1
|
Dalmau J, Dalakas MC, Kolson DL, Pröbstel AK, Paul F, Zamvil SS. Ten Years of Neurology® Neuroimmunology & Neuroinflammation: Decade in Review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200363. [PMID: 39724529 DOI: 10.1212/nxi.0000000000200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Affiliation(s)
- Josep Dalmau
- IDIBAPS-CaixaResearch Institute, University Hospital Clínic of Barcelona, Barcelona, Spain
- University of Pennsylvania, Philadelphia
| | - Marinos C Dalakas
- University of Athens Medical School, Greece
- Jefferson University, Philadelphia, PA
| | | | - Anne-Katrin Pröbstel
- Departments of Neurology, University Hospital of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | | | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco
| |
Collapse
|
2
|
Jiménez-Torres AC, Porter KD, Hastie JA, Adeniran C, Moukha-Chafiq O, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhan CG, Zhu J. Effects of SRI-32743, a Novel Quinazoline Structure-Based Compound, on HIV-1 Tat and Cocaine Interaction with Norepinephrine Transporter. Int J Mol Sci 2024; 25:7881. [PMID: 39063123 PMCID: PMC11277056 DOI: 10.3390/ijms25147881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Prolonged exposure to HIV-1 transactivator of transcription (Tat) protein dysregulates monoamine transmission, a physiological change implicated as a key factor in promoting neurocognitive disorders among people living with HIV. We have demonstrated that in vivo expression of Tat in Tat transgenic mice decreases dopamine uptake through both dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex. Further, our novel allosteric inhibitor of monoamine transporters, SRI-32743, has been shown to attenuate Tat-inhibited dopamine transport through DAT and alleviates Tat-potentiated cognitive impairments. The current study reports the pharmacological profiles of SRI-32743 in basal and Tat-induced inhibition of human NET (hNET) function. SRI-32743 exhibited less affinity for hNET binding than desipramine, a classical NET inhibitor, but displayed similar potency for inhibiting hDAT and hNET activity. SRI-32743 concentration-dependently increased hNET affinity for [3H]DA uptake but preserved the Vmax of dopamine transport. SRI-32743 slowed the cocaine-mediated dissociation of [3H]Nisoxetine binding and reduced both [3H]DA and [3H]MPP+ efflux but did not affect d-amphetamine-mediated [3H]DA release through hNET. Finally, we determined that SRI-32743 attenuated a recombinant Tat1-86-induced decrease in [3H]DA uptake via hNET. Our findings demonstrated that SRI-32743 allosterically disrupts the recombinant Tat1-86-hNET interaction, suggesting a potential treatment for HIV-infected individuals with concurrent cocaine abuse.
Collapse
Affiliation(s)
- Ana Catya Jiménez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| | - Katherine D. Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| | - Jamison A. Hastie
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| | - Charles Adeniran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (C.A.); (C.-G.Z.)
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Theresa H. Nguyen
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Corinne E. Augelli-Szafran
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (C.A.); (C.-G.Z.)
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| |
Collapse
|
3
|
Starr A, Nickoloff-Bybel E, Abedalthaqafi R, Albloushi N, Jordan-Sciutto KL. Human iPSC-derived neurons reveal NMDAR-independent dysfunction following HIV-associated insults. Front Mol Neurosci 2024; 16:1353562. [PMID: 38348237 PMCID: PMC10859444 DOI: 10.3389/fnmol.2023.1353562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024] Open
Abstract
The central nervous system encounters a number of challenges following HIV infection, leading to increased risk for a collection of neurocognitive symptoms clinically classified as HIV-associated neurocognitive disorders (HAND). Studies attempting to identify causal mechanisms and potential therapeutic interventions have historically relied on primary rodent neurons, but a number of recent reports take advantage of iPSC-derived neurons in order to study these mechanisms in a readily reproducible, human model. We found that iPSC-derived neurons differentiated via an inducible neurogenin-2 transcription factor were resistant to gross toxicity from a number of HIV-associated insults previously reported to be toxic in rodent models, including HIV-infected myeloid cell supernatants and the integrase inhibitor antiretroviral drug, elvitegravir. Further examination of these cultures revealed robust resistance to NMDA receptor-mediated toxicity. We then performed a comparative analysis of iPSC neurons exposed to integrase inhibitors and activated microglial supernatants to study sub-cytotoxic alterations in micro electrode array (MEA)-measured neuronal activity and gene expression, identifying extracellular matrix interaction/morphogenesis as the most consistently altered pathways across HIV-associated insults. These findings illustrate that HIV-associated insults dysregulate human neuronal activity and organization even in the absence of gross NMDA-mediated neurotoxicity, which has important implications on the effects of these insults in neurodevelopment and on the interpretation of primary vs. iPSC in vitro neuronal studies.
