1
|
Krivosic V, Goupillou P, Buffon-Porcher F, Morel H, Guey S, Tadayoni R, Lasserve ET, Chabriat H, Gaudric A. ASSESSMENT OF RETINAL ARTERIOLAR TORTUOSITY IN PATIENTS WITH COL4A1 OR COL4A2 MUTATIONS. Retina 2025; 45:296-302. [PMID: 39405554 DOI: 10.1097/iae.0000000000004290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
PURPOSE Qualitative and quantitative analyses of retinal arteriolar tortuosity in patients with COL4A1 and COL4A2 mutations to identify a tortuosity index (TI) threshold for detecting increased retinal arteriolar tortuosity. METHODS Fifty-two eyes of 28 patients were included. Group 1 included eyes with a normal arteriolar pattern (n = 19, 37%), Group 2 included eyes with moderately increased arteriolar tortuosity (n = 13, 25%), and Group 3 included eyes with typical abnormal arteriolar tortuosity (n = 20, 38%). The TI was measured by calculating the arc-to-chord ratio of arterioles and venules in the posterior pole. RESULTS The mean arteriolar TI was significantly higher in all groups with a COL4A1/A2 mutation compared with controls: 1.19 ± 0.03, 1.24 ± 0.05, and 1.57 ± 0.23 in Groups 1, 2 and 3, respectively, versus 1.12 ± 0.01 (all P < 0.0001). The TI threshold was 1.13, with a sensitivity of 98.1% and a specificity of 100%. The area under the curve was 0.995. CONCLUSION Measuring the arteriolar TI allowed diagnosing increased retinal arteriolar tortuosity in all eyes with a COL4A1 / A2 mutation, whereas the subjective assessment suspected or detected it in only 62% of eyes. In adult patients with cerebral microangiopathy, detecting increased retinal arteriolar tortuosity, even when mild, directs the diagnosis toward COL4A1/A2 -related cerebroretinal angiopathy.
Collapse
Affiliation(s)
- Valérie Krivosic
- Ophthalmology Department, Hôpital Lariboisière, APHP and Université Paris-Cité, France
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Hôpital Lariboisière, AP-HP, Paris, France
| | - Paul Goupillou
- Ophthalmology Department, Hôpital Lariboisière, APHP and Université Paris-Cité, France
| | - Frederic Buffon-Porcher
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Hôpital Lariboisière, AP-HP, Paris, France
- Translational Neurovascular Centre and Department of Neurology, FHU NeuroVasc, Paris, France
| | - Hélène Morel
- Université Paris-Cité, AP-HP, INSERM, NeuroDiderot, UMR 1141, Paris, France ; and
| | - Stéphanie Guey
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Hôpital Lariboisière, AP-HP, Paris, France
- Translational Neurovascular Centre and Department of Neurology, FHU NeuroVasc, Paris, France
- Université Paris-Cité, INSERM, NeuroDiderot, U1161, F-75019 Paris, France
| | - Ramin Tadayoni
- Ophthalmology Department, Hôpital Lariboisière, APHP and Université Paris-Cité, France
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Hôpital Lariboisière, AP-HP, Paris, France
| | | | - Hugues Chabriat
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Hôpital Lariboisière, AP-HP, Paris, France
- Translational Neurovascular Centre and Department of Neurology, FHU NeuroVasc, Paris, France
- Université Paris-Cité, INSERM, NeuroDiderot, U1161, F-75019 Paris, France
| | - Alain Gaudric
- Ophthalmology Department, Hôpital Lariboisière, APHP and Université Paris-Cité, France
- Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Hôpital Lariboisière, AP-HP, Paris, France
| |
Collapse
|
2
|
Dunn PJ, Maksemous N, Smith RA, Sutherland HG, Haupt LM, Griffiths LR. Targeted exonic sequencing identifies novel variants in a cerebral small vessel disease cohort. Clin Chim Acta 2025; 567:120120. [PMID: 39743006 DOI: 10.1016/j.cca.2024.120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND AND AIMS Cerebral small vessel diseases (CSVDs) are a set of conditions that affect the small blood vessels in the brain and can cause severe neurological pathologies such as stroke and vascular dementia. The most common monogenic CSVD is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) which is caused by mutations in NOTCH3. However, only 15-20% of CADASIL cases referred for genetic testing have pathogenic mutations in NOTCH3. We hypothesise that other monogenic causes of CSVD may be causing a CADASIL-like CSVD phenotype. METHODS To test this, we performed whole exome sequencing for 50 individuals suspected of having CADASIL, but did not exhibit a disease-causing mutation in NOTCH3, and applied targeted analysis of all monogenic forms of CSVD. RESULTS This analysis identified three mutations affecting the Collagen type IV genes in three individuals likely to be causative of CSVD. CONCLUSIONS This suggests that screening for all monogenic forms of CSVD when one monogenic form is clinically suspected may improve diagnosis in clinically suspected monogenic CSVD. However, despite these findings, the majority of NOTCH3 negative CSVD cases did not have candidate mutations in known CSVD genes, suggesting that additional genetic factors contributing to the disease are yet to be identified.
Collapse
Affiliation(s)
- Paul J Dunn
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Bond University, Faculty of Health Sciences and Medicine, 15 University Drive, Robina, Queensland 4226, Australia
| | - Neven Maksemous
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Robert A Smith
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Heidi G Sutherland
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
3
|
Wang H, Zhu Y, Zheng L, Chen M, Hao Z, Guo R, Feng L, Wang D. Association of the COL4A2 Gene Polymorphisms with Primary Intracerebral Hemorrhage Risk and Outcome in Chinese Han Population. Mol Neurobiol 2024; 61:8787-8796. [PMID: 38565785 DOI: 10.1007/s12035-024-04146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The relationship of single nucleotide polymorphisms (SNPs) in COL4A2 gene with risk and outcome of primary intracerebral hemorrhage (ICH) in the Chinese Han population remains unclear, which was investigated in this study. Primary ICH patients and non-stroke controls of Chinese Han ethnicity were enrolled. The genotypes of 8 tag-SNPs were determined using a custom-by-design 48-Plex SNPscan Kit. Poor 3-month outcome was defined as modified Rankin Scale score 4-6. Logistic regression was employed to examine association between COL4A2 variants and risk and poor outcome of primary ICH. 323 patients with primary ICH and 376 stroke-free controls were included. Compared to controls, the rs1049931 G and rs1049906 C alleles were associated with increased ICH risk (p = 0.027 and 0.033), and these two allele counts increased this risk after adjustments respectively (additive model: adjusted OR [aOR] 1.41, 95% CI 1.03-1.94, corrected p = 0.043; aOR 1.37, 95% CI 1.01-1.86, corrected p = 0.043). The rs1049931 AG/GG and rs1049906 CT/CC genotypes showed increased susceptibility to non-lobar hemorrhage (aOR 1.63, 95% CI 1.06-2.50, p = 0.025; aOR 1.63, 95% CI 1.07-2.47, p = 0.022). Haplotype analysis revealed an association between rs1049906-rs1049931 haplotype CG and ICH risk (OR 1.36, 95% CI 1.05-1.78, p = 0.021). Regarding clinical outcome, the rs3803230 C allele (dominant model: aOR 1.94, 95% CI 1.04-3.63, p = 0.037) and haplotype AC of rs7990214-rs3803230 (OR 1.98, 95% CI 1.13-3.46, p = 0.015) contributed to 3-month poor outcome. The COL4A2 polymorphisms are associated with an increased risk of primary ICH, mainly non-lobar hemorrhage, and with long-term poor outcome after ICH in Chinese Han population.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuyi Zhu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lukai Zheng
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Mingxi Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zilong Hao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Guo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Feng
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Deren Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Sun RY, Xu Y, Huang QQ, Hu SS, Xu HZ, Luo YZ, Zhu T, Sun JH, Gong YJ, Zhu MM, Wang HW, Pan JY, Lu CS, Wang D. Identification of a novel intronic variant in COL4A2 gene associated with fetal severe cerebral encephalomalacia and subdural hemorrhage. BMC Med Genomics 2024; 17:238. [PMID: 39350129 PMCID: PMC11441077 DOI: 10.1186/s12920-024-02012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Genetic variants in COL4A2 are less common than those of COL4A1 and their fetal clinical phenotype has not been well described to date. We present a fetus from China with an intronic variant in COL4A2 associated with a prenatal diagnosis of severe cerebral encephalomalacia and subdural hemorrhage. METHODS Whole exome sequencing (WES) was applied to screen potential genetic causes. Bioinformatic analysis was performed to predict the pathogenicity of the variant. In in vitro experiment, the minigene assays were performed to assess the variant's effect. RESULTS In this proband, we observed ventriculomegaly, subdural hemorrhage, and extensive encephalomalacia that initially suggested cerebral hypoxic-ischemic and/or hemorrhagic lesions. WES identified a de novo heterozygous variant c.549 + 5G > A in COL4A2 gene. This novel variant leads to the skipping of exon 8, which induces the loss of 24 native amino acids, resulting in a shortened COL4A2 protein (p.Pro161_Gly184del). CONCLUSION Our study demonstrated that c.549 + 5G > A in COL4A2 gene is a disease-causing variant by aberrant splicing. This finding enriches the variant spectrum of COL4A2 gene, which not only improves the understanding of the fetal neurological disorders associated with hypoxic-ischemic and hemorrhagic lesions from a clinical perspective but also provides guidance on genetic diagnosis and counseling.
Collapse
Affiliation(s)
- Rong-Yue Sun
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Road, Wenzhou, Zhejiang, 325000, China
| | - Yue Xu
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Road, Wenzhou, Zhejiang, 325000, China
| | - Qing-Qing Huang
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Road, Wenzhou, Zhejiang, 325000, China
| | - Si-Si Hu
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Road, Wenzhou, Zhejiang, 325000, China
| | - Hua-Zhi Xu
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan-Zhao Luo
- Department of Pediatrics, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Ting Zhu
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Road, Wenzhou, Zhejiang, 325000, China
| | - Jun-Hui Sun
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Jing Gong
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Road, Wenzhou, Zhejiang, 325000, China
| | - Mian-Mian Zhu
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Road, Wenzhou, Zhejiang, 325000, China
| | - Hong-Wei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing-Ye Pan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, China
| | - Chao-Sheng Lu
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Road, Wenzhou, Zhejiang, 325000, China.
| | - Dan Wang
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Shi H, Ma J, Wang J, Luo J, Ji M, Xu T, Shen Y, Zhou C. Association of COL4A2 indel polymorphism with the development of stomach adenocarcinoma in Chinese populations. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-12. [PMID: 39340310 DOI: 10.1080/15257770.2024.2409888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/09/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE The objective of the study was to assess the potential association between the indel polymorphism (rs34802628) located within the intron of the collagen type ⅳ alpha 2 gene (COL4A2) and the susceptibility to stomach adenocarcinoma (STAD) within a Chinese population. METHODS Peripheral venous blood samples were collected from a total of 497 STAD patients and 804 healthy control individuals to extract genomic DNA. The genotyping of the COL4A2 rs34802628 polymorphism was carried out using a polymerase chain reaction assay. Additionally, statistical analyses were conducted on the expression levels of COL4A2 mRNA using the GEPIA database. Meanwhile, the expression of COL4A2 mRNA was also validated by Real-time PCR using STAD tissue samples. Then, based on an analysis of patient tumor RNA seq data available from the Cancer Genome Atlas (TCGA), we assessed the prognostic value of mRNA expression of the COL4A2 gene in STAD patients using K-M plotter. RESULTS The study presented compelling evidence supporting an association between the rs34802628 polymorphism in the COL4A2 gene and susceptibility to STAD. Logistic regression analysis revealed that both the heterozygote and homozygote 4-bp del/del genotypes were significantly associated with a decreased risk of STAD, even after controlling for other variables (adjusted odds ratio [OR] = 0.663, 95% confidence interval [CI] 0.519-0.848, p = 0.037; OR = 0.422, 95% CI 0.290-0.614, p = 0.000005, respectively). Importantly, individuals carrying the 4-bp deletion allele demonstrated a notably lower risk of developing the disease (OR = 0.696, 95% CI 0.591-0.820, p = 0.000014). Furthermore, Genotype-phenotype correlation studies in human STAD tissue samples demonstrated that the higher mRNA expression levels of COL4A2 were associated with the ins allele of rs34802628. Bioinformatics analysis revealed that higher expression of the COL4A2 gene was significant with development and poor prognosis of STAD. CONCLUSION The results of our study provide strong evidence indicating a potential involvement of genetic variants in the COL4A2 gene in the development of STAD. Nonetheless, to validate and consolidate these findings, additional investigations incorporating larger sample sizes and functional experiments are necessary.
