1
|
Chang H, Huang C, Huang S, Hsu S, Lin K, Ho T, Wu H, Chang C. Distinct biological property of tau in tau-first cognitive proteinopathy: Evidence by longitudinal clinical neuroimaging profiles and compared with late-onset Alzheimer disease. Psychiatry Clin Neurosci 2024; 78:446-455. [PMID: 38864501 PMCID: PMC11488611 DOI: 10.1111/pcn.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Tau-first cognitive proteinopathy (TCP) denotes a clinical phenotype of Alzheimer disease (AD) showing Florzolotau(18F) positron emission tomography (PET) positivity but a negative amyloid status. AIM We explored the biological property of tau using longitudinal cognitive and neuroimaging data in TCP and compared with late-onset AD (LOAD). METHOD We enrolled 56 patients with LOAD, 34 patients with TCP, and 26 cognitive unimpaired controls. All of the participants had historical data of 2 to 4 three-dimensional T1 images and 2 to 6 annual cognitive evaluations over a follow-up period of 7 years. Tau topography was measured using Florzolotau(18F) PET. In the LOAD and TCP groups, we constructed tau or gray matter clusters covarying with the cognitive measurements. We used mediator analysis to explore the regional tau load as predictor, gray matter partitions as mediators, and significant cognitive test scores as outcomes. Longitudinal cognitive decline and cortical thickness degeneration pattern were analyzed using a linear mixed-effects model. RESULTS The TCP group had longitudinal declines in nonexecutive domains. The deterministic factor predicting the short-term memory score in TCP was the hippocampal volume and not directly via the medial and lateral temporal tau load. These features formed the conceptual differences with LOAD. DISCUSSION The biological properties of tau and the longitudinal cognitive-imaging trajectory support the conceptual distinction between TCP and LOAD. TCP represents one specific entity featuring salient short-term memory impairment, declines in nonexecutive domains, a slower gray matter degenerative pattern, and a restricted impact of tau.
Collapse
Affiliation(s)
- Hsin‐I. Chang
- Department of Neurology, Cognition and Aging CenterKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Chi‐Wei Huang
- Department of Neurology, Cognition and Aging CenterKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Shu‐Hua Huang
- Department of Nuclear MedicineKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Shih‐Wei Hsu
- Department of RadiologyKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Kun‐Ju Lin
- Department of Nuclear MedicineLin‐Kou Chang Gung Memorial Hospital, Chang Gung UniversityTaoyuanTaiwan
| | - Tsung‐Ying Ho
- Department of Nuclear MedicineLin‐Kou Chang Gung Memorial Hospital, Chang Gung UniversityTaoyuanTaiwan
| | - Hsiu‐Chuan Wu
- Department of NeurologyLin‐Kou Chang Gung Memorial Hospital, Chang Gung UniversityTaoyuanTaiwan
| | - Chiung‐Chih Chang
- Department of Neurology, Cognition and Aging CenterKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- School of Medicine, College of Medicine, National Sun Yat‐sen UniversityKaohsiungTaiwan
| |
Collapse
|
2
|
Maldonado-Díaz C, Hiya S, Yokoda RT, Farrell K, Marx GA, Kauffman J, Daoud EV, Gonzales MM, Parker AS, Canbeldek L, Kulumani Mahadevan LS, Crary JF, White CL, Walker JM, Richardson TE. Disentangling and quantifying the relative cognitive impact of concurrent mixed neurodegenerative pathologies. Acta Neuropathol 2024; 147:58. [PMID: 38520489 PMCID: PMC10960766 DOI: 10.1007/s00401-024-02716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Neurodegenerative pathologies such as Alzheimer disease neuropathologic change (ADNC), Lewy body disease (LBD), limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and cerebrovascular disease (CVD) frequently coexist, but little is known about the exact contribution of each pathology to cognitive decline and dementia in subjects with mixed pathologies. We explored the relative cognitive impact of concurrent common and rare neurodegenerative pathologies employing multivariate logistic regression analysis adjusted for age, gender, and level of education. We analyzed a cohort of 6,262 subjects from the National Alzheimer's Coordinating Center database, ranging from 0 to 6 comorbid neuropathologic findings per individual, where 95.7% of individuals had at least 1 neurodegenerative finding at autopsy and 75.5% had at least 2 neurodegenerative findings. We identified which neuropathologic entities correlate most frequently with one another and demonstrated that the total number of pathologies per individual was directly correlated with cognitive performance as assessed by Clinical Dementia Rating (CDR®) and Mini-Mental State Examination (MMSE). We show that ADNC, LBD, LATE-NC, CVD, hippocampal sclerosis, Pick disease, and FTLD-TDP significantly impact overall cognition as independent variables. More specifically, ADNC significantly affected all assessed cognitive domains, LBD affected attention, processing speed, and language, LATE-NC primarily affected tests related to logical memory and language, while CVD and other less common pathologies (including Pick disease, progressive supranuclear palsy, and corticobasal degeneration) had more variable neurocognitive effects. Additionally, ADNC, LBD, and higher numbers of comorbid neuropathologies were associated with the presence of at least one APOE ε4 allele, and ADNC and higher numbers of neuropathologies were inversely correlated with APOE ε2 alleles. Understanding the mechanisms by which individual and concomitant neuropathologies affect cognition and the degree to which each contributes is an imperative step in the development of biomarkers and disease-modifying therapeutics, particularly as these medical interventions become more targeted and personalized.
Collapse
Affiliation(s)
- Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel A Marx
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Justin Kauffman
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mitzi M Gonzales
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alicia S Parker
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Leyla Canbeldek
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Lakshmi Shree Kulumani Mahadevan
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - John F Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Robinson CG, Lee J, Min PH, Przybelski SA, Josephs KA, Jones DT, Graff‐Radford J, Boeve BF, Knopman DS, Jack CR, Petersen RC, Machulda MM, Fields JA, Lowe VJ. Significance of a positive tau PET scan with a negative amyloid PET scan. Alzheimers Dement 2024; 20:1923-1932. [PMID: 38159060 PMCID: PMC10947949 DOI: 10.1002/alz.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION The implications of positive tau positron emission tomography (T) with negative beta amyloid positron emission tomography (A) are not well understood. We investigated cognitive performance in participants who were T+ but A-. METHODS We evaluated 98 participants from the Mayo Clinic who were T+ and A-. Participants were matched 2:1 to A- and T- cognitively unimpaired (CU) controls. Cognitive test scores were compared between different groups. RESULTS The A-T+ group demonstrated lower performance than the A-T- group on the Mini-Mental Status Exam (MMSE) (p < 0.001), Wechsler Memory Scale-Revised Logical Memory I (p < 0.001) and Logical Memory II (p < 0.001), Auditory Verbal Learning Test (AVLT) delayed recall (p = 0.004), category fluency (animals p = 0.005; vegetables p = 0.021), Trail Making Test A and B (p < 0.001), and others. There were no significant differences in demographic features or apolipoprotein E (APOE) e4 genotype between CU A-T+ and CI A-T+. DISCUSSION A-T+ participants show an association with lower cognitive performance.
Collapse
Affiliation(s)
| | - Jeyeon Lee
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Paul H. Min
- Departments of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | | | - David T. Jones
- Departments of NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | | | | | - Mary M. Machulda
- Departments of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Julie A. Fields
- Departments of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Val J. Lowe
- Departments of RadiologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
4
|
Li JQ, Song JH, Suckling J, Wang YJ, Zuo CT, Zhang C, Gao J, Song YQ, Xie AM, Tan L, Yu JT. Disease trajectories in older adults with non-AD pathologic change and comparison with Alzheimer's disease pathophysiology: A longitudinal study. Neurobiol Aging 2024; 134:106-114. [PMID: 38056216 DOI: 10.1016/j.neurobiolaging.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Based on the 'AT(N)' system, individuals with normal amyloid biomarkers but abnormal tauopathy or neurodegeneration biomarkers are classified as non-Alzheimer's disease (AD) pathologic change. This study aimed to assess the long-term clinical and cognitive trajectories of individuals with non-AD pathologic change among older adults without dementia, comparing them to those with normal AD biomarkers and AD pathophysiology. Analyzing Alzheimer's Disease Neuroimaging Initiative data, we evaluated clinical outcomes and conversion risk longitudinally using mixed effects models and multivariate Cox proportional hazard models. We found that compared to individuals with A-T-N-, those with abnormal tauopathy or neurodegeneration biomarkers (A-T + N-, A-T-N + , and A-T + N + ) had a faster rate of cognitive decline and disease progression. Individuals with A-T + N + had a faster rate of decline than those with A-T + N-. Additionally, in individuals with the same baseline tauopathy and neurodegeneration biomarker status, the presence of baseline amyloid could accelerate cognitive decline and clinical progression. These findings provide a foundation for future studies on non-AD pathologic change and its comparison with AD pathophysiology.