Collapse
Affiliation(s)
| | | | | | | | - Kelly L. Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Ardakani R, Jia L, Matthews E, Thakur KT. Therapeutic advances in neuroinfectious diseases. Ther Adv Infect Dis 2024; 11:20499361241274246. [PMID: 39314743 PMCID: PMC11418331 DOI: 10.1177/20499361241274246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/05/2024] [Indexed: 09/25/2024] Open
Abstract
There have been several major advances in therapeutic options for the treatment of neurological infections over the past two decades. These advances encompass both the development of new antimicrobial therapies and the repurposing of existing agents for new indications. In addition, advances in our understanding of the host immune response have allowed for the development of new immunomodulatory strategies in the treatment of neurological infections. This review focuses on the key advances in the treatment of neurological infections, including viral, bacterial, fungal, and prion diseases, with a particular focus on immunomodulatory treatment options. This review also highlights the process by which clinicians can request access to therapeutic agents on a compassionate or emergency basis when they may not be commercially available. While many therapeutic advances have been achieved in the past several years, there remains a pressing need for the continued development of additional therapeutic agents in the treatment of neurological infections.
Collapse
Affiliation(s)
- Rumyar Ardakani
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lucy Jia
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth Matthews
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kiran T. Thakur
- Department of Neurology, Columbia University Irving Medical Center, 177 Fort Washington Avenue, Milstein Hospital, 8GS-300, New York, NY 10032, USA
- Program in Neuroinfectious Diseases, Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital
| |
Collapse
|
5
|
HIV-Associated Vacuolar Myelopathy and HIV-Associated Neurocognitive Disorder as an Initial Presentation in HIV Infection. Case Rep Infect Dis 2023; 2023:1542785. [PMID: 36699668 PMCID: PMC9870676 DOI: 10.1155/2023/1542785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023] Open
Abstract
Several neurological disorders have been described in HIV infection. Vacuolar myelopathy and neurocognitive disorders usually come at an advanced stage of the disease process. Here, we present a case where these features constitute the presenting complaints. Both of these conditions improved significantly following the start of HAART. We believe this clinical pathway can be a good learning point for the clinician.
