1
|
Poonja S, Rattanathamsakul N, Chen JJ. The atypical faces of optic neuritis: neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease. Curr Opin Neurol 2025; 38:96-104. [PMID: 39564614 DOI: 10.1097/wco.0000000000001335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW The purpose of this article is to provide a review of neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), with a focus on what renders optic neuritis "atypical" in these two conditions. Clinical features, diagnostic criteria, and epidemiology are outlined. Acute treatments for optic neuritis, as well as immunotherapy for NMOSD and MOGAD are discussed. RECENT FINDINGS Updates in NMOSD and MOGAD are highlighted, with an emphasis on novel work including the new 2023 MOGAD diagnostic criteria, our evolving understanding on the epidemiology of these conditions, and recently FDA-approved NMOSD treatments. Pipeline therapies are also discussed. SUMMARY A thorough history and examination, supported by ancillary testing, continues to be the mainstay of optic neuritis diagnosis. Stratifying typical versus atypical optic neuritis is paramount. Within the atypical category, NMOSD and MOGAD are important considerations. Clues can point towards these diagnoses and guide steps for treatment, which is increasingly becoming targeted to individual diseases, as the pathophysiology is different for these disorders.
Collapse
Affiliation(s)
- Sabrina Poonja
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | - Natthapon Rattanathamsakul
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - John J Chen
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
- Department of Neurology
- Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Motovilov K, Maguire C, Briggs D, Melamed E. Altered Cytokine Profile in Clinically Suspected Seronegative Autoimmune Associated Epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24310337. [PMID: 39314975 PMCID: PMC11419235 DOI: 10.1101/2024.09.13.24310337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background and Objectives Autoimmune-associated epilepsy (AAE), a condition which responds favorably to immune therapies but not traditional anti-seizure interventions, is emerging as a significant contributor to cases of drug-resistant epilepsy. Current standards for the diagnosis of AAE rely on screening for known neuronal autoantibodies in patient serum or cerebrospinal fluid. However, this diagnostic method fails to capture a subset of drug-resistant epilepsy patients with suspected AAE who respond to immunotherapy yet remain seronegative (snAAE) for known autoantibodies. Methods To identify potential biomarkers for snAAE, we evaluated the most comprehensive panel of assayed cytokines and autoantibodies to date, comparing patients with snAAE, anti-seizure medication (ASM) responsive epilepsy, and patients with other neuroinflammatory diseases. Results We found a unique signature of 14 cytokines significantly elevated in snAAE patients including: GM-CSF, MCP-2/CCL8, MIP-1a/CCL3, IL-1RA, IL-6, IL-8, IL-9, IL-10, IL-15, IL-20, VEGF-A, TNF-b, LIF, and TSLP. Based on prior literature, we highlight IL-6, IL-8, IL-10, IL-13, VEGF-A, and TNF-b as potentially actionable cytokine biomarkers for snAAE, which could be of diagnostic utility in clinical evaluations of snAAE patients. Autoantibody-ome screening failed to identify autoantibodies targeting neuronal channel proteins in snAAE patients. Interestingly, ASM-responsive epilepsy patients displayed elevations in the proportion of autoantibodies targeting brain plasma membrane proteins, possibly pointing to the presence of immune hyperactivity/dysfunction despite well-controlled seizure activity and suggesting ASM-responsive patients may experience disease progression independent of seizure activity (PISA). Discussion Overall, our findings suggest that simply expanding existing autoantibody screens may not sufficiently enhance diagnostic power for snAAE. Instead, we propose that cytokine analysis may serve as a promising diagnostic avenue for identifying immune dysregulation in AAE patients and enabling opportunities for trials of immunotherapies.
Collapse
Affiliation(s)
| | - Cole Maguire
- The University of Texas at Austin, Department of Neurology
| | - Deborah Briggs
- The University of Texas at Austin, Department of Neurology
| | - Esther Melamed
- The University of Texas at Austin, Department of Neurology
| |
Collapse
|
3
|
Stefan KA, Ciotti JR. MOG Antibody Disease: Nuances in Presentation, Diagnosis, and Management. Curr Neurol Neurosci Rep 2024; 24:219-232. [PMID: 38805147 DOI: 10.1007/s11910-024-01344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW Myelin oligodendrocyte glycoprotein antibody disease (MOGAD) is a distinct neuroinflammatory condition characterized by attacks of optic neuritis, transverse myelitis, and other demyelinating events. Though it can mimic multiple sclerosis and neuromyelitis optica spectrum disorder, distinct clinical and radiologic features which can discriminate these conditions are now recognized. This review highlights recent advances in our understanding of clinical manifestations, diagnosis, and treatment of MOGAD. RECENT FINDINGS Studies have identified subtleties of common clinical attacks and identified more rare phenotypes, including cerebral cortical encephalitis, which have broadened our understanding of the clinicoradiologic spectrum of MOGAD and culminated in the recent publication of proposed diagnostic criteria with a familiar construction to those diagnosing other neuroinflammatory conditions. These criteria, in combination with advances in antibody testing, should simultaneously lead to wider recognition and reduced incidence of misdiagnosis. In addition, recent observational studies have raised new questions about when to treat MOGAD chronically, and with which agent. MOGAD pathophysiology informs some of the relatively unique clinical and radiologic features which have come to define this condition, and similarly has implications for diagnosis and management. Further prospective studies and the first clinical trials of therapeutic options will answer several remaining questions about the peculiarities of this condition.
Collapse
Affiliation(s)
- Kelsey A Stefan
- Department of Neurology, University of South Florida, 13330 USF Laurel Drive, Tampa, FL, 33612, USA
| | - John R Ciotti
- Department of Neurology, University of South Florida, 13330 USF Laurel Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Laviers H, Petzold A, Braithwaite T. How far should I manage acute optic neuritis as an ophthalmologist? A United Kingdom perspective. Eye (Lond) 2024; 38:2238-2245. [PMID: 38867071 PMCID: PMC11306244 DOI: 10.1038/s41433-024-03164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Optic neuritis (ON) is an inflammation of or around the optic nerve, frequently caused by infectious or immune-mediated inflammatory disorders. In the UK, its strongest association is with Multiple Sclerosis (MS), though the combined prevalence of other associated infectious and immune-mediated inflammatory diseases (I-IMID) is similar to that of MS-ON. Prompt identification and understanding of ON's underlying cause informs tailored management and prognosis. Several IMIDs linked to ON, such as aquaporin-4 antibody-associated optic neuritis (AQP4-ON), myelin oligodendrocyte glycoprotein antibody-associated optic neuritis (MOG-ON), and neuro-sarcoidosis, show remarkable response to corticosteroid treatment. Therefore, urgent investigation and treatment are crucial in cases 'atypical' for MS-ON. Following the 1992 Optic Neuritis Treatment Trial, clinical practice has evolved, with short-course high-dose corticosteroids considered safe and effective for most people. Timely recognition of patients who could benefit is critical to avoid irreversible vision loss. This review provides a practical guide and a summary of evidence on the investigation and management of acute optic neuritis. It reflects the knowledge and limitations of current evidence, framed through the neuro-ophthalmic perspective of clinical practice at multiple UK academic centres.
Collapse
Affiliation(s)
- Heidi Laviers
- The Medical Eye Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Department of Ophthalmology, King's College Hospital, London, UK
| | - Axel Petzold
- Neuro-ophthalmology Service, Moorfields Eye Hospital, London, UK
- Neuro-ophthalmology Service, The National Hospital for Neurology and Neurosurgery, London, UK
- Amsterdam University Medical Center (AUMC), Amsterdam, Netherlands
| | - Tasanee Braithwaite
- The Medical Eye Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- The School of Immunology and Microbial Science and The School of Life Course and Population Sciences, King's College London, London, UK.
| |
Collapse
|
5
|
Preziosa P, Amato MP, Battistini L, Capobianco M, Centonze D, Cocco E, Conte A, Gasperini C, Gastaldi M, Tortorella C, Filippi M. Moving towards a new era for the treatment of neuromyelitis optica spectrum disorders. J Neurol 2024; 271:3879-3896. [PMID: 38771385 DOI: 10.1007/s00415-024-12426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) include a rare group of autoimmune conditions that primarily affect the central nervous system. They are characterized by inflammation and damage to the optic nerves, brain and spinal cord, leading to severe vision impairment, locomotor disability and sphynteric disturbances. In the majority of cases, NMOSD arises due to specific serum immunoglobulin G (IgG) autoantibodies targeting aquaporin 4 (AQP4-IgG), which is the most prevalent water-channel protein of the central nervous system. Early diagnosis and treatment are crucial to manage symptoms and prevent long-term disability in NMOSD patients. NMOSD were previously associated with a poor prognosis. However, recently, a number of randomized controlled trials have demonstrated that biological therapies acting on key elements of NMOSD pathogenesis, such as B cells, interleukin-6 (IL-6) pathway, and complement, have impressive efficacy in preventing the occurrence of clinical relapses. The approval of the initial drugs marks a revolutionary advancement in the treatment of NMOSD patients, significantly transforming therapeutic options and positively impacting their prognosis. In this review, we will provide an updated overview of the key immunopathological, clinical, laboratory, and neuroimaging aspects of NMOSD. Additionally, we will critically examine the latest advancements in NMOSD treatment approaches. Lastly, we will discuss key aspects regarding optimization of treatment strategies and their monitoring.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Pia Amato
- Department Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonella Conte
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Claudio Gasperini
- MS Center, Department of Neuroscience, San Camillo Forlanini Hospital, Rome, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Carla Tortorella
- MS Center, Department of Neuroscience, San Camillo Forlanini Hospital, Rome, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Maaloul M, Mejdoub S, Sakka S, Hachicha H, Dammak M, Koubaa F, Mhiri C, Masmoudi H, Feki S. Infrequent patterns in cerebrospinal fluid isofocusing test: Clinical significance and contribution of IgG index and Reiber diagram to their interpretation. Mult Scler Relat Disord 2024; 84:105509. [PMID: 38422634 DOI: 10.1016/j.msard.2024.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
Cerebrospinal fluid (CSF) isoelectrofocusing (IEF) is considered as the gold standard for detecting an intrathecal synthesis of IgG, which is a hallmark of multiple sclerosis (MS). This corresponds to the presence of CSF-restricted IgG oligoclonal bands (OCB) (typically type 2 pattern). Moreover, this technique can also detect a systemic immune reaction with passive transfer of IgG (type 3 and 4 patterns) for which the clinical relevance is less understood. The aim of our study was to determine the frequency and disease associations of IEF type 3 and 4 patterns and to investigate the potential usefulness of including quantitative data (IgG index and Reiber Diagram) in interpreting such IEF profiles. Among 544 patients who underwent CSF IEF (Hydragel CSF isofocusing kit, Sebia®, France) in our Laboratory during a six-year-period, those who presented type 3 or 4 patterns were selected. Clinical data and results of other immunological tests were analyzed for 27 patients followed in the Neurological Department. Frequencies of type 3 and type 4 patterns were relatively low (2.3 % and 3.4 % respectively). Among patients with type 3 pattern included in our study (n = 10), 5 were diagnosed with MS. For the 5 other patients, the diagnosis was a clinically isolated syndrome (CIS) (2 cases), a probable auto-immune encephalitis (2 cases) and a possible genetic neurodegenerative disease (1 case). MS patients had an IgG index >0.7 and fell into area 4 of Reiber diagram while non-MS patients had an IgG index <0.7 and fell into area 1, except the last case. Regarding type 4 pattern (n = 17), the diagnoses were as follows: MS (3), CIS (4), Neuromyelitis optica spectrum disorders with positive anti-AQP4 antibodies (3) and anti-NMDAR autoimmune encephalitis (1). The remaining cases had central nervous system impairment related to vascular, metabolic or tumoral etiologies (3) or peripheral nervous system impairment (3). In this group (type 4 pattern), IgG index was <0.7 in 15/17 cases. Interpretation using Reiber diagram showed an abnormal blood-brain barrier for 8/17 patients. Type 3 and 4 IEF patterns are infrequently observed in routine neurology practice. It is important for the diagnostic laboratory professional as well as for the neurologist to understand their clinical relevance. Our findings highlight the contribution of quantitative evaluation of CSF (IgG index, Reiber diagram) for the interpretation of such situations. Despite the small size of our study population, our results emphasize the importance of reporting the exact type of IEF pattern and not only the positivity or not of OCB.
