1
|
Liu HK, Hao HL, You H, Feng F, Qi XH, Huang XY, Hou B, Tian CG, Wang H, Yang HM, Wang J, Wu R, Fang H, Zhou JN, Zhang JG, Zhang ZX. A Cysteinyl-tRNA Synthetase Mutation Causes Novel Autosomal-Dominant Inheritance of a Parkinsonism/Spinocerebellar-Ataxia Complex. Neurosci Bull 2024; 40:1489-1501. [PMID: 38869703 PMCID: PMC11422396 DOI: 10.1007/s12264-024-01231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/22/2023] [Indexed: 06/14/2024] Open
Abstract
This study aimed to identify possible pathogenic genes in a 90-member family with a rare combination of multiple neurodegenerative disease phenotypes, which has not been depicted by the known neurodegenerative disease. We performed physical and neurological examinations with International Rating Scales to assess signs of ataxia, Parkinsonism, and cognitive function, as well as brain magnetic resonance imaging scans with seven sequences. We searched for co-segregations of abnormal repeat-expansion loci, pathogenic variants in known spinocerebellar ataxia-related genes, and novel rare mutations via whole-genome sequencing and linkage analysis. A rare co-segregating missense mutation in the CARS gene was validated by Sanger sequencing and the aminoacylation activity of mutant CARS was measured by spectrophotometric assay. This pedigree presented novel late-onset core characteristics including cerebellar ataxia, Parkinsonism, and pyramidal signs in all nine affected members. Brain magnetic resonance imaging showed cerebellar/pons atrophy, pontine-midline linear hyperintensity, decreased rCBF in the bilateral basal ganglia and cerebellar dentate nucleus, and hypo-intensities of the cerebellar dentate nuclei, basal ganglia, mesencephalic red nuclei, and substantia nigra, all of which suggested neurodegeneration. Whole-genome sequencing identified a novel pathogenic heterozygous mutation (E795V) in the CARS gene, meanwhile, exhibited none of the known repeat-expansions or point mutations in pathogenic genes. Remarkably, this CARS mutation causes a 20% decrease in aminoacylation activity to charge tRNACys with L-cysteine in protein synthesis compared with that of the wild type. All family members carrying a heterozygous mutation CARS (E795V) had the same clinical manifestations and neuropathological changes of Parkinsonism and spinocerebellar-ataxia. These findings identify novel pathogenesis of Parkinsonism-spinocerebellar ataxia and provide insights into its genetic architecture.
Collapse
Affiliation(s)
- Han-Kui Liu
- BGI Genomics and BGI Research, Shenzhen, 518083, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050011, China
| | - Hong-Lin Hao
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hui You
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Feng Feng
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiu-Hong Qi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | | | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Han Wang
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Jian Wang
- BGI Genomics and BGI Research, Shenzhen, 518083, China
| | - Rui Wu
- Department of Pathology, Beijing Key Laboratory of Biomarker Research and Transformation for Neurodegenerative Diseases, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Fang
- Anhui Provincial Children's Hospital, Children's Hospital of Fudan University, Hefei, 230051, China
| | - Jiang-Ning Zhou
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jian-Guo Zhang
- BGI Genomics and BGI Research, Shenzhen, 518083, China.
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050011, China.
| | - Zhen-Xin Zhang
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
2
|
Poisson KE, Newsome SD, Graves J, Zamvil SS, Marcus LR. Teenager With Recurrent Ataxia, Ophthalmoplegia, and Encephalopathy Associated With Demyelination: From the National Multiple Sclerosis Society Case Conference Proceedings. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200193. [PMID: 38181318 PMCID: PMC11078149 DOI: 10.1212/nxi.0000000000200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
A 15-year-old adolescent boy developed subacute ataxia, encephalopathy, ophthalmoplegia, and dysarthria following a sore throat. An MRI examination revealed multifocal enhancing and nonenhancing supratentorial white matter and symmetric brainstem lesions. After 2 additional presentations with worsening symptoms and lesion accumulation, he was ultimately successfully treated with rituximab for his condition.
Collapse
Affiliation(s)
- Kelsey E Poisson
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| | - Scott D Newsome
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| | - Jennifer Graves
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| | - Scott S Zamvil
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| | - Lydia R Marcus
- From the Nationwide Children's Hospital (K.E.P.), Columbus, OH; Johns Hopkins University School of Medicine (S.D.N.), Baltimore, MD; University of California San Diego School of Medicine (J.G.); University of California, San Francisco (S.S.Z.); and Children's of Alabama (L.R.M.), Birmingham
| |
Collapse
|
3
|
Abdel-Mannan O, Hacohen Y. Pediatric inflammatory leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:369-398. [PMID: 39322390 DOI: 10.1016/b978-0-323-99209-1.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Acquired demyelinating syndromes (ADS) represent acute neurologic illnesses characterized by deficits persisting for at least 24hours and involving the optic nerve, brain, or spinal cord, associated with regional areas of increased signal on T2-weighted images. In children, ADS may occur as a monophasic illness or as a relapsing condition, such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Almost all young people with MS have a relapsing-remitting course with clinical relapses. Important strides have been made in delineating MS from other ADS subtypes. Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and aquaporin 4-antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) were once considered variants of MS; however, studies in the last decade have established that these are in fact distinct entities. Although there are clinical phenotypic overlaps between MOGAD, AQP4-NMOSD, and MS, cumulative biologic, clinical, and pathologic evidence allows discrimination between these conditions. There has been a rapid increase in the number of available disease-modifying therapies for MS and novel treatment strategies are starting to appear for both MOGAD and AQP4-NMOSD. Importantly, there are a number of both inflammatory and noninflammatory mimics of ADS in children with implications of management for these patients in terms of treatment.
Collapse
Affiliation(s)
- Omar Abdel-Mannan
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom.
| | - Yael Hacohen
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
4
|
Tyynismaa H. Disease models of mitochondrial aminoacyl-tRNA synthetase defects. J Inherit Metab Dis 2023; 46:817-823. [PMID: 37410890 DOI: 10.1002/jimd.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mitochondrial aminoacyl-tRNA synthetases (mtARS) are enzymes critical for the first step of mitochondrial protein synthesis by charging mitochondrial tRNAs with their cognate amino acids. Pathogenic variants in all 19 nuclear mtARS genes are now recognized as causing recessive mitochondrial diseases. Most mtARS disorders affect the nervous system, but the phenotypes range from multisystem diseases to tissue-specific manifestations. However, the mechanisms behind the tissue specificities are poorly understood, and challenges remain in obtaining accurate disease models for developing and testing treatments. Here, some of the currently existing disease models that have increased our understanding of mtARS defects are discussed.
Collapse
Affiliation(s)
- Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Zhu J, Guo X, Ran N, Liang J, Liu F, Liu J, Wang R, Jiang L, Yang D, Liu M. Leukoencephalopathy hypomyelination with brainstem and spinal cord involvement and leg spasticity caused by DARS1 mutations. Front Genet 2023; 13:1009230. [PMID: 36712860 PMCID: PMC9878823 DOI: 10.3389/fgene.2022.1009230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/13/2023] Open
Abstract
Hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL), caused by aspartyl-tRNA synthetase (DARS1) gene mutations, is extremely rare, with only a few cases reported worldwide; thus, reports on HBSL treatment are few. In this review, we summarized the clinical manifestations, imaging features, treatment methods, and gene mutations responsible for HBSL based on relevant studies and cases.
Collapse
Affiliation(s)
- Jingyi Zhu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Guo
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ningjing Ran
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingtao Liang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fuyou Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyan Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongyu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianyan Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdong Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Meijun Liu, ; Dongdong Yang,
| | - Meijun Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Meijun Liu, ; Dongdong Yang,
| |
Collapse
|
7
|
Ayrignac X, Carra-Dallière C, Marelli C, Taïeb G, Labauge P. Adult-Onset Genetic Central Nervous System Disorders Masquerading as Acquired Neuroinflammatory Disorders: A Review. JAMA Neurol 2022; 79:1069-1078. [PMID: 35969413 DOI: 10.1001/jamaneurol.2022.2141] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Adult-onset genetic disorders may present with clinical and magnetic resonance imaging (MRI) features suggestive of acquired inflammatory diseases. An ever-growing number of potentially treatable adult-onset genetic neuroinflammatory disorders have been described in the past few years that need to be rapidly identified. Observations Adult-onset acquired neuroinflammatory disorders encompass a large group of central nervous system (CNS) diseases with varying presentation, MRI characteristics, and course, among which the most common is multiple sclerosis. Despite recent progress, including the discovery of specific autoantibodies, a significant number of adult-onset neuroinflammatory disorders with progressive or relapsing course still remain without a definite diagnosis. In addition, some patients with genetic disorders such as leukodystrophies, hemophagocytic lymphohistiocytosis, or genetic vasculopathies can mimic acquired neuroinflammatory disorders. These genetic disorders, initially described in pediatric populations, are increasingly detected in adulthood thanks to recent progress in molecular genetics and the larger availability of high-throughput sequencing technologies. Conclusions and Relevance Genetic adult-onset neuroinflammatory diseases are at the border between primary CNS inflammatory diseases and systemic disorders with multiorgan involvement and predominantly neurologic manifestations. Neurologists must be aware of the main clues and red flags so they can confirm a diagnosis early, when some of these genetic disorders can be successfully treated.