Collapse
|
6
|
Khan SS, Khatik GL, Datusalia AK. Strategies for Treatment of Disease-Associated Dementia Beyond Alzheimer's Disease: An Update. Curr Neuropharmacol 2023; 21:309-339. [PMID: 35410602 PMCID: PMC10190146 DOI: 10.2174/1570159x20666220411083922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/27/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Memory, cognition, dementia, and neurodegeneration are complexly interlinked processes with various mechanistic pathways, leading to a range of clinical outcomes. They are strongly associated with pathological conditions like Alzheimer's disease, Parkinson's disease, schizophrenia, and stroke and are a growing concern for their timely diagnosis and management. Several cognitionenhancing interventions for management include non-pharmacological interventions like diet, exercise, and physical activity, while pharmacological interventions include medicinal agents, herbal agents, and nutritional supplements. This review critically analyzed and discussed the currently available agents under different drug development phases designed to target the molecular targets, including cholinergic receptor, glutamatergic system, GABAergic targets, glycine site, serotonergic targets, histamine receptors, etc. Understanding memory formation and pathways involved therein aids in opening the new gateways to treating cognitive disorders. However, clinical studies suggest that there is still a dearth of knowledge about the pathological mechanism involved in neurological conditions, making the dropouts of agents from the initial phases of the clinical trial. Hence, a better understanding of the disease biology, mode of drug action, and interlinked mechanistic pathways at a molecular level is required.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Ashok K. Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| |
Collapse
|
7
|
Kolson DL. Developments in Neuroprotection for HIV-Associated Neurocognitive Disorders (HAND). Curr HIV/AIDS Rep 2022; 19:344-357. [PMID: 35867211 PMCID: PMC9305687 DOI: 10.1007/s11904-022-00612-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Reducing the risk of HIV-associated neurocognitive disorders (HAND) is an elusive treatment goal for people living with HIV. Combination antiretroviral therapy (cART) has reduced the prevalence of HIV-associated dementia, but milder, disabling HAND is an unmet challenge. As newer cART regimens that more consistently suppress central nervous system (CNS) HIV replication are developed, the testing of adjunctive neuroprotective therapies must accelerate. RECENT FINDINGS Successes in modifying cART regimens for CNS efficacy (penetrance, chemokine receptor targeting) and delivery (nanoformulations) in pilot studies suggest that improving cART neuroprotection and reducing HAND risk is achievable. Additionally, drugs currently used in neuroinflammatory, neuropsychiatric, and metabolic disorders show promise as adjuncts to cART, likely by broadly targeting neuroinflammation, oxidative stress, aerobic metabolism, and/or neurotransmitter metabolism. Adjunctive cognitive brain therapy and aerobic exercise may provide additional efficacy. Adjunctive neuroprotective therapies, including available FDA-approved drugs, cognitive therapy, and aerobic exercise combined with improved cART offer plausible strategies for optimizing the prevention and treatment of HAND.
Collapse
Affiliation(s)
- Dennis L Kolson
- Department of Neurology, University of Pennsylvania, Room 280C Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Ahmed-Leitao F, Du Plessis S, Konkiewitz EC, Spies G, Seedat S. Altered white matter integrity in the corpus callosum in adults with HIV: a systematic review of diffusion tensor imaging studies. Psychiatry Res Neuroimaging 2022; 326:111543. [PMID: 36126346 DOI: 10.1016/j.pscychresns.2022.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
We systematically reviewed studies comparing differences in the integrity of the corpus callosum in adults with HIV compared to healthy controls, using Diffusion Tensor Imaging (DTI), using search engines Science Direct, Web of Science and PubMed. The search terms used were "HIV", "corpus callosum", and a variation of either "DTI" or "Diffusion Tensor Imaging" with or without the term "adults". We specifically examined the corpus callosum as it is the largest white matter tract in the brain, plays a primary role in cognition, and has been shown to be morphologically altered in people living with HIV. Lower fractional anisotropy (FA) was consistently found in the corpus callosum in people with HIV compared to controls. As most studies used only FA as a measure of diffusion, it would be informative for future research if other DTI metrics, such as mean diffusivity (MD), were also investigated as these metrics may be more sensitive markers of HIV-related neuropathology.
Collapse
Affiliation(s)
- Fatima Ahmed-Leitao
- South African Research Chairs Initiative (SARChI) in Posttraumatic Stress Disorder, Department of Psychiatry, Stellenbosch University, South Africa.
| | - Stefan Du Plessis
- Department of Psychiatry, Stellenbosch University, South Africa; SAMRC Genomics of Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa.
| | | | - Georgina Spies
- South African Research Chairs Initiative (SARChI) in Posttraumatic Stress Disorder, Department of Psychiatry, Stellenbosch University, South Africa; SAMRC Genomics of Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa.
