment (n = 7), who were untreated patients in the acute phase from the NMOSD group, showed BLK mRNA expression levels 1.8‐fold higher than healthy controls (n = 8) (p < 0.05). Conclusion This study evaluated that the minor allele G of rs2248932 in BLK is associated with reduced susceptibility to NMOSD and protected the risk of AQP4‐positive. BLK mRNA expression in NMOSD was lower as compared to healthy controls while significantly increased in acute‐untreated patients.
Collapse
Affiliation(s)
- Bo-Wen Yin
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China.,Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Tianzhao Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| |
Collapse
|
41
|
Next Generation Sequencing of Cerebrospinal Fluid B Cell Repertoires in Multiple Sclerosis and Other Neuro-Inflammatory Diseases-A Comprehensive Review. Diagnostics (Basel) 2021; 11:diagnostics11101871. [PMID: 34679570 PMCID: PMC8534365 DOI: 10.3390/diagnostics11101871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
During the last few decades, the role of B cells has been well established and redefined in neuro-inflammatory diseases, including multiple sclerosis and autoantibody-associated diseases. In particular, B cell maturation and trafficking across the blood–brain barrier (BBB) has recently been deciphered with the development of next-generation sequencing (NGS) approaches, which allow the assessment of representative cerebrospinal fluid (CSF) and peripheral blood B cell repertoires. In this review, we perform literature research focusing on NGS studies that allow further insights into B cell pathophysiology during neuro-inflammation. Besides the analysis of CSF B cells, the paralleled assessment of peripheral blood B cell repertoire provides deep insights into not only the CSF compartment, but also in B cell trafficking patterns across the BBB. In multiple sclerosis, CSF-specific B cell maturation, in combination with a bidirectional exchange of B cells across the BBB, is consistently detectable. These data suggest that B cells most likely encounter antigen(s) within the CSF and migrate across the BBB, with further maturation also taking place in the periphery. Autoantibody-mediated diseases, such as neuromyelitis optica spectrum disorder and LGI1 / NMDAR encephalitis, also show features of a CSF-specific B cell maturation and clonal connectivity with peripheral blood. In conclusion, these data suggest an intense exchange of B cells across the BBB, possibly feeding autoimmune circuits. Further developments in sequencing technologies will help to dissect the exact pathophysiologic mechanisms of B cells during neuro-inflammation.
Collapse
|
42
|
Rensel M, Zabeti A, Mealy MA, Cimbora D, She D, Drappa J, Katz E. Long-term efficacy and safety of inebilizumab in neuromyelitis optica spectrum disorder: Analysis of aquaporin-4-immunoglobulin G-seropositive participants taking inebilizumab for ⩾4 years in the N-MOmentum trial. Mult Scler 2021; 28:925-932. [PMID: 34595983 PMCID: PMC9024030 DOI: 10.1177/13524585211047223] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Efficacy and safety of inebilizumab for treatment of neuromyelitis optica spectrum disorder in adults seropositive for aquaporin-4 (AQP4)–immunoglobulin (Ig) G were demonstrated in the 28-week randomized controlled period of the N-MOmentum study. Objective: To assess efficacy and safety of long-term inebilizumab treatment. Methods: Post hoc analysis was performed in 75 AQP4–IgG–seropositive participants receiving inebilizumab for ⩾4 years in the randomized controlled period and open-label extension of the N-MOmentum study. Results: Eighteen attacks occurred in 13 participants during inebilizumab treatment (annualized attack rate, 0.052 attacks/person-year). Twelve attacks occurred during the first year of treatment, and two each occurred in years 2–4. Disability scores remained stable throughout ⩾4 years of treatment. Inebilizumab was well tolerated, with two (2.7%) serious treatment-emergent adverse events related to inebilizumab and no deaths. Immunoglobulin G levels decreased over time; however, correlation between severe infections and low IgG levels could not be determined because of their small numbers. Conclusion: These results from the N-MOmentum study continue to support use of inebilizumab for treatment of neuromyelitis optica spectrum disorder. Furthermore, the findings suggest that efficacy of inebilizumab may be enhanced after the first year of treatment, warranting additional long-term investigation.
