1
|
Lünemann JD. Moving beyond immunoglobulin therapy for CIDP with efgartigimod. Nat Rev Neurol 2025; 21:1-2. [PMID: 39609632 DOI: 10.1038/s41582-024-01045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Affiliation(s)
- Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University and University Hospital of Münster, Münster, Germany.
| |
Collapse
|
2
|
Du Y, Yan Q, Li C, Zhu W, Zhao C, Hao Y, Li L, Yao D, Zhou X, Li Y, Dang Y, Zhang R, Han L, Wang Y, Hou T, Li J, Li H, Jiang P, Wang P, Chen F, Zhu T, Liu J, Liu S, Gao L, Zhao Y, Zhang W. Efficacy and safety of combined low-dose rituximab regimen for chronic inflammatory demyelinating polyradiculoneuropathy. Ann Clin Transl Neurol 2024. [PMID: 39660535 DOI: 10.1002/acn3.52270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE To determine the efficacy and safety of combined low-dose rituximab with conventional therapy for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) treatment. METHODS Total 73 patients with CIDP were enrolled for the retrospective cohort study, and divided into conventional first-line therapy cohort (n = 40) and combined low-dose rituximab (100 mg per infusion) cohort (n = 33). The outcome measures include scores of I-RODS, mRS, INCAT, ONLS, TSS, and COMPASS 31 scale at baseline and regular four visits (4, 16, 28, and 52 weeks), as well as proportion of favorable response and outcome, corticosteroids dosage, and deterioration occurrence during follow-up. RESULTS Compared to conventional therapy cohort, combined rituximab cohort presented better improvements and higher proportion of favorable response in scales assessments at each visit, as well as significantly reduced corticosteroids dosage and deterioration occurrence during the follow-up. Analyses of subgroups showed better improvements in both typical CIDP and CIDP variants in combined rituximab cohort than those in conventional therapy cohort, but had no differences between each other. Early initiating combined rituximab regimen (<10 weeks) showed better improvements than delayed initiation (≥10 weeks) at the first three visits within 28 weeks, while had no difference in favorable prognoses at the last visit of 52 weeks after once reinfusion. No rituximab correlated serious adverse events were reported in our patients. INTERPRETATION Our simplified regimen of combined low-dose rituximab has been firstly demonstrated for the better efficacy and safety than conventional therapy in CIDP treatment.
Collapse
Affiliation(s)
- Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qi Yan
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Chuan Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Wenping Zhu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Chao Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yunfeng Hao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Lin Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Dan Yao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xuan Zhou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Ying Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yuting Dang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Rong Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Lin Han
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yuanyuan Wang
- Department of Internal Medicine, Qianxian Traditional Chinese Medicine Hospital, Xianyang, 713300, Shaanxi, China
| | - Tao Hou
- Department of Neurology, Fuping County Hospital, Weinan, 711700, Shaanxi, China
| | - Juan Li
- Department of Neurology, Lantian Country People's Hospital, Xi'an, 710500, Shaanxi, China
| | - Hailin Li
- Department of Neurology, Pingli County Hospital, Ankang, 725500, Shaanxi, China
| | - Panpan Jiang
- Department of Neurology, The Second Hospital of Weinan, Weinan, 711700, Shaanxi, China
| | - Pei Wang
- Department of Internal Medicine, Baishui County Hospital, Weinan, 715600, Shaanxi, China
| | - Fenying Chen
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Tingge Zhu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Juntong Liu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Shuyu Liu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Lan Gao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Yingjun Zhao
- Department of Neurology and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| |
Collapse
|
3
|