Collapse
Affiliation(s)
- Xavier Ayrignac
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Department of Neurology, Montpellier University Hospital, Montpellier, France.,Reference Centre for Adult-Onset Leukoencephalopathy and Leukodystrophies, Montpellier University Hospital, Montpellier, France.,Reference Centre for Multiple Sclerosis, Montpellier University Hospital, Montpellier, France
| | - Clarisse Carra-Dallière
- Department of Neurology, Montpellier University Hospital, Montpellier, France.,Reference Centre for Adult-Onset Leukoencephalopathy and Leukodystrophies, Montpellier University Hospital, Montpellier, France.,Reference Centre for Multiple Sclerosis, Montpellier University Hospital, Montpellier, France
| | - Cecilia Marelli
- Department of Neurology, Montpellier University Hospital, Montpellier, France.,Molecular Mechanisms in Neurodegenerative Dementias, University of Montpellier, École Pratique des Hautes Études, INSERM, Montpellier, France.,Expert Centre for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, Montpellier University Hospital, Montpellier, France
| | - Guillaume Taïeb
- Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Pierre Labauge
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Department of Neurology, Montpellier University Hospital, Montpellier, France.,Reference Centre for Adult-Onset Leukoencephalopathy and Leukodystrophies, Montpellier University Hospital, Montpellier, France.,Reference Centre for Multiple Sclerosis, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
8
|
Zardadi S, Razmara E, Rasoulinezhad M, Babaei M, Ashrafi MR, Pak N, Garshasbi M, Tavasoli AR. Symptomatic care of late-onset Alexander disease presenting with area postrema-like syndrome with prednisolone; a case report. BMC Pediatr 2022; 22:412. [PMID: 35831840 PMCID: PMC9277918 DOI: 10.1186/s12887-022-03468-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alexander disease (AxD) is classified into AxD type I (infantile) and AxD type II (juvenile and adult form). We aimed to determine the potential genetic cause(s) contributing to the AxD type II manifestations in a 9-year-old male who presented area postrema-like syndrome and his vomiting and weight loss improved after taking prednisolone. Case presentation A normal cognitive 9-year-old boy with persistent nausea, vomiting, and a significant weight loss at the age of 6 years was noticed. He also experienced an episode of status epilepticus with generalized atonic seizures. He showed non-febrile infrequent multifocal motor seizures at the age of 40 days which were treated with phenobarbital. He exhibited normal physical growth and neurologic developmental milestones by the age of six. Occasionally vomiting unrelated to feeding was reported. Upon examination at 9 years, a weak gag reflex, prominent drooling, exaggerated knee-deep tendon reflexes (3+), and nasal tone speech was detected. All gastroenterological, biochemical, and metabolic assessments were normal. Brain magnetic resonance imaging (MRI) revealed bifrontal confluent deep and periventricular white matter signal changes, fine symmetric frontal white matter and bilateral caudate nucleus involvements with garland changes, and a hyperintense tumefactive-like lesion in the brain stem around the floor of the fourth ventricle and area postrema with contrast uptake in post-contrast T1-W images. Latter MRI at the age of 8 years showed enlarged area postrema lesion and bilateral middle cerebellar peduncles and dentate nuclei involvements. Due to clinical and genetic heterogeneities, whole-exome sequencing was performed and the candidate variant was confirmed by Sanger sequencing. A de novo heterozygous mutation, NM_001242376.1:c.262 C > T;R88C in exon 1 of the GFAP (OMIM: 137,780) was verified. Because of persistent vomiting and weight loss of 6.0 kg, prednisolone was prescribed which brought about ceasing vomiting and led to weight gaining of 3.0 kg over the next 3 months after treatment. Occasional attempts to discontinue prednisolone had been resulting in the reappearance of vomiting. Conclusions This study broadens the spectrum of symptomatic treatment in leukodystrophies and also shows that R88C mutation may lead to a broad range of phenotypes in AxD type II patients.
Collapse
Affiliation(s)
- Safoura Zardadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Present affiliation: Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ehsan Razmara
- Present affiliation: Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia.,Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Rasoulinezhad
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Reza Ashrafi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Pediatric Radiology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Klugmann M, Kalotay E, Delerue F, Ittner LM, Bongers A, Yu J, Morris MJ, Housley GD, Fröhlich D. Developmental delay and late onset HBSL pathology in hypomorphic Dars1 M256L mice. Neurochem Res 2022; 47:1972-1984. [PMID: 35357600 PMCID: PMC9217827 DOI: 10.1007/s11064-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/05/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022]
Abstract
The leukodystrophy Hypomyelination with Brainstem and Spinal cord involvement and Leg spasticity (HBSL) is caused by recessive mutations of the DARS1 gene, which encodes the cytoplasmic aspartyl-tRNA synthetase. HBSL is a spectrum disorder with disease onset usually during early childhood and no available treatment options. Patients display regression of previously acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Gene-function studies in mice revealed that homozygous Dars1 deletion is embryonically lethal, suggesting that successful modelling of HBSL requires the generation of disease-causing genocopies in mice. In this study, we introduced the pathogenic DARS1 M256L mutation located on exon nine of the murine Dars1 locus. Despite causing severe illness in humans, homozygous Dars1 M256L mice were only mildly affected. To exacerbate HBSL symptoms, we bred Dars1 M256L mice with Dars1-null 'enhancer' mice. The Dars1 M256L/- offspring displayed increased embryonic lethality, severe developmental delay, reduced body weight and size, hydrocephalus, anophthalmia, and vacuolization of the white matter. Remarkably, the Dars1 M256L/- genotype affected energy metabolism and peripheral organs more profoundly than the nervous system and resulted in reduced body fat, increased respiratory exchange ratio, reduced liver steatosis, and reduced hypocellularity of the bone marrow. In summary, homozygous Dars1 M256L and compound heterozygous Dars1 M256L/- mutation genotypes recapitulate some aspects of HBSL and primarily manifest in developmental delay as well as metabolic and peripheral changes. These aspects of the disease might have been overlooked in HBSL patients with severe neurological deficits but could be included in the differential diagnosis of HBSL in the future.
Collapse
Affiliation(s)
- Matthias Klugmann
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia.
| | - Elizabeth Kalotay
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Fabien Delerue
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Andre Bongers
- Biomedical Resources Imaging Laboratory, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Josephine Yu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Liu M, Xiao W, Yang F, Wang X, Chen C, Jin S, Ran N, Chen W, Yang D. Case Report: DARS Mutations Responsible for Hypomyelination With Brain Stem and Spinal Cord Involvement and Leg Spasticity. Front Genet 2022; 13:845967. [PMID: 35571067 PMCID: PMC9094363 DOI: 10.3389/fgene.2022.845967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/07/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: Hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL) is a rare form of leukodystrophy presenting with varying clinical and imaging features. We report a case of HBSL to investigate the clinical and radiological characteristics of HBSL resulting from cytoplasmic aspartyl-tRNA synthetase gene (DARS) mutations. Subjects: We report a patient of HBSL with compound heterozygous mutations in DARS1. To study the potential genetic variations of the patient, targeted next-generation sequencing, whole-exome sequencing, and Sanger sequencing were used. We reviewed the clinical and radiological features of the patient. The literature was thoroughly evaluated. Results: The patient suffered from developmental regression associated with lower limbs spasticity, developmental delay, and paralysis of the lower limbs since childhood. Decreased T1 and increased T2 signals were observed on the bilateral basal, centrum ovale, frontal lobe, parietal lobe, and ganglia in cervical cord magnetic resonance imaging (MRI). The patient had two compound heterozygous mutations (NM_001349:c.1363T > C and NM_001349:c.821C > G) in the DARS1 gene. Conclusion: Two mutations in DARS1 were found to be associated with HBSL, one of them being reported for the first time. These findings can be valuable for diagnosing and providing genetic counseling to HBSL patients in the future.
Collapse
Affiliation(s)
- Meijun Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen Xiao
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueqing Wang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Chen
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuoguo Jin
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ningjing Ran
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiyin Chen
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdong Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Galindo-Feria AS, Notarnicola A, Lundberg IE, Horuluoglu B. Aminoacyl-tRNA Synthetases: On Anti-Synthetase Syndrome and Beyond. Front Immunol 2022; 13:866087. [PMID: 35634293 PMCID: PMC9136399 DOI: 10.3389/fimmu.2022.866087] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
Anti-synthetase syndrome (ASSD) is an autoimmune disease characterized by the presence of autoantibodies targeting one of several aminoacyl t-RNA synthetases (aaRSs) along with clinical features including interstitial lung disease, myositis, Raynaud’s phenomenon, arthritis, mechanic’s hands, and fever. The family of aaRSs consists of highly conserved cytoplasmic and mitochondrial enzymes, one for each amino acid, which are essential for the RNA translation machinery and protein synthesis. Along with their main functions, aaRSs are involved in the development of immune responses, regulation of transcription, and gene-specific silencing of translation. During the last decade, these proteins have been associated with cancer, neurological disorders, infectious responses, and autoimmune diseases including ASSD. To date, several aaRSs have been described to be possible autoantigens in different diseases. The most commonly described are histidyl (HisRS), threonyl (ThrRS), alanyl (AlaRS), glycyl (GlyRS), isoleucyl (IleRS), asparaginyl (AsnRS), phenylalanyl (PheRS), tyrosyl (TyrRS), lysyl (LysRS), glutaminyl (GlnRS), tryptophanyl (TrpRS), and seryl (SerRS) tRNA synthetases. Autoantibodies against the first eight autoantigens listed above have been associated with ASSD while the rest have been associated with other diseases. This review will address what is known about the function of the aaRSs with a focus on their autoantigenic properties. We will also describe the anti-aaRSs autoantibodies and their association to specific clinical manifestations, and discuss their potential contribution to the pathogenesis of ASSD.
Collapse
Affiliation(s)
- Angeles S. Galindo-Feria
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Antonella Notarnicola
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ingrid E. Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Begum Horuluoglu
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
- *Correspondence: Begum Horuluoglu,
| |
Collapse
|
12
|
Sankaran BP, Gupta S, Tchan M, Devanapalli B, Rahman Y, Procopis P, Bhattacharya K. GLRX5-associated [Fe-S] cluster biogenesis disorder: further characterisation of the neurological phenotype and long-term outcome. Orphanet J Rare Dis 2021; 16:465. [PMID: 34732213 PMCID: PMC8565018 DOI: 10.1186/s13023-021-02073-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/10/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Identification and characterisation of monogenic causes of complex neurological phenotypes are important for genetic counselling and prognostication. Bi-allelic pathogenic variants in the gene encoding GLRX5, a protein involved in the early steps of Fe-S cluster biogenesis, are rare and cause two distinct phenotypes: isolated sideroblastic anemia and a neurological phenotype with variant non-ketotic hyperglycinemia. In this study, we analysed the evolution of clinical and MRI findings and long-term outcome of patients with GLRX5 mutations. METHODS Four patients from three Australian families of Lebanese descent were identified. All patients presented in childhood and were followed up into adult life through multiple clinical assessments. All were prescribed sodium benzoate. RESULTS All patients (all females, age range 18-56 years) showed a complex neurological phenotype characterised by varying combinations of spastic paraparesis, length-dependent motor/sensory-motor axonal polyneuropathy, and psychiatric disturbances with variable intellectual disability. All had non-ketotic hyperglycinemia and a homozygous pathogenic c.151_153delAAG (p.K51del) change in GLRX5. Motor disability gradually progressed reaching moderate disability during adolescence and moderately severe disability during adult life. The major MRI finding was the upper cervical spinal cord signal changes with contrast enhancement noted in all and additional leukoencephalopathy in one. On follow up MRI, the white matter lesions diminished on a subsequent scan and then remained static over time. The spinal cord showed gliotic changes. Two patients have previously demonstrated low pyruvate dehydrogenase complex deficiency but none had plasma lactate elevation, nor biochemical evidence of branch-chain keto-dehydrogenase deficiency. Glycine levels reduced in patients that tolerated sodium benzoate, possibly stabilising clinical manifestations. CONCLUSIONS This report demonstrates that the p.K51del GLRX5 variant causes a distinct and predictable neurological phenotype. The clinical assessments spanning from childhood to adult life enable physicians to infer the natural history of GLRX5 related neurological disorder. There may be widespread metabolic consequences, and optimal management is unknown.