Collapse
Affiliation(s)
- Mouna Maaloul
- Immunology Laboratory, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Sabrina Mejdoub
- Immunology Laboratory, Habib Bourguiba University Hospital, University of Sfax, Tunisia.
| | - Salma Sakka
- Neurology Department, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Hend Hachicha
- Immunology Laboratory, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Mariem Dammak
- Neurology Department, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Faten Koubaa
- Immunology Laboratory, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Chokri Mhiri
- Neurology Department, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Hatem Masmoudi
- Immunology Laboratory, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Sawsan Feki
- Immunology Laboratory, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| |
Collapse
|
7
|
Gilligan M, McGuigan C, McKeon A. Autoimmune central nervous system disorders: Antibody testing and its clinical utility. Clin Biochem 2024; 126:110746. [PMID: 38462203 PMCID: PMC11016295 DOI: 10.1016/j.clinbiochem.2024.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
A rapidly expanding repertoire of neural antibody biomarkers exists for autoimmune central nervous system (CNS) disorders. Following clinical recognition of an autoimmune CNS disorder, the detection of a neural antibody facilitates diagnosis and informs prognosis and management. This review considers the phenotypes, diagnostic assay methodologies, and clinical utility of neural antibodies in autoimmune CNS disorders. Autoimmune CNS disorders may present with a diverse range of clinical features. Clinical phenotype should inform the neural antibodies selected for testing via the use of phenotype-specific panels. Both serum and cerebrospinal fluid (CSF) are preferred in the vast majority of cases but for some analytes either CSF (e.g. N-methyl-D-aspartate receptor [NMDA-R] IgG) or serum (e.g. aquaporin-4 [AQP4] IgG) specimens may be preferred. Screening using 2 methods is recommended for most analytes, particularly paraneoplastic antibodies. We utilize murine tissue-based indirect immunofluorescence assay (TIFA) with subsequent confirmatory protein-specific testing. The cellular location of the target antigen informs choice of confirmatory diagnostic assay (e.g. blot for intracellular antigens such as Hu; cell-based assay for cell surface targets such as leucine-rich glioma inactivated 1 [LGI1]). Titers of positive results have limited diagnostic utility with the exception of glutamic acid decarboxylase (GAD) 65 IgG autoimmunity, which is associated with neurological disease at higher values. While novel antibodies are typically discovered using established techniques such as TIFA and immunoprecipitation-mass spectrometry, more recent high-throughput molecular technologies (such as protein microarray and phage-display immunoprecipitation sequencing) may expedite the process of antibody discovery. Individual neural antibodies inform the clinician regarding the clinical associations, oncological risk stratification and tumor histology, the likely prognosis, and immunotherapy choice. In the era of neural antibody biomarkers for autoimmune CNS disorders, access to appropriate laboratory assays for neural antibodies is of critical importance in the diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Michael Gilligan
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | | | - Andrew McKeon
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Wang X, Ji F, Jia L. Chimeric AQP4-based immunosorbent for highly-specific removal of AQP4-IgG from blood. J Chromatogr A 2024; 1717:464701. [PMID: 38310704 DOI: 10.1016/j.chroma.2024.464701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Anti-aquaporin-4 autoantibodies (AQP4-IgG) are implicated in the pathogenesis of neuromyelitis optica spectrum disorders (NMOSD), and their removal from the blood circulation is considered to be an effective method for acute treatment. An ideal extracorporeal AQP4-IgG removal system should have high specificity, which means that it can selectively remove AQP4-IgG without affecting normal immunoglobulins. However, the conventional tryptophan immobilized column lacks sufficient specificity and cannot achieve this goal. In this study, we successfully prepared a fusion protein chimeric AQP4, which consists of the complete antigenic epitopes of human AQP4 and the constant region of scaffold protein DARPin. Chimeric AQP4 was expressed and purified from Escherichia coli, and then immobilized on agarose gel as a ligand for selective capture of AQP4-IgG immunosorbent. The prepared immunosorbent had a theoretical maximum adsorption capacity of 20.48 mg/g gel estimated by Langmuir isotherm. In vitro plasma perfusion tests demonstrated that the chimeric AQP4 coupled adsorbent had remarkable adsorption performance, and could eliminate more than 85 % of AQP4-IgG under the gel-to-plasma ratio of 1:50. Moreover, it exhibited high specificity because other human plasma proteins were not adsorbed in the dynamic adsorption experiment. These results suggest that the chimeric AQP4 coupled immunosorbent can provide a new approach for specific immunoadsorption (IA) treatment of NMOSD.
Collapse
Affiliation(s)
- Xiaofei Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China; Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fangling Ji
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China; Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China.
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China; Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China.
| |
Collapse
|
9
|
Cacciaguerra L, Flanagan EP. Updates in NMOSD and MOGAD Diagnosis and Treatment: A Tale of Two Central Nervous System Autoimmune Inflammatory Disorders. Neurol Clin 2024; 42:77-114. [PMID: 37980124 PMCID: PMC10658081 DOI: 10.1016/j.ncl.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Aquaporin-4-IgG positive neuromyelitis optica spectrum disorder (AQP4+NMOSD) and myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are antibody-associated diseases targeting astrocytes and oligodendrocytes, respectively. Their recognition as distinct entities has led to each having its own diagnostic criteria that require a combination of clinical, serologic, and MRI features. The therapeutic approach to acute attacks in AQP4+NMOSD and MOGAD is similar. There is now class 1 evidence to support attack-prevention medications for AQP4+NMOSD. MOGAD lacks proven treatments although clinical trials are now underway. In this review, we will outline similarities and differences between AQP4+NMOSD and MOGAD in terms of diagnosis and treatment.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Department of Neurology, Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Levy M. Immune-Mediated Myelopathies. Continuum (Minneap Minn) 2024; 30:180-198. [PMID: 38330478 PMCID: PMC10868882 DOI: 10.1212/con.0000000000001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
OBJECTIVE Immune-mediated myelopathies are conditions in which the immune system attacks the spinal cord. This article describes the distinguishing characteristics of immune-mediated myelopathies and treatment strategies for patients affected by these disorders. LATEST DEVELOPMENTS New biomarkers, such as aquaporin 4 and myelin oligodendrocyte glycoprotein antibodies, in the blood and spinal fluid have led to the identification of antigen-specific immune-mediated myelopathies and approved therapies to prevent disease progression. ESSENTIAL POINTS The first step in the diagnosis of an immune-mediated myelopathy is confirming that the immune system is the cause of the attack by excluding non-immune-mediated causes. The second step is to narrow the differential diagnosis based on objective biomarkers such as serology and MRI patterns. The third step is to treat the specific immune-mediated myelopathy by using evidence-based medicine.
Collapse
|
11
|
Williams T, John N, Doshi A, Chataway J. Adult inflammatory leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:399-430. [PMID: 39322392 DOI: 10.1016/b978-0-323-99209-1.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Inflammatory white matter disorders may commonly mimic genetic leukoencephalopathies. These include atypical presentations of common conditions, such as multiple sclerosis, together with rare inflammatory disorders. A structured approach to such cases is essential, together with judicious use of the many available diagnostic biomarkers. The potential for such conditions to respond to immunotherapy emphasizes the importance of an accurate and prompt diagnosis in improving patient outcomes.
Collapse
Affiliation(s)
- Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.
| | - Nevin John
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Anisha Doshi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, United Kingdom
| |
Collapse
|
12
|
Budhram A, Flanagan EP. Optimizing the diagnostic performance of neural antibody testing for paraneoplastic and autoimmune encephalitis in clinical practice. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:365-382. [PMID: 38494290 DOI: 10.1016/b978-0-12-823912-4.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The detection of neural antibodies in patients with paraneoplastic and autoimmune encephalitis has majorly advanced the diagnosis and management of neural antibody-associated diseases. Although testing for these antibodies has historically been restricted to specialized centers, assay commercialization has made this testing available to clinical chemistry laboratories worldwide. This improved test accessibility has led to reduced turnaround time and expedited diagnosis, which are beneficial to patient care. However, as the utilization of these assays has increased, so too has the need to evaluate how they perform in the clinical setting. In this chapter, we discuss assays for neural antibody detection that are in routine use, draw attention to their limitations and provide strategies to help clinicians and laboratorians overcome them, all with the aim of optimizing neural antibody testing for paraneoplastic and autoimmune encephalitis in clinical practice.
Collapse
Affiliation(s)
- Adrian Budhram
- Department of Clinical Neurological Sciences, Western University, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London Health Sciences Centre, London, ON, Canada.
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Tisavipat N, Juan HY, Chen JJ. Monoclonal antibody therapies for aquaporin-4-immunoglobulin G-positive neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease. Saudi J Ophthalmol 2024; 38:2-12. [PMID: 38628414 PMCID: PMC11017007 DOI: 10.4103/sjopt.sjopt_102_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/20/2023] [Indexed: 04/19/2024] Open
Abstract
Monoclonal antibody therapies mark the new era of targeted treatment for relapse prevention in aquaporin-4 (AQP4)-immunoglobulin G (IgG)-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD). For over a decade, rituximab, an anti-CD20 B-cell-depleting agent, had been the most effectiveness treatment for AQP4-IgG+NMOSD. Tocilizumab, an anti-interleukin-6 receptor, was also observed to be effective. In 2019, several randomized, placebo-controlled trials were completed that demonstrated the remarkable efficacy of eculizumab (anti-C5 complement inhibitor), inebilizumab (anti-CD19 B-cell-depleting agent), and satralizumab (anti-interleukin-6 receptor), leading to the Food and Drug Administration (FDA) approval of specific treatments for AQP4-IgG+NMOSD for the first time. Most recently, ravulizumab (anti-C5 complement inhibitor) was also shown to be highly efficacious in an open-label, external-controlled trial. Although only some patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) warrant immunotherapy, there is currently no FDA-approved treatment for relapse prevention in MOGAD. Observational studies showed that tocilizumab was associated with a decrease in relapses, whereas rituximab seemed to have less robust effectiveness in MOGAD compared to AQP4-IgG+NMOSD. Herein, we review the evidence on the efficacy and safety of each monoclonal antibody therapy used in AQP4-IgG+NMOSD and MOGAD, including special considerations in children and women of childbearing potential.