Collapse
Affiliation(s)
- Huihai Shi
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jialin Ma
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jing Wang
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jiale Luo
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mengyue Ji
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ting Xu
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yingxiao Shen
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chunxiao Zhou
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
McNeilly S, Thomson CR, Gonzalez-Trueba L, Sin YY, Granata A, Hamilton G, Lee M, Boland E, McClure JD, Lumbreras-Perales C, Aman A, Kumar AA, Cantini M, Gök C, Graham D, Tomono Y, Anderson CD, Lu Y, Smith C, Markus HS, Abramowicz M, Vilain C, Al-Shahi Salman R, Salmeron-Sanchez M, Hainsworth AH, Fuller W, Kadler KE, Bulleid NJ, Van Agtmael T. Collagen IV deficiency causes hypertrophic remodeling and endothelium-dependent hyperpolarization in small vessel disease with intracerebral hemorrhage. EBioMedicine 2024; 107:105315. [PMID: 39216230 PMCID: PMC11402910 DOI: 10.1016/j.ebiom.2024.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Genetic variants in COL4A1 and COL4A2 (encoding collagen IV alpha chain 1/2) occur in genetic and sporadic forms of cerebral small vessel disease (CSVD), a leading cause of stroke, dementia and intracerebral haemorrhage (ICH). However, the molecular mechanisms of CSVD with ICH and COL4A1/COL4A2 variants remain obscure. METHODS Vascular function and molecular investigations in mice with a Col4a1 missense mutation and heterozygous Col4a2 knock-out mice were combined with analysis of human brain endothelial cells harboring COL4A1/COL4A2 mutations, and brain tissue of patients with sporadic CSVD with ICH. FINDINGS Col4a1 missense mutations cause early-onset CSVD independent of hypertension, with enhanced vasodilation of small arteries due to endothelial dysfunction, vascular wall thickening and reduced stiffness. Mechanistically, the early-onset dysregulated endothelium-dependent hyperpolarization (EDH) is due to reduced collagen IV levels with elevated activity and levels of endothelial Ca2+-sensitive K+ channels. This results in vasodilation via the Na/K pump in vascular smooth muscle cells. Our data support this endothelial dysfunction preceding development of CSVD-associated ICH is due to increased cytoplasmic Ca2+ levels in endothelial cells. Moreover, cerebral blood vessels of patients with sporadic CSVD show genotype-dependent mechanisms with wall thickening and lower collagen IV levels in those harboring common non-coding COL4A1/COL4A2 risk alleles. INTERPRETATION COL4A1/COL4A2 variants act in genetic and sporadic CSVD with ICH via dysregulated EDH, and altered vascular wall thickness and biomechanics due to lower collagen IV levels and/or mutant collagen IV secretion. These data highlight EDH and collagen IV levels as potential treatment targets. FUNDING MRC, Wellcome Trust, BHF.
Collapse
Affiliation(s)
- Sarah McNeilly
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cameron R Thomson
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Laura Gonzalez-Trueba
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yuan Yan Sin
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge and Royal Papworth Hospital, Cambridge, UK
| | - Graham Hamilton
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Glasgow Polyomics, University of Glasgow, Glasgow, UK
| | - Michelle Lee
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Erin Boland
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John D McClure
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cristina Lumbreras-Perales
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alisha Aman
- School of Health and Wellbeing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Apoorva A Kumar
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK; Princess Royal University Hospital, Kings College Hospital NHS Foundation Trust, London, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, School of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Caglar Gök
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yasuko Tomono
- Division of Molecular & Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Christopher D Anderson
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yinhui Lu
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Colin Smith
- Academic Neuropathology, University of Edinburgh, Edinburgh, UK
| | - Hugh S Markus
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Abramowicz
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | | | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, School of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - William Fuller
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Karl E Kadler
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Neil J Bulleid
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom Van Agtmael
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
7
|
Dupré N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries. J Clin Invest 2024; 134:e172841. [PMID: 38747292 PMCID: PMC11093606 DOI: 10.1172/jci172841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
8
|
Al-Thani M, Goodwin-Trotman M, Bell S, Patel K, Fleming LK, Vilain C, Abramowicz M, Allan SM, Wang T, Cader MZ, Horsburgh K, Van Agtmael T, Sinha S, Markus HS, Granata A. A novel human iPSC model of COL4A1/A2 small vessel disease unveils a key pathogenic role of matrix metalloproteinases. Stem Cell Reports 2023; 18:2386-2399. [PMID: 37977146 PMCID: PMC10724071 DOI: 10.1016/j.stemcr.2023.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Cerebral small vessel disease (SVD) affects the small vessels in the brain and is a leading cause of stroke and dementia. Emerging evidence supports a role of the extracellular matrix (ECM), at the interface between blood and brain, in the progression of SVD pathology, but this remains poorly characterized. To address ECM role in SVD, we developed a co-culture model of mural and endothelial cells using human induced pluripotent stem cells from patients with COL4A1/A2 SVD-related mutations. This model revealed that these mutations induce apoptosis, migration defects, ECM remodeling, and transcriptome changes in mural cells. Importantly, these mural cell defects exert a detrimental effect on endothelial cell tight junctions through paracrine actions. COL4A1/A2 models also express high levels of matrix metalloproteinases (MMPs), and inhibiting MMP activity partially rescues the ECM abnormalities and mural cell phenotypic changes. These data provide a basis for targeting MMP as a therapeutic opportunity in SVD.
Collapse
Affiliation(s)
- Maha Al-Thani
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge and Royal Papworth Hospital, Cambridge, UK
| | - Mary Goodwin-Trotman
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge and Royal Papworth Hospital, Cambridge, UK
| | - Steven Bell
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge and Royal Papworth Hospital, Cambridge, UK
| | - Krushangi Patel
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge and Royal Papworth Hospital, Cambridge, UK
| | - Lauren K Fleming
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Catheline Vilain
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Marc Abramowicz
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tao Wang
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, Kavli Institute of Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Road, University of Oxford, Oxford, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tom Van Agtmael
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Hugh S Markus
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge and Royal Papworth Hospital, Cambridge, UK.
| |
Collapse
|
9
|
Meschia JF, Worrall BB, Elahi FM, Ross OA, Wang MM, Goldstein ED, Rost NS, Majersik JJ, Gutierrez J. Management of Inherited CNS Small Vessel Diseases: The CADASIL Example: A Scientific Statement From the American Heart Association. Stroke 2023; 54:e452-e464. [PMID: 37602377 DOI: 10.1161/str.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.
Collapse
|
10
|
Roos J, Müller S, Giese A, Appenzeller S, Ringelstein EB, Fiehler J, Berger K, Rolfs A, Hagel C, Kuhlenbäumer G. Pontine autosomal dominant microangiopathy with leukoencephalopathy: Col4A1 gene variants in the original family and sporadic stroke. J Neurol 2023; 270:2631-2639. [PMID: 36786861 PMCID: PMC10130117 DOI: 10.1007/s00415-023-11590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND (1) Description of clinical and cranial MRI features in the original Pontine Autosomal Dominant Microangiopathy with Leukoencephalopathy (PADMAL) family and correlation with the segregation analysis of the causative collagen 4A1 gene (COL4A1) variant. (2) Sequence analysis of the COL4A1 miRNA-binding site containing the causative variant in two independent cross-sectional samples of sporadic stroke patients. PATIENTS AND METHODS Sanger sequencing of the COL4A1 miRNA-binding site in the PADMAL family and 874 sporadic stroke patients. RESULTS PADMAL shows adult-onset usually between 30 and 50 years of age with initial brainstem-related symptoms most commonly dysarthria, with progression to dementia and tetraparesis. Radiologically pontine lacunes are followed by supratentorial white matter involvement. Radiological onset may precede clinical symptoms. We found no variants in the COL4A1 miRNA-binding site of sporadic stroke patients. CONCLUSION Our results allow an early diagnosis of PADMAL based on cranial MRI, clinical signs, and confirmatory sequencing of the COL4A1 miRNA-29-binding site. COL4A1 miRNA-29-binding site variants do not contribute to a sizeable proportion of sporadic stroke.
Collapse
Affiliation(s)
- Jessica Roos
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Arnold-Heller Str. 3, D24105, Kiel, Germany
| | - Stefanie Müller
- Institute of Health Informatics, University College London, London, UK
| | - Anne Giese
- Department of Neurology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital, Würzburg, Germany
| | | | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | | | - Christian Hagel
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Arnold-Heller Str. 3, D24105, Kiel, Germany.
| |
Collapse
|
11
|
Lee G, Dharmakulaseelan L, Muir RT, Iskander C, Kendzerska T, Boulos MI. Obstructive sleep apnea is associated with markers of cerebral small vessel disease in a dose-response manner: A systematic review and meta-analysis. Sleep Med Rev 2023; 68:101763. [PMID: 36805589 DOI: 10.1016/j.smrv.2023.101763] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
Cerebral small vessel disease manifests on neuroimaging as white matter hyperintensities, lacunes, cerebral microbleeds, perivascular spaces or subcortical infarcts and is a major contributor to dementia, stroke and incident death. We aimed to determine whether obstructive sleep apnea severity is associated cerebral small vessel disease. A systematic search was conducted for studies examining the association between obstructive sleep apnea and cerebral small vessel disease markers. A random-effects model was used to meta-analyze unadjusted odds ratios derived from event rates. The neuroimaging-derived measures of white matter hyperintensities, lacunes, and cerebral microbleeds were compared against increasing obstructive sleep apnea severity, as measured by apnea-hypopnea indices of <5, 5-15, ≥15 and ≥ 30. Thirty-two observational studies were included: ten reported effect sizes for white matter hyperintensities, nine for lacunes and three for cerebral microbleeds. Compared to patients without obstructive sleep apnea, the odds of possessing white matter hyperintensities were 1.7 [95% confidence interval 0.9-3.6] in mild, 3.9 [2.7-5.5] in moderate-severe and 4.3 [1.9-9.6] in severe obstructive sleep apnea. Moderate-severe obstructive sleep apnea was associated with a higher risk of lacunar infarcts. Obstructive sleep apnea had no association with cerebral microbleeds and an indeterminate association with perivascular spaces and subcortical infarcts due to insufficient data.
Collapse
Affiliation(s)
- Grace Lee
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Laavanya Dharmakulaseelan
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan T Muir
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Carol Iskander
- Faculty of Medicine, The National University of Ireland, Galway, Ireland
| | - Tetyana Kendzerska
- Department of Medicine, Division of Respirology, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
| | - Mark I Boulos
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Sleep Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Jiang X, Hysi PG, Khawaja AP, Mahroo OA, Xu Z, Hammond CJ, Foster PJ, Welikala RA, Barman SA, Whincup PH, Rudnicka AR, Owen CG, Strachan DP. GWAS on retinal vasculometry phenotypes. PLoS Genet 2023; 19:e1010583. [PMID: 36757925 PMCID: PMC9910644 DOI: 10.1371/journal.pgen.1010583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023] Open
Abstract
The eye is the window through which light is transmitted and visual sensory signalling originates. It is also a window through which elements of the cardiovascular and nervous systems can be directly inspected, using ophthalmoscopy or retinal imaging. Measurements of ocular parameters may therefore offer important information on the physiology and homeostasis of these two important systems. Here we report the results of a genetic characterisation of retinal vasculature. Four genome-wide association studies performed on different aspects of retinal vasculometry phenotypes, such as arteriolar and venular tortuosity and width, found significant similarities between retinal vascular characteristics and cardiometabolic health. Our analyses identified 119 different regions of association with traits of retinal vasculature, including 89 loci associated arteriolar tortuosity, the strongest of which was rs35131825 (p = 2.00×10-108), 2 loci with arteriolar width (rs12969347, p = 3.30×10-09 and rs5442, p = 1.9E-15), 17 other loci associated with venular tortuosity and 11 novel associations with venular width. Our causal inference analyses also found that factors linked to arteriolar tortuosity cause elevated diastolic blood pressure and not vice versa.
Collapse
Affiliation(s)
- Xiaofan Jiang
- UCL Institute of Ophthalmology, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Pirro G. Hysi
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Omar A. Mahroo
- UCL Institute of Ophthalmology, London, United Kingdom
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Zihe Xu
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Christopher J. Hammond
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Roshan A. Welikala
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, United Kingdom
| | - Sarah A. Barman
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, United Kingdom
| | - Peter H. Whincup
- Population Health Research Institute, St George’s, University of London, London, United Kingdom
| | - Alicja R. Rudnicka
- Population Health Research Institute, St George’s, University of London, London, United Kingdom
| | - Christopher G. Owen
- Population Health Research Institute, St George’s, University of London, London, United Kingdom
| | - David P. Strachan
- Population Health Research Institute, St George’s, University of London, London, United Kingdom
| | | |
Collapse
|
13
|
Fang C, Magaki SD, Kim RC, Kalaria RN, Vinters HV, Fisher M. Arteriolar neuropathology in cerebral microvascular disease. Neuropathol Appl Neurobiol 2023; 49:e12875. [PMID: 36564356 DOI: 10.1111/nan.12875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Cerebral microvascular disease (MVD) is an important cause of vascular cognitive impairment. MVD is heterogeneous in aetiology, ranging from universal ageing to the sporadic (hypertension, sporadic cerebral amyloid angiopathy [CAA] and chronic kidney disease) and the genetic (e.g., familial CAA, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL] and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy [CARASIL]). The brain parenchymal consequences of MVD predominantly consist of lacunar infarcts (lacunes), microinfarcts, white matter disease of ageing and microhaemorrhages. MVD is characterised by substantial arteriolar neuropathology involving ubiquitous vascular smooth muscle cell (SMC) abnormalities. Cerebral MVD is characterised by a wide variety of arteriolar injuries but only a limited number of parenchymal manifestations. We reason that the cerebral arteriole plays a dominant role in the pathogenesis of each type of MVD. Perturbations in signalling and function (i.e., changes in proliferation, apoptosis, phenotypic switch and migration of SMC) are prominent in the pathogenesis of cerebral MVD, making 'cerebral angiomyopathy' an appropriate term to describe the spectrum of pathologic abnormalities. The evidence suggests that the cerebral arteriole acts as both source and mediator of parenchymal injury in MVD.