Collapse
Affiliation(s)
- Mary Rensel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | - Aram Zabeti
- University of Cincinnati, Cincinnati, OH, USA
| | - Maureen A Mealy
- Horizon Therapeutics plc, Deerfield, IL, USA; (known as Viela Bio at the time of study conduct)
| | - Daniel Cimbora
- Horizon Therapeutics plc, Deerfield, IL, USA; (known as Viela Bio at the time of study conduct)
| | - Dewei She
- Horizon Therapeutics plc, Deerfield, IL, USA; (known as Viela Bio at the time of study conduct)
| | - Jorn Drappa
- Horizon Therapeutics plc, Deerfield, IL, USA; (known as Viela Bio at the time of study conduct)
| | - Eliezer Katz
- Horizon Therapeutics plc, Deerfield, IL, USA; (known as Viela Bio at the time of study conduct)
| |
Collapse
|
43
|
Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. J Neuroinflammation 2021; 18:208. [PMID: 34530847 PMCID: PMC8444436 DOI: 10.1186/s12974-021-02249-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Neuromyelitis optica (NMO) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) characterized by acute optic neuritis (ON) and transverse myelitis (TM). NMO is caused by a pathogenic serum IgG antibody against the water channel aquoporin 4 (AQP4) in the majority of patients. AQP4-antibody (AQP4-ab) presence is highly specific, and differentiates NMO from multiple sclerosis. It binds to AQP4 channels on astrocytes, triggering activation of the classical complement cascade, causing granulocyte, eosinophil, and lymphocyte infiltration, culminating in injury first to astrocyte, then oligodendrocytes followed by demyelination and neuronal loss. NMO spectrum disorder (NMOSD) has recently been defined and stratified based on AQP4-ab serology status. Most NMOSD patients experience severe relapses leading to permanent neurologic disability, making suppression of relapse frequency and severity, the primary objective in disease management. The most common treatments used for relapses are steroids and plasma exchange.Currently, long-term NMOSD relapse prevention includes off-label use of immunosuppressants, particularly rituximab. In the last 2 years however, three pivotal clinical trials have expanded the spectrum of drugs available for NMOSD patients. Phase III studies have shown significant relapse reduction compared to placebo in AQP4-ab-positive patients treated with satralizumab, an interleukin-6 receptor (IL-6R) inhibitor, inebilizumab, an antibody against CD19+ B cells; and eculizumab, an antibody blocking the C5 component of complement. In light of the new evidence on NMOSD pathophysiology and of preliminary results from ongoing trials with new drugs, we present this descriptive review, highlighting promising treatment modalities as well as auspicious preclinical and clinical studies.
Collapse
|
44
|
J Tullman M, Zabeti A, Vuocolo S, Dinh Q. Inebilizumab for treatment of neuromyelitis optica spectrum disorder. Neurodegener Dis Manag 2021; 11:341-352. [PMID: 34486379 DOI: 10.2217/nmt-2021-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune disease characterized by recurrent optic neuritis and transverse myelitis often resulting in severe disability. Anti-AQP4-immunoglobulin G (IgG) is a pathogenic product of CD19-positive plasma cells found in most, but not all, individuals with NMOSD and is associated with immune-mediated neurologic injury. Inebilizumab, an afucosylated humanized IgG1κ, anti-CD19 monoclonal antibody, may target pathogenic CD19-expressing B cells. In a Phase II/III trial, inebilizumab significantly reduced the proportion of participants experiencing an NMOSD attack and was well tolerated versus placebo. Fewer treated participants had worsening disability than those receiving placebo. Inebilizumab was approved in 2020 by the US FDA for treatment of anti-AQP4 antibody positive NMOSD.
Collapse
Affiliation(s)
- Mark J Tullman
- The MS Center for Innovations in Care, St. Louis, MO 63131, USA
| | - Aram Zabeti
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH 45219, USA
| | | | - Quinn Dinh
- Horizon Therapeutics plc, Deerfield, IL 60015, USA
| |
Collapse
|
45
|
Zhang C, Zhang TX, Liu Y, Jia D, Zeng P, Du C, Yuan M, Liu Q, Wang Y, Shi FD. B-Cell Compartmental Features and Molecular Basis for Therapy in Autoimmune Disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1070. [PMID: 34465614 PMCID: PMC8409132 DOI: 10.1212/nxi.0000000000001070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives To assess the molecular landscape of B-cell subpopulations across different compartments in patients with neuromyelitis optica spectrum disorder (NMOSD). Methods We performed B-cell transcriptomic profiles via single-cell RNA sequencing across CSF, blood, and bone marrow in patients with NMOSD. Results Across the tissue types tested, 4 major subpopulations of B cells with distinct signatures were identified: naive B cells, memory B cells, age-associated B cells, and antibody-secreting cells (ASCs). NMOSD B cells show proinflammatory activity and increased expression of chemokine receptor genes (CXCR3 and CXCR4). Circulating B cells display an increase of antigen presentation markers (CD40 and CD83), as well as activation signatures (FOS, CD69, and JUN). In contrast, the bone marrow B-cell population contains a large ASC fraction with increased oxidative and metabolic activity reflected by COX genes and ATP synthase genes. Typically, NMOSD B cells become hyperresponsive to type I interferon, which facilitates B-cell maturation and anti–aquaporin-4 autoantibody production. The pool of ASCs in blood and CSF were significantly elevated in NMOSD. Both CD19− and CD19+ ASCs could be ablated by tocilizumab, but not rituximab treatment in NMOSD. Discussion B cells are compartmentally fine tuned toward autoreactivity in NMOSD and become hyperreactive to type I interferon. Inhibition of type I interferon pathway may provide a new therapeutic avenue for NMOSD.