Collapse
Affiliation(s)
- Jie-Qiong Li
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| | - Jing-Hui Song
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, UK; Medical Research Council and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 1TN, UK; Cambridgeshire and Peterborough NHS Trust, UK
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Can Zhang
- Genetics and Aging Research Unit, Mass GeneralInstitute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown 02138, MA 02129-2060, USA
| | - Jing Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Yu-Qiang Song
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - An-Mu Xie
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital,Qingdao University, Qingdao 266000, Shandong, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for NeurologicalDisorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
5
|
Del Tredici K, Schön M, Feldengut S, Ghebremedhin E, Kaufman SK, Wiesner D, Roselli F, Mayer B, Amunts K, Braak H. Early CA2 Tau Inclusions Do Not Distinguish an Age-Related Tauopathy from Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:1333-1353. [PMID: 39302368 DOI: 10.3233/jad-240483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Neuropathologic studies of brains from autopsy series show tau inclusions (pretangles, neuropils threads, neurofibrillary tangles) are detectable more than a decade before amyloid-β (Aβ) deposition in Alzheimer's disease (AD) and develop in a characteristic manner that forms the basis for AD staging. An alternative position views pathological tau without Aβ deposition as a 'primary age-related tauopathy' (PART) rather than prodromal AD. Recently, an early focus of tau inclusions in the Ammon's horn second sector (CA2) with relative sparing of CA1 that occurs before tau inclusions develop in the entorhinal cortex (EC) was proposed as an additional feature of PART. Objective To test the 'definite PART' hypothesis. Methods We used AT8-immunohistochemistry in 100μm sections to examine the EC, transentorhinal cortex (TRE), and Ammon's horn in 325 brains with tau inclusions lacking Aβ deposits (average age at death 66.7 years for females, 66.4 years for males). Results 100% of cases displayed tau inclusions in the TRE. In 89% of cases, the CA1 tau rating was greater than or equal to that in CA2. In 25%, CA2 was devoid of tau inclusions. Only 4% displayed a higher tau score in CA2 than in the TRE, EC, and CA1. The perforant path also displayed early tau changes. APOE genotyping was available for 199/325 individuals. Of these, 44% had an ɛ4 allele that placed them at greater risk for developing later NFT stages and, therefore, clinical AD. Conclusions Our new findings call into question the PART hypothesis and are consistent with the idea that our cases represent prodromal AD.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah K Kaufman
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiko Braak
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
6
|
Hiya S, Maldonado-Díaz C, Walker JM, Richardson TE. Cognitive symptoms progress with limbic-predominant age-related TDP-43 encephalopathy stage and co-occurrence with Alzheimer disease. J Neuropathol Exp Neurol 2023; 83:2-10. [PMID: 37966908 PMCID: PMC10746699 DOI: 10.1093/jnen/nlad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a neuropathologic entity characterized by transactive response DNA-binding protein of 43-kDa (TDP-43)-immunoreactive inclusions that originate in the amygdala and then progress to the hippocampi and middle frontal gyrus. LATE-NC may mimic Alzheimer disease clinically and often co-occurs with Alzheimer disease neuropathologic change (ADNC). This report focuses on the cognitive effects of isolated and concomitant LATE-NC and ADNC. Cognitive/neuropsychological, neuropathologic, genetic, and demographic variables were analyzed in 28 control, 31 isolated LATE-NC, 244 isolated ADNC, and 172 concurrent LATE-NC/ADNC subjects from the National Alzheimer's Coordinating Center. Cases with LATE-NC and ADNC were significantly older than controls; cases with ADNC had a significantly higher proportion of cases with at least one APOE ε4 allele. Both LATE-NC and ADNC exhibited deleterious effects on overall cognition proportional to their neuropathological stages; concurrent LATE-NC/ADNC exhibited the worst overall cognitive effect. Multivariate logistic regression analysis determined an independent risk of cognitive impairment for progressive LATE-NC stages (OR 1.66; p = 0.0256) and ADNC levels (OR 3.41; p < 0.0001). These data add to the existing knowledge on the clinical consequences of LATE-NC pathology and the growing literature on the effects of multiple concurrent neurodegenerative pathologies.
Collapse
Affiliation(s)
- Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Costoya-Sánchez A, Moscoso A, Silva-Rodríguez J, Pontecorvo MJ, Devous MD, Aguiar P, Schöll M, Grothe MJ. Increased Medial Temporal Tau Positron Emission Tomography Uptake in the Absence of Amyloid-β Positivity. JAMA Neurol 2023; 80:1051-1061. [PMID: 37578787 PMCID: PMC10425864 DOI: 10.1001/jamaneurol.2023.2560] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Importance An increased tau positron emission tomography (PET) signal in the medial temporal lobe (MTL) has been observed in older individuals in the absence of amyloid-β (Aβ) pathology. Little is known about the longitudinal course of this condition, and its association with Alzheimer disease (AD) remains unclear. Objective To study the pathologic and clinical course of older individuals with PET-evidenced MTL tau deposition (TMTL+) in the absence of Aβ pathology (A-), and the association of this condition with the AD continuum. Design, Setting, and Participants A multicentric, observational, longitudinal cohort study was conducted using pooled data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and the AVID-A05 study, collected between July 2, 2015, and August 23, 2021. Participants in the ADNI, HABS, and AVID-A05 studies (N = 1093) with varying degrees of cognitive performance were deemed eligible if they had available tau PET, Aβ PET, and magnetic resonance imaging scans at baseline. Of these, 128 participants did not meet inclusion criteria based on Aβ PET and tau PET biomarker profiles (A+ TMTL-). Exposures Tau and Aβ PET, magnetic resonance imaging, cerebrospinal fluid biomarkers, and cognitive assessments. Main Outcomes and Measures Cross-sectional and longitudinal measures for tau and Aβ PET, cortical atrophy, cognitive scores, and core AD cerebrospinal fluid biomarkers (Aβ42/40 and tau phosphorylated at threonine 181 p-tau181 available in a subset). Results Among the 965 individuals included in the study, 503 were women (52.1%) and the mean (SD) age was 73.9 (8.1) years. A total of 51% of A- individuals and 78% of A+ participants had increased tau PET signal in the entorhinal cortex (TMTL+) compared with healthy younger (aged <39 years) controls. Compared with A- TMTL-, A- TMTL+ participants showed statistically significant, albeit moderate, longitudinal (mean [SD], 1.83 [0.84] years) tau PET increases that were largely limited to the temporal lobe, whereas those with A+ TMTL+ showed faster and more cortically widespread tau PET increases. In contrast to participants with A+ TMTL+, those with A- TMTL+ did not show any noticeable Aβ accumulation over follow-up (mean [SD], 2.36 [0.76] years). Complementary cerebrospinal fluid analysis confirmed longitudinal p-tau181 increases in A- TMTL+ in the absence of increased Aβ accumulation. Participants with A- TMTL+ had accelerated MTL atrophy, whereas those with A+ TMTL+ showed accelerated atrophy in widespread temporoparietal brain regions. Increased MTL tau PET uptake in A- individuals was associated with cognitive decline, but at a significantly slower rate compared with A+ TMTL+. Conclusions and Relevance In this study, individuals with A- TMTL+ exhibited progressive tau accumulation and neurodegeneration, but these processes were comparably slow, remained largely restricted to the MTL, were associated with only subtle changes in global cognitive performance, and were not accompanied by detectable accumulation of Aβ biomarkers. These data suggest that individuals with A- TMTL+ are not on a pathologic trajectory toward AD.