Collapse
Affiliation(s)
- Chuo Fang
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA
| | - Shino D Magaki
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ronald C Kim
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA.,Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| |
Collapse
|
14
|
Branyan K, Labelle-Dumais C, Wang X, Hayashi G, Lee B, Peltz Z, Gorman S, Li BQ, Mao M, Gould DB. Elevated TGFβ signaling contributes to cerebral small vessel disease in mouse models of Gould syndrome. Matrix Biol 2023; 115:48-70. [PMID: 36435425 PMCID: PMC10393528 DOI: 10.1016/j.matbio.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of stroke and vascular cognitive impairment and dementia. Studying monogenic CSVD can reveal pathways that are dysregulated in common sporadic forms of the disease and may represent therapeutic targets. Mutations in collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause highly penetrant CSVD as part of a multisystem disorder referred to as Gould syndrome. COL4A1 and COL4A2 form heterotrimers [a1α1α2(IV)] that are fundamental constituents of basement membranes. However, their functions are poorly understood and the mechanism(s) by which COL4A1 and COL4A2 mutations cause CSVD are unknown. We used histological, molecular, genetic, pharmacological, and in vivo imaging approaches to characterize central nervous system (CNS) vascular pathologies in Col4a1 mutant mouse models of monogenic CSVD to provide insight into underlying pathogenic mechanisms. We describe developmental CNS angiogenesis abnormalities characterized by impaired retinal vascular outgrowth and patterning, increased numbers of mural cells with abnormal morphologies, altered contractile protein expression in vascular smooth muscle cells (VSMCs) and age-related loss of arteriolar VSMCs in Col4a1 mutant mice. Importantly, we identified elevated TGFβ signaling as a pathogenic consequence of Col4a1 mutations and show that genetically suppressing TGFβ signaling ameliorated CNS vascular pathologies, including partial rescue of retinal vascular patterning defects, prevention of VSMC loss, and significant reduction of intracerebral hemorrhages in Col4a1 mutant mice aged up to 8 months. This study identifies a novel biological role for collagen α1α1α2(IV) as a regulator of TGFβ signaling and demonstrates that elevated TGFβ signaling contributes to CNS vascular pathologies caused by Col4a1 mutations. Our findings suggest that pharmacologically suppressing TGFβ signaling could reduce the severity of CSVD, and potentially other manifestations associated with Gould syndrome and have important translational implications that could extend to idiopathic forms of CSVD.
Collapse
Affiliation(s)
- Kayla Branyan
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Xiaowei Wang
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Genki Hayashi
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bryson Lee
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Zoe Peltz
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Seán Gorman
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bo Qiao Li
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Mao Mao
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Douglas B Gould
- Department of Ophthalmology, University of California, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States; Department of Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, United States.
| |
Collapse
|
15
|
Bhagat R, Marini S, Romero JR. Genetic considerations in cerebral small vessel diseases. Front Neurol 2023; 14:1080168. [PMID: 37168667 PMCID: PMC10164974 DOI: 10.3389/fneur.2023.1080168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Cerebral small vessel disease (CSVD) encompasses a broad clinical spectrum united by pathology of the small vessels of the brain. CSVD is commonly identified using brain magnetic resonance imaging with well characterized markers including covert infarcts, white matter hyperintensities, enlarged perivascular spaces, and cerebral microbleeds. The pathophysiology of CSVD is complex involving genetic determinants, environmental factors, and their interactions. While the role of vascular risk factors in CSVD is well known and its management is pivotal in mitigating the clinical effects, recent research has identified novel genetic factors involved in CSVD. Delineating genetic determinants can promote the understanding of the disease and suggest effective treatments and preventive measures of CSVD at the individual level. Here we review CSVD focusing on recent advances in the genetics of CSVD. The knowledge gained has advanced understanding of the pathophysiology of CSVD, offered promising early results that may improve subtype identification of small vessel strokes, has led to additional identification of mendelian forms of small vessel strokes, and is getting closer to influencing clinical care through pharmacogenetic studies.
Collapse
Affiliation(s)
- Riwaj Bhagat
- Department of Neurology, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Sandro Marini
- Department of Neurology, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - José R. Romero
- Department of Neurology, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
- NHLBI’s Framingham Heart Study, Framingham, MA, United States
- *Correspondence: José R. Romero,
| |
Collapse
|
16
|
Kumar AA, Yeo N, Whittaker M, Attra P, Barrick TR, Bridges LR, Dickson DW, Esiri MM, Farris CW, Graham D, Lin WL, Meijles DN, Pereira AC, Perry G, Rosene DL, Shtaya AB, Van Agtmael T, Zamboni G, Hainsworth AH. Vascular Collagen Type-IV in Hypertension and Cerebral Small Vessel Disease. Stroke 2022; 53:3696-3705. [PMID: 36205142 PMCID: PMC9698121 DOI: 10.1161/strokeaha.122.037761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cerebral small vessel disease (SVD) is common in older people and causes lacunar stroke and vascular cognitive impairment. Risk factors include old age, hypertension and variants in the genes COL4A1/COL4A2 encoding collagen alpha-1(IV) and alpha-2(IV), here termed collagen-IV, which are core components of the basement membrane. We tested the hypothesis that increased vascular collagen-IV associates with clinical hypertension and with SVD in older persons and with chronic hypertension in young and aged primates and genetically hypertensive rats. METHODS We quantified vascular collagen-IV immunolabeling in small arteries in a cohort of older persons with minimal Alzheimer pathology (N=52; 21F/31M, age 82.8±6.95 years). We also studied archive tissue from young (age range 6.2-8.3 years) and older (17.0-22.7 years) primates (M mulatta) and compared chronically hypertensive animals (18 months aortic stenosis) with normotensives. We also compared genetically hypertensive and normotensive rats (aged 10-12 months). RESULTS Collagen-IV immunolabeling in cerebral small arteries of older persons was negatively associated with radiological SVD severity (ρ: -0.427, P=0.005) but was not related to history of hypertension. General linear models confirmed the negative association of lower collagen-IV with radiological SVD (P<0.017), including age as a covariate and either clinical hypertension (P<0.030) or neuropathological SVD diagnosis (P<0.022) as fixed factors. Reduced vascular collagen-IV was accompanied by accumulation of fibrillar collagens (types I and III) as indicated by immunogold electron microscopy. In young and aged primates, brain collagen-IV was elevated in older normotensive relative to young normotensive animals (P=0.029) but was not associated with hypertension. Genetically hypertensive rats did not differ from normotensive rats in terms of arterial collagen-IV. CONCLUSIONS Our cross-species data provide novel insight into sporadic SVD pathogenesis, supporting insufficient (rather than excessive) arterial collagen-IV in SVD, accompanied by matrix remodeling with elevated fibrillar collagen deposition. They also indicate that hypertension, a major risk factor for SVD, does not act by causing accumulation of brain vascular collagen-IV.
Collapse
Affiliation(s)
- Apoorva A. Kumar
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
- Neurology (A.A.K., A.C.P., A.H.H.), St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Natalie Yeo
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Max Whittaker
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Priya Attra
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Thomas R. Barrick
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Leslie R. Bridges
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
- Cellular Pathology (L.R.B.), St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL (D.W.D., W.L.L.)
| | - Margaret M. Esiri
- Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (M.M.E., G.Z.)
| | - Chad W. Farris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, MA (C.W.F., D.L.R.)
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (D.G., T.V.A.)
| | - Wen Lang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL (D.W.D., W.L.L.)
| | - Daniel N. Meijles
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Anthony C. Pereira
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
- Neurology (A.A.K., A.C.P., A.H.H.), St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Gregory Perry
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, MA (C.W.F., D.L.R.)
| | - Anan B. Shtaya
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (D.G., T.V.A.)
| | - Giovanna Zamboni
- Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (M.M.E., G.Z.)
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Italy (G.Z.)
| | - Atticus H. Hainsworth
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
- Neurology (A.A.K., A.C.P., A.H.H.), St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Hausman-Kedem M, Herring R, Torres MD, Santoro JD, Kaseka ML, Vargas C, Amico G, Bertamino M, Nagesh D, Tilley J, Schenk A, Ben-Shachar S, Musolino PL. The Genetic Landscape of Ischemic Stroke in Children - Current Knowledge and Future Perspectives. Semin Pediatr Neurol 2022; 44:100999. [PMID: 36456039 DOI: 10.1016/j.spen.2022.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Stroke in childhood has multiple etiologies, which are mostly distinct from those in adults. Genetic discoveries over the last decade pointed to monogenic disorders as a rare but significant cause of ischemic stroke in children and young adults, including small vessel and arterial ischemic stroke. These discoveries contributed to the understanding that stroke in children may be a sign of an underlying genetic disease. The identification of these diseases requires a detailed medical and family history collection, a careful clinical evaluation for the detection of systemic symptoms and signs, and neuroimaging assessment. Establishing an accurate etiological diagnosis and understanding the genetic risk factors for stroke are essential steps to decipher the underlying mechanisms, optimize the design of tailored prevention strategies, and facilitate the identification of novel therapeutic targets in some cases. Despite the increasing recognition of monogenic causes of stroke, genetic disorders remain understudied and therefore under-recognized in children with stroke. Increased awareness among healthcare providers is essential to facilitate accurate diagnosis in a timely manner. In this review, we provide a summary of the main single-gene disorders which may present as ischemic stroke in childhood and describe their clinical manifestations. We provide a set of practical suggestions for the diagnostic work up of these uncommon causes of stroke, based upon the stroke subtype and imaging characteristics that may suggest a monogenic diagnosis of ischemic stroke in children. Current hurdles in the genetic analyses of children with ischemic stroke as well as future prospectives are discussed.
Collapse
Affiliation(s)
- Moran Hausman-Kedem
- Pediatric Neurology Institute, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Israel; The Sacker Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rachelle Herring
- Neurology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Marcela D Torres
- Hematology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Jonathan D Santoro
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | | | - Carolina Vargas
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Giulia Amico
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Deepti Nagesh
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | - Jo Tilley
- Departments of Hematology and Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Allyson Schenk
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Shay Ben-Shachar
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA; Clalit Research Institute, Innovation Division, Clalit Health Services, Ramat Gan, Israel
| | - Patricia L Musolino
- Center for Genomic Medicine, Center for Rare Neurological Disorders, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Li J, Abedi V, Zand R. Dissecting Polygenic Etiology of Ischemic Stroke in the Era of Precision Medicine. J Clin Med 2022; 11:jcm11205980. [PMID: 36294301 PMCID: PMC9604604 DOI: 10.3390/jcm11205980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic stroke (IS), the leading cause of death and disability worldwide, is caused by many modifiable and non-modifiable risk factors. This complex disease is also known for its multiple etiologies with moderate heritability. Polygenic risk scores (PRSs), which have been used to establish a common genetic basis for IS, may contribute to IS risk stratification for disease/outcome prediction and personalized management. Statistical modeling and machine learning algorithms have contributed significantly to this field. For instance, multiple algorithms have been successfully applied to PRS construction and integration of genetic and non-genetic features for outcome prediction to aid in risk stratification for personalized management and prevention measures. PRS derived from variants with effect size estimated based on the summary statistics of a specific subtype shows a stronger association with the matched subtype. The disruption of the extracellular matrix and amyloidosis account for the pathogenesis of cerebral small vessel disease (CSVD). Pathway-specific PRS analyses confirm known and identify novel etiologies related to IS. Some of these specific PRSs (e.g., derived from endothelial cell apoptosis pathway) individually contribute to post-IS mortality and, together with clinical risk factors, better predict post-IS mortality. In this review, we summarize the genetic basis of IS, emphasizing the application of methodologies and algorithms used to construct PRSs and integrate genetics into risk models.
Collapse
Affiliation(s)
- Jiang Li
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | - Vida Abedi
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence: (V.A.); (R.Z.)
| | - Ramin Zand
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Neuroscience Institute, Geisinger Health System, 100 North Academy Avenue, Danville, PA 17822, USA
- Correspondence: (V.A.); (R.Z.)
| |
Collapse
|
19
|
Goeldlin M, Stewart C, Radojewski P, Wiest R, Seiffge D, Werring DJ. Clinical neuroimaging in intracerebral haemorrhage related to cerebral small vessel disease: contemporary practice and emerging concepts. Expert Rev Neurother 2022; 22:579-594. [PMID: 35850578 DOI: 10.1080/14737175.2022.2104157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION About 80% of all non-traumatic intracerebral haemorrhage (ICH) are caused by the sporadic cerebral small vessel diseases deep perforator arteriopathy (DPA, also termed hypertensive arteriopathy or arteriolosclerosis) and cerebral amyloid angiopathy (CAA), though these frequently co-exist in older people. Contemporary neuroimaging (MRI and CT) detects an increasing spectrum of haemorrhagic and non-haemorrhagic imaging biomarkers of small vessel disease which may identify the underlying arteriopathies. AREAS COVERED We discuss biomarkers for cerebral small vessel disease subtypes in ICH, and explore their implications for clinical practice and research. EXPERT OPINION ICH is not a single disease, but results from a defined range of vascular pathologies with important implications for prognosis and treatment. The terms "primary" and "hypertensive" ICH are poorly defined and should be avoided, as they encourage incomplete investigation and classification. Imaging-based criteria for CAA will show improved diagnostic accuracy, but specific imaging biomarkers of DPA are needed. Ultra-high-field 7T-MRI using structural and quantitative MRI may provide further insights into mechanisms and pathophysiology of small vessel disease. We expect neuroimaging biomarkers and classifications to allow personalized treatments (e.g. antithrombotic drugs) in clinical practice and to improve patient selection and monitoring in trials of targeted therapies directed at the underlying arteriopathies.
Collapse
Affiliation(s)
- Martina Goeldlin
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Catriona Stewart
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Piotr Radojewski
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - David Seiffge
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland
| | - David J Werring
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
20
|
Liu X, Yang Q, Tang L, He J, Tian D, Wang B, Xie L, Li C, Fan D. Rare and Common Variants in COL4A1 in Chinese Patients With Intracerebral Hemorrhage. Front Neurol 2022; 13:827165. [PMID: 35711275 PMCID: PMC9196627 DOI: 10.3389/fneur.2022.827165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Here, we screened the COL4A1 variants in Chinese intracerebral hemorrhage (ICH) patients to summarize the relationship between the variants and clinical characteristics. Targeted sequencing of a 65-gene panel including COL4A1 was performed to detect all the coding regions and ±10-bp splicing sites. In total, 568 patients were included. Regarding rare nonsynonymous variants with a minor allele frequency (MAF) <0.5%, 6 missense variants and five suspicious splice site variants, absent in 573 healthy controls, were found in 11 patients. The subgroup carrying rare variants did not show specific phenotype compared with non-variant carriers. For the single nucleotide polymorphism (SNP) loci with an MAF> 5%, we did not find a significant association between the allele or genotype distribution of the SNP loci and the risk of ICH. Rs3742207 was nominally associated with death at 1-year follow-up (p = 0.02027, OR 1.857, 95% CI 1.101-3.133) after adjusted by age, hypertension history, hematoma volume and recurrent ICH history. Nevertheless, after the Bonferroni correction, the association was no longer significant. In conclusion, rare nonsynonymous variants in COL4A1 were identified in 1.94% (11/568) of Chinese ICH patients, while rs3742207 maybe indicate a worse prognosis of ICH.