Collapse
Affiliation(s)
- Chao Zhang
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Tian-Xiang Zhang
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Ye Liu
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Dongmei Jia
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Pei Zeng
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Chen Du
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China.
| | - Meng Yuan
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Qiang Liu
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Yongjun Wang
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Fu-Dong Shi
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China.
| |
Collapse
|
46
|
Treatment of Neuromyelitis Optica Spectrum Disorders. Int J Mol Sci 2021; 22:ijms22168638. [PMID: 34445343 PMCID: PMC8395403 DOI: 10.3390/ijms22168638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune central nervous system (CNS) inflammatory disorder that can lead to serious disability and mortality. Females are predominantly affected, including those within the reproductive age. Most patients develop relapsing attacks of optic neuritis; longitudinally extensive transverse myelitis; and encephalitis, especially brainstem encephalitis. The majority of NMOSD patients are seropositive for IgG autoantibodies against the water channel protein aquaporin-4 (AQP4-IgG), reflecting underlying aquaporin-4 autoimmunity. Histological findings of the affected CNS tissues of patients from in-vitro and in-vivo studies support that AQP4-IgG is directly pathogenic in NMOSD. It is believed that the binding of AQP4-IgG to CNS aquaporin-4 (abundantly expressed at the endfoot processes of astrocytes) triggers astrocytopathy and neuroinflammation, resulting in acute attacks. These attacks of neuroinflammation can lead to pathologies, including aquaporin-4 loss, astrocytic activation, injury and loss, glutamate excitotoxicity, microglial activation, neuroinflammation, demyelination, and neuronal injury, via both complement-dependent and complement-independent pathophysiological mechanisms. With the increased understanding of these mechanisms underlying this serious autoimmune astrocytopathy, effective treatments for both active attacks and long-term immunosuppression to prevent relapses in NMOSD are increasingly available based on the evidence from retrospective observational data and prospective clinical trials. Knowledge on the indications and potential side effects of these medications are essential for a clear evaluation of the potential benefits and risks to NMOSD patients in a personalized manner. Special issues such as pregnancy and the coexistence of other autoimmune diseases require additional concern and meticulous care. Future directions include the identification of clinically useful biomarkers for the prediction of relapse and monitoring of the therapeutic response, as well as the development of effective medications with minimal side effects, especially opportunistic infections complicated by long-term immunosuppression.