Collapse
Affiliation(s)
- Alejandro Costoya-Sánchez
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Michael J. Pontecorvo
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Michael D. Devous
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Pablo Aguiar
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Michel J. Grothe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
8
|
Morris M, Coste GI, Redding-Ochoa J, Guo H, Graves AR, Troncoso JC, Huganir RL. Hippocampal synaptic alterations associated with tau pathology in primary age-related tauopathy. J Neuropathol Exp Neurol 2023; 82:836-844. [PMID: 37595576 PMCID: PMC10516464 DOI: 10.1093/jnen/nlad064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023] Open
Abstract
Primary age-related tauopathy (PART) is characterized by aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology has been associated with cognitive impairment in PART. However, the potential underlying mechanisms are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss also occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared 12 cases of definite PART with 6 controls and 6 Alzheimer disease cases. In this study, the hippocampal CA2 region showed loss of synaptophysin puncta and intensity in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin was present in Alzheimer disease, but the pattern appeared distinct. These novel findings suggest the presence of synaptic loss associated with either a high hippocampal tau burden or a Braak stage IV in PART.
Collapse
Affiliation(s)
- Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabrielle I Coste
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Austin R Graves
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Baltimore, Maryland, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Stein-O’Brien GL, Palaganas R, Meyer EM, Redding-Ochoa J, Pletnikova O, Guo H, Bell WR, Troncoso JC, Huganir RL, Morris M. Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295440. [PMID: 37745408 PMCID: PMC10516095 DOI: 10.1101/2023.09.12.23295440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer's disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored. Methods Using GeoMx spatial transcriptomics, mRNA was quantified in CA1 pyramidal neurons with tau pathology and adjacent neurons without tau pathology in 6 cases of PART and 6 cases of AD, and compared to 4 control cases without pathology. Transcriptional changes were analyzed for differential gene expression and for coordinated patterns of gene expression associated with both disease state and intraneuronal tau pathology. Results Synaptic gene changes and two novel gene expression signatures associated with intraneuronal tau were identified in PART and AD. Overall, gene expression changes associated with intraneuronal tau pathology were similar in PART and AD. Synaptic gene expression was decreased overall in neurons in AD and PART compared to control cases. However, this decrease was largely driven by neurons lacking tau pathology. Synaptic gene expression was increased in tau-positive neurons compared to tau-negative neurons in disease. Two novel gene expression signatures associated with intraneuronal tau were identified by examining coordinated patterns of gene expression. Genes in the up-regulated expression pattern were enriched in calcium regulation and synaptic function pathways, specifically in synaptic exocytosis. These synaptic gene changes and intraneuronal tau expression signatures were confirmed in a published transcriptional dataset of cortical neurons with tau pathology in AD. Conclusions PART and AD show similar transcriptional changes associated with intraneuronal tau pathology in CA1 pyramidal neurons, raising the possibility of a mechanistic relationship between the tau pathology in the two diseases. Intraneuronal tau pathology was also associated with increased expression of genes associated with synaptic function and calcium regulation compared to tau-negative disease neurons. The findings highlight the power of molecular analysis stratified by pathology in neurodegenerative disease and provide novel insight into common molecular pathways associated with intraneuronal tau in PART and AD.
Collapse
Affiliation(s)
- Genevieve L Stein-O’Brien
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Single Cell Training and Analysis Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Ryan Palaganas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M. Meyer
- UPMC Hillman Cancer Center Cytometry Facility, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Morris M, Coste GI, Redding-Ochoa J, Guo H, Graves AR, Troncoso JC, Huganir RL. Hippocampal Synaptic Alterations Associated with Tau Pathology in Primary Age-Related Tauopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.22.23286323. [PMID: 36865237 PMCID: PMC9980270 DOI: 10.1101/2023.02.22.23286323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Primary Age-Related Tauopathy (PART) is characterized by the aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology have been associated with cognitive impairment in PART. However, the underlying mechanisms of cognitive impairment in PART are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and a high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared twelve cases of definite PART with six young controls and six Alzheimer's disease cases. In this study, we identified loss of synaptophysin puncta and intensity in the CA2 region of the hippocampus in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin signal was present in AD, but the pattern was distinct from that seen in PART. These novel findings suggest the presence of synaptic loss in PART associated with either a high hippocampal tau burden or a Braak stage IV. These synaptic changes raise the possibility that synaptic loss in PART could contribute to cognitive impairment, though future studies including cognitive assessments are needed to address this question.
Collapse
Affiliation(s)
- Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gabrielle I Coste
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Austin R Graves
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| |
Collapse
|
11
|
Li JQ, Song JH, Suckling J, Wang YJ, Zuo CT, Zhang C, Gao J, Song YQ, Xie AM, Tan L, Yu JT. Disease trajectories in elders with suspected non-Alzheimer's pathophysiology and its comparison with Alzheimer's disease pathophysiology: a longitudinal study. RESEARCH SQUARE 2023:rs.3.rs-2744271. [PMID: 37034751 PMCID: PMC10081361 DOI: 10.21203/rs.3.rs-2744271/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Background According to the new 'AT(N)' system, those with a normal amyloid biomarker but with abnormal tauopathy or biomarkers of neurodegeneration or neuronal injury, have been labeled suspected non-Alzheimer's pathophysiology (SNAP). We aimed to estimate the long-term clinical and cognitive trajectories of SNAP individuals in non-demented elders and its comparison with individual in the Alzheimer's disease (AD) pathophysiology using 'AT(N)' system. Methods We included individuals with available baseline cerebrospinal fluid (CSF) Aβ (A), CSF phosphorylated tau examination (T) and 18F-uorodeoxyglucose PET or volumetric magnetic resonance imaging (N) from the Alzheimer's Disease Neuroimaging Initiative database. Longitudinal change in clinical outcomes are assessed using linear mixed effects models. Conversion risk from cognitively normal (CN) to cognitively impairment, and conversion from mild cognitive impairment (MCI) to dementia are assessed using multivariate Cox proportional hazard models. Results Totally, 366 SNAP individuals were included (114 A-T-N-, 154 A-T + N-, 54 A-T-N + and 44 A-T + N+) of whom 178 were CN and 188 were MCI. Compared with A-T-N-, CN elders with A-T + N-, A-T-N + and A-T + N + had a faster rate of ADNI-MEM score decline. Moreover, CN older individuals with A-T + N + also had a faster rate of decline in ADNI-MEM score than those with A-T + N- individuals. MCI patients with A-T + N + had a faster rate of ADNI-MEM and ADNI-EF decline and hippocampal volume loss compared with A-T-N- and A-T + N- profiles. CN older individuals with A-T + N + had an increased risk of conversion to cognitive impairment (CDR-GS ≥ 0.5) compared with A-T + N- and A-T-N-. In MCI patients, A-T + N + also had an increased risk of conversion to dementia compared with A-T + N- and A-T-N-. Compared with A-T + N-, CN elders and MCI patients with A + T + N- and A + T + N + had a faster rate of ADNI-MEM score, ADNI-EF score decline, and hippocampal volume loss. CN individuals with A + T + N + had a faster rate of ADNI-EF score decline compare with A-T + N + individuals. Moreover, MCI patients with A + T + N + also had a faster rate of decline in ADNI-MEM score, ADNI-EF score and hippocampal volume loss than those with A-T + N + individuals. Conclusions The findings from clinical, imaging and biomarker studies on SNAP, and its comparison with AD pathophysiology offered an important foundation for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Can Zhang
- Massachusetts General Hospital, Harvard Medical School
| | | | | | | | | | | |
Collapse
|
12
|
Donadio V, Sturchio A, Rizzo G, Abu Rumeileh S, Liguori R, Espay AJ. Pathology vs pathogenesis: Rationale and pitfalls in the clinicopathology model of neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:35-55. [PMID: 36796947 DOI: 10.1016/b978-0-323-85538-9.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In neurodegenerative disorders, the term pathology is often implicitly referred to as pathogenesis. Pathology has been conceived as a window into the pathogenesis of neurodegenerative disorders. This clinicopathologic framework posits that what can be identified and quantified in postmortem brain tissue can explain both premortem clinical manifestations and the cause of death, a forensic approach to understanding neurodegeneration. As the century-old clinicopathology framework has yielded little correlation between pathology and clinical features or neuronal loss, the relationship between proteins and degeneration is ripe for revisitation. There are indeed two synchronous consequences of protein aggregation in neurodegeneration: the loss of the soluble/normal proteins on one; the accrual of the insoluble/abnormal fraction of these proteins on the other. The omission of the first part in the protein aggregation process is an artifact of the early autopsy studies: soluble, normal proteins have disappeared, with only the remaining insoluble fraction amenable to quantification. We here review the collective evidence from human data suggesting that protein aggregates, known collectively as pathology, are the consequence of many biological, toxic, and infectious exposures, but may not explain alone the cause or pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden; James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Samir Abu Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
13
|
Walker JM, Gonzales MM, Goette W, Farrell K, White CL, Crary JF, Richardson TE. Cognitive and Neuropsychological Profiles in Alzheimer's Disease and Primary Age-Related Tauopathy and the Influence of Comorbid Neuropathologies. J Alzheimers Dis 2023; 92:1037-1049. [PMID: 36847012 PMCID: PMC11138480 DOI: 10.3233/jad-230022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND Alzheimer's disease neuropathologic change (ADNC) is defined by the progression of both hyperphosphorylated-tau (p-tau) and amyloid-β (Aβ) and is the most common underlying cause of dementia worldwide. Primary age-related tauopathy (PART), an Aβ-negative tauopathy largely confined to the medial temporal lobe, is increasingly being recognized as an entity separate from ADNC with diverging clinical, genetic, neuroanatomic, and radiologic profiles. OBJECTIVE The specific clinical correlates of PART are largely unknown; we aimed to identify cognitive and neuropsychological differences between PART, ADNC, and subjects with no tauopathy (NT). METHODS We compared 2,884 subjects with autopsy-confirmed intermediate-high stage ADNC to 208 subjects with definite PART (Braak stage I-IV, Thal phase 0, CERAD NP score "absent") and 178 NT subjects from the National Alzheimer's Coordinating Center dataset. RESULTS PART subjects were older than either ADNC or NT patients. The ADNC cohort had more frequent neuropathological comorbidities as well as APOE ɛ4 alleles than the PART or NT cohort, and less frequent APOE ɛ2 alleles than either group. Clinically, ADNC patients performed significantly worse than NT or PART subjects across cognitive measures, but PART subjects had selective deficits in measures of processing speed, executive function, and visuospatial function, although additional cognitive measures were further impaired in the presence of neuropathologic comorbidities. In isolated cases of PART with Braak stage III-IV, there are additional deficits in measures of language. CONCLUSION Overall, these findings demonstrate underlying cognitive features specifically associated with PART, and reinforce the concept that PART is a distinct entity from ADNC.