Collapse
Affiliation(s)
| | - Hui Y. Juan
- Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - John J. Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
14
|
Abdel-Mannan O, Hacohen Y. Pediatric inflammatory leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:369-398. [PMID: 39322390 DOI: 10.1016/b978-0-323-99209-1.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Acquired demyelinating syndromes (ADS) represent acute neurologic illnesses characterized by deficits persisting for at least 24hours and involving the optic nerve, brain, or spinal cord, associated with regional areas of increased signal on T2-weighted images. In children, ADS may occur as a monophasic illness or as a relapsing condition, such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Almost all young people with MS have a relapsing-remitting course with clinical relapses. Important strides have been made in delineating MS from other ADS subtypes. Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and aquaporin 4-antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) were once considered variants of MS; however, studies in the last decade have established that these are in fact distinct entities. Although there are clinical phenotypic overlaps between MOGAD, AQP4-NMOSD, and MS, cumulative biologic, clinical, and pathologic evidence allows discrimination between these conditions. There has been a rapid increase in the number of available disease-modifying therapies for MS and novel treatment strategies are starting to appear for both MOGAD and AQP4-NMOSD. Importantly, there are a number of both inflammatory and noninflammatory mimics of ADS in children with implications of management for these patients in terms of treatment.
Collapse
Affiliation(s)
- Omar Abdel-Mannan
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom.
| | - Yael Hacohen
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
15
|
Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M. A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev 2023; 22:103465. [PMID: 37852514 DOI: 10.1016/j.autrev.2023.103465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare relapsing neuroinflammatory autoimmune astrocytopathy, with a predilection for the optic nerves and spinal cord. Most cases are characterised by aquaporin-4-antibody positivity and have a relapsing disease course, which is associated with accrual of disability. Although the prognosis in NMOSD has improved markedly over the past few years owing to advances in diagnosis and therapeutics, it remains a severe disease. In this article, we review the evolution of our understanding of NMOSD, its pathogenesis, clinical features, disease course, treatment options and associated symptoms. We also address the gaps in knowledge and areas for future research focus.
Collapse
Affiliation(s)
- Pakeeran Siriratnam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Saif Huda
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
16
|
Taheri N, Sarrand J, Soyfoo MS. Neuromyelitis Optica: Pathogenesis Overlap with Other Autoimmune Diseases. Curr Allergy Asthma Rep 2023; 23:647-654. [PMID: 37889429 DOI: 10.1007/s11882-023-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW Neuromyelitis optica (NMO) is an auto-immune disease essentially depicted by optic neuritis and transverse myelitis. Per se, NMO was initially believed to be a sub-type of multiple sclerosis with typical demyelinating cerebral lesions and optic nerve inflammation. More recently, corroborating lignes of evidence have strengthened the concept of the spectrum of diseases associated with NMO and more specifically with the role of anti-aquaporin-4 antibodies in the pathogenesis of disease. RECENT FINDINGS In this article, we review the recent pathogenic findings in NMO and more interestingly the newly discovered role of anti-aquaporin-4 antibodies as key players in triggering cerebral lesions. The concept of spectrum of diseases associated with NMO is also discussed. These recent findings have paved in the further understanding of the pathogenesis underlying NMO and new treatments are currently being developed targeting anti-aquaporin-4 antibodies.
Collapse
Affiliation(s)
- Nadim Taheri
- Department of Rheumatology, Hopital Universitaire de Bruxelles, HUB, ULB, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Julie Sarrand
- Department of Rheumatology, Hopital Universitaire de Bruxelles, HUB, ULB, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Muhammad S Soyfoo
- Department of Rheumatology, Hopital Universitaire de Bruxelles, HUB, ULB, 808 Route de Lennik, 1070, Brussels, Belgium.
| |
Collapse
|
17
|
Majed M, Valencia Sanchez C, Bennett JL, Fryer J, Mulligan MD, Redenbaugh V, McKeon A, Mills JR, Wingerchuk DM, Lennon VA, Weinshenker B, Chen JJ, Flanagan EP, Pittock SJ, Kunchok A. Alterations in Aquaporin-4-IgG Serostatus in 986 Patients: A Laboratory-Based Longitudinal Analysis. Ann Neurol 2023; 94:727-735. [PMID: 37314750 DOI: 10.1002/ana.26722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This study was undertaken to investigate factors associated with aquaporin-4 (AQP4)-IgG serostatus change using a large serological database. METHODS This retrospective study utilizes Mayo Clinic Neuroimmunology Laboratory data from 2007 to 2021. We included all patients with ≥2 AQP4-IgG tests (by cell-based assay). The frequency and clinical factors associated with serostatus change were evaluated. Multivariable logistic regression analysis examined whether age, sex, or initial titer was associated with serostatus change. RESULTS There were 933 patients who had ≥2 AQP4-IgG tests with an initial positive result. Of those, 830 (89%) remained seropositive and 103 (11%) seroreverted to negative. Median interval to seroreversion was 1.2 years (interquartile range [IQR] = 0.4-3.5). Of those with sustained seropositivity, titers were stable in 92%. Seroreversion was associated with age ≤ 20 years (odds ratio [OR] = 2.25; 95% confidence interval [CI] = 1.09-4.63; p = 0.028) and low initial titer of ≤1:100 (OR = 11.44, 95% CI = 3.17-41.26, p < 0.001), and 5 had clinical attacks despite seroreversion. Among 62 retested after seroreversion, 50% returned to seropositive (median = 224 days, IQR = 160-371). An initial negative AQP4-IgG test occurred in 9,308 patients. Of those, 99% remained seronegative and 53 (0.3%) seroconverted at a median interval of 0.76 years (IQR = 0.37-1.68). INTERPRETATION AQP4-IgG seropositivity usually persists over time with little change in titer. Seroreversion to negative is uncommon (11%) and associated with lower titers and younger age. Seroreversion was often transient, and attacks occasionally occurred despite prior seroreversion, suggesting it may not reliably reflect disease activity. Seroconversion to positive is rare (<1%), limiting the utility of repeat testing in seronegative patients unless clinical suspicion is high. ANN NEUROL 2023;94:727-735.
Collapse
Affiliation(s)
- Masoud Majed
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James Fryer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Martin D Mulligan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Vyankya Redenbaugh
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - John R Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Vanda A Lennon
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Brian Weinshenker
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - John J Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Amy Kunchok
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
18
|
Zara P, Dinoto A, Carta S, Floris V, Turilli D, Budhram A, Ferrari S, Milia S, Solla P, Mariotto S, Flanagan EP, Chiriboga ASL, Sechi E. Non-demyelinating disorders mimicking and misdiagnosed as NMOSD: a literature review. Eur J Neurol 2023; 30:3367-3376. [PMID: 37433584 PMCID: PMC10530555 DOI: 10.1111/ene.15983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Differentiating neuromyelitis optica spectrum disorder (NMOSD) from its mimics is crucial to avoid misdiagnosis, especially in the absence of aquaporin-4-IgG. While multiple sclerosis (MS) and myelin oligodendrocyte glycoprotein-IgG associated disease (MOGAD) represent major and well-defined differential diagnoses, non-demyelinating NMOSD mimics remain poorly characterized. METHODS We conducted a systematic review on PubMed/MEDLINE to identify reports of patients with non-demyelinating disorders that mimicked or were misdiagnosed as NMOSD. Three novel cases seen at the authors' institutions were also included. The characteristics of NMOSD mimics were analyzed and red flags associated with misdiagnosis identified. RESULTS A total of 68 patients were included; 35 (52%) were female. Median age at symptoms onset was 44 (range, 1-78) years. Fifty-six (82%) patients did not fulfil the 2015 NMOSD diagnostic criteria. The clinical syndromes misinterpreted for NMOSD were myelopathy (41%), myelopathy + optic neuropathy (41%), optic neuropathy (6%), or other (12%). Alternative etiologies included genetic/metabolic disorders, neoplasms, infections, vascular disorders, spondylosis, and other immune-mediated disorders. Common red flags associated with misdiagnosis were lack of cerebrospinal fluid (CSF) pleocytosis (57%), lack of response to immunotherapy (55%), progressive disease course (54%), and lack of magnetic resonance imaging gadolinium enhancement (31%). Aquaporin-4-IgG positivity was detected in five patients by enzyme-linked immunosorbent assay (n = 2), cell-based assay (n = 2: serum, 1; CSF, 1), and non-specified assay (n = 1). CONCLUSIONS The spectrum of NMOSD mimics is broad. Misdiagnosis frequently results from incorrect application of diagnostic criteria, in patients with multiple identifiable red flags. False aquaporin-4-IgG positivity, generally from nonspecific testing assays, may rarely contribute to misdiagnosis.
Collapse
Affiliation(s)
- Pietro Zara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Dinoto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Sara Carta
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Valentina Floris
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Davide Turilli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Adrian Budhram
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Sergio Ferrari
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Stefania Milia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Eoin P. Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Elia Sechi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
Matsumoto Y, Kaneko K, Takahashi T, Takai Y, Namatame C, Kuroda H, Misu T, Fujihara K, Aoki M. Diagnostic implications of MOG-IgG detection in sera and cerebrospinal fluids. Brain 2023; 146:3938-3948. [PMID: 37061817 DOI: 10.1093/brain/awad122] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 04/17/2023] Open
Abstract
The spectrum of MOG-IgG-associated disease (MOGAD) includes optic neuritis (ON), myelitis (MY), acute disseminated encephalomyelitis (ADEM), brainstem encephalitis, cerebral cortical encephalitis (CE) and AQP4-IgG-negative neuromyelitis optica spectrum disorder (NMOSD). In MOGAD, MOG-IgG are usually detected in sera (MOG-IgGSERUM), but there have been some seronegative MOGAD cases with MOG-IgG in CSF (MOG-IgGCSF), and its diagnostic implications remains unclear. In this cross-sectional study, we identified patients with paired serum and CSF sent from all over Japan for testing MOG-IgG. Two investigators blinded to MOG-IgG status classified them into suspected MOGAD (ADEM, CE, NMOSD, ON, MY and Others) or not based on the current recommendations. The MOG-IgGSERUM and MOG-IgGCSF titres were assessed with serial 2-fold dilutions to determine end point titres [≥1:128 in serum and ≥1:1 (no dilution) in CSF were considered positive]. We analysed the relationship between MOG-IgGSERUM, MOG-IgGCSF and the phenotypes with multivariable regression. A total of 671 patients were tested [405 with suspected MOGAD, 99 with multiple sclerosis, 48 with AQP4-IgG-positive NMOSD and 119 with other neurological diseases (OND)] before treatment. In suspected MOGAD, 133 patients (33%) tested MOG-IgG-positive in serum and/or CSF; 94 (23%) double-positive (ADEM 36, CE 15, MY 8, NMOSD 9, ON 15 and Others 11); 17 (4.2%) serum-restricted-positive (ADEM 2, CE 0, MY 3, NMOSD 3, ON 5 and Others 4); and 22 (5.4%) CSF-restricted-positive (ADEM 3, CE 4, MY 6, NMOSD 2, ON 0 and Others 7). None of AQP4-IgG-positive NMOSD, multiple sclerosis or OND cases tested positive for MOG-IgGSERUM, but two with multiple sclerosis cases were MOG-IgGCSF-positive; the specificities of MOG-IgGSERUM and MOG-IgGCSF in suspected MOGAD were 100% [95% confidence interval (CI) 99-100%] and 99% (95% CI 97-100%), respectively. Unlike AQP4-IgG-positive NMOSD, the correlation between MOG-IgGSERUM and MOG-IgGCSF titres in MOGAD was weak. Multivariable regression analyses revealed MOG-IgGSERUM was associated with ON and ADEM, whereas MOG-IgGCSF was associated with ADEM and CE. The number needed to test for MOG-IgGCSF to diagnose one additional MOGAD case was 13.3 (14.3 for ADEM, 2 for CE, 19.5 for NMOSD, infinite for ON, 18.5 for MY and 6.1 for Others). In terms of MOG-IgGSERUM/CSF status, most cases were double-positive while including either serum-restricted (13%) or CSF-restricted (17%) cases. These statuses were independently associated with clinical phenotypes, especially in those with ON in serum and CE in CSF, suggesting pathophysiologic implications and the utility of preferential diagnostic testing. Further studies are warranted to deduce the clinical and pathological significance of compartmentalized MOG-IgG.