Collapse
Affiliation(s)
- Bindu Parayil Sankaran
- Department of Biochemical Genetics and Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Sachin Gupta
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- T.Y Nelson Department of Neurology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Michel Tchan
- Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Beena Devanapalli
- Department of Biochemical Genetics and Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Yusof Rahman
- Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Peter Procopis
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- T.Y Nelson Department of Neurology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Kaustuv Bhattacharya
- Department of Biochemical Genetics and Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia.
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Muthiah A, Housley GD, Klugmann M, Fröhlich D. The Leukodystrophies HBSL and LBSL-Correlates and Distinctions. Front Cell Neurosci 2021; 14:626610. [PMID: 33574740 PMCID: PMC7870476 DOI: 10.3389/fncel.2020.626610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) accurately charge tRNAs with their respective amino acids. As such, they are vital for the initiation of cytosolic and mitochondrial protein translation. These enzymes have become increasingly scrutinized in recent years for their role in neurodegenerative disorders caused by the mutations of ARS-encoding genes. This review focuses on two such genes-DARS1 and DARS2-which encode cytosolic and mitochondrial aspartyl-tRNA synthetases, and the clinical conditions associated with mutations of these genes. We also describe attempts made at modeling these conditions in mice, which have both yielded important mechanistic insights. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a disease caused by a range of mutations in the DARS2 gene, initially identified in 2003. Ten years later, hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL), caused by mutations of cytosolic DARS1, was discovered. Multiple parallels have been drawn between the two conditions. The Magnetic Resonance Imaging (MRI) patterns are strikingly similar, but still set these two conditions apart from other leukodystrophies. Clinically, both conditions are characterized by lower limb spasticity, often associated with other pyramidal signs. However, perhaps due to earlier detection, a wider range of symptoms, including peripheral neuropathy, as well as visual and hearing changes have been described in LBSL patients. Both HBSL and LBSL are spectrum disorders lacking genotype to phenotype correlation. While the fatal phenotype of Dars1 or Dars2 single gene deletion mouse mutants revealed that the two enzymes lack functional redundancy, further pursuit of disease modeling are required to shed light onto the underlying disease mechanism, and enable examination of experimental treatments, including gene therapies.
Collapse
Affiliation(s)
| | | | | | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
14
|
Fröhlich D, Mendes MI, Kueh AJ, Bongers A, Herold MJ, Salomons GS, Housley GD, Klugmann M. A Hypomorphic Dars1 D367Y Model Recapitulates Key Aspects of the Leukodystrophy HBSL. Front Cell Neurosci 2021; 14:625879. [PMID: 33551752 PMCID: PMC7855723 DOI: 10.3389/fncel.2020.625879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023] Open
Abstract
Hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL) is a leukodystrophy caused by missense mutations of the aspartyl-tRNA synthetase-encoding gene DARS1. The clinical picture includes the regression of acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Morphologically, HBSL is characterized by a distinct pattern of hypomyelination in the central nervous system including the anterior brainstem, the cerebellar peduncles and the supratentorial white matter as well as the dorsal columns and the lateral corticospinal tracts of the spinal cord. Adequate HBSL animal models are lacking. Dars1 knockout mice are embryonic lethal precluding examination of the etiology. To address this, we introduced the HBSL-causing Dars1 D367Y point mutation into the mouse genome. Surprisingly, mice carrying this mutation homozygously were phenotypically normal. As hypomorphic mutations are more severe in trans to a deletion, we crossed Dars1 D367Y/D367Y mice with Dars1-null carriers. The resulting Dars1 D367Y/- offspring displayed a strong developmental delay compared to control Dars1 D367Y/+ littermates, starting during embryogenesis. Only a small fraction of Dars1 D367Y/- mice were born, and half of these mice died with hydrocephalus during the first 3 weeks of life. Of the few Dars1 D367Y/- mice that were born at term, 25% displayed microphthalmia. Throughout postnatal life, Dars1 D367Y/- mice remained smaller and lighter than their Dars1 D367Y/+ littermates. Despite this early developmental deficit, once they made it through early adolescence Dars1 D367Y/- mice were phenotypically inconspicuous for most of their adult life, until they developed late onset motor deficits as well as vacuolization and demyelination of the spinal cord white matter. Expression levels of the major myelin proteins were reduced in Dars1 D367Y/- mice compared to controls. Taken together, Dars1 D367Y/- mice model aspects of the clinical picture of the corresponding missense mutation in HBSL. This model will enable studies of late onset deficits, which is precluded in Dars1 knockout mice, and can be leveraged to test potential HBSL therapeutics including DARS1 gene replacement therapy.
Collapse
Affiliation(s)
- Dominik Fröhlich
- Translational Neuroscience Facility & Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Marisa I. Mendes
- Metabolic Unit/Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andre Bongers
- Biomedical Resources Imaging Laboratory, UNSW Sydney, Kensington, NSW, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gajja S. Salomons
- Metabolic Unit/Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gary D. Housley
- Translational Neuroscience Facility & Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility & Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
15
|
Shukla A, Kaur P, Narayanan DL, do Rosario MC, Kadavigere R, Girisha KM. Genetic disorders with central nervous system white matter abnormalities: An update. Clin Genet 2021; 99:119-132. [PMID: 33047326 PMCID: PMC9951823 DOI: 10.1111/cge.13863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
Several genetic disorders have variable degree of central nervous system white matter abnormalities. We retrieved and reviewed 422 genetic conditions with prominent and consistent involvement of white matter from the literature. We herein describe the current definitions, classification systems, clinical spectrum, neuroimaging findings, genomics, and molecular mechanisms of these conditions. Though diagnosis for most of these disorders relies mainly on genomic tests, specifically exome sequencing, we collate several clinical and neuroimaging findings still relevant in diagnosis of clinically recognizable disorders. We also review the current understanding of pathophysiology and therapeutics of these disorders.
Collapse
Affiliation(s)
- Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajagopal Kadavigere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
Abstract
Hypomyelinating leukodystrophies constitute a subset of genetic white matter disorders characterized by a primary lack of myelin deposition. Most patients with severe hypomyelination present in infancy or early childhood and develop severe neurological deficits, but the clinical presentation can also be mild with onset of symptoms in adolescence or adulthood. MRI can be used to visualize the process of myelination in detail, and MRI pattern recognition can provide a clinical diagnosis in many patients. Next-generation sequencing provides a definitive diagnosis in 80-90% of patients. Genes associated with hypomyelination include those that encode structural myelin proteins but also many that encode proteins involved in RNA translation and some lysosomal proteins. The precise pathomechanisms remain to be elucidated. Improved understanding of the process of myelination, the metabolic axonal support functions of myelin and the proposed contribution of myelin to CNS plasticity provide possible explanations as to why almost all patients with hypomyelination experience slow clinical decline after a long phase of stability. In this Review, we provide an overview of the hypomyelinating leukodystrophies, the advances in our understanding of myelin biology and of the genes involved in these disorders, and the insights these advances have provided into their clinical presentations and evolution.
Collapse
|
17
|
Wu TH, Peng J, Zhang CL, Wu LW, Yang LF, Peng P, Pang N, Yin F, He F. [Mutations in aminoacyl-tRNA synthetase genes: an analysis of 10 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:595-601. [PMID: 32571458 PMCID: PMC7390216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/26/2020] [Indexed: 08/01/2024]
Abstract
OBJECTIVE To study the clinical features of the diseases associated with aminoacyl-tRNA synthetases (ARS) deficiency. METHODS A retrospective analysis was performed of the clinical and gene mutation data of 10 children who were diagnosed with ARS gene mutations, based on next-generation sequencing from January 2016 to October 2019. RESULTS The age of onset ranged from 0 to 9 years among the 10 children. Convulsion was the most common initial symptom (7 children). Clinical manifestations included ataxia and normal or mildly retarded intellectual development (with or without epilepsy; n=4) and onset of epilepsy in childhood with developmental regression later (n=2). Some children experienced disease onset in the neonatal period and had severe epileptic encephalopathy, with myoclonus, generalized tonic-clonic seizure, and convulsive seizure (n=4); 3 had severe delayed development, 2 had feeding difficulty, and 1 had hearing impairment. Mutations were found in five genes: 3 had novel mutations in the AARS2 gene (c.331G>C, c.2682+5G>A, c.2164C>T, and c.761G>A), 2 had known mutations in the DARS2 gene (c.228-16C>A and c.536G>A), 1 had novel mutations in the CARS2 gene (c.1036C>T and c.323T>G), 1 had novel mutations in the RARS2 gene (c.1210A>G and c.622C>T), and 3 had novel mutations in the AARS gene (c.1901T>A, c.229C>T, c.244C>T, c.961G>C, c.2248C>T, and Chr16:70298860-70316687del). CONCLUSIONS A high heterogeneity is observed in the clinical phenotypes of the diseases associated with the ARS deficiency. A total of 14 novel mutations in 5 genes are reported in this study, which enriches the clinical phenotypes and genotypes of the diseases associated with ARS deficiency.
Collapse
Affiliation(s)
- Teng-Hui Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu TH, Peng J, Zhang CL, Wu LW, Yang LF, Peng P, Pang N, Yin F, He F. [Mutations in aminoacyl-tRNA synthetase genes: an analysis of 10 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:595-601. [PMID: 32571458 PMCID: PMC7390216 DOI: 10.7499/j.issn.1008-8830.1912040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the clinical features of the diseases associated with aminoacyl-tRNA synthetases (ARS) deficiency. METHODS A retrospective analysis was performed of the clinical and gene mutation data of 10 children who were diagnosed with ARS gene mutations, based on next-generation sequencing from January 2016 to October 2019. RESULTS The age of onset ranged from 0 to 9 years among the 10 children. Convulsion was the most common initial symptom (7 children). Clinical manifestations included ataxia and normal or mildly retarded intellectual development (with or without epilepsy; n=4) and onset of epilepsy in childhood with developmental regression later (n=2). Some children experienced disease onset in the neonatal period and had severe epileptic encephalopathy, with myoclonus, generalized tonic-clonic seizure, and convulsive seizure (n=4); 3 had severe delayed development, 2 had feeding difficulty, and 1 had hearing impairment. Mutations were found in five genes: 3 had novel mutations in the AARS2 gene (c.331G>C, c.2682+5G>A, c.2164C>T, and c.761G>A), 2 had known mutations in the DARS2 gene (c.228-16C>A and c.536G>A), 1 had novel mutations in the CARS2 gene (c.1036C>T and c.323T>G), 1 had novel mutations in the RARS2 gene (c.1210A>G and c.622C>T), and 3 had novel mutations in the AARS gene (c.1901T>A, c.229C>T, c.244C>T, c.961G>C, c.2248C>T, and Chr16:70298860-70316687del). CONCLUSIONS A high heterogeneity is observed in the clinical phenotypes of the diseases associated with the ARS deficiency. A total of 14 novel mutations in 5 genes are reported in this study, which enriches the clinical phenotypes and genotypes of the diseases associated with ARS deficiency.