Collapse
Affiliation(s)
- Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Qiong Yang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Danyang Tian
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Baojun Wang
- Department of Neurology, Central Hospital of Baotou, Baotou, China
| | - Lihong Xie
- Department of Neurology, Central Hospital of Baotou, Baotou, China
| | - Changbao Li
- Department of Neurosurgery, Beijing Pinggu Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
21
|
Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage. Int J Mol Sci 2022; 23:ijms23126479. [PMID: 35742924 PMCID: PMC9223468 DOI: 10.3390/ijms23126479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a complex and heterogeneous disease, and there is no effective treatment. Spontaneous ICH represents the final manifestation of different types of cerebral small vessel disease, usually categorized as: lobar (mostly related to cerebral amyloid angiopathy) and nonlobar (hypertension-related vasculopathy) ICH. Accurate phenotyping aims to reflect these biological differences in the underlying mechanisms and has been demonstrated to be crucial to the success of genetic studies in this field. This review summarizes how current knowledge on genetics and epigenetics of this devastating stroke subtype are contributing to improve the understanding of ICH pathophysiology and their potential role in developing therapeutic strategies.
Collapse
|
22
|
Guo H, You M, Wu J, Chen A, Wan Y, Gu X, Tan S, Xu Y, He Q, Hu B. Genetics of Spontaneous Intracerebral Hemorrhage: Risk and Outcome. Front Neurosci 2022; 16:874962. [PMID: 35478846 PMCID: PMC9036087 DOI: 10.3389/fnins.2022.874962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a common fatal event without an effective therapy. Of note, some familial aggregation and inherited tendency is found in ICH and heritability estimates indicate that genetic variations contribute substantially to ICH risk and outcome. Thus, identification of genetic variants that affect the occurrence and outcome may be helpful for ICH prevention and therapy. There are several reviews summarizing numerous genetic variants associated with the occurrence of ICH before, but genetic variants contributing to location distribution and outcome have rarely been introduced. Here, we summarize the current knowledge of genetic variants and pay special attention to location distribution and outcome. So far, investigations have reveled variations in APOE, GPX1, CR1, ITGAV, PRKCH, and 12q21.1 are associated with lobar ICH (LICH), while ACE, COL4A2, 1q22, TIMP1, TIMP2, MMP2, MMP9, and TNF are associated with deep ICH (DICH). Moreover, variations in APOE, VWF, 17p12, HP, CFH, IL6ST, and COL4A1 are possible genetic contributors to ICH outcome. Furthermore, the prospects for ICH related genetic studies from the bench to the bed were discussed.
Collapse
Affiliation(s)
- Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Silva NCBS, Bracko O, Nelson AR, de Oliveira FF, Robison LS, Shaaban CE, Hainsworth AH, Price BR. Vascular cognitive impairment and dementia: An early career researcher perspective. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12310. [PMID: 35496373 PMCID: PMC9043906 DOI: 10.1002/dad2.12310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023]
Abstract
The field of vascular contributions to cognitive impairment and dementia (VCID) is evolving rapidly. Research in VCID encompasses topics aiming to understand, prevent, and treat the detrimental effects of vascular disease burden in the human brain. In this perspective piece, early career researchers (ECRs) in the field provide an overview of VCID, discuss past and present efforts, and highlight priorities for future research. We emphasize the following critical points as the field progresses: (a) consolidate existing neuroimaging and fluid biomarkers, and establish their utility for pharmacological and non-pharmacological interventions; (b) develop new biomarkers, and new non-clinical models that better recapitulate vascular pathologies; (c) amplify access to emerging biomarker and imaging techniques; (d) validate findings from previous investigations in diverse populations, including those at higher risk of cognitive impairment (e.g., Black, Hispanic, and Indigenous populations); and (e) conduct randomized controlled trials within diverse populations with well-characterized vascular pathologies emphasizing clinically meaningful outcomes.
Collapse
Affiliation(s)
- Nárlon C. Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain HealthDepartment of Physical TherapyFaculty of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Oliver Bracko
- Department of BiologyThe University of MiamiCoral GablesFloridaUSA
| | - Amy R. Nelson
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileAlabamaUSA
| | | | - Lisa S. Robison
- Department of Psychology and NeuroscienceNova Southeastern UniversityFort LauderdaleFloridaUSA
| | | | - Atticus H. Hainsworth
- Molecular & Clinical Sciences Research InstituteSt George's University of London, UKDepartment of NeurologySt George's University Hospitals NHS Foundation Trust LondonLondonUK
| | - Brittani R. Price
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
24
|
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of ischaemic and haemorrhagic stroke and a major contributor to dementia. Covert cSVD, which is detectable with brain MRI but does not manifest as clinical stroke, is highly prevalent in the general population, particularly with increasing age. Advances in technologies and collaborative work have led to substantial progress in the identification of common genetic variants that are associated with cSVD-related stroke (ischaemic and haemorrhagic) and MRI-defined covert cSVD. In this Review, we provide an overview of collaborative studies - mostly genome-wide association studies (GWAS) - that have identified >50 independent genetic loci associated with the risk of cSVD. We describe how these associations have provided novel insights into the biological mechanisms involved in cSVD, revealed patterns of shared genetic variation across cSVD traits, and shed new light on the continuum between rare, monogenic and common, multifactorial cSVD. We consider how GWAS summary statistics have been leveraged for Mendelian randomization studies to explore causal pathways in cSVD and provide genetic evidence for drug effects, and how the combination of findings from GWAS with gene expression resources and drug target databases has enabled identification of putative causal genes and provided proof-of-concept for drug repositioning potential. We also discuss opportunities for polygenic risk prediction, multi-ancestry approaches and integration with other omics data.
Collapse
|
25
|
Meschia JF, Fornage M. Genetic Basis of Stroke Occurrence, Prevention, and Outcome. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Omar R, Malfait F, Van Agtmael T. Four decades in the making: Collagen III and mechanisms of vascular Ehlers Danlos Syndrome. Matrix Biol Plus 2021; 12:100090. [PMID: 34849481 PMCID: PMC8609142 DOI: 10.1016/j.mbplus.2021.100090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Vascular Ehlers Danlos (vEDS) syndrome is a severe multi-systemic connective tissue disorder characterized by risk of dissection and rupture of the arteries, gastro-intestinal tract and gravid uterus. vEDS is caused by mutations in COL3A1, that encodes the alpha 1 chain of type III collagen, which is a major extracellular matrix component of the vasculature and hollow organs. The first causal mutations were identified in the 1980s but progress in our understanding of the pathomolecular mechanisms has been limited. Recently, the application of more refined animal models combined with global omics approaches has yielded important new insights both in terms of disease mechanisms and potential for therapeutic intervention. However, it is also becoming apparent that vEDS is a complex disorder in terms of its molecular disease mechanisms with a poorly understood allelic and mechanistic heterogeneity. In this brief review we will focus our attention on the disease mechanisms of COL3A1 mutations and vEDS, and recent progress in therapeutic approaches using animal models.
Collapse
Affiliation(s)
- Ramla Omar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Fransiska Malfait
- Centre for Medical Genetics, Ghent University Hospital, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| |
Collapse
|
27
|
Potjewyd G, Kellett K, Hooper N. 3D hydrogel models of the neurovascular unit to investigate blood-brain barrier dysfunction. Neuronal Signal 2021; 5:NS20210027. [PMID: 34804595 PMCID: PMC8579151 DOI: 10.1042/ns20210027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
The neurovascular unit (NVU), consisting of neurons, glial cells, vascular cells (endothelial cells, pericytes and vascular smooth muscle cells (VSMCs)) together with the surrounding extracellular matrix (ECM), is an important interface between the peripheral blood and the brain parenchyma. Disruption of the NVU impacts on blood-brain barrier (BBB) regulation and underlies the development and pathology of multiple neurological disorders, including stroke and Alzheimer's disease (AD). The ability to differentiate induced pluripotent stem cells (iPSCs) into the different cell types of the NVU and incorporate them into physical models provides a reverse engineering approach to generate human NVU models to study BBB function. To recapitulate the in vivo situation such NVU models must also incorporate the ECM to provide a 3D environment with appropriate mechanical and biochemical cues for the cells of the NVU. In this review, we provide an overview of the cells of the NVU and the surrounding ECM, before discussing the characteristics (stiffness, functionality and porosity) required of hydrogels to mimic the ECM when incorporated into in vitro NVU models. We summarise the approaches available to measure BBB functionality and present the techniques in use to develop robust and translatable models of the NVU, including transwell models, hydrogel models, 3D-bioprinting, microfluidic models and organoids. The incorporation of iPSCs either without or with disease-specific genetic mutations into these NVU models provides a platform in which to study normal and disease mechanisms, test BBB permeability to drugs, screen for new therapeutic targets and drugs or to design cell-based therapies.
Collapse
Affiliation(s)
- Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A.B. Kellett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
28
|
Qureshi K, Farooq MU, Deol A, Glisson C, Gorelick PB. Bilateral Non-Arteritic Anterior Ischaemic Optic Neuropathy in a Patient with a COL4A2 Mutation. Neuroophthalmology 2021; 46:190-193. [DOI: 10.1080/01658107.2021.1992447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Kasim Qureshi
- Mercy Health, Hauenstein Neurosciences, Grand Rapids, Michigan, United States of America
| | - Muhammad U. Farooq
- Mercy Health, Hauenstein Neurosciences, Grand Rapids, Michigan, United States of America
| | - Avneet Deol
- College of literature, science, and the arts, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher Glisson
- Mercy Health, Hauenstein Neurosciences, Grand Rapids, Michigan, United States of America
| | - Philip B. Gorelick
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, Michigan State University College of Human Medicine, Grand Rapids, Michigan, and Mercy Health, Hauenstein Neurosciences, Grand Rapids, Michigan, United States of America
| |
Collapse
|
29
|
Pokhilko A, Brezzo G, Handunnetthi L, Heilig R, Lennon R, Smith C, Allan SM, Granata A, Sinha S, Wang T, Markus HS, Naba A, Fischer R, Van Agtmael T, Horsburgh K, Cader MZ. Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. J Cereb Blood Flow Metab 2021; 41:2423-2438. [PMID: 33730931 PMCID: PMC8392779 DOI: 10.1177/0271678x211004307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The extracellular matrix (ECM) is a key interface between the cerebrovasculature and adjacent brain tissues. Deregulation of the ECM contributes to a broad range of neurological disorders. However, despite this importance, our understanding of the ECM composition remains very limited mainly due to difficulties in its isolation. To address this, we developed an approach to extract the cerebrovascular ECM from mouse and human post-mortem normal brain tissues. We then used mass spectrometry with off-line high-pH reversed-phase fractionation to increase the protein detection. This identified more than 1000 proteins in the ECM-enriched fraction, with > 66% of the proteins being common between the species. We report 147 core ECM proteins of the human brain vascular matrisome, including collagens, laminins, fibronectin and nidogens. We next used network analysis to identify the connection between the brain ECM proteins and cerebrovascular diseases. We found that genes related to cerebrovascular diseases, such as COL4A1, COL4A2, VCAN and APOE were significantly enriched in the cerebrovascular ECM network. This provides unique mechanistic insight into cerebrovascular disease and potential drug targets. Overall, we provide a powerful resource to study the functions of brain ECM and highlight a specific role for brain vascular ECM in cerebral vascular disease.
Collapse
Affiliation(s)
- Alexandra Pokhilko
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gaia Brezzo
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Raphael Heilig
- Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stuart M Allan
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alessandra Granata
- Clinical Neurosciences Department, University of Cambridge, Cambridge, UK
| | | | - Tao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hugh S Markus
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Roman Fischer
- Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - M Zameel Cader
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Chung J, Hamilton G, Kim M, Marini S, Montgomery B, Henry J, Cho AE, Brown DL, Worrall BB, Meschia JF, Silliman SL, Selim M, Tirschwell DL, Kidwell CS, Kissela B, Greenberg SM, Viswanathan A, Goldstein JN, Langefeld CD, Rannikmae K, Sudlow CLM, Samarasekera N, Rodrigues M, Al-Shahi Salman R, Prendergast JGD, Harris SE, Deary I, Woo D, Rosand J, Van Agtmael T, Anderson CD. Rare Missense Functional Variants at COL4A1 and COL4A2 in Sporadic Intracerebral Hemorrhage. Neurology 2021; 97:e236-e247. [PMID: 34031201 PMCID: PMC8302151 DOI: 10.1212/wnl.0000000000012227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/19/2021] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To test the genetic contribution of rare missense variants in COL4A1 and COL4A2 in which common variants are genetically associated with sporadic intracerebral hemorrhage (ICH), we performed rare variant analysis in multiple sequencing data for the risk for sporadic ICH. METHODS We performed sequencing across 559 Kbp at 13q34 including COL4A1 and COL4A2 among 2,133 individuals (1,055 ICH cases; 1,078 controls) in United States-based and 1,381 individuals (192 ICH cases; 1,189 controls) from Scotland-based cohorts, followed by sequence annotation, functional impact prediction, genetic association testing, and in silico thermodynamic modeling. RESULTS We identified 107 rare nonsynonymous variants in sporadic ICH, of which 2 missense variants, rs138269346 (COL4A1I110T) and rs201716258 (COL4A2H203L), were predicted to be highly functional and occurred in multiple ICH cases but not in controls from the United States-based cohort. The minor allele of rs201716258 was also present in Scottish patients with ICH, and rs138269346 was observed in 2 ICH-free controls with a history of hypertension and myocardial infarction. Rs138269346 was nominally associated with nonlobar ICH risk (p = 0.05), but not with lobar ICH (p = 0.08), while associations between rs201716258 and ICH subtypes were nonsignificant (p > 0.12). Both variants were considered pathogenic based on minor allele frequency (<0.00035 in European populations), predicted functional impact (deleterious or probably damaging), and in silico modeling studies (substantially altered physical length and thermal stability of collagen). CONCLUSIONS We identified rare missense variants in COL4A1/A2 in association with sporadic ICH. Our annotation and simulation studies suggest that these variants are highly functional and may represent targets for translational follow-up.