Ozdag Acarli AN, Tuzun E, Sanli E, Koral G, Akbayir E, Cakar A, Sirin NG, Soysal A, Aysal F, Durmus H, Parman Y, Yilmaz V. Disease activity in chronic inflammatory demyelinating polyneuropathy: association between circulating B-cell subsets, cytokine levels, and clinical outcomes. Clin Exp Immunol 2024; 215:65-78. [PMID: 37638717 PMCID: PMC10776240 DOI: 10.1093/cei/uxad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP), a common and treatable autoimmune neuropathy, is frequently misdiagnosed. The aim of this study is to evaluate the relationship between immunological markers and clinical outcome measures in a mixed cohort of patients with typical CIDP and CIDP variants at different disease stages. Twenty-three typical, 16 multifocal and five distal CIDP patients were included. Twenty-five sex and age-matched healthy controls and 12 patients with Charcot-Marie-Tooth type 1A (CMT1A) disease served as controls. Peripheral B-cell populations were analyzed by flow cytometry. IL6, IL10, TNFA mRNA and mir-21, mir-146a, and mir-155-5p expression levels were evaluated by real-time polymerase chain reaction in peripheral blood mononuclear cells (PBMC) and/or skin biopsy specimens. Results were then assessed for a possible association with clinical disability scores and intraepidermal nerve fiber densities (IENFD) in the distal leg. We detected a significant reduction in naive B cells (P ≤ 0.001), plasma cells (P ≤ 0.001) and regulatory B cells (P < 0.05), and an elevation in switched memory B cells (P ≤ 0.001) in CIDP compared to healthy controls. CMT1A and CIDP patients had comparable B-cell subset distribution. CIDP cases had significantly higher TNFA and IL10 gene expression levels in PBMC compared to healthy controls (P < 0.05 and P ≤ 0.01, respectively). IENFDs in the distal leg showed a moderate negative correlation with switched memory B-cell ratios (r = -0.51, P < 0.05) and a moderate positive correlation with plasma cell ratios (r = 0.46, P < 0.05). INCAT sum scores showed a moderate positive correlation with IL6 gene expression levels in PBMC (r = 0.54, P < 0.05). Altered B-cell homeostasis and IL10 and TNFA gene expression levels imply chronic antigen exposure and overactivity in the humoral immune system, and seem to be a common pathological pathway in both typical CIDP and CIDP variants.
Collapse
Affiliation(s)
- Ayse Nur Ozdag Acarli
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Sanli
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gizem Koral
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ece Akbayir
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arman Cakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nermin Gorkem Sirin
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Neurology, Bakirkoy Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Aysun Soysal
- Department of Neurology, Bakirkoy Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Fikret Aysal
- Department of Neurology, Bakirkoy Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Hacer Durmus
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Svačina MKR, Meißner A, Schweitzer F, Sprenger-Svačina A, Klein I, Wüstenberg H, Kohle F, Walter HL, Schroeter M, Lehmann HC. CIDP: Analysis of Immunomarkers During COVID-19 mRNA-Vaccination and IVIg-Immunomodulation: An Exploratory Study. J Neuroimmune Pharmacol 2023; 18:208-214. [PMID: 36929282 PMCID: PMC10018581 DOI: 10.1007/s11481-023-10058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/16/2023] [Indexed: 03/18/2023]
Abstract
Availability of COVID-19 mRNA vaccine for patients with chronic inflammatory demyelinating polyneuropathy (CIDP) treated with intravenous immunoglobulin (IVIg) raises the question of whether COVID-19 mRNA vaccine influences disease activity or IVIg-mediated immunomodulation in CIDP. In this exploratory study, blood samples of CIDP patients on IVIg treatment were longitudinally analyzed before and after vaccination with a COVID-19 mRNA vaccine. A total of 44 samples of eleven patients were characterized at four timepoints by ELISA and flow cytometry in terms of immunomarkers for disease activity and IVIg-immunomodulation. Apart from a significantly lower expression of CD32b on naïve B cells after vaccination, no significant alteration of immunomarkers for CIDP or IVIg-mediated immunomodulation was observed. Our exploratory study suggests that COVID-19 mRNA vaccine does not have a relevant impact on immune activity in CIDP. In addition, immunomodulatory effects of IVIg in CIDP are not altered by COVID-19 mRNA vaccine. This study was registered in the German clinical trial register (DRKS00025759). Overview over the study design. Blood samples of CIDP patients on recurrent IVIg treatment and vaccination with a COVID-19 mRNA vaccine were obtained at four timepoints for cytokine ELISA and flow cytometry, to assess key cytokines and cellular immunomarkers for disease activity and IVIg-immunomodulation in CIDP.