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John F. Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Chang HI, Hsu SW, Kao ZK, Lee CC, Huang SH, Lin CH, Liu MN, Chang CC. Impact of Amyloid Pathology in Mild Cognitive Impairment Subjects: The Longitudinal Cognition and Surface Morphometry Data. Int J Mol Sci 2022; 23:ijms232314635. [PMID: 36498962 PMCID: PMC9738566 DOI: 10.3390/ijms232314635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The amyloid framework forms the central medical theory related to Alzheimer disease (AD), and the in vivo demonstration of amyloid positivity is essential for diagnosing AD. On the basis of a longitudinal cohort design, the study investigated clinical progressive patterns by obtaining cognitive and structural measurements from a group of patients with amnestic mild cognitive impairment (MCI); the measurements were classified by the positivity (Aβ+) or absence (Aβ-) of the amyloid biomarker. We enrolled 185 patients (64 controls, 121 patients with MCI). The patients with MCI were classified into two groups on the basis of their [18F]flubetaben or [18F]florbetapir amyloid positron-emission tomography scan (Aβ+ vs. Aβ-, 67 vs. 54 patients) results. Data from annual cognitive measurements and three-dimensional T1 magnetic resonance imaging scans were used for between-group comparisons. To obtain longitudinal cognitive test scores, generalized estimating equations were applied. A linear mixed effects model was used to compare the time effect of cortical thickness degeneration. The cognitive decline trajectory of the Aβ+ group was obvious, whereas the Aβ- and control groups did not exhibit a noticeable decline over time. The group effects of cortical thickness indicated decreased entorhinal cortex in the Aβ+ group and supramarginal gyrus in the Aβ- group. The topology of neurodegeneration in the Aβ- group was emphasized in posterior cortical regions. A comparison of the changes in the Aβ+ and Aβ- groups over time revealed a higher rate of cortical thickness decline in the Aβ+ group than in the Aβ- group in the default mode network. The Aβ+ and Aβ- groups experienced different APOE ε4 effects. For cortical-cognitive correlations, the regions associated with cognitive decline in the Aβ+ group were mainly localized in the perisylvian and anterior cingulate regions. By contrast, the degenerative topography of Aβ- MCI was scattered. The memory learning curves, cognitive decline patterns, and cortical degeneration topographies of the two MCI groups were revealed to be different, suggesting a difference in pathophysiology. Longitudinal analysis may help to differentiate between these two MCI groups if biomarker access is unavailable in clinical settings.
Collapse
Affiliation(s)
- Hsin-I Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Zih-Kai Kao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ching-Heng Lin
- Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan 333, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (M.-N.L.); (C.-C.C.)
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: (M.-N.L.); (C.-C.C.)
| |
Collapse
|
15
|
Quintas-Neves M, Teylan MA, Morais-Ribeiro R, Almeida F, Mock CN, Kukull WA, Crary JF, Oliveira TG. Divergent magnetic resonance imaging atrophy patterns in Alzheimer's disease and primary age-related tauopathy. Neurobiol Aging 2022; 117:1-11. [PMID: 35640459 DOI: 10.1016/j.neurobiolaging.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Our study compared brain MRI with neuropathological findings in patients with primary age-related tauopathy (PART) and Alzheimer's disease (AD), while assessing the relationship between brain atrophy and clinical impairment. We analyzed 233 participants: 32 with no plaques ("definite" PART-BRAAK stage higher than 0 and CERAD 0), and 201 cases within the AD spectrum, with 25 with sparse (CERAD 1), 76 with moderate (CERAD 2), and 100 with severe (CERAD 3) degrees of neuritic plaques. Upon correcting for age, sex, and age difference at MRI and death, there were significantly higher levels of atrophy in CERAD 3 compared to CERAD 1-2 and a trend compared to PART (p = 0.06). In the anterior temporal region, there was a trend for higher levels of atrophy in PART compared to Alzheimer's disease spectrum cases with CERAD 1 (p = 0.08). We then assessed the correlation between regional brain atrophy and CDR sum of boxes score for PART and AD, and found that overall cognition deficits are directly correlated with regional atrophy in the AD continuum, but not in definite PART. We further observed correlations between regional brain atrophy with multiple neuropsychological metrics in AD, with PART showing specific correlations between language deficits and anterior temporal atrophy. Overall, these findings support PART as an independent pathologic process from AD.
Collapse
Affiliation(s)
- Miguel Quintas-Neves
- Department of Neuroradiology, Hospital de Braga, Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Merilee A Teylan
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francisco Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Charles N Mock
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - Walter A Kukull
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - John F Crary
- Neuropathology Brain Bank & Research Core, Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiago Gil Oliveira
- Department of Neuroradiology, Hospital de Braga, Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
16
|
Smirnov DS, Salmon DP, Galasko D, Edland SD, Pizzo DP, Goodwill V, Hiniker A. TDP-43 Pathology Exacerbates Cognitive Decline in Primary Age-Related Tauopathy. Ann Neurol 2022; 92:425-438. [PMID: 35696592 PMCID: PMC9391297 DOI: 10.1002/ana.26438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Primary age-related tauopathy (PART) refers to tau neurofibrillary tangles restricted largely to the medial temporal lobe in the absence of significant beta-amyloid plaques. PART has been associated with cognitive impairment, but contributions from concomitant limbic age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) are underappreciated. METHODS We compare prevalence of LATE-NC and vascular copathologies in age- and Braak-matched patients with PART (n = 45, Braak stage I-IV, Thal phase 0-2) or early stage Alzheimer disease neuropathologic change (ADNC; n = 51, Braak I-IV, Thal 3-5), and examine their influence on clinical and cognitive decline. RESULTS Concomitant LATE-NC and vascular pathology were equally common, and cognition was equally impaired, in PART (Mini-Mental State Examination [MMSE] = 24.8 ± 6.9) and ADNC (MMSE = 24.2 ± 6.0). Patients with LATE-NC were more impaired than those without LATE-NC on the MMSE (by 5.8 points, 95% confidence interval [CI] = 3.0-8.6), Mattis Dementia Rating Scale (DRS; 17.5 points, 95% CI = 7.1-27.9), Clinical Dementia Rating, sum of boxes scale (CDR-sob; 5.2 points, 95% CI = 2.1-8.2), memory composite (0.8 standard deviations [SD], 95% CI = 0.1-1.6), and language composite (1.1 SD, 95% CI = 0.2-2.0), and more likely to receive a dementia diagnosis (odds ratio = 4.8, 95% CI = 1.5-18.0). Those with vascular pathology performed worse than those without on the DRS (by 10.2 points, 95% CI = 0.1-20.3) and executive composite (1.3 SD, 95% CI = 0.3-2.3). Cognition declined similarly in PART and ADNC over the 5 years preceding death; however, LATE-NC was associated with more rapid decline on the MMSE (β = 1.9, 95% CI = 0.9-3.0), DRS (β = 7.8, 95% CI = 3.4-12.7), CDR-sob (β = 1.9, 95% CI = 0.4-3.7), language composite (β = 0.5 SD, 95% CI = 0.1-0.8), and vascular pathology with more rapid decline on the DRS (β = 5.2, 95% CI = 0.6-10.2). INTERPRETATION LATE-NC, and to a lesser extent vascular copathology, exacerbate cognitive impairment and decline in PART and early stage ADNC. ANN NEUROL 2022;92:425-438.