Collapse
Affiliation(s)
- Teng-Hui Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mendes MI, Green LMC, Bertini E, Tonduti D, Aiello C, Smith D, Salsano E, Beerepoot S, Hertecant J, von Spiczak S, Livingston JH, Emrick L, Fraser J, Russell L, Bernard G, Magri S, Di Bella D, Taroni F, Koenig MK, Moroni I, Cappuccio G, Brunetti‐Pierri N, Rhee J, Mendelsohn BA, Helbig I, Helbig K, Muhle H, Ismayl O, Vanderver AL, Salomons GS, van der Knaap MS, Wolf NI. RARS1-related hypomyelinating leukodystrophy: Expanding the spectrum. Ann Clin Transl Neurol 2020; 7:83-93. [PMID: 31814314 PMCID: PMC6952319 DOI: 10.1002/acn3.50960] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/09/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Biallelic variants in RARS1, encoding the cytoplasmic tRNA synthetase for arginine (ArgRS), cause a hypomyelinating leukodystrophy. This study aimed to investigate clinical, neuroradiological and genetic features of patients with RARS1-related disease, and to identify possible genotype-phenotype relationships. METHODS We performed a multinational cross-sectional survey among 20 patients with biallelic RARS1 variants identified by next-generation sequencing techniques. Clinical data, brain MRI findings and genetic results were analyzed. Additionally, ArgRS activity was measured in fibroblasts of four patients, and translation of long and short ArgRS isoforms was quantified by western blot. RESULTS Clinical presentation ranged from severe (onset in the first 3 months, usually with refractory epilepsy and early brain atrophy), to intermediate (onset in the first year with nystagmus and spasticity), and mild (onset around or after 12 months with minimal cognitive impairment and preserved independent walking). The most frequent RARS1 variant, c.5A>G, led to mild or intermediate phenotypes, whereas truncating variants and variants affecting amino acids close to the ArgRS active centre led to severe phenotypes. ArgRS activity was significantly reduced in three patients with intermediate and severe phenotypes; in a fourth patient with intermediate to severe presentation, we measured normal ArgRS activity, but found translation mainly of the short instead of the long ArgRS isoform. INTERPRETATION Variants in RARS1 impair ArgRS activity and do not only lead to a classic hypomyelination presentation with nystagmus and spasticity, but to a wide spectrum, ranging from severe, early-onset epileptic encephalopathy with brain atrophy to mild disease with relatively preserved myelination.
Collapse
|
20
|
Human diseases linked to cytoplasmic aminoacyl-tRNA synthetases. BIOLOGY OF AMINOACYL-TRNA SYNTHETASES 2020; 48:277-319. [DOI: 10.1016/bs.enz.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
McCreary D, Omoyinmi E, Hong Y, Mulhern C, Papadopoulou C, Casimir M, Hacohen Y, Nyanhete R, Ahlfors H, Cullup T, Lim M, Gilmour K, Mankad K, Wassmer E, Berg S, Hemingway C, Brogan P, Eleftheriou D. Development and Validation of a Targeted Next-Generation Sequencing Gene Panel for Children With Neuroinflammation. JAMA Netw Open 2019; 2:e1914274. [PMID: 31664448 PMCID: PMC6824223 DOI: 10.1001/jamanetworkopen.2019.14274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IMPORTANCE Neuroinflammatory disorders are a range of severe neurological disorders causing brain and spinal inflammation and are now increasingly recognized in the pediatric population. They are often characterized by marked genotypic and phenotypic heterogeneity, complicating diagnostic work in clinical practice and molecular diagnosis. OBJECTIVE To develop and evaluate a next-generation sequencing panel targeting genes causing neuroinflammation or mimicking neuroinflammation. DESIGN, SETTING, AND PARTICIPANTS Cohort study in which a total of 257 genes associated with monogenic neuroinflammation and/or cerebral vasculopathy, including monogenic noninflammatory diseases mimicking these entities, were selected. A customized enrichment capture array, the neuroinflammation gene panel (NIP), was created. Targeted high-coverage sequencing was applied to DNA samples taken from eligible patients referred to Great Ormond Street Hospital in London, United Kingdom, between January 1, 2017, and January 30, 2019, because of onset of disease early in life, family history, and/or complex neuroinflammatory phenotypes. MAIN OUTCOMES AND MEASURES The main outcome was the percentage of individuals with definitive molecular diagnoses, variant classification, and clinical phenotyping of patients with pathogenic variants identified using the NIP panel. The NIP panel was initially validated in 16 patients with known genetic diagnoses. RESULTS The NIP was both sensitive (95%) and specific (100%) for detection of known mutations, including gene deletions, copy number variants, small insertions and deletions, and somatic mosaicism with allele fraction as low as 3%. Prospective testing of 60 patients (30 [50%] male; median [range] age, 9.8 [0.8-20] years) presenting with heterogeneous neuroinflammatory phenotypes revealed at least 1 class 5 (clearly pathogenic) variant in 9 of 60 patients (15%); 18 of 60 patients (30%) had at least 1 class 4 (likely pathogenic) variant. Overall, a definitive molecular diagnosis was established in 12 of 60 patients (20%). CONCLUSIONS AND RELEVANCE The NIP was associated with molecular diagnosis in this cohort and complemented routine laboratory and radiological workup of patients with neuroinflammation. Unexpected genotype-phenotype associations in patients with pathogenic variants deviating from the classic phenotype were identified. Obtaining an accurate molecular diagnosis in a timely fashion informed patient management, including successful targeted treatment in some instances and early institution of hematopoietic stem cell transplantation in others.
Collapse
Affiliation(s)
- Dara McCreary
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ebun Omoyinmi
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ying Hong
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ciara Mulhern
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Charalampia Papadopoulou
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Marina Casimir
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Yael Hacohen
- Paediatric Neurology Department, Children NHS Foundation Trust, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rodney Nyanhete
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Helena Ahlfors
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Thomas Cullup
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Ming Lim
- Children’s Neurosciences Unit, Evelina London Children’s Hospital, Women’s and Children’s Department, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Kimberly Gilmour
- Immunology Department, Great Ormond Street Hospital NHS Foundations Trust, London, United Kingdom
| | - Kshitij Mankad
- Paediatric Neuroradiology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Evangeline Wassmer
- Paediatric Neurology Department, Birmingham Children’s Hospital, Birmingham, United Kingdom
| | - Stefan Berg
- Paediatric Rheumatology Department, University of Gothenburg, Gothenburg, Sweden
| | - Cheryl Hemingway
- Paediatric Neurology Department, Children NHS Foundation Trust, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Paul Brogan
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Despina Eleftheriou
- Infection, Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Arthritis Research UK Centre for Adolescent Rheumatology, University College London, London, United Kingdom
| |
Collapse
|
22
|
Duignan S, Brownlee W, Wassmer E, Hemingway C, Lim M, Ciccarelli O, Hacohen Y. Paediatric multiple sclerosis: a new era in diagnosis and treatment. Dev Med Child Neurol 2019; 61:1039-1049. [PMID: 30932181 DOI: 10.1111/dmcn.14212] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is a chronic immune-mediated demyelinating disease of the central nervous system. The diagnosis of multiple sclerosis in children, as in adults, requires evidence of dissemination of inflammatory activity in more than one location in the central nervous system (dissemination in space) and recurrent disease over time (dissemination in time). The identification of myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) and aquaporin-A antibodies (AQP4-Ab), and the subsequent discovery of their pathogenic mechanisms, have led to a shift in the classification of relapsing demyelinating syndromes. This is reflected in the 2017 revised criteria for the diagnosis of multiple sclerosis, which emphasizes the exclusion of multiple sclerosis mimics and aims to enable earlier diagnosis and thus treatment initiation. The long-term efficacy of individual therapies initiated in children with multiple sclerosis is hard to evaluate, owing to the small numbers of patients who have the disease, the relatively high number of patients who switch therapy, and the need for long follow-up studies. Nevertheless, an improvement in prognosis with a globally reduced annual relapse rate in children with multiple sclerosis is now observed compared with the pretreatment era, indicating a possible long-term effect of therapies. Given the higher relapse rate in children compared with adults, and the impact multiple sclerosis has on cognition in the developing brain, there is a question whether rapid escalation or potent agents should be used in children, while the short- and long-term safety profiles of these drugs are being established. With the results of the first randomized controlled trial of fingolimod versus interferon-β1a in paediatric multiple sclerosis published in 2018 and several clinical trials underway, there is hope for further progress in the field of paediatric multiple sclerosis. WHAT THIS PAPER ADDS: Early and accurate diagnosis of multiple sclerosis is crucial. The discovery of antibody-mediated demyelination has changed the diagnosis and management of relapsing demyelination syndromes. Traditional escalation therapy is being challenged by induction therapy.
Collapse
Affiliation(s)
- Sophie Duignan
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Wallace Brownlee
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Evangeline Wassmer
- Department of Paediatric Neurology, Birmingham Children's Hospital, Birmingham, UK
| | - Cheryl Hemingway
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, UK.,Faculty of Life Sciences and Medicine, Kings College London, London, UK
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK.,National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, UK
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK.,Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| |
Collapse
|
23
|
Sun C, Song J, Jiang Y, Zhao C, Lu J, Li Y, Wang Y, Gao M, Xi J, Luo S, Li M, Donaldson K, Oprescu SN, Slavin TP, Lee S, Magoulas PL, Lewis AM, Emrick L, Lalani SR, Niu Z, Landsverk ML, Walkiewicz M, Person RE, Mei H, Rosenfeld JA, Yang Y, Antonellis A, Hou YM, Lin J, Zhang VW. Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes. Neurol Genet 2019; 5:e565. [PMID: 31192300 PMCID: PMC6515944 DOI: 10.1212/nxg.0000000000000316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/14/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene-related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment. METHODS Whole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays. RESULTS Common clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that defective KARS function is responsible for the phenotypes in these individuals. CONCLUSIONS Our results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease.