Collapse
Affiliation(s)
- Martin K R Svačina
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany
| | - Anika Meißner
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany
| | - Finja Schweitzer
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany
| | - Alina Sprenger-Svačina
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany
| | - Ines Klein
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany
| | - Hauke Wüstenberg
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany
| | - Felix Kohle
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany
| | - Helene L Walter
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany
| | - Helmar C Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Kerpener Straße 62, Cologne, 50937, Germany.
- Department of Neurology, Städtisches Klinikum Leverkusen, Leverkusen, Germany.
| |
Collapse
|
5
|
Spatola M, Chuquisana O, Jung W, Lopez JA, Wendel EM, Ramanathan S, Keller CW, Hahn T, Meinl E, Reindl M, Dale RC, Wiendl H, Lauffenburger DA, Rostásy K, Brilot F, Alter G, Lünemann JD. Humoral signatures of MOG-antibody-associated disease track with age and disease activity. Cell Rep Med 2023; 4:100913. [PMID: 36669487 PMCID: PMC9975090 DOI: 10.1016/j.xcrm.2022.100913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023]
Abstract
Myelin oligodendrocyte glycoprotein (MOG)-antibody (Ab)-associated disease (MOGAD) is an inflammatory demyelinating disease of the CNS. Although MOG is encephalitogenic in different mammalian species, the mechanisms by which human MOG-specific Abs contribute to MOGAD are poorly understood. Here, we use a systems-level approach combined with high-dimensional characterization of Ab-associated immune features to deeply profile humoral immune responses in 123 patients with MOGAD. We show that age is a major determinant for MOG-antibody-related immune signatures. Unsupervised clustering additionally identifies two dominant immunological endophenotypes of MOGAD. The pro-inflammatory endophenotype characterized by increased binding affinities for activating Fcγ receptors (FcγRs), capacity to activate innate immune cells, and decreased frequencies of galactosylated and sialylated immunoglobulin G (IgG) glycovariants is associated with clinically active disease. Our data support the concept that FcγR-mediated effector functions control the pathogenicity of MOG-specific IgG and suggest that FcγR-targeting therapies should be explored for their therapeutic potential in MOGAD.
Collapse
Affiliation(s)
- Marianna Spatola
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA.
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA; Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph A Lopez
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eva-Maria Wendel
- Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Concord Hospital, Sydney, NSW 2139, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152 Munich, Germany
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Russell C Dale
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Kevin Rostásy
- Department of Pediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, 45711 Datteln, Germany
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany.
| |
Collapse
|
6
|
Querol L, Lleixà C. Novel Immunological and Therapeutic Insights in Guillain-Barré Syndrome and CIDP. Neurotherapeutics 2021; 18:2222-2235. [PMID: 34549385 PMCID: PMC8455117 DOI: 10.1007/s13311-021-01117-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Inflammatory neuropathies are a heterogeneous group of rare diseases of the peripheral nervous system that include acute and chronic diseases, such as Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). The etiology and pathophysiological mechanisms of inflammatory neuropathies are only partly known, but are considered autoimmune disorders in which an aberrant immune response, including cellular and humoral components, is directed towards components of the peripheral nerve causing demyelination and axonal damage. Therapy of these disorders includes broad-spectrum immunomodulatory and immunosuppressive treatments, such as intravenous immunoglobulin, corticosteroids, or plasma exchange. However, a significant proportion of patients do not respond to any of these therapies, and treatment selection is not optimized according to disease pathophysiology. Therefore, research on disease pathophysiology aiming to reveal clinically and functionally relevant disease mechanisms and the development of new treatment approaches are needed to optimize disease outcomes in CIDP and GBS. This topical review describes immunological progress that may help guide therapeutic strategies in the future in these two disorders.
Collapse
Affiliation(s)
- Luis Querol
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Mas Casanovas 90, 08041, Barcelona, Spain.
- Centro Para La Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain.