Collapse
Affiliation(s)
- Yuki Matsumoto
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kimihiko Kaneko
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Neurology, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa 992-1202, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Neurology, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Chihiro Namatame
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hiroshi Kuroda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Neurology, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Neurology, Tohoku University Hospital, Sendai 980-8574, Japan
| |
Collapse
|
20
|
Miao Y, Shi Z, Zhang W, Zhu L, Tang S, Chen H, Wang X, Du Q, Li S, Zhang Y, Luo W, Jin X, Fang M, Zhou H. Immune Repertoire Profiling Reveals Its Clinical Application Potential and Triggers for Neuromyelitis Optica Spectrum Disorders. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200134. [PMID: 37414573 DOI: 10.1212/nxi.0000000000200134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Neuromyelitis optica spectrum disorders (NMOSD) is widely recognized as a CNS demyelinating disease associated with AQP4-IgG (T cell-dependent antibody), and its trigger is still unclear. In addition, although the treatment of NMOSD currently can rely on traditional immunosuppressive and modulating agents, effective methods to predict the efficacy of these therapeutics are lacking. METHODS In this study, high-throughput T-cell receptor (TCR) sequencing was performed on peripheral blood from 151 pretreatment patients with AQP4-IgG+ NMOSD and 151 healthy individuals. We compared the TCR repertoire of those with NMOSD with that of healthy individuals and identified TCR clones that were significantly enriched in NMOSD. In addition, we treated 28 patients with AQP4-IgG+ NMOSD with immunosuppressants and followed up for 6 months to compare changes in NMOSD-specific TCRs (NMOSD-TCRs) before and after treatment. Moreover, we analyzed transcriptome and single-cell B-cell receptor (BCR) data from public databases and performed T-cell activation experiments using antigenic epitopes of cytomegalovirus (CMV) to further explore the triggers of AQP4-IgG+ NMOSD. RESULTS Compared with healthy controls, patients with AQP4-IgG+ NMOSD had significantly reduced diversity and shorter CDR3 length of TCRβ repertoire. Furthermore, we identified 597 NMOSD-TCRs with a high sequence similarity that have the potential to be used in the diagnosis and prognosis of NMOSD. The characterization of NMOSD-TCRs and pathology-associated clonotype annotation indicated that the occurrence of AQP4-IgG+ NMOSD may be associated with CMV infection, which was further corroborated by transcriptome and single-cell BCR analysis results from public databases and T-cell activation experiments. DISCUSSION Our findings suggest that the occurrence of AQP4-IgG+ NMOSD may be associated with CMV infection. In conclusion, our study provides new clues to uncover the causative factors of AQP4-IgG+ NMOSD and provides a theoretical foundation for treating and monitoring the disease.
Collapse
Affiliation(s)
- Yu Miao
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Ziyan Shi
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Wei Zhang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Lin Zhu
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Shanshan Tang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Hongxi Chen
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Xiaofei Wang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Qin Du
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Shuaicheng Li
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Ying Zhang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Wenqin Luo
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China
| | - Xin Jin
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Mingyan Fang
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| | - Hongyu Zhou
- From the College of Life Sciences (M., X.J.), University of Chinese Academy of Sciences, Beijing; Department of Neurology (Z.S., L.Z., S.T., H.C., X.W., Q.D., Y.Z., W.L., M.F., H.Z.), West China Hospital, Sichuan University, Chengdu; and City University of Hong Kong (W.Z., S.L.), Shenzhen Research Institute, China.
| |
Collapse
|
21
|
Srichawla BS, Sivakumar S, Cheraghi SN, Kipkorir V, Garcia-Dominguez MA. Breast cancer-associated paraneoplastic neuromyelitis optica with cervical cord compression and spondylosis requiring laminectomy: A case report. SAGE Open Med Case Rep 2023; 11:2050313X231198322. [PMID: 37667745 PMCID: PMC10475258 DOI: 10.1177/2050313x231198322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
Neuromyelitis optica, an autoimmune inflammatory disorder affecting the central nervous system, can occur in a paraneoplastic context, although rare. We report an intriguing case of a 71-year-old woman with a history of triple-negative infiltrating ductal breast carcinoma, manifesting with paraneoplastic neuromyelitis optica that led to significant respiratory failure and required a cervical laminectomy. The patient presented with pain in the left breast, weakness in the lower extremities, and neck pain. The neurological evaluation showed 2/5 muscle strength in all extremities, diffuse hyperreflexia, and loss of multimodal sensation below the shoulder. She developed acute respiratory failure that required mechanical ventilation. Magnetic resonance imaging highlighted a diffuse abnormal increase in T2 signal intensity throughout the posterior and central portion of the cervical and thoracic spinal cord consistent with longitudinally extensive transverse myelitis, and significant cervical cord compression at C3-C4. Magnetic resonance imaging of the brain showed non-enhancing T2/fluid-attenuated inversion recovery (FLAIR) white matter hyperintensities and cerebellar hemispheres. The serum cell-based assay study demonstrated a high anti-aquaporin-4 immunoglobulin G titer (>1:160) confirming the diagnosis of neuromyelitis optica. She was taken for bilateral laminectomy from C3 to C6. Despite intravenous methylprednisolone and plasmapheresis treatment, no significant recovery was achieved, necessitating tracheostomy and percutaneous endoscopic gastrostomy. Subsequent rituximab treatment led to a mild improvement, with no new lesions on repeat magnetic resonance imaging. This case raises suspicion of the potential for neuromyelitis optica to occur as a paraneoplastic phenomenon, strengthening the need for vigilance in patients with malignancies.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shravan Sivakumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Seyedeh N Cheraghi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | |
Collapse
|
22
|
Moheb N, Chen JJ. The neuro-ophthalmological manifestations of NMOSD and MOGAD-a comprehensive review. Eye (Lond) 2023; 37:2391-2398. [PMID: 36928226 PMCID: PMC10397275 DOI: 10.1038/s41433-023-02477-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Optic neuritis (ON) is one of the most frequently seen neuro-ophthalmic causes of vision loss worldwide. Typical ON is often idiopathic or seen in patients with multiple sclerosis, which is well described in the landmark clinical trial, the Optic Neuritis Treatment Trial (ONTT). However, since the completion of the ONTT, there has been the discovery of aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) antibodies, which are biomarkers for neuromyelitis optica spectrum disorder (NMOSD) and MOG antibody-associated disease (MOGAD), respectively. These disorders are associated with atypical ON that was not well characterised in the ONTT. The severity, rate of recurrence and overall outcome differs in these two entities requiring prompt and accurate diagnosis and management. This review will summarise the characteristic neuro-ophthalmological signs in NMOSD and MOGAD, serological markers and radiographic findings, as well as acute and long-term therapies used for these disorders.
Collapse
Affiliation(s)
- Negar Moheb
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA
| | - John J Chen
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Serizawa K, Miyake S, Katsura Y, Yorozu K, Kurasawa M, Tomizawa-Shinohara H, Yasuno H, Matsumoto Y. Intradermal AQP4 peptide immunization induces clinical features of neuromyelitis optica spectrum disorder in mice. J Neuroimmunol 2023; 380:578109. [PMID: 37210799 DOI: 10.1016/j.jneuroim.2023.578109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
We challenged to create a mouse model of neuromyelitis optica spectrum disorder (NMOSD) induced by AQP4 peptide immunization. Intradermal immunization with AQP4 p201-220 peptide induced paralysis in C57BL/6J mice, but not in AQP4 KO mice. AQP4 peptide-immunized mice showed pathological features similar to NMOSD. Administration of anti-IL-6 receptor antibody (MR16-1) inhibited the induction of clinical signs and prevented the loss of GFAP/AQP4 and deposition of complement factors in AQP4 peptide-immunized mice. This novel experimental model may contribute to further understanding the pathogenesis of NMOSD, elucidating the mechanism of action of therapeutic agents, and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Kenichi Serizawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan.
| | - Shota Miyake
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Yoshichika Katsura
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Keigo Yorozu
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Mitsue Kurasawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | | | - Hideyuki Yasuno
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Yoshihiro Matsumoto
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| |
Collapse
|
24
|
Shen X. Research progress on pathogenesis and clinical treatment of neuromyelitis optica spectrum disorders (NMOSDs). Clin Neurol Neurosurg 2023; 231:107850. [PMID: 37390569 DOI: 10.1016/j.clineuro.2023.107850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/11/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) are characteristically referred to as various central nervous system (CNS)-based inflammatory and astrocytopathic disorders, often manifested by the axonal damage and immune-mediated demyelination targeting optic nerves and the spinal cord. This review article presents a detailed view of the etiology, pathogenesis, and prescribed treatment options for NMOSD therapy. Initially, we present the epidemiology of NMOSDs, highlighting the geographical and ethnical differences in the incidence and prevalence rates of NMOSDs. Further, the etiology and pathogenesis of NMOSDs are emphasized, providing discussions relevant to various genetic, environmental, and immune-related factors. Finally, the applied treatment strategies for curing NMOSD are discussed, exploring the perspectives for developing emergent innovative treatment strategies.
Collapse
Affiliation(s)
- Xinyu Shen
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, PR China.
| |
Collapse
|
25
|
Yong HYF, Pastula DM, Kapadia RK. Diagnosing viral encephalitis and emerging concepts. Curr Opin Neurol 2023; 36:175-184. [PMID: 37078655 DOI: 10.1097/wco.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW This review offers a contemporary clinical approach to the diagnosis of viral encephalitis and discusses recent advances in the field. The neurologic effects of coronaviruses, including COVID-19, as well as management of encephalitis are not covered in this review. RECENT FINDINGS The diagnostic tools for evaluating patients with viral encephalitis are evolving quickly. Multiplex PCR panels are now in widespread use and allow for rapid pathogen detection and potentially reduce empiric antimicrobial exposure in certain patients, while metagenomic next-generation sequencing holds great promise in diagnosing challenging and rarer causes of viral encephalitis. We also review topical and emerging infections pertinent to neuroinfectious disease practice, including emerging arboviruses, monkeypox virus (mpox), and measles. SUMMARY Although etiological diagnosis remains challenging in viral encephalitis, recent advances may soon provide the clinician with additional tools. Environmental changes, host factors (such as ubiquitous use of immunosuppression), and societal trends (re-emergence of vaccine preventable diseases) are likely to change the landscape of neurologic infections that are considered and treated in clinical practice.
Collapse
Affiliation(s)
- Heather Y F Yong
- Division of Neurology, Department of Clinical Neurosciences, University of Calgary, Cummings School of Medicine, Calgary, Alberta, Canada
| | - Daniel M Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Ronak K Kapadia
- Division of Neurology, Department of Clinical Neurosciences, University of Calgary, Cummings School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Dalmau J, Graus F. Diagnostic criteria for autoimmune encephalitis: utility and pitfalls for antibody-negative disease. Lancet Neurol 2023; 22:529-540. [PMID: 37210100 DOI: 10.1016/s1474-4422(23)00083-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 05/22/2023]
Abstract
Increased awareness of autoimmune encephalitis has led to two unintended consequences: a high frequency of misdiagnoses and the inappropriate use of diagnostic criteria for antibody-negative disease. Misdiagnoses typically occur for three reasons: first, non-adherence to reported clinical requirements for considering a disorder as possible autoimmune encephalitis; second, inadequate assessment of inflammatory changes in brain MRI and CSF; and third, absent or limited use of brain tissue assays along with use of cell-based assays that include only a narrow range of antigens. For diagnosis of possible autoimmune encephalitis and probable antibody-negative autoimmune encephalitis, clinicians should adhere to published criteria for adults and children, focusing particularly on exclusion of alternative disorders. Moreover, for diagnosis of probable antibody-negative autoimmune encephalitis, the absence of neural antibodies in CSF and serum should be well substantiated. Neural antibody testing should use tissue assays along with cell-based assays that include a broad range of antigens. Live neuronal studies in specialised centres can assist in resolving inconsistencies with respect to syndrome-antibody associations. Accurate diagnosis of probable antibody-negative autoimmune encephalitis will identify patients with similar syndromes and biomarkers, which will provide homogeneous populations for future assessments of treatment response and outcome.