Collapse
Affiliation(s)
- Chong Sun
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Jie Song
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Yanjun Jiang
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Chongbo Zhao
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Jiahong Lu
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Yuxin Li
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Yin Wang
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Mingshi Gao
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Jianying Xi
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Sushan Luo
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Meixia Li
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Kevin Donaldson
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Stephanie N Oprescu
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Thomas P Slavin
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Sansan Lee
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Pilar L Magoulas
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Andrea M Lewis
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Lisa Emrick
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Seema R Lalani
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Zhiyv Niu
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Megan L Landsverk
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Magdalena Walkiewicz
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Richard E Person
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Hui Mei
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Jill A Rosenfeld
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Yaping Yang
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Anthony Antonellis
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Ya-Ming Hou
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Jie Lin
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| | - Victor W Zhang
- Department of Neurology (C.S., J.S., C.Z., J. Lu, J.X., S. Luo, J. Lin), Huashan Hospital, Fudan University, Shanghai, China; Baylor Genetic Laboratories (Y.J., Z.N., M.L.L., M.W., R.E.P., H.M., Y.Y.), Houston, TX; Department of Radiology (Y.L.), Huashan Hospital, Fudan University; Department of Pathology (Y.W., M.G.), Huashan Hospital, Fudan University, Shanghai, China; Department of Biochemistry and Molecular Pharmacology (M.L., K.D., Y.-M.H.), Thomas Jefferson University, Philadelphia, PA; Department of Human Genetics (S.N.O., A.A.), University of Michigan Medical School, Ann Arbor, MI; Department of Pediatrics and Department of Obstetrics and Gynecology (S.L.), University of Hawaii School of Medicine, Honolulu, HI; Department of Medical Oncology and Therapeutics Research (T.P.S.), Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, CA; Department of Molecular and Human Genetics (P.L.M., A.L.M., L.E., S.R.L., Z.N., M.L.L., J.A.R., M.W., R.E.P., H.M., J.A.R., Y.Y., V.W.Z.), Baylor College of Medicine, Houston, TX; and AmCare Genomics Lab (V.W.Z.), Guangzhou, China
| |
Collapse
|
24
|
Williams KB, Brigatti KW, Puffenberger EG, Gonzaga-Jauregui C, Griffin LB, Martinez ED, Wenger OK, Yoder MA, Kandula VVR, Fox MD, Demczko MM, Poskitt L, Furuya KN, Reid JG, Overton JD, Baras A, Miles L, Radhakrishnan K, Carson VJ, Antonellis A, Jinks RN, Strauss KA. Homozygosity for a mutation affecting the catalytic domain of tyrosyl-tRNA synthetase (YARS) causes multisystem disease. Hum Mol Genet 2019; 28:525-538. [PMID: 30304524 PMCID: PMC6360277 DOI: 10.1093/hmg/ddy344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/20/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are critical for protein translation. Pathogenic variants of ARSs have been previously associated with peripheral neuropathy and multisystem disease in heterozygotes and homozygotes, respectively. We report seven related children homozygous for a novel mutation in tyrosyl-tRNA synthetase (YARS, c.499C > A, p.Pro167Thr) identified by whole exome sequencing. This variant lies within a highly conserved interface required for protein homodimerization, an essential step in YARS catalytic function. Affected children expressed a more severe phenotype than previously reported, including poor growth, developmental delay, brain dysmyelination, sensorineural hearing loss, nystagmus, progressive cholestatic liver disease, pancreatic insufficiency, hypoglycemia, anemia, intermittent proteinuria, recurrent bloodstream infections and chronic pulmonary disease. Related adults heterozygous for YARS p.Pro167Thr showed no evidence of peripheral neuropathy on electromyography, in contrast to previous reports for other YARS variants. Analysis of YARS p.Pro167Thr in yeast complementation assays revealed a loss-of-function, hypomorphic allele that significantly impaired growth. Recombinant YARS p.Pro167Thr demonstrated normal subcellular localization, but greatly diminished ability to homodimerize in human embryonic kidney cells. This work adds to a rapidly growing body of research emphasizing the importance of ARSs in multisystem disease and significantly expands the allelic and clinical heterogeneity of YARS-associated human disease. A deeper understanding of the role of YARS in human disease may inspire innovative therapies and improve care of affected patients.
Collapse
Affiliation(s)
| | | | | | | | - Laurie B Griffin
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Erick D Martinez
- Department of Biology, Biological Foundations of Behavior Program, Franklin & Marshall College, Lancaster, PA, USA
| | - Olivia K Wenger
- New Leaf Center, Mount Eaton, OH, USA
- Department of Pediatrics, Akron Children’s Hospital, Akron, OH, USA
| | - Mark A Yoder
- Northeast Ohio Medical University, Rootstown, OH, USA
| | - Vinay V R Kandula
- Department of Medical Imaging, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Michael D Fox
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew M Demczko
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Laura Poskitt
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Katryn N Furuya
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Division of Pediatric Gastroenterology, Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Gastroenterology, Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Jeffrey G Reid
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - John D Overton
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Lili Miles
- Department of Pathology and Laboratory Medicine, Nemours Children's Hospital, Orlando FL, USA
| | - Kadakkal Radhakrishnan
- Department of Gastroenterology, Children's Hospital at Cleveland Clinic, Cleveland, OH USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | | | - Anthony Antonellis
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Robert N Jinks
- Department of Biology, Biological Foundations of Behavior Program, Franklin & Marshall College, Lancaster, PA, USA
| | | |
Collapse
|
25
|
Marelli C, Salsano E, Politi LS, Labauge P. Spinal cord involvement in adult-onset metabolic and genetic diseases. J Neurol Neurosurg Psychiatry 2019; 90:211-218. [PMID: 30150321 DOI: 10.1136/jnnp-2018-318666] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
In adulthood, spinal cord MRI abnormalities such as T2-weighted hyperintensities and atrophy are commonly associated with a large variety of causes (inflammation, infections, neoplasms, vascular and spondylotic diseases). Occasionally, they can be due to rare metabolic or genetic diseases, in which the spinal cord involvement can be a prominent or even predominant feature, or a secondary one. This review focuses on these rare diseases and associated spinal cord abnormalities, which can provide important but over-ridden clues for the diagnosis. The review was based on a PubMed search (search terms: 'spinal cord' AND 'leukoencephalopathy' OR 'leukodystrophy'; 'spinal cord' AND 'vitamin'), further integrated according to the authors' personal experience and knowledge. The genetic and metabolic diseases of adulthood causing spinal cord signal alterations were identified and classified into four groups: (1) leukodystrophies; (2) deficiency-related metabolic diseases; (3) genetic and acquired toxic/metabolic causes; and (4) mitochondrial diseases. A number of genetic and metabolic diseases of adulthood causing spinal cord atrophy without signal alterations were also identified. Finally, a classification based on spinal MRI findings is presented, as well as indications about the diagnostic work-up and differential diagnosis. Some of these diseases are potentially treatable (especially if promptly recognised), while others are inherited as autosomal dominant trait. Therefore, a timely diagnosis is needed for a timely therapy and genetic counselling. In addition, spinal cord may be the main site of pathology in many of these diseases, suggesting a tempting role for spinal cord abnormalities as surrogate MRI biomarkers.
Collapse
Affiliation(s)
- Cecilia Marelli
- Department of Neurology, Gui de Chauliac University Hospital, Montpellier, France .,Expert Center for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, Gui de Chauliac University Hospital, Montpellier, France.,EA7402 Institut Universitaire de Recherche Clinique and Laboratoire de Genetique Moleculaire, Gui de Chauliac University Hospital, Montpellier, France.,MMDN, Université de Montpellier, EPHE, Inserm UMR-S1198, Montpellier, France
| | - Ettore Salsano
- Unit of Neurodegenerative and Neurometabolic Rare Diseases, RCCS Foundation 'Carlo Besta' Neurological Institute, Milan, Italy
| | - Letterio S Politi
- Advanced MRI Centre, University of Massachusetts Medical School, Worcester, USA.,Neuroimaging Research, Boston Children's Hospital, Boston, MA, USA
| | - Pierre Labauge
- Department of Neurology, Gui de Chauliac University Hospital, Montpellier, France.,Reference Centre for Adult Leukodystrophies, Gui de Chauliac University Hospital, Montpellier, France
| |
Collapse
|
26
|
|
27
|
Sa M, Hacohen Y, Alderson L, Chong WKK, Anderson G, Jacques TS, Neubauer D, Szczepanik E, Lim M, Kaliakatsos M. Immunotherapy-responsive childhood neurodegeneration with systemic and central nervous system inflammation. Eur J Paediatr Neurol 2018; 22:882-888. [PMID: 29759327 DOI: 10.1016/j.ejpn.2018.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 04/03/2018] [Accepted: 04/22/2018] [Indexed: 11/25/2022]
Abstract
Subacute neuroregression in association with raised neopterin and overexpression of interferon stimulated genes (ISGs) could indicate a type 1 interferonopathy. Here we describe a novel immunotherapy-responsive, clinico-immunological and imaging phenotype with evidence of innate immune activation. Three children (patient 1: 22-month-old boy; patient 2: 5-year-old girl; patient 3: 4-year-old girl) presented with asymmetric bilateral mixed dystonia and spasticity, regression in language (expressive more than receptive) and bulbar symptoms with no evidence of seizures. Symptoms evolved over several weeks to months. Brain MRI changes mimicked cerebral atrophy, initially asymmetric. CSF revealed raised neopterins. Blood RNA assay showed abnormal overexpression of ISGs and transient raised alanine aminotransferase (ALT). Importantly, all three children were treated with intravenous methylprednisolone and immunoglobulin with significant and sustained improvement in their motor and language function, and normalisation of imaging. Immune-mediated encephalitis can masquerade as subacute neuroregression.