| | - Soraya Seedat
- South African Research Chairs Initiative (SARChI) in Posttraumatic Stress Disorder, Department of Psychiatry, Stellenbosch University, South Africa; SAMRC Genomics of Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
9
|
Killingsworth L, Spudich S. Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Semin Immunopathol 2022; 44:709-724. [PMID: 35882661 PMCID: PMC10126949 DOI: 10.1007/s00281-022-00953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 01/16/2023]
Abstract
This review outlines the neuropathogenesis of HIV, from initial HIV entry into the central nervous system (CNS) to chronic infection, focusing on key advancements in the last 5 years. Discoveries regarding acute HIV infection reveal timing and mechanisms of early HIV entry and replication in the CNS, early inflammatory responses, and establishment of genetically distinct viral reservoirs in the brain. Recent studies additionally explore how chronic HIV infection is maintained in the CNS, examining how the virus remains in a latent "hidden" state in diverse cells in the brain, and how this leads to sustained pathological inflammatory responses. Despite viral suppression with antiretroviral therapy, HIV can persist and even replicate in the CNS, and associate with ongoing neuropathology including CD8 + T-lymphocyte mediated encephalitis. Crucial investigation to advance our understanding of the immune mechanisms that both control viral infection and lead to pathological consequences in the brain is necessary to develop treatments to optimize long-term neurologic health in people living with HIV.
Collapse
Affiliation(s)
- Lauren Killingsworth
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300c, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
Sreeram S, Ye F, Garcia-Mesa Y, Nguyen K, El Sayed A, Leskov K, Karn J. The potential role of HIV-1 latency in promoting neuroinflammation and HIV-1-associated neurocognitive disorder. Trends Immunol 2022; 43:630-639. [PMID: 35840529 PMCID: PMC9339484 DOI: 10.1016/j.it.2022.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Despite potent suppression of HIV-1 viral replication in the central nervous system (CNS) by antiretroviral therapy (ART), between 15% and 60% of HIV-1-infected patients receiving ART exhibit neuroinflammation and symptoms of HIV-1-associated neurocognitive disorder (HAND) - a significant unmet challenge. We propose that the emergence of HIV-1 from latency in microglia underlies both neuroinflammation in the CNS and the progression of HAND. Recent molecular studies of cellular silencing mechanisms of HIV-1 in microglia show that HIV-1 latency can be reversed both by proinflammatory cytokines and by signals from damaged neurons, potentially creating intermittent cycles of HIV-1 reactivation and silencing in the brain. We posit that anti-inflammatory agents that also block HIV-1 reactivation, such as nuclear receptor agonists, might provide new putative therapeutic avenues for the treatment of HAND.
Collapse
Affiliation(s)
- Sheetal Sreeram
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Ahmed El Sayed
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Aguilar-Castillo MJ, Cabezudo-García P, Ciano-Petersen NL, García-Martin G, Marín-Gracia M, Estivill-Torrús G, Serrano-Castro PJ. Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies. Biomedicines 2022; 10:716. [PMID: 35327518 PMCID: PMC8945207 DOI: 10.3390/biomedicines10030716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Immunologic and neuroinflammatory pathways have been found to play a major role in the pathogenesis of many neurological disorders such as epilepsy, proposing the use of novel therapeutic strategies. In the era of personalized medicine and in the face of the exhaustion of anti-seizure therapeutic resources, it is worth looking at the current or future possibilities that neuroimmunomodulator or anti-inflammatory therapy can offer us in the management of patients with epilepsy. For this reason, we performed a narrative review on the recent advances on the basic epileptogenic mechanisms related to the activation of immunity or neuroinflammation with special attention to current and future opportunities for novel treatments in epilepsy. Neuroinflammation can be considered a universal phenomenon and occurs in structural, infectious, post-traumatic, autoimmune, or even genetically based epilepsies. The emerging research developed in recent years has allowed us to identify the main molecular pathways involved in these processes. These molecular pathways could constitute future therapeutic targets for epilepsy. Different drugs current or in development have demonstrated their capacity to inhibit or modulate molecular pathways involved in the immunologic or neuroinflammatory mechanisms described in epilepsy. Some of them should be tested in the future as possible antiepileptic drugs.