Collapse
Affiliation(s)
- Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Neurology Department, Institute of Neuroscience, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Francesc Graus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
27
|
James J, Gafoor VA, Jose J, Smita B, Balaram N. Therapeutic response to rituximab in seropositive neuromyelitis optica: Experience from a tertiary care center in South India. J Neurosci Rural Pract 2023; 14:327-332. [PMID: 37181182 PMCID: PMC10174152 DOI: 10.25259/jnrp_59_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives Neuromyelitis optica (NMO) is a severe central nervous system demyelinating disease caused by autoantibodies to anti-aquaporin-4 immunoglobulin-G (AQP4-IgG). Rituximab, a monoclonal antibody targeting CD20 cells, is effective in neuromyelitis optica spectrum disorder (NMOSD) in several observational studies and small randomized controlled trials. However, this includes both AQP4-IgG antibody positive and negative cases. Whether rituximab is more effective in seropositive NMO is unknown. The aim of the study was to determine the efficacy of rituximab in seropositive NMO. Materials and Methods This single-center ambispective study with retrospective data collection and prospective follow-up included patients with NMOSD who were positive for AQP4-Ig-G and treated with rituximab. Efficacy outcomes assessed were annualized relapse rate (ARR), disability progression by expanded disability status scale (EDSS), very good outcome (defined as no relapse and an EDSS ≤3.5), and persistent antibody positivity. Safety was also monitored. Results Between June 2017 and December 2019, 15 AQP4-IgG-positive cases were identified. The mean (± SD) age was 36 ± 17.9 years and 73.3% were females. Transverse myelitis followed by optic neuritis was the most common presentations. Rituximab was initiated after a median period of 19-weeks from the disease onset. The mean number of rituximab doses received was 6.4 ± 2.3. After a mean follow-up duration of 107 ± 74.7 weeks from the first dose of rituximab, ARR significantly reduced from 0.5 ± 0.9 to 0.02 ± 0.08, difference 0.48 ± 0.86 (95% confidence intervals [CI], 0.0009-0.96; P = 0.05). The number of relapses also reduced significantly from 0.6 ± 0.8-0.07 ± 0.26 , a difference of 0.53 ± 0.91 (95% CI, 0.026-1.05; P = 0.041). EDSS also significantly reduced from 5.6 ± 2.5-3.3 ± 2.9 , a difference of 2.23 ± 2.36 (95% CI, 0.93-3.54; P = 0.003). Very good outcome was obtained in 73.3% (11 of 15); P = 0.002. AQP4-IgG remained positive in 66.7% (4 of 6) when repeated after a mean period of 149.5 ± 51.1 weeks after the first dose of rituximab. Neither pre-treatment ARR, EDSS, time to initiate rituximab, the total number of rituximab doses, or time to repeat AQP4-IgG were significantly associated with persistent antibody positivity. No serious adverse events were observed. Conclusion Rituximab exhibited high efficacy and good safety in seropositive NMO. Larger trials in this subgroup are warranted to confirm these findings.
Collapse
Affiliation(s)
- Joe James
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - V Abdul Gafoor
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - James Jose
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - B Smita
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Neetha Balaram
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India
| |
Collapse
|
28
|
Gigase FAJ, Smith E, Collins B, Moore K, Snijders GJLJ, Katz D, Bergink V, Perez-Rodriquez MM, De Witte LD. The association between inflammatory markers in blood and cerebrospinal fluid: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:1502-1515. [PMID: 37055513 PMCID: PMC10266485 DOI: 10.1038/s41380-023-01976-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Neuroinflammatory processes have been hypothesized to play a role in the pathogenesis of psychiatric and neurological diseases. Studies on this topic often rely on analysis of inflammatory biomarkers in peripheral blood. Unfortunately, the extent to which these peripheral markers reflect inflammatory processes in the central nervous system (CNS) is unclear. METHODS We performed a systematic review and found 29 studies examining the association between inflammatory marker levels in blood and cerebrospinal (CSF) samples. We performed a random effects meta-analysis of 21 studies (pooled n = 1679 paired samples) that reported the correlation of inflammatory markers in paired blood-CSF samples. RESULTS A qualitative review revealed moderate to high quality of included studies with the majority of studies reporting no significant correlation of inflammatory markers between paired blood-CSF. Meta-analyses revealed a significant low pooled correlation between peripheral and CSF biomarkers (r = 0.21). Meta-analyses of individual cytokines revealed a significant pooled correlation for IL-6 (r = 0.26) and TNFα (r = 0.3) after excluding outlier studies, but not for other cytokines. Sensitivity analyses showed that correlations were highest among participants with a median age above 50 (r = 0.46) and among autoimmune disorder patients (r = 0.35). CONCLUSION This systematic review and meta-analysis revealed poor correlation between peripheral and central inflammatory markers in paired blood-CSF samples, with increased correlations in certain study populations. Based on the current findings, peripheral inflammatory markers are a poor reflection of the neuroinflammatory profile.
Collapse
Affiliation(s)
- Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Department of Clinical and Medical Psychology, Tilburg University, Tilburg, The Netherlands.
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Emma Smith
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brett Collins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Kendall Moore
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Gijsje J L J Snijders
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Katz
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The primary aim of this review is to describe the clinical course, salient imaging features, and relevant serological profiles of common optic neuritis (ON) subtypes. Key diagnostic challenges and treatment options will also be discussed. RECENT FINDINGS ON is a broad term that describes an inflammatory optic nerve injury arising from a variety of potential causes. ON can occur sporadically, however there is particular concern for co-associated central nervous system (CNS) inflammatory syndromes including multiple sclerosis (MS), neuromyelitis optic spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein antibody associated disease (MOGAD). The ON subtypes that often herald MS, NMOSD, and MOGAD differ with respect to serological antibody profile and neuroimaging characteristics, yet there is significant overlap in their clinical presentations. A discerning history and thorough examination are critical to rendering the correct diagnosis. SUMMARY Optic neuritis subtypes vary with respect to their long-term prognosis and accordingly, require different acute treatment strategies. Moreover, delays in identifying MOGAD, and certainly NMOSD, can be highly detrimental because affected individuals are vulnerable to permanent vision loss and neurologic disability from relapses.
Collapse
Affiliation(s)
| | - Fiona Costello
- Department of Surgery, Section of Ophthalmology
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Cacciaguerra L, Sechi E, Rocca MA, Filippi M, Pittock SJ, Flanagan EP. Neuroimaging features in inflammatory myelopathies: A review. Front Neurol 2022; 13:993645. [PMID: 36330423 PMCID: PMC9623025 DOI: 10.3389/fneur.2022.993645] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Spinal cord involvement can be observed in the course of immune-mediated disorders. Although multiple sclerosis (MS) represents the leading cause of inflammatory myelopathy, an increasing number of alternative etiologies must be now considered in the diagnostic work-up of patients presenting with myelitis. These include antibody-mediated disorders and cytotoxic T cell-mediated diseases targeting central nervous system (CNS) antigens, and systemic autoimmune conditions with secondary CNS involvement. Even though clinical features are helpful to orient the diagnostic suspicion (e.g., timing and severity of myelopathy symptoms), the differential diagnosis of inflammatory myelopathies is often challenging due to overlapping features. Moreover, noninflammatory etiologies can sometimes mimic an inflammatory process. In this setting, magnetic resonance imaging (MRI) is becoming a fundamental tool for the characterization of spinal cord damage, revealing a pictorial scenario which is wider than the clinical manifestations. The characterization of spinal cord lesions in terms of longitudinal extension, location on axial plane, involvement of the white matter and/or gray matter, and specific patterns of contrast enhancement, often allows a proper differentiation of these diseases. For instance, besides classical features, such as the presence of longitudinally extensive spinal cord lesions in patients with aquaporin-4-IgG positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), novel radiological signs (e.g., H sign, trident sign) have been recently proposed and successfully applied for the differential diagnosis of inflammatory myelopathies. In this review article, we will discuss the radiological features of spinal cord involvement in autoimmune disorders such as MS, AQP4+NMOSD, myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), and other recently characterized immune-mediated diseases. The identification of imaging pitfalls and mimics that can lead to misdiagnosis will also be examined. Since spinal cord damage is a major cause of irreversible clinical disability, the recognition of these radiological aspects will help clinicians achieve a correct and prompt diagnosis, treat early with disease-specific treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elia Sechi
- Neurology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sean J. Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Eoin P. Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
31
|
Zhong G, Zhang J, Liu X, Yang S, Gu H. Astrocytoma with myelin oligodendrocyte glycoprotein antibody associated encephalomyelitis: A case report. Medicine (Baltimore) 2022; 101:e31003. [PMID: 36221336 PMCID: PMC9542675 DOI: 10.1097/md.0000000000031003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Demyelination is similar with malignancy in clinical symptoms. Magnetic resonance imaging (MRI) is an important auxiliary examination in the diagnosis of demyelinating diseases and malignancy. Since MRI and symptoms can be difficult to distinguish demyelination from malignancy, other auxiliary examinations, such as demyelinating disease-specific antibodies, play an important role in distinguishing them. Previous studies have reported demyelinating disease-specific antibodies in patients with malignancy. What's more, it is more difficult to confirm the diagnosis when the malignant tumor co-occurs with demyelinating diseases, which has never been reported in previous studies. We report the diagnosis of myelin oligodendrocyte glycoprotein antibody associated encephalomyelitis (MOG-EM) in a patient who had astrocytoma for several years. CASE PRESENTATION Patient's concerns and diagnoses: our case report records a 49-year-old woman with astrocytoma for more than 4 years, who recently developed the symptoms of MOG-EM, including dizziness, vomiting, and vision loss. This astrocytoma patient was diagnosed with MOG-EM according to comprehensive evidence, including MRI, visual evoked potential (VEP), serum myelin oligodendrocyte glycoprotein antibody (MOG-IgG), and therapeutic effect. Interventions and outcomes: this patient was diagnosed with astrocytoma by surgical biopsy 4 years earlier. This patient has been treated with tumor resection, postoperative radiation treatment and chemotherapy. After treatment, the patient was left with right limb weakness while other symptoms were improved. Recently, the intravenous steroid agent was used to treat this patient after being diagnosed with MOG-EM. Dizziness, vomiting, and vision loss have gone into remission. This patient did not relapse in 7 months after discharge. This patient is still being followed up at the outpatient clinic. And the patient will next be treated with azathioprine. CONCLUSIONS In previous studies, polyclonal antibody has been found in cancer patients, such as aquaporin-4 and MOG-IgG in astrocytoma patients. But the case of our study finds that astrocytoma can coexist with MOG-EM. Therefore, MOG-EM should not be excluded easily in astrocytoma patients when the relative antibody of encephalomyelitis is positive. What's more, it reminds us that the pathogenesis of MOG-EM might be related to astrocytoma.