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Mas Casanovas 90, 08041, Barcelona, Spain
| |
Collapse
|
7
|
Hagen KM, Ousman SS. The immune response and aging in chronic inflammatory demyelinating polyradiculoneuropathy. J Neuroinflammation 2021; 18:78. [PMID: 33752693 PMCID: PMC7983397 DOI: 10.1186/s12974-021-02113-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) consists of various autoimmune subtypes in which the peripheral nervous system (PNS) is attacked. CIDP can follow a relapsing-remitting or progressive course where the resultant demyelination caused by immune cells (e.g., T cells, macrophages) and antibodies can lead to disability in patients. Importantly, the age of CIDP patients has a role in their symptomology and specific variants have been associated with differing ages of onset. Furthermore, older patients have a decreased frequency of functional recovery after CIDP insult. This may be related to perturbations in immune cell populations that could exacerbate the disease with increasing age. In the present review, the immune profile of typical CIDP will be discussed followed by inferences into the potential role of relevant aging immune cell populations. Atypical variants will also be briefly reviewed followed by an examination of the available studies on the immunology underlying them.
Collapse
Affiliation(s)
- Kathleen M Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
8
|
Koike H, Katsuno M. Pathophysiology of Chronic Inflammatory Demyelinating Polyneuropathy: Insights into Classification and Therapeutic Strategy. Neurol Ther 2020; 9:213-227. [PMID: 32410146 PMCID: PMC7606443 DOI: 10.1007/s40120-020-00190-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 01/11/2023] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is classically defined as polyneuropathy with symmetric involvement of the proximal and distal portions of the limbs. In addition to this "typical CIDP", the currently prevailing diagnostic criteria proposed by the European Federation of Neurological Societies and Peripheral Nerve Society (EFNS/PNS) define "atypical CIDP" as encompassing the multifocal acquired demyelinating sensory and motor (MADSAM), distal acquired demyelinating symmetric (DADS), pure sensory, pure motor, and focal subtypes. Although macrophage-induced demyelination is considered pivotal to the pathogenesis of CIDP, recent studies have indicated the presence of distinctive mechanisms initiated by autoantibodies against paranodal junction proteins, such as neurofascin 155 and contactin 1. These findings led to the emergence of the concept of nodopathy or paranodopathy. Patients with these antibodies tend to show clinical features compatible with typical CIDP or DADS, particularly the latter. In contrast, classical macrophage-induced demyelination is commonly found in some patients in each major subtype, including the typical CIDP, DADS, MADSAM, and pure sensory subtypes. Differences in the distribution of lesions and the repair processes underlying demyelination by Schwann cells may determine the differences among subtypes. In particular, the preferential involvement of proximal and distal nerve segments has been suggested to occur in typical CIDP, whereas the involvement of the middle nerve segments is conspicuous in MADSAM. These findings suggest that humoral rather than cellular immunity predominates in the former because nerve roots and neuromuscular junctions lack blood-nerve barriers. Treatment for CIDP consists of intravenous immunoglobulin (IVIg) therapy, steroids, and plasma exchange, either alone or in combination. However, patients with anti-neurofascin 155 and contactin 1 antibodies are refractory to IVIg. It has been suggested that rituximab, a monoclonal antibody to CD20, could have efficacy in these patients. Further studies are needed to validate the CIDP subtypes defined by the EFNS/PNS from the viewpoint of pathogenesis and establish therapeutic strategies based on the pathophysiologies specific to each subtype.
Collapse
Affiliation(s)
- Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Sato T, Omoto S, Onda A, Sakai K, Mitsumura H, Iguchi Y. [Intravenous immunoglobulin-induced thrombocytopenia in patient with chronic inflammatory demyelinating polyneuropathy]. Rinsho Shinkeigaku 2020; 60:57-59. [PMID: 31852869 DOI: 10.5692/clinicalneurol.cn-001331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 69-year-old man was admitted to our hospital because of dysesthesia in right palm and left upper limb, gait disturbance, and muscle weakness in both lower limbs. At the same time of neurological impairment appeared, he developed pemphigoid. Lumber MRI showed swelling of cauda equina nerve root. We diagnosed as chronic inflammatory demyelinating polyneuropathy based on an electrophysiological examination, and 2 courses of intravenous immunoglobulin therapy (IVIG) were initiated. After the treatments, symptoms improved immediately. However, thrombocytopenia was seen after each treatment which began on the second day of treatment start, reaching the lowest point from about 10 to 14 days, and improved naturally from 10 to 15 days after the end of IVIG. Difficulty in hemostasis was seen during dialysis due to thrombocytopenia. As a cause of thrombocytopenia, formation of IgG-platelet complexes could be considered, and the presence of multiple inflammatory diseases which activated Fcγ receptors play key roles could be a risk for IVIG related thrombocytopenia.