Collapse
|
47
|
Liu Y, Zhang H, Zhang TX, Yuan M, Du C, Zeng P, Huang Z, Jia D, Yang G, Shi FD, Zhang C. Effects of Tocilizumab Therapy on Circulating B Cells and T Helper Cells in Patients With Neuromyelitis Optica Spectrum Disorder. Front Immunol 2021; 12:703931. [PMID: 34394101 PMCID: PMC8360623 DOI: 10.3389/fimmu.2021.703931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Tocilizumab, a humanized anti-IL-6 receptor monoclonal antibody, showed its therapeutic efficacy on neuromyelitis optica spectrum disorder (NMOSD). To assess the immunological effects of this drug on B cells, follicular T helper (Tfh) cells, and peripheral T helper (Tph) cells in patients with NMOSD, peripheral B cell and Tfh cell phenotypes were evaluated in 26 patients with NMOSD before and after tocilizumab treatment by nine-color flow cytometry, as well as the expression of costimulatory and co-inhibitory molecules on B cells. Results showed that the frequency of CD27+IgD− switched memory B cells, CD27-IgD- double-negative B cells, and CD27highCD38high antibody-secreting cells was increased in patients with NMOSD. Tocilizumab treatment led to a significant shift of B cells to naïve B cells from memory B cells after 3 months. Three markers on B cells associated with T-cell activation (i.e., CD86 CD69, and HLA-DR) were downregulated after tocilizumab treatment. The frequencies of total Tfh and Tph cells were decreased, whereas that of follicular regulatory T cells tended to increase. Intrinsic increased PD-L1 and PD-L2 expression was characteristic of B cells in patients with NMOSD. Tocilizumab selectively restored PD-L1 on B-cell subsets. These results provided evidence that tocilizumab enhanced B- and T-cell homoeostasis by regulating B-cell differentiation and inhibiting lymphocyte activation in patients with NMOSD.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Huiming Zhang
- Department of Neurology, The Third People's Hospital of Datong, Datong, China
| | - Tian-Xiang Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Meng Yuan
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Chen Du
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Pei Zeng
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhenning Huang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dongmei Jia
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Guili Yang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Jing-Jin Center for Neuroinflammation, China National Clinical Research Center for Neurological Diseases, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Jing-Jin Center for Neuroinflammation, China National Clinical Research Center for Neurological Diseases, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Lopez JA, Denkova M, Ramanathan S, Dale RC, Brilot F. Pathogenesis of autoimmune demyelination: from multiple sclerosis to neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. Clin Transl Immunology 2021; 10:e1316. [PMID: 34336206 PMCID: PMC8312887 DOI: 10.1002/cti2.1316] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmunity plays a significant role in the pathogenesis of demyelination. Multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody‐associated disease (MOGAD) are now recognised as separate disease entities under the amalgam of human central nervous system demyelinating disorders. While these disorders share inherent similarities, investigations into their distinct clinical presentations and lesion pathologies have aided in differential diagnoses and understanding of disease pathogenesis. An interplay of various genetic and environmental factors contributes to each disease, many of which implicate an autoimmune response. The pivotal role of the adaptive immune system has been highlighted by the diagnostic autoantibodies in NMOSD and MOGAD, and the presence of autoreactive lymphocytes in MS lesions. While a number of autoantigens have been proposed in MS, recent emphasis on the contribution of B cells has shed new light on the well‐established understanding of T cell involvement in pathogenesis. This review aims to synthesise the clinical characteristics and pathological findings, discuss existing and emerging hypotheses regarding the aetiology of demyelination and evaluate recent pathogenicity studies involving T cells, B cells, and autoantibodies and their implications in human demyelination.
Collapse
Affiliation(s)
- Joseph A Lopez
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Martina Denkova
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Sydney Medical School Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Department of Neurology Concord Hospital Sydney NSW Australia
| | - Russell C Dale
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Sydney Medical School Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group Kids Neuroscience Centre Kids Research at the Children's Hospital at Westmead Sydney NSW Australia.,Specialty of Child and Adolescent Health Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia.,Brain and Mind Centre The University of Sydney Sydney NSW Australia
| |
Collapse
|
49
|
Cacciaguerra L, Tortorella P, Rocca MA, Filippi M. Targeting Neuromyelitis Optica Pathogenesis: Results from Randomized Controlled Trials of Biologics. Neurotherapeutics 2021; 18:1623-1636. [PMID: 33909234 PMCID: PMC8608970 DOI: 10.1007/s13311-021-01055-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/04/2023] Open
Abstract
Advances in neuromyelitis optica spectrum disorder pathogenesis have allowed the development of targeted drugs. These treatments act on core elements of the disease, including the pro-inflammatory IL-6 pathway (tocilizumab and satralizumab), B cells (rituximab and inebilizumab), and complement (eculizumab). According to recent phase II-III trials, biologics significantly reduced the risk of relapses in aquaporin-4-seropositive patients, whereas results were less striking in the small cohorts of aquaporin-4-seronegative patients. Most adverse events were mild to moderate, with systemic symptoms (headache, arthralgia) or infections (upper respiratory and urinary tracts) being most commonly reported.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
50
|
Reen Wang C, Hsu SM, Chen YC. Rheumatoid arthritis with aquaporin-4 antibody-positive neuromyelitis optica receiving rituximab therapy. Arch Rheumatol 2021; 37:153-155. [PMID: 35949868 PMCID: PMC9326371 DOI: 10.46497/archrheumatol.2022.8688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Chrong Reen Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ying-Chen Chen
- Department of Medical Imaging, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|