Collapse
Affiliation(s)
- Jaeyoon Chung
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Graham Hamilton
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Minsup Kim
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Sandro Marini
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Bailey Montgomery
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Jonathan Henry
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Art E Cho
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Devin L Brown
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Bradford B Worrall
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - James F Meschia
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Scott L Silliman
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Magdy Selim
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - David L Tirschwell
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Chelsea S Kidwell
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Brett Kissela
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Steven M Greenberg
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Anand Viswanathan
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Joshua N Goldstein
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Carl D Langefeld
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Kristiina Rannikmae
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Catherine L M Sudlow
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Neshika Samarasekera
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Mark Rodrigues
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Rustam Al-Shahi Salman
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - James G D Prendergast
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Sarah E Harris
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Ian Deary
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Daniel Woo
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Jonathan Rosand
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Tom Van Agtmael
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Christopher D Anderson
- From the Center for Genomic Medicine (J.C., S.M., B.M., J.H., J.R., C.D.A.), Department of Neurology (B.M., J.H., S.M.G., A.V., J.R., C.D.A.), McCance Center for Brain Health (J.H., J.R., C.D.A.), and Department of Emergency Medicine (J.N.G.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (J.C., J.R., C.D.A.), Broad Institute, Boston, MA; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus (G.H.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (G.H., T.V.A.), University of Glasgow, Bearsden, UK; Department of Bioinformatics (M.K., A.E.C.), Korea University, Sejong, South Korea; Stroke Program, Department of Neurology (D.L.B.), University of Michigan, Ann Arbor; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic Jacksonville; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology, Stroke Division (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology, Harborview Medical Center (D.L.T.), University of Washington, Seattle; Department of Neurology (C.S.K.), The University of Arizona, Tucson; Department of Neurology and Rehabilitation Medicine (B.K., D.W.), University of Cincinnati, OH; Center for Public Health Genomics and Department of Biostatistical Sciences (C.D.L.), Wake Forest School of Medicine, Winston-Salem, NC; Centre for Medical Informatics, Usher Institute (K.R., C.L.M.S.), Centre for Clinical Brain Sciences (N.S., M.R., R.A.-S.S.), The Roslin Institute (J.G.D.P.), and Lothian Birth Cohorts Group, Department of Psychology (S.E.H., I.D.), University of Edinburgh; and British Heart Foundation Data Science Centre (K.R.), London, UK. Dr. Anderson is currently at the Department of Neurology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
31
|
Donner I, Sipilä LJ, Plaketti RM, Kuosmanen A, Forsström L, Katainen R, Kuismin O, Aavikko M, Romsi P, Kariniemi J, Aaltonen LA. Next-generation sequencing in a large pedigree segregating visceral artery aneurysms suggests potential role of COL4A1/COL4A2 in disease etiology. Vascular 2021; 30:842-847. [PMID: 34281442 DOI: 10.1177/17085381211033157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Visceral artery aneurysms (VAAs) can be fatal if ruptured. Although a relatively rare incident, it holds a contemporary mortality rate of approximately 12%. VAAs have multiple possible causes, one of which is genetic predisposition. Here, we present a striking family with seven individuals affected by VAAs, and one individual affected by a visceral artery pseudoaneurysm. METHODS We exome sequenced the affected family members and the parents of the proband to find a possible underlying genetic defect. As exome sequencing did not reveal any feasible protein-coding variants, we combined whole-genome sequencing of two individuals with linkage analysis to find a plausible non-coding culprit variant. Variants were ranked by the deep learning framework DeepSEA. RESULTS Two of seven top-ranking variants, NC_000013.11:g.108154659C>T and NC_000013.11:g.110409638C>T, were found in all VAA-affected individuals, but not in the individual affected by the pseudoaneurysm. The second variant is in a candidate cis-regulatory element in the fourth intron of COL4A2, proximal to COL4A1. CONCLUSIONS As type IV collagens are essential for the stability and integrity of the vascular basement membrane and involved in vascular disease, we conclude that COL4A1 and COL4A2 are strong candidates for VAA susceptibility genes.
Collapse
Affiliation(s)
- Iikki Donner
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Lauri J Sipilä
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Roosa-Maria Plaketti
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Anna Kuosmanen
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Linda Forsström
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, 60664Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit, Medical Research Center Oulu, 60664Oulu University Hospitaland University of Oulu, Oulu, Finland
| | - Mervi Aavikko
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), HiLIFE, 3835University of Helsinki, Helsinki, Finland
| | - Pekka Romsi
- Department of Vascular Surgery, 60664Oulu University Hospital, Oulu, Finland
| | - Juho Kariniemi
- Department of Radiology, 60664Oulu University Hospital, Oulu, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Are COL4A1 and COL4A2 gene polymorphisms associated with cerebral palsy? Turk J Phys Med Rehabil 2021; 67:242-249. [PMID: 34396076 PMCID: PMC8343154 DOI: 10.5606/tftrd.2021.5481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/16/2020] [Indexed: 11/21/2022] Open
Abstract
Objectives This study aims to investigate the association of COL4A1 and COL4A2 gene polymorphisms with susceptibility to risk of developing cerebral palsy (CP) and severity of CP. Patients and methods Between December 2016 and June 2017, a total of 176 patients with CP (101 males, 75 females; mean age 71.8±37.9 months; range, 24 to 184 months) and age-, sex-, and ethnically-matched 178 (90 males, 88 females; mean age 69.3±55.2 months; range, 24 to 214 months) controls were included. Two polymorphisms of COL4A1 (rs1961495) and COL4A2 (rs9521733) genes were typed from genomic deoxyribonucleic acid. Genotype distributions and allelic frequencies were compared between the patient and control groups. Gross Motor Function Classification System, the use of medical drugs, type of involvement, number of affected limbs, accompanying conditions, birth weight, gestational age, and magnetic resonance imaging (MRI) findings were used to evaluate the disease severity and their relationships with the COL4A1 and COL4A2 gene polymorphisms. Results There was no statistically significant difference between the groups in terms of genotype distribution and allele frequency of COL4A1 and COL4A2 gene polymorphisms (p>0.05). In addition, there was no relationship between severity of CP and two gene polymorphisms (p>0.05). A significant association was detected between the COL4A2 polymorphism and growth retardation in CP. The TT genotype (57.1%) and T allele (76.2%) were higher, compared to CC (4.8%) and CT genotypes (38.1%) and C allele (23.8%) in patients with CP with growth retardation (p=0.03 for genotype and p=0.01 for allele frequency). Conclusion These findings suggest that COL4A1 and COL4A2 gene polymorphisms are not associated with susceptibility to CP in a group of Turkish populations, although COL4A2 gene polymorphism may be associated with growth retardation in patients with CP.
Collapse
|
33
|
Cerebral microbleeds in vascular dementia from clinical aspects to host-microbial interaction. Neurochem Int 2021; 148:105073. [PMID: 34048844 DOI: 10.1016/j.neuint.2021.105073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/30/2022]
Abstract
Vascular dementia is the second leading cause of dementia after Alzheimer's disease in the elderly population worldwide. Cerebral microbleeds (CMBs) are frequently observed in MRI of elderly subjects and considered as a possible surrogate marker. The number and location of CMBs reflect the severity of diseases and the underlying pathologies may involve cerebral amyloid angiopathy or hypertensive vasculopathy. Accumulating evidence demonstrated the clinicopathological discrepancies of CMBs, the clinical significance of CMBs associated with other MRI markers of cerebral small vessel disease, cognitive impairments, serum, and cerebrospinal fluid biomarkers. Moreover, emerging evidence has shown that genetic factors and gene-environmental interactions might shed light on the underlying etiologies of CMBs, focusing on blood-brain-barrier and inflammation. In this review, we introduce recent genetic and microbiome studies as a cutting-edge approach to figure out the etiology of CMBs through the "microbe-brain-oral axis" and "microbiome-brain-gut axis." Finally, we propose novel concepts, "microvascular matrisome" and "imbalanced proteostasis," which may provide better perspectives for elucidating the pathophysiology of CMBs and future development of therapeutics for vascular dementia using CMBs as a surrogate marker.
Collapse
|
34
|
von Stülpnagel C, van Baalen A, Borggraefe I, Eschermann K, Hartlieb T, Kiwull L, Pringsheim M, Wolff M, Kudernatsch M, Wiegand G, Striano P, Kluger G. Network for Therapy in Rare Epilepsies (NETRE): Lessons From the Past 15 Years. Front Neurol 2021; 11:622510. [PMID: 33519703 PMCID: PMC7840830 DOI: 10.3389/fneur.2020.622510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 01/14/2023] Open
Abstract
Background: In 2005, Network for Therapy in Rare Epilepsies (NETRE)-was initiated in order to share treatment experiences among clinicians in patients with rare epilepsies. Here we describe the structure of the rapidly growing NETRE and summarize some of the findings of the last 15 years. Methodology/Structure of NETRE: NETRE is organized in distinct groups (currently >270). Starting point is always a patient with a rare epilepsy/ epileptic disorder. This creates a new group, and next, a medical coordinator is appointed. The exchange of experiences is established using a data entry form, which the coordinator sends to colleagues. The primary aim is to exchange experiences (retrospectively, anonymously, MRI results also non-anonymously) of the epilepsy treatment as well as on clinical presentation and comorbidities NETRE is neither financed nor sponsored. Results: Some of the relevant results: (1) first description of FIRES as a new epilepsy syndrome and its further investigation, (2) in SCN2A, the assignment to gain- vs. loss-of-function mutations has a major impact on clinical decisions to use or avoid treatment with sodium channel blockers, (3) the important aspect of avoiding overtreatment in CDKL5 patients, due to loss of effects of anticonvulsants after 12 months, (4) pathognomonic MRI findings in FOXG1 patients, (5) the first description of pathognomonic chewing-induced seizures in SYNGAP1 patients, and the therapeutic effect of statins as anticonvulsant in these patients, (6) the phenomenon of another reflex epilepsy-bathing epilepsy associated with a SYN1 mutation. Of special interest is also a NETRE group following twins with genetic and/or structural epilepsies [including vanishing-twin-syndrome and twin-twin-transfusion syndrome) [= "Early Neuroimpaired Twin Entity" (ENITE)]. Discussion and Perspective: NETRE enables clinicians to quickly exchange information on therapeutic experiences in rare diseases with colleagues at an international level. For both parents and clinicians/scientist this international exchange is both reassuring and helpful. In collaboration with other groups, personalized therapeutic approaches are sought, but the present limitations of currently available therapies are also highlighted. Presently, the PATRE Project (PATient based phenotyping and evaluation of therapy for Rare Epilepsies) is commencing, in which information on therapies will be obtained directly from patients and their caregivers.
Collapse
Affiliation(s)
- Celina von Stülpnagel
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Andreas van Baalen
- Clinic for Child and Adolescent Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kirsten Eschermann
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Till Hartlieb
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Lorenz Kiwull
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Institute of Social Pediatrics and Adolescent Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Milka Pringsheim
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, Berlin, Germany
| | - Manfred Kudernatsch
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Clinic for Neurosurgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Gert Wiegand
- Clinic for Child and Adolescent Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuropediatrics Section of the Department of Pediatrics, Asklepios Clinic Hamburg Nord-Heidberg, Hamburg, Germany
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Istituto die Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | | |
Collapse
|
35
|
Li J, Abedi V, Zand R, Griessenauer CJ. Replication of Top Loci From COL4A1/2 Associated With White Matter Hyperintensity Burden in Patients With Ischemic Stroke. Stroke 2020; 51:3751-3755. [PMID: 33148145 DOI: 10.1161/strokeaha.120.030260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to replicate the top loci associated with white matter hyperintensity (WMH) phenotypes identified by large genome-wide association studies and the loci identified from the previous candidate gene studies. METHODS A total of 946 Geisinger MyCode patients with acute ischemic stroke with validated European ancestry and magnetic resonance imaging data were included in this study. Log-transformed WMH volume, as a quantitative trait, was calculated by a fully automated quantification process. The genome-wide association studies was carried out by a linear mixed regression model (GEMMA). A candidate-single nucleotide polymorphism analysis by including known single nucleotide polymorphisms, reported from a meta-analysis and several large GWAS for WMH, was conducted in all cases and binary converted extreme cases. RESULTS No genome-wide significantly associated variants were identified. In a candidate-single nucleotide polymorphism study, rs9515201 (COL4A2) and rs3744028 (TRIM65), 2 known genetic loci, showed nominal or trend of association with the WMH volume (β=0.13 and P=0.001 for rs9515201; β=0.094 and P=0.094 for rs3744028), and replicated in a subset of extreme cases versus controls (odds ratio=1.78, P=7.74×10-4 for rs9515201; odds ratio=1.53, P=0.047 for rs3744028, respectively). MTHFR677 cytosine/thymine (rs1801133) also showed an association with the binary WMH with odds ratio=1.47 for T allele (P=0.019). CONCLUSIONS Replication of COL4A1/2 associated with WMH reassures that the genetic risk factors for monogenic and polygenic ischemic stroke are shared at gene level.
Collapse
Affiliation(s)
- Jiang Li
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA (J.L., V.A.)