Collapse
Affiliation(s)
- Denis S. Smirnov
- Department of Neurosciences, University of California, San Diego
| | - David P. Salmon
- Department of Neurosciences, University of California, San Diego
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego
- Veterans Affairs San Diego Healthcare System
| | - Steven D. Edland
- Department of Neurosciences, University of California, San Diego
- School of Public Health, University of California, San Diego
| | - Donald P. Pizzo
- Department of Pathology, University of California, San Diego
| | | | - Annie Hiniker
- Department of Pathology, University of California, San Diego
| |
Collapse
|
17
|
Walker JM, Richardson TE, Farrell K, White, III CL, Crary JF. The Frequency of Cerebral Amyloid Angiopathy in Primary Age-Related Tauopathy. J Neuropathol Exp Neurol 2022; 81:246-248. [PMID: 34981120 PMCID: PMC9020475 DOI: 10.1093/jnen/nlab131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jamie M Walker
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles L White, III
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Farrell K, Kim S, Han N, Iida MA, Gonzalez EM, Otero-Garcia M, Walker JM, Richardson TE, Renton AE, Andrews SJ, Fulton-Howard B, Humphrey J, Vialle RA, Bowles KR, de Paiva Lopes K, Whitney K, Dangoor DK, Walsh H, Marcora E, Hefti MM, Casella A, Sissoko CT, Kapoor M, Novikova G, Udine E, Wong G, Tang W, Bhangale T, Hunkapiller J, Ayalon G, Graham RR, Cherry JD, Cortes EP, Borukov VY, McKee AC, Stein TD, Vonsattel JP, Teich AF, Gearing M, Glass J, Troncoso JC, Frosch MP, Hyman BT, Dickson DW, Murray ME, Attems J, Flanagan ME, Mao Q, Mesulam MM, Weintraub S, Woltjer RL, Pham T, Kofler J, Schneider JA, Yu L, Purohit DP, Haroutunian V, Hof PR, Gandy S, Sano M, Beach TG, Poon W, Kawas CH, Corrada MM, Rissman RA, Metcalf J, Shuldberg S, Salehi B, Nelson PT, Trojanowski JQ, Lee EB, Wolk DA, McMillan CT, Keene CD, Latimer CS, Montine TJ, Kovacs GG, Lutz MI, Fischer P, Perrin RJ, Cairns NJ, Franklin EE, Cohen HT, Raj T, Cobos I, Frost B, Goate A, White Iii CL, Crary JF. Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathol 2022; 143:33-53. [PMID: 34719765 PMCID: PMC8786260 DOI: 10.1007/s00401-021-02379-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-β (Aβ) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aβ toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - SoongHo Kim
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Han
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elias M Gonzalez
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Marcos Otero-Garcia
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of California, Los Angeles, CA, USA
| | - Jamie M Walker
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Timothy E Richardson
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Alan E Renton
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fulton-Howard
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo A Vialle
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn R Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katia de Paiva Lopes
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana K Dangoor
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadley Walsh
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Alicia Casella
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheick T Sissoko
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manav Kapoor
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gloriia Novikova
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan Udine
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Garrett Wong
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijing Tang
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Julie Hunkapiller
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Gai Ayalon
- Neumora Therapeutics, South San Francisco, CA, USA
| | | | - Jonathan D Cherry
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Etty P Cortes
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valeriy Y Borukov
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Andy F Teich
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Glass
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan C Troncoso
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew P Frosch
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Margaret E Flanagan
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Thao Pham
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Julia Kofler
- Department of Pathology (Neuropathology), University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Julie A Schneider
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dushyant P Purohit
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sam Gandy
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Sano
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Wayne Poon
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Robert A Rissman
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Jeff Metcalf
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Sara Shuldberg
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Bahar Salehi
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Peter T Nelson
- Department of Pathology (Neuropathology) and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Thomas J Montine
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Gabor G Kovacs
- Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Mirjam I Lutz
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Peter Fischer
- Department of Psychiatry, Danube Hospital, Vienna, Austria
| | - Richard J Perrin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Erin E Franklin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert T Cohen
- Departments of Medicine, Pathology, and Pharmacology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Towfique Raj
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inma Cobos
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Bess Frost
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Alison Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L White Iii
- Department of Pathology (Neuropathology), University of Texas Southwestern Medical School, Dallas, TX, USA
| | - John F Crary
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Savola S, Kaivola K, Raunio A, Kero M, Mäkelä M, Pärn K, Palta P, Tanskanen M, Tuimala J, Polvikoski T, Tienari PJ, Paetau A, Myllykangas L. Primary Age‐Related Tauopathy (PART) in a Finnish Population‐Based Study of the Oldest Old (Vantaa 85+). Neuropathol Appl Neurobiol 2021; 48:e12788. [PMID: 34927275 PMCID: PMC9305229 DOI: 10.1111/nan.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/16/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022]
Abstract
Aims Few studies have investigated primary age‐related tauopathy (PART) in a population‐based setting. Here, we assessed its prevalence, genetic background, comorbidities and features of cognitive decline in an unselected elderly population. Methods The population‐based Vantaa 85+ study includes all 601 inhabitants of Vantaa aged ≥ 85 years in 1991. Neuropathological assessment was possible in 301. Dementia (DSM IIIR criteria) and Mini‐Mental State Examination (MMSE) scores were assessed at the baseline of the study and follow‐ups. PART subjects were identified according to the criteria by Crary et al and were compared with subjects with mild and severe Alzheimer's disease (AD) neuropathological changes. The effects of other neuropathologies were taken into account using multivariate and sensitivity assays. Genetic analyses included APOE genotypes and 29 polymorphisms of the MAPT 3′ untranslated region (3′UTR region). Results The frequency of PART was 20% (n = 61/301, definite PART 5%). When PART subjects were compared with those with severe AD pathology, dementia was less common, its age at onset was higher and duration shorter. No such differences were seen when compared with those with milder AD pathology. However, both AD groups showed a steeper decline in MMSE scores in follow‐ups compared with PART. APOE ε4 frequency was lower, and APOE ε2 frequency higher in the PART group compared with each AD group. The detected nominally significant associations between PART and two MAPT 3′UTR polymorphisms and haplotypes did not survive Bonferroni correction. Conclusions PART is common among very elderly. PART subjects differ from individuals with AD‐type changes in the pattern of cognitive decline, associated genetic and neuropathological features.