Collapse
Affiliation(s)
- Mario Sa
- Paediatric Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Yael Hacohen
- Paediatric Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Lucy Alderson
- Physiotherapy Department, Great Ormond Street Hospital or Children, London, United Kingdom
| | - W K Kling Chong
- Paediatric Neuroradiology, Great Ormond Street Hospital or Children, London, United Kingdom
| | - Glenn Anderson
- Department of Histopathology, Great Ormond Street for Children NHS Trust, London, United Kingdom
| | - Thomas S Jacques
- Department of Histopathology, Great Ormond Street for Children NHS Trust, London, United Kingdom; Developmental Biology and Cancer Program, UCL Great Ormond Street Institute of Child Health, United Kingdom
| | - David Neubauer
- Department of Child, Adolescent & Developmental Neurology, University Children's Hospital, Ljubljana, Slovenia
| | - Elzbieta Szczepanik
- Clinic of Neurology of Children and Adolescents, Institute of Mother and Child, Warsaw, Poland
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital @ Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| | - Marios Kaliakatsos
- Paediatric Neurology, Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
28
|
Neuroimmune disorders of the central nervous system in children in the molecular era. Nat Rev Neurol 2018; 14:433-445. [DOI: 10.1038/s41582-018-0024-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Toldo I, Nosadini M, Boscardin C, Talenti G, Manara R, Lamantea E, Legati A, Ghezzi D, Perilongo G, Sartori S. Neonatal mitochondrial leukoencephalopathy with brain and spinal involvement and high lactate: expanding the phenotype of ISCA2 gene mutations. Metab Brain Dis 2018; 33:805-812. [PMID: 29359243 DOI: 10.1007/s11011-017-0181-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 12/27/2017] [Indexed: 02/04/2023]
Abstract
A homoallelic missense founder mutation of the iron-sulfur cluster assembly 2 (ISCA2) gene has been recently reported in six cases affected by an autosomal recessive infantile neurodegenerative mitochondrial disorder. We documented a case of a 2-month-old girl presenting with severe hypotonia and nystagmus, who rapidly deteriorated and died at the age of three months. Increased cerebral spinal fluid level of lactate, documented also at the brain spectroscopy, involvement of the cortex, restricted diffusion of white and gray matter abnormalities, sparing of the corpus callosum and extensive involvement of the spinal cord were observed. Her clinical presenting features and course as well as some neuroradiological findings mimicked those of early-onset leukoencephalopathy with brainstem and spinal cord involvement and high brain lactate (LBSL). The analysis of the mitochondrial respiratory chain function showed a reduced activity of complexes II and IV. The girl harboured two heterozygous mutations in the ISCA2 gene. A comprehensive review of the literature and a comparison with the cases of early onset LBSL enabled us to highlight significant differences in the clinical, biochemical and neuroradiological phenotype between the two conditions, which also emerged from the comparison with the other 6 reported cases of ISCA2 gene mutation previously reported. In summary, this represents the second report ever published associating ISCA2 gene mutation with a mitochondrial leukoencephalopathy, with a different genetic mechanism to the previous cases. Molecular analysis of ISCA2 should be included in the genetic panel for the diagnosis of early onset mitochondrial leukoencephalopathies.
Collapse
Affiliation(s)
- Irene Toldo
- Pediatric Neurology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy.
| | - Margherita Nosadini
- Pediatric Neurology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Chiara Boscardin
- Pediatric Neurology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Giacomo Talenti
- Neuroradiology Unit, Department of Neurological Sciences, University Hospital of Padua, Padua, Italy
| | - Renzo Manara
- Neuroradiology, University of Salerno, Salerno, Italy
| | - Eleonora Lamantea
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology 'Carlo Besta', Milan, Italy
| | - Andrea Legati
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology 'Carlo Besta', Milan, Italy
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Foundation IRCCS Institute of Neurology 'Carlo Besta', Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgio Perilongo
- Pediatric Neurology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Stefano Sartori
- Pediatric Neurology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
30
|
Hacohen Y, Rossor T, Mankad K, Chong W'K, Lux A, Wassmer E, Lim M, Barkhof F, Ciccarelli O, Hemingway C. 'Leukodystrophy-like' phenotype in children with myelin oligodendrocyte glycoprotein antibody-associated disease. Dev Med Child Neurol 2018; 60:417-423. [PMID: 29288492 DOI: 10.1111/dmcn.13649] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 11/29/2022]
Abstract
AIM To review the demographics and clinical and paraclinical parameters of children with myelin oligodendrocyte glycoprotein (MOG) antibody-associated relapsing disease. METHOD In this UK-based, multicentre study, 31 children with MOG antibody-associated relapsing disease were studied retrospectively. RESULTS Of the 31 children studied, 14 presented with acute disseminated encephalomyelitis (ADEM); they were younger (mean 4.1y) than the remainder (mean 8.5y) who presented with optic neuritis and/or transverse myelitis (p<0.001). Similarly, children who had an abnormal brain magnetic resonance imaging (MRI) at onset (n=20) were younger than patients with normal MRI at onset (p=0.001) or at follow-up (p<0.001). 'Leukodystrophy-like' MRI patterns of confluent largely symmetrical lesions was seen during the course of the disease in 7 out of 14 children with a diagnosis of ADEM, and was only seen in children younger than 7 years of age. Their disability after a 3-year follow-up was mild to moderate, and most patients continued to relapse, despite disease-modifying treatments. INTERPRETATION MOG antibody should be tested in children presenting with relapsing neurological disorders associated with confluent, bilateral white matter changes, and distinct enhancement pattern. Children with MOG antibody-associated disease present with age-related differences in phenotypes, with a severe leukoencephalopathy phenotype in the very young and normal intracranial MRI in the older children. This finding suggests a susceptibility of the very young and myelinating brain to MOG antibody-mediated mechanisms of damage. WHAT THIS PAPER ADDS Myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination manifest with an age-related phenotype. Children with MOG antibody and 'leukodystrophy-like' imaging patterns tend to have poor response to second-line immunotherapy.
Collapse
Affiliation(s)
- Yael Hacohen
- Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, UK.,Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Thomas Rossor
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, UK
| | - Kshitij Mankad
- Paediatric Neuroradiology, Great Ormond Street Hospital, London, UK
| | - Wk 'Kling' Chong
- Paediatric Neuroradiology, Great Ormond Street Hospital, London, UK
| | - Andrew Lux
- Department of Paediatric Neurology, University Hospitals Bristol, Bristol, UK
| | - Evangeline Wassmer
- Department of Paediatric Neurology, Birmingham Children's Hospital, Birmingham, UK
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, UK
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, the Netherlands.,Institutes of Neurology and Biomedical Engineering, UCL, London, UK.,NIHR UCLH Biomedical Research Centre, London, UK
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, UK.,NIHR UCLH Biomedical Research Centre, London, UK
| | - Cheryl Hemingway
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
31
|
Fröhlich D, Suchowerska AK, Voss C, He R, Wolvetang E, von Jonquieres G, Simons C, Fath T, Housley GD, Klugmann M. Expression Pattern of the Aspartyl-tRNA Synthetase DARS in the Human Brain. Front Mol Neurosci 2018; 11:81. [PMID: 29615866 PMCID: PMC5869200 DOI: 10.3389/fnmol.2018.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Translation of mRNA into protein is an evolutionarily conserved, fundamental process of life. A prerequisite for translation is the accurate charging of tRNAs with their cognate amino acids, a reaction catalyzed by specific aminoacyl-tRNA synthetases. One of these enzymes is the aspartyl-tRNA synthetase DARS, which pairs aspartate with its corresponding tRNA. Missense mutations of the gene encoding DARS result in the leukodystrophy hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL) with a distinct pattern of hypomyelination, motor abnormalities, and cognitive impairment. A thorough understanding of the DARS expression domains in the central nervous system is essential for the development of targeted therapies to treat HBSL. Here, we analyzed endogenous DARS expression on the mRNA and protein level in different brain regions and cell types of human post mortem brain tissue as well as in human stem cell derived neurons, oligodendrocytes, and astrocytes. DARS expression is significantly enriched in the cerebellum, a region affected in HBSL patients and important for motor control. Although obligatorily expressed in all cells, DARS shows a distinct expression pattern with enrichment in neurons but only low abundance in oligodendrocytes, astrocytes, and microglia. Our results reveal little homogeneity across the different cell types, largely matching previously published data in the murine brain. This human gene expression study will significantly contribute to the understanding of DARS gene function and HBSL pathology and will be instrumental for future development of animal models and targeted therapies. In particular, we anticipate high benefit from a gene replacement approach in neurons of HBSL mouse models, given the abundant endogenous DARS expression in this lineage cell.
Collapse
Affiliation(s)
- Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra K Suchowerska
- Neurodegenerative and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carola Voss
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Ruojie He
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ernst Wolvetang
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas Fath
- Neurodegenerative and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
32
|
Geraldes R, Ciccarelli O, Barkhof F, De Stefano N, Enzinger C, Filippi M, Hofer M, Paul F, Preziosa P, Rovira A, DeLuca GC, Kappos L, Yousry T, Fazekas F, Frederiksen J, Gasperini C, Sastre-Garriga J, Evangelou N, Palace J. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat Rev Neurol 2018. [DOI: 10.1038/nrneurol.2018.14] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Bindu PS, Sonam K, Chiplunkar S, Govindaraj P, Nagappa M, Vekhande CC, Aravinda HR, Ponmalar JNJ, Mahadevan A, Gayathri N, Bharath MMS, Sinha S, Taly AB. Mitochondrial leukoencephalopathies: A border zone between acquired and inherited white matter disorders in children? Mult Scler Relat Disord 2018; 20:84-92. [DOI: 10.1016/j.msard.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/05/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022]
|
34
|
Groh J, Friedman HC, Orel N, Ip CW, Fischer S, Spahn I, Schäffner E, Hörner M, Stadler D, Buttmann M, Varallyay C, Solymosi L, Sendtner M, Peterson AC, Martini R. Pathogenic inflammation in the CNS of mice carrying human PLP1 mutations. Hum Mol Genet 2018; 25:4686-4702. [PMID: 28173160 DOI: 10.1093/hmg/ddw296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/12/2016] [Accepted: 08/21/2016] [Indexed: 01/03/2023] Open
Abstract
Progressive forms of multiple sclerosis lead to chronic disability, substantial decline in quality of life and reduced longevity. It is often suggested that they occur independently of inflammation. Here we investigated the disease progression in mouse models carrying PLP1 point mutations previously found in patients displaying clinical features of multiple sclerosis. These mouse models show loss-of-function of PLP1 associated with neuroinflammation; the latter leading to clinically relevant axonal degeneration, neuronal loss and brain atrophy as demonstrated by inactivation of the recombination activating gene 1. Moreover, these pathological hallmarks were substantially amplified when we attenuated immune regulation by inactivation of the programmed cell death-1 gene. Our observations support the view that primary oligodendroglial abnormalities can evoke pathogenically relevant neuroinflammation that drives neurodegeneration, as observed in some forms of multiple sclerosis but also in other, genetically-mediated neurodegenerative disorders of the human nervous system. As many potent immunomodulatory drugs have emerged during the last years, it is tempting to consider immunomodulation as a treatment option not only for multiple sclerosis, but also for so far non-treatable, genetically-mediated disorders of the nervous system accompanied by pathogenic neuroinflammation.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Hana C Friedman
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Nadiya Orel
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Stefan Fischer
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Irene Spahn
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Erik Schäffner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - David Stadler
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, Multiple Sclerosis and Neuroimmunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Csanad Varallyay
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - László Solymosi
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Alan C Peterson
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW More than 100 heritable disorders can present with abnormal white matter on neuroimaging. While acquired disorders remain a more common cause of leukoencephalopathy in the adult than genetic causes, the clinician must remain aware of features that suggest a possible genetic etiology. RECENT FINDINGS The differential diagnosis of heritable white matter disorders in adults has been revolutionized by next-generation sequencing approaches and the recent identification of the molecular cause of a series of adult-onset disorders. SUMMARY The identification of a heritable etiology of white matter disease will often have important prognostic and family counseling implications. It is thus important to be aware of the most common hereditary disorders of the white matter and to know how to distinguish them from acquired disorders and how to approach their diagnosis.