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA (J.L., V.A.).,Biocomplexity Institute, Virginia Tech, Blacksburg (V.A.)
| | | | - Ramin Zand
- Department of Neurology (R.Z.), Neuroscience Institute, Geisinger, Danville, PA
| | - Christoph J Griessenauer
- Department of Neurosurgery (C.J.G.), Neuroscience Institute, Geisinger, Danville, PA.,Research Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria (C.J.G.)
| |
Collapse
|
36
|
McHugh DC, Esenwa C. A Novel COL4A2 Mutation Associated with Recurrent Strokes. J Stroke Cerebrovasc Dis 2020; 29:105156. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 07/12/2020] [Indexed: 10/23/2022] Open
|
37
|
Rannikmäe K, Henshall DE, Thrippleton S, Ginj Kong Q, Chong M, Grami N, Kuan I, Wilkinson T, Wilson B, Wilson K, Paré G, Sudlow C. Beyond the Brain. Stroke 2020; 51:3007-3017. [DOI: 10.1161/strokeaha.120.029517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Purpose:
An important minority of cerebral small vessel disease (cSVD) is monogenic. Many monogenic cSVD genes are recognized to be associated with extracerebral phenotypes. We assessed the frequency of these phenotypes in existing literature.
Methods:
We performed a systematic review following the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), searching Medline/Embase for publications describing individuals with pathogenic variants in
COL4A1/2
,
TREX1
,
HTRA1
,
ADA2
, and
CTSA
genes (PROSPERO 74804). We included any publication reporting on ≥1 individual with a pathogenic variant and their clinically relevant phenotype. We extracted individuals’ characteristics and information about associated extracerebral phenotypes and stroke/transient ischemic attack. We noted any novel extracerebral phenotypes and looked for shared phenotypes between monogenic cSVDs.
Results:
After screening 6048 publications, we included 96
COL4A1
(350 individuals), 32
TREX1
(115 individuals), 43
HTRA1
(38 homozygous/61 heterozygous individuals), 16
COL4A2
(37 individuals), 119
ADA2
(209 individuals), and 3
CTSA
(14 individuals) publications. The majority of individuals originated from Europe/North America, except for
HTRA1
, where most were from Asia. Age varied widely,
ADA2
individuals being youngest and heterozygous
HTRA1/CTSA
individuals oldest. Sex distribution appeared equal. Extracerebral phenotypes were common: 14% to 100% of individuals with a pathogenic variant manifested at least one extracerebral phenotype (14%
COL4A2
, 43%
HTRA1
heterozygotes, 47%
COL4A1
, 57%
TREX1
, 91%
ADA2
, 94%
HTRA1
homozygotes, and 100%
CTSA
individuals). Indeed, for 4 of 7 genes, an extracerebral phenotype was observed more frequently than stroke/transient ischemic attack. Ocular, renal, hepatic, muscle, and hematologic systems were each involved in more than one monogenic cSVD.
Conclusions:
Extracerebral phenotypes are common in monogenic cSVD with extracerebral system involvement shared between genes. However, inherent biases in the existing literature mean that further data from large-scale population-based longitudinal studies collecting health outcomes in a systematic unbiased way is warranted. The emerging knowledge will help to select patients for testing, inform clinical management, and provide further insights into the underlying mechanisms of cSVD.
Collapse
Affiliation(s)
- Kristiina Rannikmäe
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| | - David E. Henshall
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| | - Sophie Thrippleton
- Edinburgh Medical School (S.T., Q.G.K., I.K., B.W.), University of Edinburgh, United Kingdom
| | - Qiu Ginj Kong
- Edinburgh Medical School (S.T., Q.G.K., I.K., B.W.), University of Edinburgh, United Kingdom
| | - Mike Chong
- Genetic and Molecular Epidemiology Laboratory, McMaster University, Canada (M.C., N.G., G.P.)
| | - Nickrooz Grami
- Genetic and Molecular Epidemiology Laboratory, McMaster University, Canada (M.C., N.G., G.P.)
| | - Isaac Kuan
- Edinburgh Medical School (S.T., Q.G.K., I.K., B.W.), University of Edinburgh, United Kingdom
| | - Tim Wilkinson
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| | - Blair Wilson
- Edinburgh Medical School (S.T., Q.G.K., I.K., B.W.), University of Edinburgh, United Kingdom
| | - Kirsty Wilson
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| | - Guillaume Paré
- Genetic and Molecular Epidemiology Laboratory, McMaster University, Canada (M.C., N.G., G.P.)
| | - Cathie Sudlow
- Centre for Medical Informatics, Usher Institute (K.R., D.E.H., T.W., K.W., C.S.), University of Edinburgh, United Kingdom
| |
Collapse
|
38
|
Scoppettuolo P, Ligot N, Wermenbol V, Van Bogaert P, Naeije G. p.Gly743Val Mutation in COL4A1 Is Responsible for Familial Porencephaly and Severe Hypermetropia. Front Neurol 2020; 11:827. [PMID: 33013618 PMCID: PMC7516025 DOI: 10.3389/fneur.2020.00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
COL4A1 is an essential component for basal membrane stability. Exon mutations of the COL4A1 genes are responsible for a broad spectrum of cerebral, ocular, and systemic manifestations. We describe here the phenotype of a likely pathogenic gene variant, p.Gly743Val, which is responsible for a missense mutation in the COL4A1 gene exon 30 in a three generation family with severe hypermetropia and highly penetrant porencephaly in the absence of systemic manifestations. This report highlights both the broad spectrum of COL4A1 mutations and the yield of testing the COL4A1 gene in familial ophthalmological and brain disorders.
Collapse
Affiliation(s)
- Pasquale Scoppettuolo
- Neurology Department, ULB-Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- *Correspondence: Pasquale Scoppettuolo
| | - Noémie Ligot
- Neurology Department, ULB-Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vanessa Wermenbol
- Neuropediatrics Department, ULB-Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Gilles Naeije
- Neurology Department, ULB-Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
39
|
Dynamic High-Sensitivity Quantitation of Procollagen-I by Endogenous CRISPR-Cas9 NanoLuciferase Tagging. Cells 2020; 9:cells9092070. [PMID: 32927811 PMCID: PMC7564849 DOI: 10.3390/cells9092070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The ability to quantitate a protein of interest temporally and spatially at subcellular resolution in living cells would generate new opportunities for research and drug discovery, but remains a major technical challenge. Here, we describe dynamic, high-sensitivity protein quantitation technique using NanoLuciferase (NLuc) tagging, which is effective across microscopy and multiwell platforms. Using collagen as a test protein, the CRISPR-Cas9-mediated introduction of nluc (encoding NLuc) into the Col1a2 locus enabled the simplification and miniaturisation of procollagen-I (PC-I) quantitation. Collagen was chosen because of the clinical interest in its dysregulation in cardiovascular and musculoskeletal disorders, and in fibrosis, which is a confounding factor in 45% of deaths, including those brought about by cancer. Collagen is also the cargo protein of choice for studying protein secretion because of its unusual shape and size. However, the use of overexpression promoters (which drowns out endogenous regulatory mechanisms) is often needed to achieve good signal/noise ratios in fluorescence microscopy of tagged collagen. We show that endogenous knock-in of NLuc, combined with its high brightness, negates the need to use exogenous promoters, preserves the circadian regulation of collagen synthesis and the responsiveness to TGF-β, and enables time-lapse microscopy of intracellular transport compartments containing procollagen cargo. In conclusion, we demonstrate the utility of CRISPR-Cas9-mediated endogenous NLuc tagging to robustly quantitate extracellular, intracellular, and subcellular protein levels and localisation.
Collapse
|
40
|
Amini H, Shroff N, Stamova B, Ferino E, Carmona‐Mora P, Zhan X, Sitorus PP, Hull H, Jickling GC, Sharp FR, Ander BP. Genetic variation contributes to gene expression response in ischemic stroke: an eQTL study. Ann Clin Transl Neurol 2020; 7:1648-1660. [PMID: 32785988 PMCID: PMC7480928 DOI: 10.1002/acn3.51154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Single nucleotide polymorphisms (SNPs) contribute to complex disorders such as ischemic stroke (IS). Since SNPs could affect IS by altering gene expression, we studied the association of common SNPs with changes in mRNA expression (i.e. expression quantitative trait loci; eQTL) in blood after IS. METHODS RNA and DNA were isolated from 137 patients with acute IS and 138 vascular risk factor controls (VRFC). Gene expression was measured using Affymetrix HTA 2.0 microarrays and SNP variants were assessed with Axiom Biobank Genotyping microarrays. A linear model with a genotype (SNP) × diagnosis (IS and VRFC) interaction term was fit for each SNP-gene pair. RESULTS The eQTL interaction analysis revealed significant genotype × diagnosis interaction for four SNP-gene pairs as cis-eQTL and 70 SNP-gene pairs as trans-eQTL. Cis-eQTL involved in the inflammatory response to IS included rs56348411 which correlated with neurogranin expression (NRGN), rs78046578 which correlated with CXCL10 expression, rs975903 which correlated with SMAD4 expression, and rs62299879 which correlated with CD38 expression. These four genes are important in regulating inflammatory response and BBB stabilization. SNP rs148791848 was a strong trans-eQTL for anosmin-1 (ANOS1) which is involved in neural cell adhesion and axonal migration and may be important after stroke. INTERPRETATION This study highlights the contribution of genetic variation to regulating gene expression following IS. Specific inflammatory response to stroke is at least partially influenced by genetic variation. This has implications for progressing toward personalized treatment strategies. Additional research is required to investigate these genes as therapeutic targets.
Collapse
Affiliation(s)
- Hajar Amini
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Natasha Shroff
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Boryana Stamova
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Eva Ferino
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Paulina Carmona‐Mora
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Xinhua Zhan
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Preston P. Sitorus
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Heather Hull
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Glen C. Jickling
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Frank R. Sharp
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Bradley P. Ander
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| |
Collapse
|
41
|
Rutten-Jacobs LCA, Rost NS. Emerging insights from the genetics of cerebral small-vessel disease. Ann N Y Acad Sci 2020; 1471:5-17. [PMID: 30618052 PMCID: PMC6614021 DOI: 10.1111/nyas.13998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Cerebral small-vessel disease (cSVD) is a common cause of stroke, functional decline, vascular cognitive impairment, and dementia. Pathological processes in the brain's microcirculation are tightly interwoven with pathology in the brain parenchyma, and this interaction has been conceptualized as the neurovascular unit (NVU). Despite intensive research efforts to decipher the NVU's structure and function to date, molecular mechanisms underlying cSVD remain poorly understood, which hampers the development of cSVD-specific therapies. Important steps forward in understanding the disease mechanisms underlying cSVD have been made using genetic approaches in studies of both monogenic and sporadic SVD. We provide an overview of the NVU's structure and function, the implications for cSVD, and the underlying molecular mechanisms of dysfunction that have emerged from recent genetic studies of both monogenic and sporadic diseases of the small cerebral vasculature.
Collapse
Affiliation(s)
- Loes C A Rutten-Jacobs
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Natalia S Rost
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Armstrong NJ, Mather KA, Sargurupremraj M, Knol MJ, Malik R, Satizabal CL, Yanek LR, Wen W, Gudnason VG, Dueker ND, Elliott LT, Hofer E, Bis J, Jahanshad N, Li S, Logue MA, Luciano M, Scholz M, Smith AV, Trompet S, Vojinovic D, Xia R, Alfaro-Almagro F, Ames D, Amin N, Amouyel P, Beiser AS, Brodaty H, Deary IJ, Fennema-Notestine C, Gampawar PG, Gottesman R, Griffanti L, Jack CR, Jenkinson M, Jiang J, Kral BG, Kwok JB, Lampe L, C M Liewald D, Maillard P, Marchini J, Bastin ME, Mazoyer B, Pirpamer L, Rafael Romero J, Roshchupkin GV, Schofield PR, Schroeter ML, Stott DJ, Thalamuthu A, Trollor J, Tzourio C, van der Grond J, Vernooij MW, Witte VA, Wright MJ, Yang Q, Morris Z, Siggurdsson S, Psaty B, Villringer A, Schmidt H, Haberg AK, van Duijn CM, Jukema JW, Dichgans M, Sacco RL, Wright CB, Kremen WS, Becker LC, Thompson PM, Mosley TH, Wardlaw JM, Ikram MA, Adams HHH, Seshadri S, Sachdev PS, Smith SM, Launer L, Longstreth W, DeCarli C, Schmidt R, Fornage M, Debette S, Nyquist PA. Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. Stroke 2020; 51:2111-2121. [PMID: 32517579 DOI: 10.1161/strokeaha.119.027544] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Periventricular white matter hyperintensities (WMH; PVWMH) and deep WMH (DWMH) are regional classifications of WMH and reflect proposed differences in cause. In the first study, to date, we undertook genome-wide association analyses of DWMH and PVWMH to show that these phenotypes have different genetic underpinnings. METHODS Participants were aged 45 years and older, free of stroke and dementia. We conducted genome-wide association analyses of PVWMH and DWMH in 26,654 participants from CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology), ENIGMA (Enhancing Neuro-Imaging Genetics Through Meta-Analysis), and the UKB (UK Biobank). Regional correlations were investigated using the genome-wide association analyses -pairwise method. Cross-trait genetic correlations between PVWMH, DWMH, stroke, and dementia were estimated using LDSC. RESULTS In the discovery and replication analysis, for PVWMH only, we found associations on chromosomes 2 (NBEAL), 10q23.1 (TSPAN14/FAM231A), and 10q24.33 (SH3PXD2A). In the much larger combined meta-analysis of all cohorts, we identified ten significant regions for PVWMH: chromosomes 2 (3 regions), 6, 7, 10 (2 regions), 13, 16, and 17q23.1. New loci of interest include 7q36.1 (NOS3) and 16q24.2. In both the discovery/replication and combined analysis, we found genome-wide significant associations for the 17q25.1 locus for both DWMH and PVWMH. Using gene-based association analysis, 19 genes across all regions were identified for PVWMH only, including the new genes: CALCRL (2q32.1), KLHL24 (3q27.1), VCAN (5q27.1), and POLR2F (22q13.1). Thirteen genes in the 17q25.1 locus were significant for both phenotypes. More extensive genetic correlations were observed for PVWMH with small vessel ischemic stroke. There were no associations with dementia for either phenotype. CONCLUSIONS Our study confirms these phenotypes have distinct and also shared genetic architectures. Genetic analyses indicated PVWMH was more associated with ischemic stroke whilst DWMH loci were implicated in vascular, astrocyte, and neuronal function. Our study confirms these phenotypes are distinct neuroimaging classifications and identifies new candidate genes associated with PVWMH only.