Collapse
Affiliation(s)
- María José Aguilar-Castillo
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Biotechnology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
| | - Pablo Cabezudo-García
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Nicolas Lundahl Ciano-Petersen
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Guillermina García-Martin
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Marta Marín-Gracia
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Guillermo Estivill-Torrús
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
- Department of Medicine, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
12
|
Bryant J, Andhavarapu S, Bever C, Guda P, Katuri A, Gupta U, Arvas M, Asemu G, Heredia A, Gerzanich V, Simard JM, Makar TK. 7,8-Dihydroxyflavone improves neuropathological changes in the brain of Tg26 mice, a model for HIV-associated neurocognitive disorder. Sci Rep 2021; 11:18519. [PMID: 34531413 PMCID: PMC8446048 DOI: 10.1038/s41598-021-97220-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB-Akt-NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.
Collapse
Affiliation(s)
- Joseph Bryant
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Christopher Bever
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
| | | | - Akhil Katuri
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | - Udit Gupta
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Girma Asemu
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - J Marc Simard
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - Tapas Kumar Makar
- Institute of Human Virology, Baltimore, MD, 21201, USA.
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Moretti S, Virtuoso S, Sernicola L, Farcomeni S, Maggiorella MT, Borsetti A. Advances in SIV/SHIV Non-Human Primate Models of NeuroAIDS. Pathogens 2021; 10:pathogens10081018. [PMID: 34451482 PMCID: PMC8398602 DOI: 10.3390/pathogens10081018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
Non-human primates (NHPs) are the most relevant model of Acquired Immunodeficiency Syndrome (AIDS) and neuroAIDS, being of great importance in explaining the pathogenesis of HIV-induced nervous system damage. Simian Immunodeficiency Virus (SIV)/ Simian-Human Immunodeficiency Virus (SHIV)-infected monkeys have provided evidence of complex interactions between the virus and host that include host immune response, viral genetic diversity, and genetic susceptibility, which may explain virus-associated central nervous system (CNS) pathology and HIV-associated neurocognitive disorders (HAND). In this article, we review the recent progress contributions obtained using monkey models of HIV infection of the CNS, neuropathogenesis and SIV encephalitis (SIVE), with an emphasis on pharmacologic therapies and dependable markers that predict development of CNS AIDS.
Collapse
|
14
|
Differential Diagnosis of Chorea-HIV Infection Delays Diagnosis of Huntington's Disease by Years. Brain Sci 2021; 11:brainsci11060710. [PMID: 34071882 PMCID: PMC8229235 DOI: 10.3390/brainsci11060710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/16/2023] Open
Abstract
Background: There is a broad range of potential differential diagnoses for chorea. Besides rare, inherited neurodegenerative diseases such as Huntington’s disease (HD) chorea can accompany basal ganglia disorders due to vasculitis or infections, e.g., with the human immunodeficiency virus (HIV). The clinical picture is complicated by the rare occurrence of HIV infection and HD. Methods: First, we present a case suffering simultaneously from HIV and HD (HIV/HD) focusing on clinical manifestation and disease onset. We investigated cross-sectional data regarding molecular genetic, motoric, cognitive, functional, and psychiatric disease manifestation of HIV/HD in comparison to motor-manifest HD patients without HIV infection (nonHIV/HD) in the largest cohort of HD patients worldwide using the registry study ENROLL-HD. Data were analyzed using ANCOVA analyses controlling for covariates of age and CAG repeat length between groups in IBM SPSS Statistics V.25. Results: The HD diagnosis in our case report was delayed by approximately nine years due to the false assumption that the HIV infection might have been the cause of chorea. Out of n = 21,116 participants in ENROLL-HD, we identified n = 10,125 motor-manifest HD patients. n = 23 male participants were classified as suffering from HIV infection as a comorbidity, compared to n = 4898 male non-HIV/HD patients. Except for age, with HIV/HD being significantly younger (p < 0.050), we observed no group differences regarding sociodemographic, genetic, educational, motoric, functional, and cognitive parameters. Male HIV/HD patients reported about a 5.3-year-earlier onset of HD symptoms noticed by themselves compared to non-HIV/HD (p < 0.050). Moreover, patients in the HIV/HD group had a longer diagnostic delay of 1.8 years between onset of symptoms and HD diagnosis and a longer time regarding assessment of first symptoms by the rater and judgement of the patient (all p < 0.050). Unexpectedly, HIV/HD patients showed less irritability in the Hospital Anxiety and Depression Scale (all p < 0.05). Conclusions: The HD diagnosis in HIV-infected male patients is secured with a diagnostic delay between first symptoms noticed by the patient and final diagnosis. Treating physicians therefore should be sensitized to think of potential alternative diagnoses in HIV-infected patients also afflicted by movement disorders, especially if there is evidence of subcortical atrophy and a history of hyperkinesia, even without a clear HD-family history. Those patients should be transferred for early genetic testing to avoid further unnecessary diagnostics and improve sociomedical care.