Collapse
Affiliation(s)
| | - Jia Zhang
- Heyuan People’s Hospital, Heyuan, Guangdong, China
| | - Xi Liu
- Heyuan People’s Hospital, Heyuan, Guangdong, China
- * Correspondence: Department of Neurology, Heyuan People’s Hospital, Heyuan, Guangdong, China (e-mail: )
| | | | - Hongli Gu
- Heyuan People’s Hospital, Heyuan, Guangdong, China
| |
Collapse
|
32
|
Rituximab abrogates aquaporin-4-specific germinal center activity in patients with neuromyelitis optica spectrum disorders. Proc Natl Acad Sci U S A 2022; 119:e2121804119. [PMID: 35666871 PMCID: PMC9214492 DOI: 10.1073/pnas.2121804119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By studying paired blood and deep cervical lymph node samples from patients with neuromyelitis optica spectrum disorders, our data provide evidence for a germinal center–based generation of aquaporin-4 antibodies. Frequent serum aquaporin-4 immunoglobulin Ms (IgMs) and shifts in IgG subclasses were observed alongside preferential synthesis of aquaporin-4 IgGs and aquaporin-4–reactive B cells within lymph nodes. Both intranodal synthesis of aquaporin-4 antibodies and intranodal aquaporin-4–reactive B cells were robustly eliminated with rituximab administration. This study systematically explores lymph nodes that drain the central nervous system (CNS) in patients with CNS autoimmunity and offers a potential explanation as to why rituximab is clinically highly efficacious in autoantibody-mediated diseases despite no accompanying reduction in serum autoantibody levels. Neuromyelitis optica spectrum disorders (NMOSDs) are caused by immunoglobulin G (IgG) autoantibodies directed against the water channel aquaporin-4 (AQP4). In NMOSDs, discrete clinical relapses lead to disability and are robustly prevented by the anti-CD20 therapeutic rituximab; however, its mechanism of action in autoantibody-mediated disorders remains poorly understood. We hypothesized that AQP4-IgG production in germinal centers (GCs) was a core feature of NMOSDs and could be terminated by rituximab. To investigate this directly, deep cervical lymph node (dCLN) aspirates (n = 36) and blood (n = 406) were studied in a total of 63 NMOSD patients. Clinical relapses were associated with AQP4-IgM generation or shifts in AQP4-IgG subclasses (odds ratio = 6.0; range of 3.3 to 10.8; P < 0.0001), features consistent with GC activity. From seven dCLN aspirates of patients not administered rituximab, AQP4-IgGs were detected alongside specific intranodal synthesis of AQP4-IgG. AQP4-reactive B cells were isolated from unmutated naive and mutated memory populations in both blood and dCLNs. After rituximab administration, fewer clinical relapses (annual relapse rate of 0.79 to 0; P < 0.001) were accompanied by marked reductions in both AQP4-IgG (fourfold; P = 0.004) and intranodal B cells (430-fold; P < 0.0001) from 11 dCLNs. Our findings implicate ongoing GC activity as a rituximab-sensitive driver of AQP4 antibody production. They may explain rituximab’s clinical efficacy in several autoantibody-mediated diseases and highlight the potential value of direct GC measurements across autoimmune conditions.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Autoimmune encephalitis (AE) refers to immune-mediated neurological syndromes often characterised by the detection of pathogenic autoantibodies in serum and/or cerebrospinal fluid which target extracellular epitopes of neuroglial antigens. There is increasing evidence these autoantibodies directly modulate function of their antigens in vivo. Early treatment with immunotherapy improves outcomes. Yet, these patients commonly exhibit chronic disability. Importantly, optimal therapeutic strategies at onset and during escalation remain poorly understood. In this review of a rapidly emerging field, we evaluate recent studies on larger cohorts, registries, and meta-analyses to highlight existing evidence for contemporary therapeutic approaches in AE. RECENT FINDINGS We highlight acute and long-term treatments used in specific AE syndromes, exemplify how understanding disease pathogenesis can inform precision therapy and outline challenges of defining disability outcomes in AE. SUMMARY Early first-line immunotherapies, including corticosteroids and plasma exchange, improve outcomes, with emerging evidence showing second-line immunotherapies (especially rituximab) reduce relapse rates. Optimal timing of immunotherapy escalation remains unclear. Routine reporting of outcome measures which incorporate cognitive impairment, fatigue, pain, and mental health will permit more accurate quantification of residual disability and comprehensive comparisons between international multicentre cohorts, and enable future meta-analyses with the aim of developing evidence-based therapeutic guidelines.
Collapse
Affiliation(s)
- Benjamin P Trewin
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead; Sydney Medical School and Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Isaak Freeman
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead; Sydney Medical School and Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Neurology, Concord Hospital, Sydney, Australia
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
34
|
Alkabie S, Budhram A. Testing for Antibodies Against Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein in the Diagnosis of Patients With Suspected Autoimmune Myelopathy. Front Neurol 2022; 13:912050. [PMID: 35669883 PMCID: PMC9163833 DOI: 10.3389/fneur.2022.912050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune myelopathies are immune-mediated disorders of the spinal cord that can cause significant neurologic disability. Discoveries of antibodies targeting aquaporin-4 (AQP4-IgG) and myelin oligodendrocyte glycoprotein (MOG-IgG) have facilitated the diagnosis of autoimmune myelopathies that were previously considered to be atypical presentations of multiple sclerosis (MS) or idiopathic, and represent major advancements in the field of autoimmune neurology. The detection of these antibodies can substantially impact patient diagnosis and management, and increasing awareness of this has led to a dramatic increase in testing for these antibodies among patients with suspected autoimmune myelopathy. In this review we discuss test methodologies used to detect these antibodies, the role of serum vs. cerebrospinal fluid testing, and the value of antibody titers when interpreting results, with the aim of helping laboratorians and clinicians navigate this testing when ordered as part of the diagnostic evaluation for suspected autoimmune myelopathy.
Collapse
Affiliation(s)
- Samir Alkabie
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Adrian Budhram
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
- Deparment of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
- *Correspondence: Adrian Budhram
| |
Collapse
|
35
|
Dinoto A, Sechi E, Flanagan EP, Ferrari S, Solla P, Mariotto S, Chen JJ. Serum and Cerebrospinal Fluid Biomarkers in Neuromyelitis Optica Spectrum Disorder and Myelin Oligodendrocyte Glycoprotein Associated Disease. Front Neurol 2022; 13:866824. [PMID: 35401423 PMCID: PMC8983882 DOI: 10.3389/fneur.2022.866824] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
The term neuromyelitis optica spectrum disorder (NMOSD) describes a group of clinical-MRI syndromes characterized by longitudinally extensive transverse myelitis, optic neuritis, brainstem dysfunction and/or, less commonly, encephalopathy. About 80% of patients harbor antibodies directed against the water channel aquaporin-4 (AQP4-IgG), expressed on astrocytes, which was found to be both a biomarker and a pathogenic cause of NMOSD. More recently, antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG), have been found to be a biomarker of a different entity, termed MOG antibody-associated disease (MOGAD), which has overlapping, but different pathogenesis, clinical features, treatment response, and prognosis when compared to AQP4-IgG-positive NMOSD. Despite important refinements in the accuracy of AQP4-IgG and MOG-IgG testing assays, a small proportion of patients with NMOSD still remain negative for both antibodies and are called "seronegative" NMOSD. Whilst major advances have been made in the diagnosis and treatment of these conditions, biomarkers that could help predict the risk of relapses, disease activity, and prognosis are still lacking. In this context, a number of serum and/or cerebrospinal fluid biomarkers are emerging as potentially useful in clinical practice for diagnostic and treatment purposes. These include antibody titers, cytokine profiles, complement factors, and markers of neuronal (e.g., neurofilament light chain) or astroglial (e.g., glial fibrillary acidic protein) damage. The aim of this review is to summarize current evidence regarding the role of emerging diagnostic and prognostic biomarkers in patients with NMOSD and MOGAD.
Collapse
Affiliation(s)
- Alessandro Dinoto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elia Sechi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Eoin P. Flanagan
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Sergio Ferrari
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - John J. Chen
- Departments of Ophthalmology and Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
36
|
Fereidan-Esfahani M, Decker PA, Passow JEE, Lucchinetti CF, Flanagan EP, Tobin WO. Population-based incidence and clinico-radiological characteristics of tumefactive demyelination in Olmsted County, Minnesota, United States. Eur J Neurol 2022; 29:782-789. [PMID: 34773343 PMCID: PMC8831478 DOI: 10.1111/ene.15182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Tumefactive demyelination (TD) presents with large inflammatory lesions mimicking tumors or other space-occupying lesions. Limited epidemiological, clinical and radiological data exist for TD. We aimed to report the incidence rate, and clinical and radiological features of TD in Olmsted County, Minnesota. METHODS We retrospectively reviewed patients with central nervous system inflammatory demyelination-related diagnostic codes (January 1, 1998 to December 31, 2018) in the Rochester Epidemiology Project database, and adjusted incidence rates by age and sex to the 2010 US total population. We used the Expanded Disability Status Scale (EDSS) to assess outcomes (index attack and last follow-up). RESULTS Of 792 multiple sclerosis (MS) patients, 15 (eight males, seven females) had tumefactive MS, representing 1.9% of the MS population. The median (range) age at attack onset was 34.2 (2-61) years. Tumefactive lesion was the first clinical MS attack in 8/16 patients. Cerebrospinal fluid oligoclonal bands (OCBs) were present in 8/12 patients and 11/16 patients met the Barkhof criteria for dissemination in space. Most patients remained fully ambulatory (EDSS score ≤4 in 13/16 patients [81%]) after a median (range) follow-up duration of 10.5 (1-20.5) years. Age-adjusted annual incidence rates were 0.46/100,000 (95% confidence interval [CI] 0.12-0.81) for female patients, 0.66/100,000 (95% CI 0.23-1.02) for male patients, and 0.56/100,000 [95% CI 0.28-0.83] overall. When age- and sex-adjusted to the 2010 US total population, the overall annual incidence rate was 0.57 (95% CI 0.28-0.84). Despite aggressive clinical presentation at disease onset, most patients remained fully ambulatory (EDSS score ≤4 in 13/16 patients) with a relapsing-remitting course. CONCLUSIONS Although incidence is rare, TD should be suspected in patients presenting with subacutely progressive neurological deficits associated with magnetic resonance imaging findings of ring enhancement, apparent diffusion coefficient restriction, and OCB on spinal fluid analysis.