Collapse
Affiliation(s)
- Sara Savola
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Karri Kaivola
- Translational Immunology, Research Programs Unit University of Helsinki Helsinki Finland
- Department of Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anna Raunio
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Mia Kero
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Mira Mäkelä
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Kalle Pärn
- Institute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki Helsinki Finland
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki Helsinki Finland
| | - Maarit Tanskanen
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Jarno Tuimala
- Department of Pathology University of Helsinki Helsinki Finland
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne United Kingdom
| | - Pentti J. Tienari
- Translational Immunology, Research Programs Unit University of Helsinki Helsinki Finland
- Department of Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anders Paetau
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Liisa Myllykangas
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| |
Collapse
|
20
|
Walker JM, White CL, Farrell K, Crary JF, Richardson TE. Neocortical Neurofibrillary Degeneration in Primary Age-Related Tauopathy. J Neuropathol Exp Neurol 2021; 81:146-148. [PMID: 34865093 DOI: 10.1093/jnen/nlab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jamie M Walker
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
21
|
Yoon B, Guo T, Provost K, Korman D, Ward TJ, Landau SM, Jagust WJ. Abnormal tau in amyloid PET negative individuals. Neurobiol Aging 2021; 109:125-134. [PMID: 34715443 DOI: 10.1016/j.neurobiolaging.2021.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
We examined the characteristics of individuals with biomarker evidence of tauopathy but without β-amyloid (Aβ) (A-T+) in relation to individuals with (A+T+) and without (A-T-) evidence of Alzheimer's disease (AD). We included 561 participants with Aβ and tau PET from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We compared A-T- (n = 316), A-T+ (n = 63), and A+T+ (n = 182) individuals on demographics, amyloid, tau, hippocampal volumes, and cognition. A-T+ individuals were low on apolipoprotein E ɛ4 prevalence (17%) and had no evidence of subtly elevated brain Aβ within the negative range. The severity of tau deposition, hippocampal atrophy, and cognitive dysfunction in the A-T+ group was intermediate between A-T- and A+T+ (all p < 0.001). Tau uptake patterns in A-T+ individuals were heterogeneous, but approximately 29% showed tau deposition in the medial temporal lobe only, consistent with primary age-related tauopathy and an additional 32% showed a pattern consistent with AD. A-T+ individuals also share other features that are characteristic of AD such as cognitive impairment and neurodegeneration, but this group is heterogeneous and likely reflects more than one disorder.
Collapse
Affiliation(s)
- Bora Yoon
- Department of Neurology, Konyang University Hospital, Konyang University, College of Medicine, Daejeon, Korea.
| | - Tengfei Guo
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Karine Provost
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Deniz Korman
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Tyler J Ward
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
22
|
Chung DEC, Roemer S, Petrucelli L, Dickson DW. Cellular and pathological heterogeneity of primary tauopathies. Mol Neurodegener 2021; 16:57. [PMID: 34425874 PMCID: PMC8381569 DOI: 10.1186/s13024-021-00476-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated protein tau is abnormally aggregated in neuronal and glial cells in a range of neurodegenerative diseases that are collectively referred to as tauopathies. Multiple studies have suggested that pathological tau species may act as a seed that promotes aggregation of endogenous tau in naïve cells and contributes to propagation of tau pathology. While they share pathological tau aggregation as a common feature, tauopathies are distinct from one another with respect to predominant tau isoforms that accumulate and the selective vulnerability of brain regions and cell types that have tau inclusions. For instance, primary tauopathies present with glial tau pathology, while it is mostly neuronal in Alzheimer's disease (AD). Also, morphologies of tau inclusions can greatly vary even within the same cell type, suggesting distinct mechanisms or distinct tau conformers in each tauopathy. Neuropathological heterogeneity across tauopathies challenges our understanding of pathophysiology behind tau seeding and aggregation, as well as our efforts to develop effective therapeutic strategies for AD and other tauopathies. In this review, we describe diverse neuropathological features of tau inclusions in neurodegenerative tauopathies and discuss what has been learned from experimental studies with mouse models, advanced transcriptomics, and cryo-electron microscopy (cryo-EM) on the biology underlying cell type-specific tau pathology.
Collapse
Affiliation(s)
- Dah-eun Chloe Chung
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 77030 Houston, TX USA
| | - Shanu Roemer
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
| | | | | |
Collapse
|
23
|
Iida MA, Farrell K, Walker JM, Richardson TE, Marx GA, Bryce CH, Purohit D, Ayalon G, Beach TG, Bigio EH, Cortes EP, Gearing M, Haroutunian V, McMillan CT, Lee EB, Dickson DW, McKee AC, Stein TD, Trojanowski JQ, Woltjer RL, Kovacs GG, Kofler JK, Kaye J, White CL, Crary JF. Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathol Commun 2021; 9:134. [PMID: 34353357 PMCID: PMC8340493 DOI: 10.1186/s40478-021-01233-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a form of Alzheimer-type neurofibrillary degeneration occurring in the absence of amyloid-beta (Aβ) plaques. While PART shares some features with Alzheimer disease (AD), such as progressive accumulation of neurofibrillary tangle pathology in the medial temporal lobe and other brain regions, it does not progress extensively to neocortical regions. Given this restricted pathoanatomical pattern and variable symptomatology, there is a need to reexamine and improve upon how PART is neuropathologically assessed and staged. We performed a retrospective autopsy study in a collection (n = 174) of post-mortem PART brains and used logistic regression to determine the extent to which a set of clinical and neuropathological features predict cognitive impairment. We compared Braak staging, which focuses on hierarchical neuroanatomical progression of AD tau and Aβ pathology, with quantitative assessments of neurofibrillary burden using computer-derived positive pixel counts on digitized whole slide images of sections stained immunohistochemically with antibodies targeting abnormal hyperphosphorylated tau (p-tau) in the entorhinal region and hippocampus. We also assessed other factors affecting cognition, including aging-related tau astrogliopathy (ARTAG) and atrophy. We found no association between Braak stage and cognitive impairment when controlling for age (p = 0.76). In contrast, p-tau burden was significantly correlated with cognitive impairment even when adjusting for age (p = 0.03). The strongest correlate of cognitive impairment was cerebrovascular disease, a well-known risk factor (p < 0.0001), but other features including ARTAG (p = 0.03) and hippocampal atrophy (p = 0.04) were also associated. In contrast, sex, APOE, psychiatric illness, education, argyrophilic grains, and incidental Lewy bodies were not. These findings support the hypothesis that comorbid pathologies contribute to cognitive impairment in subjects with PART. Quantitative approaches beyond Braak staging are critical for advancing our understanding of the extent to which age-related tauopathy changes impact cognitive function.
Collapse
Affiliation(s)
- Megan A Iida
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Jamie M Walker
- Department of Pathology and Laboratory Medicine and The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine and The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Gabriel A Marx
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Clare H Bryce
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Dushyant Purohit
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Gai Ayalon
- Ultragenyx Pharmaceuticals, Novato, CA, USA
| | | | - Eileen H Bigio
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Etty P Cortes
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, Alzheimer's Disease Research Center, Icahn School of Medicine At Mount Sinai, New York, NY, USA
- JJ Peters VA Medical Center (MIRECC), Bronx, NY, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, Penn FTD Center, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Translational Neuropathology Research Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ann C McKee
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, MA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Gabor G Kovacs
- Laboratory Medicine Program, Krembil Brain Institute University Health Network Toronto Ontario, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jeffrey Kaye
- Department of Neurology, Oregon Health & Science University, Portland, USA
| | - Charles L White
- Neuropathology Laboratory, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
| |
Collapse
|
24
|
Walker JM, Fudym Y, Farrell K, Iida MA, Bieniek KF, Seshadri S, White CL, Crary JF, Richardson TE. Asymmetry of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:436-445. [PMID: 33860327 PMCID: PMC8054137 DOI: 10.1093/jnen/nlab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative entity defined as neurofibrillary degeneration generally restricted to the medial temporal region (Braak stage I-IV) with complete or near absence of diffuse and neuritic plaques. Symptoms range in severity but are generally milder and later in onset than in Alzheimer disease (AD). Recently, an early predilection for neurofibrillary degeneration in the hippocampal CA2 subregion has been demonstrated in PART, whereas AD neuropathologic change (ADNC) typically displays relative sparing of CA2 until later stages. In this study, we utilized a semiquantitative scoring system to evaluate asymmetry of neurofibrillary degeneration between left and right hippocampi in 67 PART cases and 17 ADNC cases. 49% of PART cases demonstrated asymmetric findings in at least one hippocampal subregion, and 79% of the asymmetric cases displayed some degree of CA2 asymmetry. Additionally, 19% of cases revealed a difference in Braak score between the right and left hippocampi. There was a significant difference in CA2 neurofibrillary degeneration (p = 0.0006) and CA2/CA1 ratio (p < 0.0001) when comparing the contralateral sides, but neither right nor left was more consistently affected. These data show the importance of analyzing bilateral hippocampi in the diagnostic evaluation of PART and potentially of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jamie M Walker
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yelena Fudym
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin F Bieniek
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, Texas, USA
- The Framingham Heart Study, Framingham, Massachusetts, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
25
|
Wang X, Zhang L, Lu H, Wu JL, Liang HZ, Liu C, Tao QQ, Wu ZY, Zhu KQ. Primary age-related tauopathy in a Chinese cohort. J Zhejiang Univ Sci B 2021; 21:256-262. [PMID: 32133802 DOI: 10.1631/jzus.b1900262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary age-related tauopathy (PART) is characterized by the presence of tau neurofibrillary tangles (NFTs) which are typically observed in Alzheimer's disease (AD) brains, with few or without β-amyloid (Aβ) plaques. The diagnosis of PART can be categorized into "definite" or "possible" depending on the amount of Aβ plaques. Definite PART is diagnosed when NFTs are observed and the Braak stage is ≤IV, with Thal Aβ Phase 0 (Crary et al., 2014). According to the neuropathological diagnostic criteria, we reported that PART was frequently observed in the Chinese population according to our findings from specimens in our brain bank, with 47% of brain bank subjects meeting the criteria for PART. There is no consensus on the nature of PART. It remains to be elucidated whether PART is an early form of AD or a novel tauopathy (Duyckaerts et al., 2015; Jellinger et al., 2015).