Collapse
|
15
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
16
|
Dimethyl Fumarate, an Approved Multiple Sclerosis Treatment, Reduces Brain Oxidative Stress in SIV-Infected Rhesus Macaques: Potential Therapeutic Repurposing for HIV Neuroprotection. Antioxidants (Basel) 2021; 10:antiox10030416. [PMID: 33803289 PMCID: PMC7998206 DOI: 10.3390/antiox10030416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Dimethyl fumarate (DMF), an antioxidant/anti-inflammatory drug approved for the treatment of multiple sclerosis, induces antioxidant enzymes, in part through transcriptional upregulation. We hypothesized that DMF administration to simian immunodeficiency virus (SIV)-infected rhesus macaques would induce antioxidant enzyme expression and reduce oxidative injury and inflammation throughout the brain. Nine SIV-infected, CD8+-T-lymphocyte-depleted rhesus macaques were studied. Five received oral DMF prior to the SIV infection and through to the necropsy day. Protein expression was analyzed in 11 brain regions, as well as the thymus, liver, and spleen, using Western blot and immunohistochemistry for antioxidant, inflammatory, and neuronal proteins. Additionally, oxidative stress was determined in brain sections using immunohistochemistry (8-OHdG, 3NT) and optical redox imaging of oxidized flavoproteins containing flavin adenine dinucleotide (Fp) and reduced nicotinamide adenine dinucleotide (NADH). The DMF treatment was associated with no changes in virus replication; higher expressions of the antioxidant enzymes NQO1, GPX1, and HO-1 in the brain and PRDX1 and HO-2 in the spleen; lower levels of 8-OHdG and 3NT; a lower optical redox ratio. The DMF treatment was also associated with increased expressions of cell-adhesion molecules (VCAM-1, ICAM-1) and no changes in HLA-DR, CD68, GFAP, NFL, or synaptic proteins. The concordantly increased brain antioxidant enzyme expressions and reduced oxidative stress in DMF-treated SIV-infected macaques suggest that DMF could limit oxidative stress throughout the brain through effective induction of the endogenous antioxidant response. We propose that DMF could potentially induce neuroprotective brain responses in persons living with HIV.
Collapse
|
17
|
Masters MC, Perez J, Wu K, Ellis RJ, Goodkin K, Koletar SL, Andrade A, Yang J, Brown TT, Palella FJ, Sacktor N, Tassiopoulos K, Erlandson KM. Baseline Neurocognitive Impairment (NCI) Is Associated With Incident Frailty but Baseline Frailty Does Not Predict Incident NCI in Older Persons With Human Immunodeficiency Virus (HIV). Clin Infect Dis 2021; 73:680-688. [PMID: 34398957 DOI: 10.1093/cid/ciab122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurocognitive impairment (NCI) and frailty are more prevalent among persons with human immunodeficiency virus (HIV, PWH) compared to those without HIV. Frailty and NCI often overlap with one another. Whether frailty precedes declines in neurocognitive function among PWH or vice versa has not been well established. METHODS AIDS Clinical Trials Group (ACTG) A5322 is an observational cohort study of older PWH. Participants undergo annual assessments for NCI and frailty. ACTG A5322 participants who developed NCI as indexed by tests of impaired executive functioning and processing speed during the first 3 years were compared to persons who maintained normal cognitive function; those who demonstrated resolution of NCI were compared to those who had persistent NCI. Participants were similarly compared by frailty trajectory. We fit multinomial logistic regression models to assess associations between baseline covariates (including NCI) and frailty, and associations between baseline covariates (including frailty) and NCI. RESULTS In total, 929 participants were included with a median age of 51 years (interquartile range [IQR] 46-56). At study entry, 16% had NCI, and 6% were frail. Over 3 years, 6% of participants developed NCI; 5% developed frailty. NCI was associated with development of frailty (odds ratio [OR] = 2.06; 95% confidence interval [CI] = .94, 4.48; P = .07). Further adjustment for confounding strengthened this association (OR = 2.79; 95% CI = 1.21, 6.43; P = .02). Baseline frailty however was not associated with NCI development. CONCLUSIONS NCI was associated with increased risk of frailty, but frailty was not associated with development of NCI. These findings suggest that the presence of NCI in PWH should prompt monitoring for the development of frailty and interventions to prevent frailty in this population.