Collapse
|
36
|
The spectrum of adult-onset heritable white-matter disorders. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-64076-5.00043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Werner R, Daum E, Felber S, Wöhrle JC. Leukoencephalopathy with Brain Stem and Spinal Cord Involvement and not Always Lactate Elevation. Clin Neuroradiol 2017; 28:451-453. [PMID: 29147736 DOI: 10.1007/s00062-017-0647-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Ralph Werner
- Department of Neurology and Stroke Unit, Katholisches Klinikum Koblenz-Montabaur, Kardinal-Krementz-Str. 1-5, 56073, Koblenz, Germany.
| | - Elisabeth Daum
- Department of Internal Medicine, Gesundheits- und Pflegezentrum Rüsselsheim, Rüsselsheim, Germany
| | - Stephan Felber
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Gemeinschaftsklinikum Mittelrhein, Koblenz, Germany
| | - Johannes C Wöhrle
- Department of Neurology and Stroke Unit, Katholisches Klinikum Koblenz-Montabaur, Kardinal-Krementz-Str. 1-5, 56073, Koblenz, Germany
| |
Collapse
|
38
|
Gordon-Lipkin E, Banwell B. An update on multiple sclerosis in children: diagnosis, therapies, and prospects for the future. Expert Rev Clin Immunol 2017; 13:975-989. [PMID: 28738749 DOI: 10.1080/1744666x.2017.1360135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS), a chronic demyelinating disease of the central nervous system, is increasingly being recognized in children and adolescents. Pediatric MS follows a relapsing-remitting course at onset, with a risk for early cognitive impairment. Areas covered: In this review, we discuss the clinical features of acute demyelinating syndromes in children and risk factors that increase the likelihood of a diagnosis of MS. We also address the application of diagnostic criteria for MS in children, immunological features, therapeutic options and psychosocial considerations for children and adolescents with MS. Expert commentary: Collaborative multicenter clinical trials and research efforts are key to the advancement in understanding the pathophysiology and therapeutic strategies for multiple sclerosis across the lifespan.
Collapse
Affiliation(s)
- Eliza Gordon-Lipkin
- a Department of Neurology and Developmental Medicine , Kennedy Krieger Institute and Johns Hopkins School of Medicine , Baltimore , MD , USA
| | - Brenda Banwell
- b Children's Hospital of Philadelphia , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
39
|
Ognjenović J, Simonović M. Human aminoacyl-tRNA synthetases in diseases of the nervous system. RNA Biol 2017; 15:623-634. [PMID: 28534666 PMCID: PMC6103678 DOI: 10.1080/15476286.2017.1330245] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are ubiquitously expressed enzymes that ensure accurate translation of the genetic information into functional proteins. These enzymes also execute a variety of non-canonical functions that are significant for regulation of diverse cellular processes and that reside outside the realm of protein synthesis. Associations between faults in AaRS-mediated processes and human diseases have been long recognized. Most recent research findings strongly argue that 10 cytosolic and 14 mitochondrial AaRSs are implicated in some form of pathology of the human nervous system. The advent of modern whole-exome sequencing makes it all but certain that similar associations between the remaining 15 ARS genes and neurologic illnesses will be defined in future. It is not surprising that an intense scientific debate about the role of translational machinery, in general, and AaRSs, in particular, in the development and maintenance of the healthy human neural cell types and the brain is sparked. Herein, we summarize the current knowledge about causative links between mutations in human AaRSs and diseases of the nervous system and briefly discuss future directions.
Collapse
Affiliation(s)
- Jana Ognjenović
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
40
|
Pediatric Multiple Sclerosis. CURRENT PEDIATRICS REPORTS 2017. [DOI: 10.1007/s40124-017-0121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens. Cell 2016; 167:657-669.e21. [PMID: 27768889 DOI: 10.1016/j.cell.2016.09.025] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022]
Abstract
Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.
Collapse
|
42
|
Feng Y, Chen R, Mo X. Association of DARS gene polymorphisms with the risk of isolated ventricular septal defects in the Chinese Han population. Ital J Pediatr 2016; 42:102. [PMID: 27871331 PMCID: PMC5117545 DOI: 10.1186/s13052-016-0311-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ventricular septal defects (VSD) are the most common subtype of congenital heart defects (CHD) and are estimated to account for 20 to 30% of all cases of CHD. The etiology of isolated VSD remains poorly understood. Eight core aminoacyl-tRNA synthetases (ARSs) (EPRS, MARS, QARS, RARS, IARS, LARS, KARS, and DARS) combine with three nonenzymatic components to form a complex known as the multisynthetase complex (MSC). Four single nucleotide polymorphisms (SNPs) in EPRS have been reported to be associated with risks of CHD in Chinese populations. METHODS In this study, we hypothesize that SNPs of the DARS gene might influence susceptibility to sporadic isolated VSD. Therefore, we conducted a case-control study of 841 patients with isolated VSD and 2953 non-CHD controls from the Chinese Han population to evaluate how 4 potentially functional SNPs within the DARS gene were associated with the risk of VSD. RESULTS We observed that the risk of VSD was significantly associated with rs2164331 [G/A; odds ratio (OR) = 0.78, 95% confidence interval (CI) = 0.69-0.91; P = 3.17 × 10-3], rs6738266 [G/A; OR = 1.17, 95% CI = 1.05-1.29, P = 1.83 × 10-3], and rs309143 [G/A; OR = 1.09, 95% CI = 1.01-1.17; P = 3.12 × 10-2]. Additionally, compared with individuals with 0-2 risk alleles, individuals carrying 3, 4, and 5 or more risk alleles had 1.01-, 1.22- and 1.46-fold greater risks of VSD, respectively. These findings revealed a significant dose-response effect for VSD risk among individuals carrying different numbers of risk alleles (Ptrend = 6.37 × 10-4). CONCLUSIONS These findings indicate that genetic variants of the DARS gene may influence individual susceptibility to isolated VSD in the Chinese Han population.
Collapse
Affiliation(s)
- Yu Feng
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000 China
| | - Runsen Chen
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000 China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000 China
| |
Collapse
|
43
|
In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiol Dis 2016; 97:24-35. [PMID: 27816769 DOI: 10.1016/j.nbd.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/30/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The recently diagnosed leukodystrophy Hypomyelination with Brain stem and Spinal cord involvement and Leg spasticity (HBSL) is caused by mutations of the cytoplasmic aspartyl-tRNA synthetase geneDARS. The physiological role of DARS in translation is to accurately pair aspartate with its cognate tRNA. Clinically, HBSL subjects show a distinct pattern of hypomyelination and develop progressive leg spasticity, variable cognitive impairment and epilepsy. To elucidate the underlying pathomechanism, we comprehensively assessed endogenous DARS expression in mice. Additionally, aiming at creating the first mammalian HBSL model, we genetically engineered and phenotyped mutant mice with a targetedDarslocus. RESULTS DARS, although expressed in all organs, shows a distinct expression pattern in the adult brain with little immunoreactivity in macroglia but enrichment in neuronal subpopulations of the hippocampus, cerebellum, and cortex. Within neurons, DARS is mainly located in the cell soma where it co-localizes with other components of the translation machinery. Intriguingly, DARS is also present along neurites and at synapses, where it potentially contributes to local protein synthesis.Dars-null mice are not viable and die before embryonic day 11. Heterozygous mice with only one functionalDarsallele display substantially reduced DARS levels in the brain; yet these mutants show no gross abnormalities, including unchanged motor performance. However, we detected reduced pre-pulse inhibition of the acoustic startle response indicating dysfunction of attentional processing inDars+/-mice. CONCLUSIONS Our results, for the first time, show an in-depth characterization of the DARS tissue distribution in mice, revealing surprisingly little uniformity across brain regions or between the major neural cell types. The complete loss of DARS function is not tolerated in mice suggesting that the identified HBSL mutations in humans retain some residual enzyme activity. The mild phenotype of heterozygousDars-null carriers indicates that even partial restoration of DARS levels would be therapeutically relevant. Despite the fact that they do not resemble the full spectrum of clinical symptoms, the robust pre-pulse inhibition phenotype ofDars+/-mice will be instrumental for future preclinical therapeutic efficacy studies. In summary, our data is an important contribution to a better understanding of DARS function and HBSL pathology.
Collapse
|
44
|
Kopajtich R, Murayama K, Janecke AR, Haack TB, Breuer M, Knisely AS, Harting I, Ohashi T, Okazaki Y, Watanabe D, Tokuzawa Y, Kotzaeridou U, Kölker S, Sauer S, Carl M, Straub S, Entenmann A, Gizewski E, Feichtinger RG, Mayr JA, Lackner K, Strom TM, Meitinger T, Müller T, Ohtake A, Hoffmann GF, Prokisch H, Staufner C. Biallelic IARS Mutations Cause Growth Retardation with Prenatal Onset, Intellectual Disability, Muscular Hypotonia, and Infantile Hepatopathy. Am J Hum Genet 2016; 99:414-22. [PMID: 27426735 DOI: 10.1016/j.ajhg.2016.05.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/25/2016] [Indexed: 12/29/2022] Open
Abstract
tRNA synthetase deficiencies are a growing group of genetic diseases associated with tissue-specific, mostly neurological, phenotypes. In cattle, cytosolic isoleucyl-tRNA synthetase (IARS) missense mutations cause hereditary weak calf syndrome. Exome sequencing in three unrelated individuals with severe prenatal-onset growth retardation, intellectual disability, and muscular hypotonia revealed biallelic mutations in IARS. Studies in yeast confirmed the pathogenicity of identified mutations. Two of the individuals had infantile hepatopathy with fibrosis and steatosis, leading in one to liver failure in the course of infections. Zinc deficiency was present in all affected individuals and supplementation with zinc showed a beneficial effect on growth in one.