Collapse
Affiliation(s)
- Mahboubeh Fereidan-Esfahani
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Paul A Decker
- Department of Quantitative Health Sciences, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Jeanette E Eckel Passow
- Department of Quantitative Health Sciences, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Claudia F Lucchinetti
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Eoin Patrick Flanagan
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - William Oliver Tobin
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic Rochester, Rochester, Minnesota, USA.,Corresponding Author: William Oliver Tobin, M.B., B.Ch., B.A.O., Ph.D., Mayo Clinic, 200 First Street SW, Rochester, MN 55905, Phone: 507-284-3359,
| |
Collapse
|
37
|
Ballout AA, Babaie A, Kolesnik M, Li JY, Hameed N, Waldman G, Chaudhry F, Saba S, Harel A, Najjar S. A Single-Health System Case Series of New-Onset CNS Inflammatory Disorders Temporally Associated With mRNA-Based SARS-CoV-2 Vaccines. Front Neurol 2022; 13:796882. [PMID: 35280277 PMCID: PMC8908032 DOI: 10.3389/fneur.2022.796882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSince 2020, over 250 million doses of mRNA-based SARS-CoV-2 vaccines have been administered in the United States and hundreds of millions worldwide between the Pfizer-BioNTech and Moderna SARS-CoV-2 vaccines. To date, there have been rare reports associating mRNA-based SARS-CoV-2 vaccines with episodes of inflammatory and autoimmune CNS disorders. We report a case series of five patients with new-onset neurological disorders of inflammatory or immunological origin temporally associated with these vaccines.MethodsA case-series of five patients within a single 23-hospital health system who developed new-onset CNS inflammatory disease within 2 weeks of receiving a dose of an mRNA-based SARS-CoV-2 vaccine.ResultsFive cases of post-vaccination CNS disorders of immune origin (fatal ADEM; n = 1, new-onset NMOSD; n = 2, new-clinical onset MS-like syndrome but with preexisting clinically silent mild demyelination; n = 1, meningoencephalitis; n = 1) observed within 2 weeks of inoculation with either the first or second dose of mRNA-based SARS-CoV-2 vaccines (Moderna = 3, Pfizer = 2).DiscussionTo our knowledge, these are among the emerging cases of CNS adverse events of immunological or inflammatory origin. These findings should be interpreted with great caution as they neither prove a mechanistic link nor imply a potential long-term increased risk in post-vaccination CNS autoimmunity. Larger prospective studies assessing the potential association between mRNA-based vaccination and the development of neurological adverse events of suspected immune origin, particularly among those with underlying CNS or systemic autoimmune disorders, are needed. The use of mRNA-based SARS-CoV-2 vaccines should continue to be strongly encouraged given their high efficacy in overcoming this pandemic.
Collapse
Affiliation(s)
- Ahmad A. Ballout
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Anna Babaie
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Michael Kolesnik
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jian Yi Li
- Pathology, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Natasha Hameed
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Glenn Waldman
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Frasat Chaudhry
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Sami Saba
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Asaff Harel
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Souhel Najjar
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- *Correspondence: Souhel Najjar
| |
Collapse
|
38
|
OUP accepted manuscript. Clin Chem 2022; 68:1134-1150. [DOI: 10.1093/clinchem/hvac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
|
39
|
De Lott LB, Bennett JL, Costello F. The changing landscape of optic neuritis: a narrative review. J Neurol 2022; 269:111-124. [PMID: 33389032 PMCID: PMC8253868 DOI: 10.1007/s00415-020-10352-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023]
Abstract
Optic neuritis (ON) is an inflammatory optic neuropathy that is often a harbinger of central nervous system (CNS) demyelinating disorders. ON is frequently misdiagnosed in the clinical arena, leading to either inappropriate management or diagnostic delays. As a result, patients may fail to achieve optimal recovery. The treatment response to corticosteroids and long term risk of multiple sclerosis was established in the first clinical trials conducted roughly 30 years ago. Spontaneous resolution was observed in the vast majority of patients and intravenous high-dose corticosteroids hastened recovery; half of the patients eventually developed multiple sclerosis. Over the ensuing decades, the number of inflammatory conditions associated with ON has significantly expanded exposing substantial variability in the prognosis, treatment, and management of ON patients. ON subtypes can frequently be distinguished by distinct clinical, serological, and radiological profiles allowing expedited and specialized treatment. Guided by an increased understanding of the immunopathology underlying optic nerve and associated CNS injuries, novel disease management strategies are emerging to minimize vision loss, improve long-term surveillance strategies, and minimize CNS injury and disability. Knowledge regarding the clinical signs and symptoms of different ON subtypes is essential to guide acute therapy, prognosticate recovery, accurately identify underlying CNS inflammatory disorders, and facilitate study design for the next generation of clinical and translational trials.
Collapse
Affiliation(s)
- Lindsey B. De Lott
- Departments of Neurology, and Ophthalmology and Visual
Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, Programs in
Neuroscience and Immunology, University of Colorado, Denver, Colorado, USA
| | - Fiona Costello
- Departments of Clinical Neurosciences and Surgery
(Ophthalmology), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Pediatric Neuromyelitis Optica Spectrum Disorder: Case Series and Literature Review. Life (Basel) 2021; 12:life12010019. [PMID: 35054412 PMCID: PMC8779266 DOI: 10.3390/life12010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is a central nervous system (CNS) inflammatory demyelinating disease characterized by recurrent inflammatory events that primarily involve optic nerves and the spinal cord, but also affect other regions of the CNS, including hypothalamus, area postrema and periaqueductal gray matter. The aquaporin-4 antibody (AQP4-IgG) is specific for NMOSD. Recently, myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) have been found in a group of AQP4-IgG negative patients. NMOSD is rare among children and adolescents, but early diagnosis is important to start adequate therapy. In this report, we present cases of seven pediatric patients with NMOSD and we review the clinical and neuroimaging characteristics, diagnosis, and treatment of NMOSD in children.
Collapse
|
41
|
Tayer-Shifman OE, Bingham KS, Touma Z. Neuropsychiatric Systemic Lupus Erythematosus in Older Adults: Diagnosis and Management. Drugs Aging 2021; 39:129-142. [PMID: 34913146 DOI: 10.1007/s40266-021-00911-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem chronic autoimmune disease with variable clinical manifestations. Neuropsychiatric systemic lupus erythematosus (NPSLE) includes the neurologic syndromes of the central, peripheral and autonomic nervous system and the psychiatric syndromes observed in patients with SLE. Neuropsychiatric systemic lupus erythematosus events may present as an initial manifestation of SLE or may be diagnosed later in the course of the disease. Older adults with NPLSE include those who are ageing with known SLE and those with late-onset SLE. The diagnosis of NPSLE across the lifespan continues to be hampered by the lack of sensitive and specific laboratory and imaging biomarkers. In this review, we discuss the particular complexity of NPSLE diagnosis and management in older adults. We first discuss the epidemiology of late-onset NPSLE, then review principles of diagnosis of NPSLE, highlighting issues that are pertinent to older adults and that make diagnosis and attribution more challenging, such as atypical disease presentation, higher medical comorbidity, and differences in neuroimaging and autoantibody investigations. We also discuss clinical issues that are of particular relevance to older adults that have a high degree of overlap with SLE, including drug-induced lupus, cerebrovascular disease and neurocognitive disorders. Finally, we review the management of NPSLE, mainly moderate to high- dose glucocorticoids and immunosuppressants, again highlighting considerations for older adults, such as increased medication (especially glucocorticoids) adverse effects, ageing-related pharmacokinetic changes that can affect SLE medication management, medication dosing and attention to medical comorbidities affecting brain health.
Collapse
Affiliation(s)
- Oshrat E Tayer-Shifman
- Rheumatology Unit, Meir Medical Center affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Kfar Saba, Israel
| | - Kathleen S Bingham
- University Health Network Centre for Mental Health, Toronto General Hospital, Toronto, ON, Canada
| | - Zahi Touma
- Division of Rheumatology, Department of Medicine, Centre for Prognosis Studies in Rheumatic Diseases, Toronto Western Hospital-Lupus Clinic, University of Toronto, EW, 1-412, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
42
|
Redenbaugh V, Montalvo M, Sechi E, Buciuc M, Fryer JP, McKeon A, Lennon VA, Mills JR, Weinshenker BG, Wingerchuk DM, Chen JJ, Tariq Bhatti M, Lopez Chiriboga AS, Pittock SJ, Flanagan EP. Diagnostic value of aquaporin-4-IgG live cell based assay in neuromyelitis optica spectrum disorders. Mult Scler J Exp Transl Clin 2021; 7:20552173211052656. [PMID: 34868626 PMCID: PMC8637716 DOI: 10.1177/20552173211052656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Objective Determine the utility of aquaporin 4 IgG (AQP4-IgG) testing (live cell-based
assay) for Neuromyelitis Optica Spectrum Disorders (NMOSD). Methods We included Mayo Clinic patients (1/1/2018-12/31/2019) tested for serum
AQP4-IgG by live cell-based flow-cytometric assay. Medical records were
reviewed to assess if patients fulfilled 2015 NMOSD criteria. Results Of 1371 patients tested, 41 were positive (3%) and all fulfilled NMOSD
criteria with AQP4-IgG (specificity = 100%). Only 10/1330 testing negative
met NMOSD criteria without AQP4-IgG (sensitivity = 80%) and seven of these
10 were MOG-IgG positive. Conclusions AQP4-IgG by live cell-based assay was highly specific and without false
positives in a high throughput setting.
Collapse
Affiliation(s)
- Vyanka Redenbaugh
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mayra Montalvo
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Elia Sechi
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marina Buciuc
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - James P Fryer
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrew McKeon
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Vanda A Lennon
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - John R Mills
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brian G Weinshenker
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dean M Wingerchuk
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - John J Chen
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M Tariq Bhatti
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Sean J Pittock
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eoin P Flanagan
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
43
|
Liu J, Tan G, Li B, Zhang J, Gao Y, Cao Y, Jia Z, Sugimoto K. Serum Aquaporin 4-Immunoglobulin G Titer and Neuromyelitis Optica Spectrum Disorder Activity and Severity: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:746959. [PMID: 34744983 PMCID: PMC8565925 DOI: 10.3389/fneur.2021.746959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Aquaporin 4-immunoglobulin G (AQP4-IgG) plays a major role in the pathogenesis of neuromyelitis optica spectrum disorder (NMOSD). Seropositive status for this antibody has become one of the required indicators for NMOSD diagnosis. Objective: Our goal was to systematically review and perform a meta-analysis of the current works of literature evaluating the clinical relevance of serum AQP4-IgG titer in patients with NMOSD. We sought to determine whether AQP4-IgG could indicate disease activity or severity, in addition to its diagnostic value in NMOSD. Methods: Electronic databases were searched for published literature, yielding 4,402 hits. Of the 124 full articles screened, 17 were included in the qualitative analysis and 14 in the meta-analysis. Results: There were no significant differences in serum AQP4-IgG titers between the relapse and remission phases in patients with NMOSD [standard mean difference (SMD): 0.32, 95% CI (-0.10, 0.74), p = 0.14]. Subgroup meta-analysis of AQP4-IgG detected by cell-based assays (CBA), an AQP4-IgG testing method recommended by the 2015 international consensus diagnostic criteria for NMOSD, confirmed the aforementioned result [SMD: 0.27, 95% CI (-0.01, 0.55), p = 0.06]. Moreover, the serum AQP4-IgG titer was positively correlated with the number of involved spinal cord segments [correlation coefficient (COR): 0.70, 95% CI (0.28-0.89), p = 0.003] and the Expanded Disability Status Scale (EDSS) score [COR: 0.54, 95% CI (0.06-0.82), p = 0.03] in the attack phase in patients with NMOSD. Conclusions: The present study systematically assessed the association between serum AQP4-IgG titer and NMOSD activity and severity. The results demonstrated that the serum AQP4-IgG titer was not associated with disease activity but indicated the disease severity in the attack phase in patients with NMOSD. A further meta-analysis with a larger number of studies that employed standardized AQP4-IgG assays and detected attack-remission paired samples from the same patients with detailed medication information will be required to confirm our findings and shed more light on optimizing clinical AQP4-IgG monitoring. Systematic Review Registration: [www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=208209], PROSPERO, identifier [CRD42020208209].