Collapse
Affiliation(s)
- Mary Clare Masters
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeremiah Perez
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kunling Wu
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ronald J Ellis
- University of California, San Diego, San Diego, California, USA
| | - Karl Goodkin
- University of Nebraska Medical Center, Omaha, Omaha, Nebraska, USA
| | | | | | | | - Todd T Brown
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Frank J Palella
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ned Sacktor
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
18
|
Spies G, Mall S, Wieler H, Masilela L, Castelon Konkiewitz E, Seedat S. The relationship between potentially traumatic or stressful events, HIV infection and neurocognitive impairment (NCI): a systematic review of observational epidemiological studies. Eur J Psychotraumatol 2020; 11:1781432. [PMID: 33029322 PMCID: PMC7473036 DOI: 10.1080/20008198.2020.1781432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIV/AIDS and potentially traumatic events (PTEs) or stressful life events (SLEs) and/or PTSD are independently associated with neurocognitive impairment (NCI). Literature suggests that HIV and PTE/SLE exposure independently and consistently affect various domains of cognition including language ability, working memory and psychomotor speed. There are limited data on the interaction between HIV infection and PTEs and their combined effect on NCI. OBJECTIVE In this systematic review, we synthesise evidence for the combined effect of HIV infection and PTEs and SLEs and/or post-traumatic stress disorder (PTSD) on NCI of people living with HIV/AIDS (PLWHA) from high-, middle- and low- income countries. METHOD Our inclusion criteria were observational epidemiological studies (case-control, cohort and cross-sectional designs) that investigated the interaction of HIV infection, PTEs and SLEs and/or PTSD and specifically their combined effect on NCI in adults. We searched a number of electronic databases including Pubmed/Medline, PsycINFO, Scopus and Global Health using the search terms: cognition, HIV/AIDS, observational studies, trauma and permutations thereof. RESULTS Fifteen studies were included in the review, of which the majority were conducted in high-income countries. Ten of the fifteen studies were conducted in the United States of America (USA) and five in South Africa. Seven of these focused on early life stress/childhood trauma. The remaining studies assessed adult-onset PTEs and SLEs only. Eight studies included women only. Overall, the studies suggest that PTE and SLE exposure and/or PTSD are a significant risk factor for NCI in adults living with HIV, with impairments in memory and executive functions being the most likely consequence of PTE and SLE exposure. CONCLUSION These findings highlight the need for trauma screening and for the integration of trauma-focused interventions in HIV care to improve outcomes.