Collapse
Affiliation(s)
- Takeo Sato
- Department of Neurology, The Jikei University School of Medicine
| | - Shusaku Omoto
- Department of Neurology, The Jikei University School of Medicine
| | - Asako Onda
- Department of Neurology, The Jikei University School of Medicine
| | - Kenichiro Sakai
- Department of Neurology, The Jikei University School of Medicine
| | | | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine
| |
Collapse
|
10
|
Bunschoten C, Jacobs BC, Van den Bergh PYK, Cornblath DR, van Doorn PA. Progress in diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy. Lancet Neurol 2019; 18:784-794. [DOI: 10.1016/s1474-4422(19)30144-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/05/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
|
11
|
Differences of the Structure of Immune Regulatory Cell Populations between Cellular Material from Sonographically Detected Focal Thyroid Lesions and Peripheral Blood in Humans. Int J Mol Sci 2019; 20:ijms20040918. [PMID: 30791564 PMCID: PMC6412456 DOI: 10.3390/ijms20040918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/11/2019] [Accepted: 02/16/2019] [Indexed: 01/30/2023] Open
Abstract
Focal thyroid lesions are common ultrasound findings with the estimated prevalence up to 67% of the population. They form characteristically enveloped regions with individual encapsulated microenvironment that may involve the specific distribution of immune system compounds—especially antigen presenting cells (APC). We analyzed and compared the most potent APC—plasmacytoid and conventional dendritic cells (DCs) subpopulations and three monocyte subpopulations as well as other immune cells—in peripheral blood and local blood of thyroid gland obtained parallelly in patients with focal thyroid lesions using flow cytometry. The analysis revealed significant differences in the distribution of main subsets of assessed cells between peripheral blood and biopsy material. The results support the existence of local, organ-specific immune reaction control networks within thyroid nodules.
Collapse
|
12
|
Keller CW, Quast I, Dalakas MC, Lünemann JD. IVIG efficacy in CIDP patients is not associated with terminal complement inhibition. J Neuroimmunol 2019; 330:23-27. [PMID: 30772754 DOI: 10.1016/j.jneuroim.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/17/2023]
Abstract
Patients with acute and chronic inflammatory demyelinating neuropathies exhibit elevated serum and cerebrospinal fluid (CSF) levels of terminal complement activation products and therapeutic inhibition of complement activation is currently tested for its safety and efficacy in patients with Guillain-Barré syndrome (GBS). Here, we determined serum levels of the complement activation products C3a, C5a and the soluble terminal complement complex (sTCC) in 39 individuals with chronic inflammatory demyelinating polyneuropathy (CIDP) who participated in one of the largest ever conducted clinical trial in patients with CIDP (ICE trial) and received Intravenous Immunoglobulin (IVIG) or placebo (albumin) in 3 week intervals for up to 24 weeks. In placebo-treated patients with spontaneous disease remission, serum sTCC levels moderately decreased over time. Levels of complement activation products were, however, not modulated by IVIG and remained unchanged in patients with a beneficial response to IVIG therapy as compared to those with steady or worsened disease. These results suggest that the therapeutic efficacy of IVIG in CIDP is based on immunomodulatory mechanisms different from complement inhibition. Terminal complement activation merits further investigation as a surrogate marker for disease progression and therapeutic target in patients with CIDP.