Collapse
Affiliation(s)
- Xin Wang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lei Zhang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hui Lu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Juan-Li Wu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hua-Zheng Liang
- Department of Neurology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China.,Department of Neurology, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China.,Brain Structure and Function Group, Neuroscience Research Australia, Randwick 2031, Australia
| | - Chong Liu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qing-Qing Tao
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Ying Wu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ke-Qing Zhu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Humphrey WO, Martindale R, Pendlebury WW, DeWitt JC. Primary age-related tauopathy (PART) in the general autopsy setting: Not just a disease of the elderly. Brain Pathol 2021; 31:381-384. [PMID: 33147361 PMCID: PMC8018030 DOI: 10.1111/bpa.12919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- William O Humphrey
- Department of Pathology and Laboratory Medicine, The University of Vermont Medical Center, Burlington, VT, USA
| | - Rachel Martindale
- Department of Pathology and Laboratory Medicine, The University of Vermont Medical Center, Burlington, VT, USA
| | - William W Pendlebury
- Department of Pathology and Laboratory Medicine, The University of Vermont Medical Center, Burlington, VT, USA
| | - John C DeWitt
- Department of Pathology and Laboratory Medicine, The University of Vermont Medical Center, Burlington, VT, USA
| |
Collapse
|
27
|
Shi YB, Tu T, Jiang J, Zhang QL, Ai JQ, Pan A, Manavis J, Tu E, Yan XX. Early Dendritic Dystrophy in Human Brains With Primary Age-Related Tauopathy. Front Aging Neurosci 2020; 12:596894. [PMID: 33364934 PMCID: PMC7750631 DOI: 10.3389/fnagi.2020.596894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
Dystrophic neurites (DNs) are found in many neurological conditions such as traumatic brain injury and age-related neurodegenerative diseases. In Alzheimer's disease (AD) specifically, senile plaques containing silver-stained DNs were already described in the original literature defining this disease. These DNs could be both axonal and dendritic in origin, while axonal dystrophy relative to plaque formation has been more extensively studied. Here, we demonstrate an early occurrence of dendritic dystrophy in the hippocampal CA1 and subicular regions in human brains (n = 23) with primary age-related tauopathy (PART), with neurofibrillary tangle (NFT) burden ranging from Braak stages I to III in the absence of cerebral β-amyloid (Aβ) deposition. In Bielschowsky's silver stain, segmented fusiform swellings on the apical dendrites of hippocampal and subicular pyramidal neurons were observed in all the cases, primarily over the stratum radiatum (s.r.). The numbers of silver-stained neuronal somata and dendritic swellings counted over CA1 to subiculum were positively correlated among the cases. Swollen dendritic processes were also detected in sections immunolabeled for phosphorylated tau (pTau) and sortilin. In aged and AD brains with both Aβ and pTau pathologies, silver- and immunolabeled dystrophic-like dendritic profiles occurred around and within individual neuritic plaques. These findings implicate that dendritic dystrophy can occur among hippocampal pyramidal neurons in human brains with PART. Therefore, as with the case of axonal dystrophy reported in literature, dendritic dystrophy can develop prior to Alzheimer-type plaque and tangle formation in the human brain.
Collapse
Affiliation(s)
- Yan-Bin Shi
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
28
|
Reid MJ, Beltran-Lobo P, Johnson L, Perez-Nievas BG, Noble W. Astrocytes in Tauopathies. Front Neurol 2020; 11:572850. [PMID: 33071951 PMCID: PMC7542303 DOI: 10.3389/fneur.2020.572850] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the progressive accumulation across the brain of hyperphosphorylated aggregates of the microtubule-associated protein tau that vary in isoform composition, structural conformation and localization. Tau aggregates are most commonly deposited within neurons but can show differential association with astrocytes, depending on the disease. Astrocytes, the most abundant neural cells in the brain, play a major role in synapse and neuronal function, and are a key component of the glymphatic system and blood brain barrier. However, their contribution to tauopathy progression is not fully understood. Here we present a brief overview of the association of tau with astrocytes in tauopathies. We discuss findings that support a role for astrocytes in the uptake and spread of pathological tau, and we describe how alterations to astrocyte phenotype in tauopathies may cause functional alterations that impedes their ability to support neurons and/or cause neurotoxicity. The research reviewed here further highlights the importance of considering non-neuronal cells in neurodegeneration and suggests that astrocyte-directed targets that may have utility for therapeutic intervention in tauopathies.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Louisa Johnson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Beatriz Gomez Perez-Nievas
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Abstract
With age, the presence of multiple neuropathologies in a single individual becomes increasingly common. Given that traumatic brain injury and the repetitive head impacts (RHIs) that occur in contact sports have been associated with the development of many neurodegenerative diseases, including chronic traumatic encephalopathy (CTE), Alzheimer's disease, Lewy body disease, and amyotrophic lateral sclerosis, it is becoming critical to understand the relationship and interactions between these pathologies. In fact, comorbid pathology is common in CTE and likely influenced by both age and the severity and type of exposure to RHI as well as underlying genetic predisposition. Here, we review the major comorbid pathologies seen with CTE and in former contact sports athletes and discuss what is known about the associations between RHI, age, and the development of neuropathologies. In addition, we examine the distinction between CTE and age-related pathology including primary age-related tauopathy and age-related tau astrogliopathy.
Collapse
Affiliation(s)
- Thor D. Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts,Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts,Departments of Research and Pathology & Laboratory Medicine, VA Boston Healthcare System, Boston, Massachusetts,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - John F. Crary
- Department of Pathology, Neuropathology Brain Bank & Research Core, Ronald M. Loeb Center for Alzheimer’s Disease, Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
30
|
Hickman RA, Flowers XE, Wisniewski T. Primary Age-Related Tauopathy (PART): Addressing the Spectrum of Neuronal Tauopathic Changes in the Aging Brain. Curr Neurol Neurosci Rep 2020; 20:39. [PMID: 32666342 DOI: 10.1007/s11910-020-01063-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Primary age-related tauopathy (PART) was recently proposed as a pathologic diagnosis for brains that harbor neurofibrillary tangles (Braak stage ≤ 4) with little, if any, amyloid burden. We sought to review the clinicopathologic findings related to PART. RECENT FINDINGS Most adult human brains show at least focal tauopathic changes, and the majority of individuals with PART do not progress to dementia. Older age and cognitive impairment correlate with increased Braak stage, and multivariate analyses suggest that the rate of cognitive decline is less than matched patients with Alzheimer disease (AD). It remains unclear whether PART is a distinct tauopathic entity separate from AD or rather represents an earlier histologic stage of AD. Cognitive decline in PART is usually milder than AD and correlates with tauopathic burden. Biomarker and ligand-based radiologic studies will be important to define PART antemortem and prospectively follow its natural history.
Collapse
Affiliation(s)
- Richard A Hickman
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, PH 15-124, New York, NY, 10032, USA.
| | - Xena E Flowers
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, PH 15-124, New York, NY, 10032, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| |
Collapse
|
31
|
Bocai NI, Marcora MS, Belfiori-Carrasco LF, Morelli L, Castaño EM. Endoplasmic Reticulum Stress in Tauopathies: Contrasting Human Brain Pathology with Cellular and Animal Models. J Alzheimers Dis 2020; 68:439-458. [PMID: 30775999 DOI: 10.3233/jad-181021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accumulation and spreading of protein tau in the human brain are major features of neurodegenerative disorders known as tauopathies. In addition to several subcellular abnormalities, tau aggregation within neurons seems capable of triggering endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). In metazoans, full activation of a complex ER-UPR network may restore proteostasis and ER function or, if stress cannot be solved, commit cells to apoptosis. Due to these alternative outcomes (survival or death), the pharmacological manipulation of ER-UPR has become the focus of potential therapies in many human diseases, including tauopathies. Here we update and analyze the experimental data from human brain, cellular, and animal models linking tau accumulation and ER-UPR. We further discuss mechanistic aspects and put the ER-UPR into perspective as a possible therapeutic target in this group of diseases.