Collapse
Affiliation(s)
- Robert Kopajtich
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba 266-0007, Japan; Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria; Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Tobias B Haack
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Maximilian Breuer
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - A S Knisely
- Institute of Liver Studies, King's College Hospital, London SE5 9RS, UK; Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Inga Harting
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Toya Ohashi
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Daisaku Watanabe
- Department of Large Animal Clinics, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yoshimi Tokuzawa
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Urania Kotzaeridou
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Kölker
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sven Sauer
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matthias Carl
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Simon Straub
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Entenmann
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elke Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - René G Feichtinger
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, 5020 Salzburg, Austria
| | - Johannes A Mayr
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, 5020 Salzburg, Austria
| | - Karoline Lackner
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama 350-0495, Japan
| | - Georg F Hoffmann
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Christian Staufner
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Taskin BD, Karalok ZS, Gurkas E, Aydin K, Aydogmus U, Ceylaner S, Karaer K, Yilmaz C, Pearl PL. Early-Onset Mild Type Leukoencephalopathy Caused by a Homozygous EARS2 Mutation. J Child Neurol 2016; 31:938-41. [PMID: 26893310 PMCID: PMC6020828 DOI: 10.1177/0883073816630087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/29/2015] [Indexed: 11/15/2022]
Abstract
Childhood leukoencephalopathies are a broad class of diseases, which are extremely rare. The treatment and classification of these disorders are both challenging. Nearly half of children presenting with a leukoencephalopathy remain without a specific diagnosis. Leukoencephalopathy with thalamus and brain stem involvement and high lactate (LTBL) is a newly described childhood leukoencephalopathy caused by mutations in the gene encoding a mitochondrial aminoacyl-tRNA synthetase specific for glutamate, EARS2 Magnetic resonance images show a characteristic leukoencephalopathy with thalamic and brain stem involvement. Here, we report a different clinical course of LTBL supported by typical MRI features in a Turkish patient who presented with a history of failure to walk. The EARS2 gene mutation analysis identified a c.322C>T transition, predicting a p.R108W change. This is the first reported early-onset mild type LTBL caused by a homozygous EARS2 mutation case in the literature.
Collapse
Affiliation(s)
- Birce Dilge Taskin
- Department of Pediatric Neurology, Ankara Children's Hematology-Oncology Training and Research Hospital, Diskapi/Ankara, Turkey
| | - Zeynep Selen Karalok
- Department of Pediatric Neurology, Ankara Children's Hematology-Oncology Training and Research Hospital, Diskapi/Ankara, Turkey
| | - Esra Gurkas
- Department of Pediatric Neurology, Ankara Children's Hematology-Oncology Training and Research Hospital, Diskapi/Ankara, Turkey
| | - Kursad Aydin
- Gazi University Medical Faculty, Gazi University Hospital, Ankara, Turkey
| | - Ummu Aydogmus
- Department of Pediatric Neurology, Ankara Children's Hematology-Oncology Training and Research Hospital, Diskapi/Ankara, Turkey
| | - Serdar Ceylaner
- Intergen Moleculer Genetics Diagnosis Center, Ankara, Turkey
| | - Kadri Karaer
- Dr Ersin Arslan State Hospital, Sahinbey, Gaziantep, Turkey
| | - Cahide Yilmaz
- Department of Pediatric Neurology, Ankara Children's Hematology-Oncology Training and Research Hospital, Diskapi/Ankara, Turkey
| | - Phillip Lawrence Pearl
- Department of Epilepsy and Clinical Neurophysiology, Boston Children‖s Hospital, Boston, MA, USA
| |
Collapse
|
46
|
Gahl WA, Mulvihill JJ, Toro C, Markello TC, Wise AL, Ramoni RB, Adams DR, Tifft CJ. The NIH Undiagnosed Diseases Program and Network: Applications to modern medicine. Mol Genet Metab 2016; 117:393-400. [PMID: 26846157 PMCID: PMC5560125 DOI: 10.1016/j.ymgme.2016.01.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The inability of some seriously and chronically ill individuals to receive a definitive diagnosis represents an unmet medical need. In 2008, the NIH Undiagnosed Diseases Program (UDP) was established to provide answers to patients with mysterious conditions that long eluded diagnosis and to advance medical knowledge. Patients admitted to the NIH UDP undergo a five-day hospitalization, facilitating highly collaborative clinical evaluations and a detailed, standardized documentation of the individual's phenotype. Bedside and bench investigations are tightly coupled. Genetic studies include commercially available testing, single nucleotide polymorphism microarray analysis, and family exomic sequencing studies. Selected gene variants are evaluated by collaborators using informatics, in vitro cell studies, and functional assays in model systems (fly, zebrafish, worm, or mouse). INSIGHTS FROM THE UDP In seven years, the UDP received 2954 complete applications and evaluated 863 individuals. Nine vignettes (two unpublished) illustrate the relevance of an undiagnosed diseases program to complex and common disorders, the coincidence of multiple rare single gene disorders in individual patients, newly recognized mechanisms of disease, and the application of precision medicine to patient care. CONCLUSIONS The UDP provides examples of the benefits expected to accrue with the recent launch of a national Undiagnosed Diseases Network (UDN). The UDN should accelerate rare disease diagnosis and new disease discovery, enhance the likelihood of diagnosing known diseases in patients with uncommon phenotypes, improve management strategies, and advance medical research.
Collapse
Affiliation(s)
- William A Gahl
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - John J Mulvihill
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Department of Pediatrics, University of Oklahoma, Oklahoma City, OK, United States.
| | - Camilo Toro
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Thomas C Markello
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Anastasia L Wise
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rachel B Ramoni
- Department for Biomedical Informatics, Harvard Medical School, Department of Oral Health Policy and Epidemiology, Harvard Dental School, Cambridge, MA, United States
| | - David R Adams
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Network, Common Fund, Office of the Director and the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
47
|
Berzero G, Cortese A, Ravaglia S, Marchioni E. Diagnosis and therapy of acute disseminated encephalomyelitis and its variants. Expert Rev Neurother 2015; 16:83-101. [DOI: 10.1586/14737175.2015.1126510] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Lambertson KF, Damiani SA, Might M, Shelton R, Terry SF. Participant-driven matchmaking in the genomic era. Hum Mutat 2015; 36:965-73. [PMID: 26252162 DOI: 10.1002/humu.22852] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/15/2015] [Indexed: 01/16/2023]
Abstract
Whole-genome and whole-exome sequencing are increasingly useful diagnostic tools for novel monogenic conditions. In order to confirm diagnoses made using these technologies, genomic matchmaking-the matching of cases with similar phenotypic and/or genotypic profiles, to narrow the number of candidate genes or ascertain a condition's etiology with greater certainty-is essential. Yet, due to current limitations on the size of matchmaking networks and data sets available to support them, identifying a match can be difficult. We argue that matchmaking efforts led by affected individuals and their families-participant-led efforts-offer a twofold solution to this need, in that participants both have the capacity to access larger networks and to provide more detailed sets of phenotypic and genotypic data. These features of participant-led efforts have the potential to increase the value of matchmaking networks, both in terms of number of matches and in terms of the overall energy of the network. We provide two examples of participant-led matchmaking, and propose a model for scaling these efforts.
Collapse
Affiliation(s)
| | - Stephen A Damiani
- Mission Massimo Foundation, Inc., Elsternwick, Victoria, Australia.,Mission Massimo Foundation, Inc., Westlake Village, California
| | - Matthew Might
- NGLY1.org, Salt Lake City, Utah.,University of Utah, Salt Lake City, Utah, United States
| | | | - Sharon F Terry
- Genetic Alliance, Washington, District of Columbia.,PXE International, Inc, Washington, District of Columbia
| |
Collapse
|
49
|
Abstract
The leukodystrophies are a heterogeneous group of inherited disorders with broad clinical manifestations and variable pathologic mechanisms. Improved diagnostic methods have allowed identification of the underlying cause of these diseases, facilitating identification of their pathologic mechanisms. Clinicians are now able to prioritize treatment strategies and advance research in therapies for specific disorders. Although only a few of these disorders have well-established treatments or therapies, a number are on the verge of clinical trials. As investigators are able to shift care from symptomatic management of disorders to targeted therapeutics, the unmet therapeutic needs could be reduced for these patients.
Collapse
Affiliation(s)
- Guy Helman
- Department of Neurology, Children's National Health System, 111 Michigan Avenue, Northwest, Washington, DC 20010, USA; Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, Northwest, Washington, DC 20010, USA
| | - Keith Van Haren
- Department of Neurology, Lucile Packard Children's Hospital, Stanford University School of Medicine, 730 Welch Rd, Palo Alto, CA 94304, USA
| | - Maria L Escolar
- Department of Integrated Systems Biology, George Washington University School of Medicine, 2150 Pennsylvania Ave NW, Washington, DC 20037, USA
| | - Adeline Vanderver
- Department of Neurology, Children's National Health System, 111 Michigan Avenue, Northwest, Washington, DC 20010, USA; Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, Northwest, Washington, DC 20010, USA; Department of Integrated Systems Biology, George Washington University School of Medicine, 2150 Pennsylvania Ave NW, Washington, DC 20037, USA.
| |
Collapse
|
50
|
Motley WW, Griffin LB, Mademan I, Baets J, De Vriendt E, De Jonghe P, Antonellis A, Jordanova A, Scherer SS. A novel AARS mutation in a family with dominant myeloneuropathy. Neurology 2015; 84:2040-7. [PMID: 25904691 DOI: 10.1212/wnl.0000000000001583] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To determine the genetic cause of neurodegeneration in a family with myeloneuropathy. METHODS We studied 5 siblings in a family with a mild, dominantly inherited neuropathy by clinical examination and electrophysiology. One patient had a sural nerve biopsy. After ruling out common genetic causes of axonal Charcot-Marie-Tooth disease, we sequenced 3 tRNA synthetase genes associated with neuropathy. RESULTS All affected family members had a mild axonal neuropathy, and 3 of 4 had lower extremity hyperreflexia, evidence of a superimposed myelopathy. A nerve biopsy showed evidence of chronic axonal loss. All affected family members had a heterozygous missense mutation c.304G>C (p.Gly102Arg) in the alanyl-tRNA synthetase (AARS) gene; this allele was not identified in unaffected individuals or control samples. The equivalent change in the yeast ortholog failed to complement a strain of yeast lacking AARS function, suggesting that the mutation is damaging. CONCLUSION A novel mutation in AARS causes a mild myeloneuropathy, a novel phenotype for patients with mutations in one of the tRNA synthetase genes.
Collapse
Affiliation(s)
- William W Motley
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Laurie B Griffin
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Inès Mademan
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Jonathan Baets
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Els De Vriendt
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Peter De Jonghe
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Anthony Antonellis
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Albena Jordanova
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Steven S Scherer
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium.
| |
Collapse
|