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingze Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanbo Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Takeshita Y, Fujikawa S, Serizawa K, Fujisawa M, Matsuo K, Nemoto J, Shimizu F, Sano Y, Tomizawa-Shinohara H, Miyake S, Ransohoff RM, Kanda T. New BBB Model Reveals That IL-6 Blockade Suppressed the BBB Disorder, Preventing Onset of NMOSD. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1076. [PMID: 34667128 PMCID: PMC8529420 DOI: 10.1212/nxi.0000000000001076] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023]
Abstract
Background and Objectives To evaluate the pathophysiology of neuromyelitis optica spectrum disorder (NMOSD) and the therapeutic mechanism and levels of interleukin-6 (IL-6) blockade (satralizumab), especially with respect to blood-brain barrier (BBB) disruption with the new in vitro and ex vivo human BBB models and in vivo model. Methods We constructed new static in vitro and flow-based ex vivo models for evaluating continued barrier function, leukocyte transmigration, and intracerebral transferability of neuromyelitis optica-immunoglobulin G (NMO-IgG) and satralizumab across the BBB using the newly established triple coculture system that are specialized to closely mimic endothelial cell contact of pericytes and endfeet of astrocytes. In the in vivo study, we assessed the effects of an anti–IL-6 receptor antibody for mice (MR16-1) on in vivo BBB disruption in mice with experimental autoimmune encephalomyelitis in which IL-6 concentration in the spinal cord dramatically increases. Results In vitro and ex vivo experiments demonstrated that NMO-IgG increased intracerebral transferability of satralizumab and NMO-IgG and that satralizumab suppressed the NMO-IgG–induced transmigration of T cells and barrier dysfunction. In the in vivo study, the blockade of IL-6 signaling suppressed the migration of T cells into the spinal cord and prevented the increased BBB permeability. Discussion These results suggest that (1) our triple-cultured in vitro and in ex vivo BBB models are ideal for evaluating barrier function, leukocyte transmigration, and intracerebral transferability; (2) NMO-IgG increased the intracerebral transferability of NMO-IgG via decreasing barrier function and induced secretion of IL-6 from astrocytes causing more dysfunction of the barrier and disrupting controlled cellular infiltration; and (3) satralizumab, which can pass through the BBB in the presence of NMO-IgG, suppresses the BBB dysfunction and the infiltration of inflammatory cells, leading to prevention of onset of NMOSD.
Collapse
Affiliation(s)
- Yukio Takeshita
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Susumu Fujikawa
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Kenichi Serizawa
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Miwako Fujisawa
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Kinya Matsuo
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Joe Nemoto
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Fumitaka Shimizu
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Yasuteru Sano
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Haruna Tomizawa-Shinohara
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Shota Miyake
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Richard M Ransohoff
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Takashi Kanda
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA.
| |
Collapse
|
45
|
Abstract
Acute myelopathies are spinal cord disorders characterized by a rapidly progressive course reaching nadir within hours to a few weeks that may result in severe disability. The multitude of underlying etiologies, complexities in confirming the diagnosis, and often unforgiving nature of spinal cord damage have always represented a challenge. Moreover, certain slowly progressive myelopathies may present acutely or show abrupt worsening in specific settings and thus further complicate the diagnostic workup. Awareness of the clinical and magnetic resonance imaging characteristics of different myelopathies and the specific settings where they occur is fundamental for a correct diagnosis. Neuroimaging helps distinguish compressive etiologies that may require urgent surgery from intrinsic etiologies that generally require medical treatment. Differentiation between various myelopathies is essential to establish timely and appropriate treatment and avoid harm from unnecessary procedures. This article reviews the contemporary spectrum of acute myelopathy etiologies and provides guidance for diagnosis and management.
Collapse
Affiliation(s)
- Elia Sechi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
46
|
Rejdak K, Papuć E. Cladribine suppresses disease activity in neuromyelitis optica spectrum disorder: a 2-year follow-up study. Eur J Neurol 2021; 28:3167-3172. [PMID: 34233064 DOI: 10.1111/ene.15012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Neuromyelitis optica spectrum disorder (NMOSD) is a difficult condition to treat. Cladribine selectively and transiently depletes B and T lymphocytes, leading to long-lasting immune reconstitution. This report describes observations from 24 months of follow-up after cladribine in NMOSD patients. METHODS This is a retrospective analysis of a case series including 12 seropositive patients with NMOSD. Patients were given cladribine by subcutaneous injections in a series of several 2-day cycles of 20 mg administered at intervals of 4-6 weeks. Thus, the full treatment course delivered a cumulative bioavailable dose similar to that approved for treatment of multiple sclerosis. Annualized relapse rate (ARR), disability (Expanded Disability Status Scale [EDSS] score) and safety in the 24 months preceding and the 24 months following the initiation of cladribine treatment were assessed. RESULTS The mean ARR in the 24 months preceding cladribine treatment was 1.04 (95% confidence interval [CI] 0.67-1.62). The mean ARR in the 24 months following initiation of cladribine treatment was 0.21 (95% CI 0.08-0.56). The ratio in the rate of events post versus prior cladribine initiation was 0.20 (95% CI 0.07-0.59) and highly significant (p = 0.0073). The EDSS score did not change over the follow-up period (2.5 ± 1.7; mean ± SD) compared to baseline (2.5 ± 1.5; mean ± SD). No serious adverse events considered to be linked to cladribine were observed during follow-up. CONCLUSIONS Cladribine was safe in NMOSD patients over a 2-year observation period. Cladribine treatment was associated with clinical stabilization, as evidenced by significantly decreased ARR and no progression of EDSS score.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Ewa Papuć
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
47
|
Sechi E, Flanagan EP. Antibody-Mediated Autoimmune Diseases of the CNS: Challenges and Approaches to Diagnosis and Management. Front Neurol 2021; 12:673339. [PMID: 34305787 PMCID: PMC8292678 DOI: 10.3389/fneur.2021.673339] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated disorders of the central nervous system (CNS) are increasingly recognized as neurologic disorders that can be severe and even life-threatening but with the potential for reversibility with appropriate treatment. The expanding spectrum of newly identified autoantibodies targeting glial or neuronal (neural) antigens and associated clinical syndromes (ranging from autoimmune encephalitis to CNS demyelination) has increased diagnostic precision, and allowed critical reinterpretation of non-specific neurological syndromes historically associated with systemic disorders (e.g., Hashimoto encephalopathy). The intracellular vs. cell-surface or synaptic location of the different neural autoantibody targets often helps to predict the clinical characteristics, potential cancer association, and treatment response of the associated syndromes. In particular, autoantibodies targeting intracellular antigens (traditionally termed onconeural autoantibodies) are often associated with cancers, rarely respond well to immunosuppression and have a poor outcome, although exceptions exist. Detection of neural autoantibodies with accurate laboratory assays in patients with compatible clinical-MRI phenotypes allows a definite diagnosis of antibody-mediated CNS disorders, with important therapeutic and prognostic implications. Antibody-mediated CNS disorders are rare, and reliable autoantibody identification is highly dependent on the technique used for detection and pre-test probability. As a consequence, indiscriminate neural autoantibody testing among patients with more common neurologic disorders (e.g., epilepsy, dementia) will necessarily increase the risk of false positivity, so that recognition of high-risk clinical-MRI phenotypes is crucial. A number of emerging clinical settings have recently been recognized to favor development of CNS autoimmunity. These include antibody-mediated CNS disorders following herpes simplex virus encephalitis or occurring in a post-transplant setting, and neurological autoimmunity triggered by TNFα inhibitors or immune checkpoint inhibitors for cancer treatment. Awareness of the range of clinical and radiological manifestations associated with different neural autoantibodies, and the specific settings where autoimmune CNS disorders may occur is crucial to allow rapid diagnosis and early initiation of treatment.
Collapse
Affiliation(s)
- Elia Sechi
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
48
|
Raibagkar P, Ramineni A. Autoimmune Neurologic Emergencies. Neurol Clin 2021; 39:589-614. [PMID: 33896534 DOI: 10.1016/j.ncl.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past decade, understanding of autoimmune neurologic disorders has exponentially increased. Many patients present as a neurologic emergency and require timely evaluation with rapid management and intensive care. However, the diagnosis is often either missed or delayed, which may lead to a significant burden of disabling morbidity and even mortality. A high level of suspicion in the at-risk population should be maintained to facilitate more rapid diagnosis and prompt treatment. At present, there is no all-encompassing algorithm specifically applicable to the management of fulminant autoimmune neurologic disorders. This article discusses manifestations and management of various autoimmune neurologic emergencies.
Collapse
Affiliation(s)
- Pooja Raibagkar
- Concord Hospital Neurology Associates, 246 Pleasant Street, Concord, NH 03301, USA.
| | - Anil Ramineni
- Lahey Hospital & Medical Center, Beth Israel Lahey Health, 41 Mall Road, Burlington, MA 01803, USA
| |
Collapse
|
49
|
Romeo AR. Recent advances in the treatment of neuromyelitis optica spectrum disorders. Curr Opin Rheumatol 2021; 33:233-239. [PMID: 33741809 DOI: 10.1097/bor.0000000000000791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review examines recently published randomized placebo-controlled trials for the treatment of neuromyelitis optica spectrum disorders (NMOSD). RECENT FINDINGS Until recently, treatments for NMOSD were used-off label and had not been subjected to randomized placebo-controlled trials. Increased understanding of the pathophysiology of NMOSD, particularly aquaporin-4-IgG seropositive NMOSD, lead to the investigation of eculizumab, inebilizumab, and satralizumab for maintenance therapy. Eculizumab inhibits the cleavage of the terminal complement protein C5, inebilizumab depletes immune cells of B-lymphocyte lineage, and satralizumab inhibits interleukin-6 receptors. International, phase 3, randomized, placebo-controlled trials have demonstrated that each of these therapies reduces the risk of NMOSD relapse. In some cases, the studied therapies were administered in conjunction with other immunosuppressants. Each therapy has important safety considerations, notably risk of meningococcal infection with eculizumab and risks of infection and hypogammaglobulinemia with inebilizumab. Reviewing trial design highlights future areas of inquiry for the treatment of NMOSD. SUMMARY Eculizumab, inebilizumab, and satralizumab are effective maintenance therapies approved for the treatment of AQP-4 seropositive NMOSD.
Collapse
Affiliation(s)
- Andrew R Romeo
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Gospe SM, Chen JJ, Bhatti MT. Neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disorder-optic neuritis: a comprehensive review of diagnosis and treatment. Eye (Lond) 2021; 35:753-768. [PMID: 33323985 PMCID: PMC8026985 DOI: 10.1038/s41433-020-01334-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Optic neuritis (ON) is the most common cause of acute optic neuropathy in patients younger than 50 years of age and is most frequently idiopathic or associated with multiple sclerosis. However, the discovery of aquaporin-4 immunoglobulin G (IgG) and myelin oligodendrocyte glycoprotein (MOG)-IgG as biomarkers for two separate central nervous system inflammatory demyelinating diseases has revealed that neuromyelitis optica spectrum disorder (NMSOD) and MOG-IgG-associated disease (MOGAD) are responsible for clinically distinct subsets of ON. NMOSD-ON and MOGAD-ON both demonstrate tendencies for bilateral optic nerve involvement and often exhibit a relapsing course with the potential for devastating long-term visual outcomes. Early and accurate diagnosis is therefore essential. This review will summarize the current understanding of the clinical spectra of NMOSD and MOGAD, the radiographic and serological findings which support their diagnoses, and the current evidence behind various acute and long-term therapeutic strategies for ON related to these conditions. A particular emphasis is placed on a number of recent multi-centre randomized placebo-controlled trials, which provide the first level I evidence for long-term treatment of NMOSD.
Collapse
Affiliation(s)
- Sidney M Gospe
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - John J Chen
- Departments of Ophthalmology and Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M Tariq Bhatti
- Departments of Ophthalmology and Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|