Collapse
Affiliation(s)
- G. Spies
- DST/NRF South African Research Chair in PTSD, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - S. Mall
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - H. Wieler
- DST/NRF South African Research Chair in PTSD, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - L. Masilela
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - E. Castelon Konkiewitz
- Faculdade de Ciências Médicas e da Saúde, Universidade Federal da Grande Dourados, Dourados, Brasil
| | - S. Seedat
- DST/NRF South African Research Chair in PTSD, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
19
|
Zhou YJ, Chen JM, Sapkota K, Long JY, Liao YJ, Jiang JJ, Liang BY, Wei JB, Zhou Y. Pananx notoginseng saponins attenuate CCL2-induced cognitive deficits in rats via anti-inflammation and anti-apoptosis effects that involve suppressing over-activation of NMDA receptors. Biomed Pharmacother 2020; 127:110139. [PMID: 32302948 DOI: 10.1016/j.biopha.2020.110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are characterized by synaptic damage and neuronal loss in the brain, ultimately leading to progressive decline of cognitive abilities and memory. Chemokine CC motif ligand 2 (CCL2) is elevated in cerebrospinal fluid (CSF), and has been believed to contribute to HAND. Previous studies by our research team have shown that CCL2 enhances N-Methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) and causes nerve cell damage. However, there are few drugs currently available to treat nerve damage that is caused by CCL2. Panax notoginseng saponins (PNS) are isolated from Panax notoginseng and benefit the human body in various ways, including the neuroprotective effect. However, the protective effect of PNS on CCL2-induced neurotoxicity remains unknown. In this study, we found that PNS improved CCL2-induced learning and memory impairment, and inhibited CCL2-induced cell death. These effects may be due to inhibiting over-activation of NMDA receptors by alleviating the dysfunction of glutamate metabolism. Furthermore, PNS-modulated CCL2-inducd intracellular oxidative stress was found to attenuate cell inflammation. Additionally, PNS pretreatment evidently inhibited apoptotic pathways by reducing the Bax/BCL-2 ratio and caspase-3, 8, 9 expressions. In conclusion, this study demonstrates that PNS provides substantial neuroprotection against CCL2-induced neurotoxicity, and may be a novel therapeutic agent in CCL2-induced HAND or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Jun Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jian-Min Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, United States
| | - Jiang-Yi Long
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuan-Jun Liao
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jun-Jun Jiang
- Guangxi key laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bing-Yu Liang
- Guangxi key laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jin-Bin Wei
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yan Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
20
|
Dalmau J, Dalakas MC, Kolson DL, Paul F, Zamvil SS. N2 year in review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e644. [PMID: 31831570 PMCID: PMC6935839 DOI: 10.1212/nxi.0000000000000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Josep Dalmau
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco.
| | - Marinos C Dalakas
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Dennis L Kolson
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Friedemann Paul
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Scott S Zamvil
- From the ICREA-IDIBAPS Hospital Clínic, University of Barcelona (J.D.), Spain; University of Pennsylvania (J.D., D.L.K.), Philadelphia; University of Athens Medical School (M.C.D.), Athens, Greece; Jefferson University (M.C.D.), Philadelphia, PA; Charite University Hospital (F.P.), Berlin, Germany; and Department of Neurology (S.S.Z.), University of California, San Francisco
| |
Collapse
|
21
|
Michael H, Mpofana T, Ramlall S, Oosthuizen F. The Role of Brain Derived Neurotrophic Factor in HIV-Associated Neurocognitive Disorder: From the Bench-Top to the Bedside. Neuropsychiatr Dis Treat 2020; 16:355-367. [PMID: 32099373 PMCID: PMC6999762 DOI: 10.2147/ndt.s232836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) remains prevalent in the anti-retroviral (ART) era. While there is a complex interplay of many factors in the neuropathogenesis of HAND, decreased neurotrophic synthesis has been shown to contribute to synaptic degeneration which is a hallmark of HAND neuropathology. Brain derived neurotrophic factor (BDNF) is the most abundant and synaptic-promoting neurotrophic factor in the brain and plays a critical role in both learning and memory. Reduced BDNF levels can worsen neurocognitive impairment in HIV-positive individuals across several domains. In this paper, we review the evidence from pre-clinical and clinical studies showing the neuroprotective roles of BDNF against viral proteins, effect on co-morbid mental health disorders, altered human microbiome and ART in HAND management. Potential applications of BDNF modulation in pharmacotherapeutic, cognitive and behavioral interventions in HAND are also discussed. Finally, research gaps and future research direction are identified with the aim of helping researchers to direct efforts to make these BDNF driven interventions improve the quality of life of patients living with HAND.
Collapse
Affiliation(s)
- Henry Michael
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Thabisile Mpofana
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Suvira Ramlall
- Department of Psychiatry, University of KwaZulu-Natal, Durban, South Africa
| | - Frasia Oosthuizen
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|