Collapse
Affiliation(s)
- Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany; Institute of Experimental Immunology, Department of Neuroinflammation, University of Zurich, Zürich 8057, Switzerland
| | - Isaak Quast
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, USA; Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany; Institute of Experimental Immunology, Department of Neuroinflammation, University of Zurich, Zürich 8057, Switzerland.
| |
Collapse
|
13
|
Quast I, Peschke B, Lünemann JD. Regulation of antibody effector functions through IgG Fc N-glycosylation. Cell Mol Life Sci 2017; 74:837-847. [PMID: 27639381 PMCID: PMC11107549 DOI: 10.1007/s00018-016-2366-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 02/03/2023]
Abstract
Immunoglobulin gamma (IgG) antibodies are key effector proteins of the immune system. They recognize antigens with high specificity and are indispensable for immunological memory following pathogen exposure or vaccination. The constant, crystallizable fragment (Fc) of IgG molecules mediates antibody effector functions such as complement-dependent cytotoxicity, antibody-mediated cellular cytotoxicity, and antibody-dependent cell-mediated phagocytosis. These functions are regulated by a single N-linked, biantennary glycan of the heavy chain, which resides just below the hinge region, and the presence of specific sugar moieties on the glycan has profound implications on IgG effector functions. Emerging knowledge of how Fc glycans contribute to IgG structure and functions has opened new avenues for the therapeutic exploitation of defined antibody glycoforms in the treatment of cancer and autoimmune diseases. Here, we review recent advances in understanding proinflammatory IgG effector functions and their regulation by Fc glycans.
Collapse
Affiliation(s)
- Isaak Quast
- Laboratory of Neuroinflammation, Department of Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Benjamin Peschke
- Laboratory of Neuroinflammation, Department of Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jan D Lünemann
- Laboratory of Neuroinflammation, Department of Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
14
|
What is new in 2015 in dysimmune neuropathies? Rev Neurol (Paris) 2016; 172:779-784. [PMID: 27866728 DOI: 10.1016/j.neurol.2016.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 12/30/2022]
Abstract
This review discusses and summarizes the concept of nodopathies, the diagnostic features, investigations, pathophysiology, and treatment options of chronic inflammatory demyelinating polyradiculoneuropathy, and gives updates on other inflammatory and dysimmune neuropathies such as Guillain-Barré syndrome, sensory neuronopathies, small-fiber-predominant ganglionitis, POEMS syndrome, neuropathies associated with IgM monoclonal gammopathy and multifocal motor neuropathy. This field of research has contributed to the antigenic characterization of the peripheral motor and sensory functional systems, as well as helping to define immune neuropathic syndromes with widely different clinical presentation, prognosis and response to therapy.
Collapse
|
15
|
Lünemann JD, Quast I, Dalakas MC. Efficacy of Intravenous Immunoglobulin in Neurological Diseases. Neurotherapeutics 2016; 13:34-46. [PMID: 26400261 PMCID: PMC4720677 DOI: 10.1007/s13311-015-0391-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Owing to its anti-inflammatory efficacy in various autoimmune disease conditions, intravenous immunoglobulin (IVIG)-pooled IgG obtained from the plasma of several thousands individuals-has been used for nearly three decades and is proving to be efficient in a growing number of neurological diseases. IVIG therapy has been firmly established for the treatment of Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, and multifocal motor neuropathy, either as first-line therapy or adjunctive treatment. IVIG is also recommended as rescue therapy in patients with worsening myasthenia gravis and is beneficial as a second-line therapy for dermatomyositis and stiff-person syndrome. Subcutaneous rather than intravenous administration of IgG is gaining momentum because of its effectiveness in patients with primary immunodeficiency and the ease with which it can be administered independently from hospital-based infusions. The demand for IVIG therapy is growing, resulting in rising costs and supply shortages. Strategies to replace IVIG with recombinant products have been developed based on proposed mechanisms that confer the anti-inflammatory activity of IVIG, but their efficacy has not been tested in clinical trials. This review covers new developments in the immunobiology and clinical applications of IVIG in neurological diseases.
Collapse
Affiliation(s)
- Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland.
- Department of Neurology, University Hospital of Basel, Basel, Switzerland.
| | - Isaak Quast
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - Marinos C Dalakas
- Neuroimmunology Unit, University of Athens Medical School, Athens, Greece
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|