Collapse
Affiliation(s)
- Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Perth, Australia (N.J.A.)
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia (K.A.M., P.R.S., A.T.)
| | | | - Maria J Knol
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.)
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU Munich, Germany (R.M., M.D.)
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX (C.L.S., S.S.).,The Framingham Heart Study, MA (C.L.S., A.S.B., J.R.R., S.S.).,Department of Neurology (C.L.S., A.S.B., J.R.R., S.S.), Boston University School of Medicine, MA
| | - Lisa R Yanek
- GeneSTAR Research Program (L.R.Y., B.G.K., L.C.B., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia
| | - Vilmundur G Gudnason
- Icelandic Heart Association, Kopavogur (V.G.G., S.S.).,University of Iceland, Reykjavik, Iceland (V.G.G., A.V.S.)
| | - Nicole D Dueker
- Dr. John T. Macdonald Foundation Department of Human Genetics (R.L.S.), University of Miami, FL
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada (L.T.E.).,Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Austria (E.H., R.S.).,Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria (E.H.)
| | - Joshua Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA (J.B., B.P., W.L.)
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey (N.J., P.M.T.)
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA (S.L., M.A.L., A.S.B., Q.Y.)
| | - Mark A Logue
- Department of Psychiatry and Biomedical Genetics Section (M.A.L.), Boston University School of Medicine, MA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA (S.L., M.A.L., A.S.B., Q.Y.).,National Center for PTSD: Behavioral Science Division, VA Boston Healthcare System, Boston, MA (M.A.L.)
| | - Michelle Luciano
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.)
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology (M.S.)
| | - Albert V Smith
- University of Iceland, Reykjavik, Iceland (V.G.G., A.V.S.)
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics (S.T.), Leiden University Medical Center, the Netherlands.,Department of Cardiology (S.T.), Leiden University Medical Center, the Netherlands
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.)
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX (R.X., M.F.)
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia (D.A.).,Academic Unit for Psychiatry of Old Age, University of Melbourne, St George's Hospital, Kew, Australia (D.A.)
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.)
| | - Philippe Amouyel
- Lille University, Inserm, Institut Pasteur de Lille, RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases and Labex Distalz, France (P.A.).,Lille University, Inserm, CHU Lille, Institut Pasteur de Lille, RID-AGE (P.A.)
| | - Alexa S Beiser
- The Framingham Heart Study, MA (C.L.S., A.S.B., J.R.R., S.S.).,Department of Neurology (C.L.S., A.S.B., J.R.R., S.S.), Boston University School of Medicine, MA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA (S.L., M.A.L., A.S.B., Q.Y.)
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Dementia Centre for Research Collaboration (H.B.), University of New South Wales, Sydney, Australia
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.)
| | - Christine Fennema-Notestine
- Department of Psychiatry (C.F.-N.), University of California, San Diego, La Jolla, CA.,Center for Behavior Genetics of Aging (C.F.-N.), University of California, San Diego, La Jolla, CA
| | - Piyush G Gampawar
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Austria (P.G.G., H.S.)
| | - Rebecca Gottesman
- Department of Neurology, Cerebrovascular and stroke Division (R.G.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ludovica Griffanti
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN (C.R.J.J.)
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia
| | - Brian G Kral
- GeneSTAR Research Program (L.R.Y., B.G.K., L.C.B., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - John B Kwok
- School of Medical Sciences (J.B.K., P.R.S.), University of New South Wales, Sydney, Australia.,Brain and Mind Centre - The University of Sydney, Camperdown, NSW, Australia (J.B.K.)
| | - Leonie Lampe
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (L.L., V.A.W.)
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.)
| | - Pauline Maillard
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA (P.M.)
| | - Jonathan Marchini
- Statistical Genetics and Methods at Regeneron Pharmaceuticals, Inc, New York, NY (J.M.)
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.).,Centre for Clinical Brain Sciences, Edinburgh Imaging, Centre for Cognitive Ageing, University of Edinburgh, United Kingdom (M.E.B., J.M.W.)
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives, University of Bordeaux, France (B.M.)
| | - Lukas Pirpamer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Austria (L.P.)
| | - José Rafael Romero
- The Framingham Heart Study, MA (C.L.S., A.S.B., J.R.R., S.S.).,Department of Neurology (C.L.S., A.S.B., J.R.R., S.S.), Boston University School of Medicine, MA
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.).,Department of Radiology and Nuclear Medicine (G.V.R., M.W.V., H.H.H.A.)
| | - Peter R Schofield
- School of Medical Sciences (J.B.K., P.R.S.), University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia (K.A.M., P.R.S., A.T.)
| | - Matthias L Schroeter
- LIFE Research Center for Civilization Disease, Leipzig, Germany (M.S.).,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (M.L.S., A.V.).,Day Clinic for Cognitive Neurology, University Hospital Leipzig, Germany (M.L.S., A.V.)
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (D.J.S.)
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia (K.A.M., P.R.S., A.T.)
| | - Julian Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), University of New South Wales, Sydney, Australia
| | - Christophe Tzourio
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, France (M.S., C.T., S.D.).,CHU de Bordeaux, Public Health Department, Medical information Department, Bordeaux, France (C.T.)
| | - Jeroen van der Grond
- Department of Radiology (J.v.d.G.), Leiden University Medical Center, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.).,Department of Radiology and Nuclear Medicine (G.V.R., M.W.V., H.H.H.A.)
| | - Veronica A Witte
- Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Germany (V.A.W).,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (L.L., V.A.W.)
| | - Margaret J Wright
- Queensland Brain Institute (M.J.W.), The University of Queensland, St Lucia, QLD, Australia.,Centre for Advanced Imaging (M.J.W.), The University of Queensland, St Lucia, QLD, Australia
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA (S.L., M.A.L., A.S.B., Q.Y.)
| | - Zoe Morris
- Neuroradiology Department, Department of Clinical Neurosciences, Western General Hospital, Edinburgh, United Kingdom (Z.M.)
| | - Siggi Siggurdsson
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX (C.L.S., S.S.).,The Framingham Heart Study, MA (C.L.S., A.S.B., J.R.R., S.S.).,Department of Neurology (C.L.S., A.S.B., J.R.R., S.S.), Boston University School of Medicine, MA
| | - Bruce Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA (J.B., B.P., W.L.)
| | - Arno Villringer
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (M.L.S., A.V.).,Day Clinic for Cognitive Neurology, University Hospital Leipzig, Germany (M.L.S., A.V.)
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Austria (P.G.G., H.S.)
| | - Asta K Haberg
- Department of Neuromedicine and Movement Science (A.K.H.), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology and Nuclear Medicine (A.K.H.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.).,Nuffield Department of Population Health (C.M.v.D.), University of Oxford, United Kingdom
| | - J Wouter Jukema
- Department of Cardiology (J.W.J.), Leiden University Medical Center, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands (J.W.J.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU Munich, Germany (R.M., M.D.).,German Center for Neurodegenerative Diseases, Munich, Germany (M.D.).,Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.)
| | - Ralph L Sacco
- Department of Public Health Sciences, Miller School of Medicine (R.L.S.), University of Miami, FL.,Department of Neurology, Miller School of Medicine (R.L.S.), University of Miami, FL.,Evelyn F. McKnight Brain Institute, Department of Neurology (R.L.S.), University of Miami, FL
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke (C.B.W.), National Institutes of Health, Bethesda, MD
| | - William S Kremen
- Center for Behavior Genetics of Aging (W.S.K.), University of California, San Diego, La Jolla, CA.,Department of Psychiatry (W.S.K.), University of California, San Diego, La Jolla, CA
| | - Lewis C Becker
- GeneSTAR Research Program (L.R.Y., B.G.K., L.C.B., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey (N.J., P.M.T.)
| | - Thomas H Mosley
- Department of Geriatric Medicine, Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson (T.H.M.)
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.).,Centre for Clinical Brain Sciences, Edinburgh Imaging, Centre for Cognitive Ageing, University of Edinburgh, United Kingdom (M.E.B., J.M.W.)
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.)
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.).,Department of Radiology and Nuclear Medicine (G.V.R., M.W.V., H.H.H.A.).,Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands (H.H.H.A.)
| | | | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia (P.S.S.)
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program (L.L.), National Institutes of Health, Bethesda, MD
| | - William Longstreth
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA (J.B., B.P., W.L.)
| | - Charles DeCarli
- Alzheimer's Disease Center and Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology and Center for Neuroscience University of California at Davis (C.D.)
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Austria (E.H., R.S.)
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX (R.X., M.F.).,Human Genetics Center, School of Public Health UT, Houston, TX (M.F.)
| | - Stephanie Debette
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, France (M.S., C.T., S.D.).,Department of Neurology, CHU de Bordeaux (University Hospital), Bordeaux, France (S.D.)
| | - Paul A Nyquist
- GeneSTAR Research Program (L.R.Y., B.G.K., L.C.B., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD.,Departments of Neurology, Critical Care Medicine, Neurosurgery (P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD.,Critical Care Medicine Department (P.A.N.), National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Piras IS, Bleul C, Schrauwen I, Talboom J, Llaci L, De Both MD, Naymik MA, Halliday G, Bettencourt C, Holton JL, Serrano GE, Sue LI, Beach TG, Stefanova N, Huentelman MJ. Transcriptional profiling of multiple system atrophy cerebellar tissue highlights differences between the parkinsonian and cerebellar sub-types of the disease. Acta Neuropathol Commun 2020; 8:76. [PMID: 32493431 PMCID: PMC7268362 DOI: 10.1186/s40478-020-00950-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of unknown cause, with no effective therapeutic options, and no cure. Limited work to date has attempted to characterize the transcriptional changes associated with the disease, which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) symptoms. We report here the results of RNA expression profiling of cerebellar white matter (CWM) tissue from two independent cohorts of MSA patients (n = 66) and healthy controls (HC; n = 66). RNA samples from bulk brain tissue and from oligodendrocytes obtained by laser capture microdissection (LCM) were sequenced. Differentially expressed genes (DEGs) were obtained and were examined before and after stratifying by MSA clinical sub-type.We detected the highest number of DEGs in the MSA-C group (n = 747) while only one gene was noted in MSA-P, highlighting the larger dysregulation of the transcriptome in the MSA-C CWM. Results from both bulk tissue and LCM analysis showed a downregulation of oligodendrocyte genes and an enrichment for myelination processes with a key role noted for the QKI gene. Additionally, we observed a significant upregulation of neuron-specific gene expression in MSA-C and enrichment for synaptic processes. A third cluster of genes was associated with the upregulation of astrocyte and endothelial genes, two cell types with a key role in inflammation processes. Finally, network analysis in MSA-C showed enrichment for β-amyloid related functional classes, including the known Alzheimer's disease (AD) genes, APP and PSEN1.This is the largest RNA profiling study ever conducted on post-mortem brain tissue from MSA patients. We were able to define specific gene expression signatures for MSA-C highlighting the different stages of the complex neurodegenerative cascade of the disease that included alterations in several cell-specific transcriptional programs. Finally, several results suggest a common transcriptional dysregulation between MSA and AD-related genes despite the clinical and neuropathological distinctions between the two diseases.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christiane Bleul
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Isabelle Schrauwen
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Present Address: Department of Neurology, Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Joshua Talboom
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lorida Llaci
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Present address: Division of Biology and Biomedical Sciences, Molecular Genetics and Genomics Program, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew D De Both
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Marcus A Naymik
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Science, and Neuroscience Research Australia, Sydney, Australia
| | - Conceicao Bettencourt
- Queen Square Brain Bank for Neurological Disorders and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Geidy E Serrano
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Lucia I Sue
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Nadia Stefanova
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthew J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
44
|
Ngandu Mpoyi E, Cantini M, Sin YY, Fleming L, Zhou DW, Costell M, Lu Y, Kadler K, García AJ, Van Agtmael T, Salmeron-Sanchez M. Material-driven fibronectin assembly rescues matrix defects due to mutations in collagen IV in fibroblasts. Biomaterials 2020; 252:120090. [PMID: 32413593 DOI: 10.1016/j.biomaterials.2020.120090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/02/2020] [Indexed: 01/01/2023]
Abstract
Basement membranes (BMs) are specialised extracellular matrices that provide structural support to tissues as well as influence cell behaviour and signalling. Mutations in COL4A1/COL4A2, a major BM component, cause a familial form of eye, kidney and cerebrovascular disease, including stroke, while common variants in these genes are a risk factor for intracerebral haemorrhage in the general population. These phenotypes are associated with matrix defects, due to mutant protein incorporation in the BM and/or its absence by endoplasmic reticulum (ER) retention. However, the effects of these mutations on matrix stiffness, the contribution of the matrix to the disease mechanism(s) and its effects on the biology of cells harbouring a collagen IV mutation remain poorly understood. To shed light on this, we employed synthetic polymer biointerfaces, poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA) coated with ECM proteins laminin or fibronectin (FN), to generate controlled microenvironments and investigate their effects on the cellular phenotype of primary fibroblasts harbouring a COL4A2+/G702D mutation. FN nanonetworks assembled on PEA induced increased deposition and assembly of collagen IV in COL4A2+/G702D cells, which was associated with reduced ER size and enhanced levels of protein chaperones such as BIP, suggesting increased protein folding capacity of the cell. FN nanonetworks on PEA also partially rescued the reduced stiffness of the deposited matrix and cells, and enhanced cell adhesion through increased actin-myosin contractility, effectively rescuing some of the cellular phenotypes associated with COL4A1/4A2 mutations. The mechanism by which FN nanonetworks enhanced the cell phenotype involved integrin β1-mediated signalling. Collectively, these results suggest that biomaterials and enhanced integrin signalling via assembled FN are able to shape the matrix and cellular phenotype of the COL4A2+/G702D mutation in patient-derived cells.
Collapse
Affiliation(s)
- Elie Ngandu Mpoyi
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK
| | - Yuan Yan Sin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lauren Fleming
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dennis W Zhou
- Woodruff School of Mechanical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mercedes Costell
- Departament de Bioquimica i Biologia Molecular, Universitat de València, Doctor Moliner s/n, 46100, Burjassot, Spain
| | - Yinhui Lu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, UK
| | - Karl Kadler
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrés J García
- Woodruff School of Mechanical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
45
|
Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 2020; 16:247-264. [PMID: 32322099 DOI: 10.1038/s41582-020-0350-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Despite many years of research, no biomarkers for stroke are available to use in clinical practice. Progress in high-throughput technologies has provided new opportunities to understand the pathophysiology of this complex disease, and these studies have generated large amounts of data and information at different molecular levels. The integration of these multi-omics data means that thousands of proteins (proteomics), genes (genomics), RNAs (transcriptomics) and metabolites (metabolomics) can be studied simultaneously, revealing interaction networks between the molecular levels. Integrated analysis of multi-omics data will provide useful insight into stroke pathogenesis, identification of therapeutic targets and biomarker discovery. In this Review, we detail current knowledge on the pathology of stroke and the current status of biomarker research in stroke. We summarize how proteomics, metabolomics, transcriptomics and genomics are all contributing to the identification of new candidate biomarkers that could be developed and used in clinical stroke management.
Collapse
|
46
|
Abstract
Translational genomics represents a broad field of study that combines genome and transcriptome-wide studies in humans and model systems to refine our understanding of human biology and ultimately identify new ways to treat and prevent disease. The approaches to translational genomics can be broadly grouped into two methodologies, forward and reverse genomic translation. Traditional (forward) genomic translation begins with model systems and aims at using unbiased genetic associations in these models to derive insight into biological mechanisms that may also be relevant in human disease. Reverse genomic translation begins with observations made through human genomic studies and refines these observations through follow-up studies using model systems. The ultimate goal of these approaches is to clarify intervenable processes as targets for therapeutic development. In this review, we describe some of the approaches being taken to apply translational genomics to the study of diseases commonly encountered in the neurocritical care setting, including hemorrhagic and ischemic stroke, traumatic brain injury, subarachnoid hemorrhage, and status epilepticus, utilizing both forward and reverse genomic translational techniques. Further, we highlight approaches in the field that could be applied in neurocritical care to improve our ability to identify new treatment modalities as well as to provide important information to patients about risk and prognosis.
Collapse
Affiliation(s)
- Pavlos Myserlis
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6818, Boston, MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Farid Radmanesh
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6818, Boston, MA, 02114, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
47
|
Ratelade J, Klug NR, Lombardi D, Angelim MKSC, Dabertrand F, Domenga-Denier V, Al-Shahi Salman R, Smith C, Gerbeau JF, Nelson MT, Joutel A. Reducing Hypermuscularization of the Transitional Segment Between Arterioles and Capillaries Protects Against Spontaneous Intracerebral Hemorrhage. Circulation 2020; 141:2078-2094. [PMID: 32183562 DOI: 10.1161/circulationaha.119.040963] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spontaneous deep intracerebral hemorrhage (ICH) is a devastating subtype of stroke without specific treatments. It has been thought that smooth muscle cell (SMC) degeneration at the site of arteriolar wall rupture may be sufficient to cause hemorrhage. However, deep ICHs are rare in some aggressive small vessel diseases that are characterized by significant arteriolar SMC degeneration. Here we hypothesized that a second cellular defect may be required for the occurrence of ICH. METHODS We studied a genetic model of spontaneous deep ICH using Col4a1+/G498V and Col4a1+/G1064D mouse lines that are mutated for the α1 chain of collagen type IV. We analyzed cerebroretinal microvessels, performed genetic rescue experiments, vascular reactivity analysis, and computational modeling. We examined postmortem brain tissues from patients with sporadic deep ICH. RESULTS We identified in the normal cerebroretinal vasculature a novel segment between arterioles and capillaries, herein called the transitional segment (TS), which is covered by mural cells distinct from SMCs and pericytes. In Col4a1 mutant mice, this TS was hypermuscularized, with a hyperplasia of mural cells expressing more contractile proteins, whereas the upstream arteriole exhibited a loss of SMCs. TSs mechanistically showed a transient increase in proliferation of mural cells during postnatal maturation. Mutant brain microvessels, unlike mutant arteries, displayed a significant upregulation of SM genes and Notch3 target genes, and genetic reduction of Notch3 in Col4a1+/G498V mice protected against ICH. Retina analysis showed that hypermuscularization of the TS was attenuated, but arteriolar SMC loss was unchanged in Col4a1+/G498V, Notch3+/- mice. Moreover, hypermuscularization of the retinal TS increased its contractility and tone and raised the intravascular pressure in the upstream feeding arteriole. We similarly found hypermuscularization of the TS and focal arteriolar SMC loss in brain tissues from patients with sporadic deep ICH. CONCLUSIONS Our results suggest that hypermuscularization of the TS, through increased Notch3 activity, is involved in the occurrence of ICH in Col4a1 mutant mice, by raising the intravascular pressure in the upstream feeding arteriole and promoting its rupture at the site of SMC loss. Our human data indicate that these 2 mutually reinforcing vascular defects may represent a general mechanism of deep ICH.
Collapse
Affiliation(s)
- Julien Ratelade
- Institute of Psychiatry and Neurosciences of Paris (IPNP), Inserm U1266, University of Paris, France (J.R., M.K.S.C.A., V.D-D., A.J.)
| | - Nicholas R Klug
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington (N.R.K., F.D., M.T.N., A.J.)
| | - Damiano Lombardi
- Inria Paris, Sorbonne University, Laboratory Jacques-Louis Lions, France (D.L., J.-F.G.)
| | | | - Fabrice Dabertrand
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington (N.R.K., F.D., M.T.N., A.J.).,Department of Anesthesiology, Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Aurora (F.D.)
| | - Valérie Domenga-Denier
- Institute of Psychiatry and Neurosciences of Paris (IPNP), Inserm U1266, University of Paris, France (J.R., M.K.S.C.A., V.D-D., A.J.)
| | - Rustam Al-Shahi Salman
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom (R.A.-S.S., C.S.)
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom (R.A.-S.S., C.S.)
| | - Jean-Frédéric Gerbeau
- Inria Paris, Sorbonne University, Laboratory Jacques-Louis Lions, France (D.L., J.-F.G.)
| | - Mark T Nelson
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington (N.R.K., F.D., M.T.N., A.J.).,Division of Cardiovascular Sciences, University of Manchester, United Kingdom (M.T.N.)
| | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris (IPNP), Inserm U1266, University of Paris, France (J.R., M.K.S.C.A., V.D-D., A.J.).,Department of Pharmacology, College of Medicine, University of Vermont, Burlington (N.R.K., F.D., M.T.N., A.J.).,DHU NeuroVasc, Sorbonne Paris Cité, France (A.J.)
| |
Collapse
|
48
|
Ilinca A, Martinez-Majander N, Samuelsson S, Piccinelli P, Truvé K, Cole J, Kittner S, Soller M, Kristoffersson U, Tatlisumak T, Puschmann A, Putaala J, Lindgren A. Whole-Exome Sequencing in 22 Young Ischemic Stroke Patients With Familial Clustering of Stroke. Stroke 2020; 51:1056-1063. [PMID: 32172663 DOI: 10.1161/strokeaha.119.027474] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Backgrounds and Purpose- Although new methods for genetic analyses are rapidly evolving, there are currently knowledge gaps in how to detect Mendelian forms of stroke. Methods- We performed whole-exome sequencing in 22 probands, under 56 years at their first ischemic stroke episode, from multi-incident stroke families. With the use of a comprehensive stroke-gene panel, we searched for variants in stroke-related genes. The probands' clinical stroke subtype was related to clinical characteristics previously associated with pathogenic variants in these genes. Relatives were genotyped in 7 families to evaluate stroke-gene variants of unknown significance. In 2 larger families with embolic stroke of unknown source, whole-exome sequencing was performed in additional members to examine the possibility of identifying new stroke genes. Results- Six of 22 probands carried pathogenic or possibly pathogenic variants in genes reported to be associated with their stroke subtype. A known pathogenic variant in NOTCH3 and a possibly pathogenic variant in ACAD9 gene were identified. A novel JAK2:c.3188G>A (p.Arg1063His) mutation was seen in a proband with embolic stroke of undetermined source and prothrombotic status. However, penetrance in the family was incomplete. COL4A2:c.3368A>G (p.Glu1123Gly) was detected in 2 probands but did not cosegregate with the disease in their families. Whole-exome sequencing in multiple members of 2 pedigrees with embolic stroke of undetermined source revealed possibly pathogenic variants in genes not previously associated with stroke, GPR142:c.148C>G (p.Leu50Val), and PTPRN2:c.2416A>G (p.Ile806Val); LRRC1 c.808A>G (p.Ile270Val), SLC7A10c.1294dupG (p.Val432fs), IKBKB: c.1070C>T (p.Ala357Val), and OXGR1 c.392G>A (p.Arg131His), respectively. Conclusions- Screening with whole-exome sequencing using a comprehensive stroke-gene panel may identify rare monogenic forms of stroke, but careful evaluation of clinical characteristics and potential pathogenicity of novel variants remain important. In our study, the majority of individuals with familial aggregation of stroke lacked any identified genetic causes.
Collapse
Affiliation(s)
- Andreea Ilinca
- From the Department of Clinical Sciences Lund, Neurology (A.I., A.P., A.L.), Lund University, Sweden.,Department of Neurology and Rehabilitation Medicine, Neurology, Skåne University Hospital, Sweden (A.L., A.P., A.L.)
| | | | - Sofie Samuelsson
- Department of Clinical Genetics and Pathology (S.S., P.P.), Lund University, Sweden
| | - Paul Piccinelli
- Department of Clinical Genetics and Pathology (S.S., P.P.), Lund University, Sweden
| | - Katarina Truvé
- Bioinformatics Core Facility, Sahlgrenska Academy at University of Gothenburg, Sweden (K.T.)
| | - John Cole
- Department of Neurology, Veterans Affairs Maryland Health Care System (J.C., S.K.), University of Maryland School of Medicine, Baltimore
| | - Steven Kittner
- Department of Neurology, Veterans Affairs Maryland Health Care System (J.C., S.K.), University of Maryland School of Medicine, Baltimore.,Department of Neurology (S.K.), University of Maryland School of Medicine, Baltimore
| | - Maria Soller
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden (M.S.)
| | - Ulf Kristoffersson
- Division of Clinical Genetics, Laboratory Medicine (U.K.), Lund University, Sweden
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (T.T.)
| | - Andreas Puschmann
- From the Department of Clinical Sciences Lund, Neurology (A.I., A.P., A.L.), Lund University, Sweden.,Department of Neurology and Rehabilitation Medicine, Neurology, Skåne University Hospital, Sweden (A.L., A.P., A.L.)
| | - Jukka Putaala
- Department of Neurology, Helsinki University Hospital, Finland (N.M.-M., J.P.)
| | - Arne Lindgren
- From the Department of Clinical Sciences Lund, Neurology (A.I., A.P., A.L.), Lund University, Sweden.,Department of Neurology and Rehabilitation Medicine, Neurology, Skåne University Hospital, Sweden (A.L., A.P., A.L.)
| |
Collapse
|
49
|
Affiliation(s)
- Minkyung Kang
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA
| | - Yao Yao
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA
| |
Collapse
|
50
|
Dunn PJ, Maksemous N, Smith RA, Sutherland HG, Haupt LM, Griffiths LR. Investigating diagnostic sequencing techniques for CADASIL diagnosis. Hum Genomics 2020; 14:2. [PMID: 31915071 PMCID: PMC6950909 DOI: 10.1186/s40246-019-0255-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/30/2019] [Indexed: 11/18/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease caused by mutations in the NOTCH3 gene. Our laboratory has been undertaking genetic diagnostic testing for CADASIL since 1997. Work originally utilised Sanger sequencing methods targeting specific NOTCH3 exons. More recently, next-generation sequencing (NGS)-based technologies such as a targeted gene panel and whole exome sequencing (WES) have been used for improved genetic diagnostic testing. In this study, data from 680 patient samples was analysed for 764 tests utilising 3 different sequencing technologies. Sanger sequencing was performed for 407 tests, a targeted NGS gene panel which includes NOTCH3 exonic regions accounted for 354 tests, and WES with targeted analysis was performed for 3 tests. In total, 14.7% of patient samples (n = 100/680) were determined to have a mutation. Testing efficacy varied by method, with 10.8% (n = 44/407) of tests using Sanger sequencing able to identify mutations, with 15.8% (n = 56/354) of tests performed using the NGS custom panel successfully identifying mutations and a likely non-NOTCH3 pathogenic variant (n = 1/3) identified through WES. Further analysis was then performed through stratification of the number of mutations detected at our facility based on the number of exons, level of pathogenicity and the classification of mutations as known or novel. A systematic review of NOTCH3 mutation testing data from 1997 to 2017 determined the diagnostic rate of pathogenic findings and found the NGS-customised panel increases our ability to identify disease-causing mutations in NOTCH3.
Collapse
Affiliation(s)
- P J Dunn
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - N Maksemous
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - R A Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - H G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - L M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| | - L R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|