Collapse
Affiliation(s)
- Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María S Marcora
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lautaro F Belfiori-Carrasco
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
32
|
Mock C, Teylan M, Beecham G, Besser L, Cairns NJ, Crary JF, Katsumata Y, Nelson PT, Kukull W. The Utility of the National Alzheimer's Coordinating Center's Database for the Rapid Assessment of Evolving Neuropathologic Conditions. Alzheimer Dis Assoc Disord 2020; 34:105-111. [PMID: 32304374 PMCID: PMC7242145 DOI: 10.1097/wad.0000000000000380] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of dementia research is rapidly evolving, especially with regards to our understanding of the diversity of neuropathologic changes that underlie cognitive decline. Definitions and criteria for known conditions are being periodically revised and refined, and new findings are being made about neuropathologic features associated with dementia status. The database maintained by the National Alzheimer's Coordinating Center (NACC) offer researchers a robust, rapid, and statistically well-powered method to evaluate the implications of newly identified neuropathologic conditions with regards to comorbidities, demographic associations, cognitive status, neuropsychologic tests, radiographic findings, and genetics. NACC data derive from dozens of excellent US Alzheimer disease research centers, which collectively follow thousands of research volunteers longitudinally. Many of the research participants are autopsied using state-of-the-art methods. In this article, we describe the NACC database and give examples of its use in evaluating recently revised neuropathologic diagnoses, including primary age-related tauopathy (PART), limbic predominant age-related TDP-43 encephalopathy (LATE), and the preclinical stage of Alzheimer disease neuropathologic change, based on the National Institute on Aging-Alzheimer's Association consensus guidelines. The dementia research community is encouraged to make use of this readily available database as new neuropathologic changes are recognized and defined in this rapidly evolving field.
Collapse
Affiliation(s)
- Charles Mock
- National Alzheimer’s Coordinating Center, University of Washington, WA
| | - Merilee Teylan
- National Alzheimer’s Coordinating Center, University of Washington, WA
| | - Gary Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL
| | | | - Nigel J. Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John F. Crary
- Neuropathology Brain Bank & Research Core, Departments of Pathology & Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Walter Kukull
- National Alzheimer’s Coordinating Center, University of Washington, WA
| |
Collapse
|
33
|
Teylan M, Mock C, Gauthreaux K, Chen YC, Chan KCG, Hassenstab J, Besser LM, Kukull WA, Crary JF. Cognitive trajectory in mild cognitive impairment due to primary age-related tauopathy. Brain 2020; 143:611-621. [PMID: 31942622 PMCID: PMC7009602 DOI: 10.1093/brain/awz403] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 01/18/2023] Open
Abstract
Primary age-related tauopathy is increasingly recognized as a separate neuropathological entity different from Alzheimer's disease. Both share the neuropathological features of tau aggregates and neuronal loss in the temporal lobe, but primary age-related tauopathy lacks the requisite amyloid plaques central to Alzheimer's disease. While both have similar clinical presentations, individuals with symptomatic primary age-related tauopathy are commonly of more advanced ages with milder cognitive dysfunction. Direct comparison of the neuropsychological trajectories of primary age-related tauopathy and Alzheimer's disease has not been thoroughly evaluated and thus, our objective was to determine how cognitive decline differs longitudinally between these two conditions after the onset of clinical symptoms. Data were obtained from the National Alzheimer's Coordinating Center on participants with mild cognitive impairment at baseline and either no neuritic plaques (i.e. primary age-related tauopathy) or moderate to frequent neuritic plaques (i.e. Alzheimer neuropathological change) at subsequent autopsy. For patients with Alzheimer's disease and primary age-related tauopathy, we compared rates of decline in the sum of boxes score from the CDR® Dementia Staging Instrument and in five cognitive domains (episodic memory, attention/working memory, executive function, language/semantic memory, and global composite) using z-scores for neuropsychological tests that were calculated based on scores for participants with normal cognition. The differences in rates of change were tested using linear mixed-effects models accounting for clinical centre clustering and repeated measures by individual. Models were adjusted for sex, age, education, baseline test score, Braak stage, apolipoprotein ε4 (APOE ε4) carrier status, family history of cognitive impairment, and history of stroke, hypertension, or diabetes. We identified 578 participants with a global CDR of 0.5 (i.e. mild cognitive impairment) at baseline, 126 with primary age-related tauopathy and 452 with Alzheimer's disease. Examining the difference in rates of change in CDR sum of boxes and in all domain scores, participants with Alzheimer's disease had a significantly steeper decline after becoming clinically symptomatic than those with primary age-related tauopathy. This remained true after adjusting for covariates. The results of this analysis corroborate previous studies showing that primary age-related tauopathy has slower cognitive decline than Alzheimer's disease across multiple neuropsychological domains, thus adding to the understanding of the neuropsychological burden in primary age-related tauopathy. The study provides further evidence to support the hypothesis that primary age-related tauopathy has distinct neuropathological and clinical features compared to Alzheimer's disease.
Collapse
Affiliation(s)
- Merilee Teylan
- National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Charles Mock
- National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kathryn Gauthreaux
- National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Yen-Chi Chen
- National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kwun C G Chan
- National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilah M Besser
- School of Urban and Regional Planning, Florida Atlantic University, Boca Raton, FL, USA
| | - Walter A Kukull
- National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John F Crary
- Neuropathology Brain Bank and Research CoRE, Department of Pathology, Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Jicha GA, Nelson PT. Hippocampal Sclerosis, Argyrophilic Grain Disease, and Primary Age-Related Tauopathy. Continuum (Minneap Minn) 2020; 25:208-233. [PMID: 30707194 DOI: 10.1212/con.0000000000000697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy are common Alzheimer disease mimics that currently lack clinical diagnostic criteria. Increased understanding of these pathologic entities is important for the neurologist who may encounter patients with an unusually slowly progressive degenerative dementia that may appear to meet criteria for Alzheimer disease but who progress to develop symptoms that are unusual for classic Alzheimer disease RECENT FINDINGS: Hippocampal sclerosis has traditionally been associated with hypoxic/ischemic injury and poorly controlled epilepsy, but it is now recognized that hippocampal sclerosis may also be associated with a unique degenerative disease of aging or may be an associated pathologic finding in many cases of frontotemporal lobar degeneration. Argyrophilic grain disease has been recognized as an enigma in the field of pathology for over 30 years, but recent discoveries suggest that it may overlap with other tau-related disorders within the spectrum of frontotemporal lobar degeneration. Primary age-related tauopathy has long been recognized as a distinct clinical entity that lies on the Alzheimer pathologic spectrum, with the presence of neurofibrillary tangles that lack the coexistent Alzheimer plaque development; thus, it is thought to represent a distinct pathologic entity. SUMMARY Despite advances in dementia diagnosis that suggest that we have identified and unlocked the mysteries of the major degenerative disease states responsible for cognitive decline and dementia in the elderly, diseases such as hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy demonstrate that we remain on the frontier of discovery and that our diagnostic repertoire of diseases responsible for such clinical symptoms remains in its infancy. Understanding such diagnostic confounds is important for the neurologist in assigning appropriate diagnoses and selecting appropriate therapeutic management strategies for patients with mild cognitive impairment and dementia.
Collapse
|
35
|
Quintas-Neves M, Teylan MA, Besser L, Soares-Fernandes J, Mock CN, Kukull WA, Crary JF, Oliveira TG. Magnetic resonance imaging brain atrophy assessment in primary age-related tauopathy (PART). Acta Neuropathol Commun 2019; 7:204. [PMID: 31818331 PMCID: PMC6902469 DOI: 10.1186/s40478-019-0842-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized pathologically by the accumulation of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles (NFTs). Recently, primary age-related tauopathy (PART) has been described as a new anatomopathological disorder where NFTs are the main feature in the absence of neuritic plaques. However, since PART has mainly been studied in post-mortem patient brains, not much is known about the clinical or neuroimaging characteristics of PART. Here, we studied the clinical brain imaging characteristics of PART focusing on neuroanatomical vulnerability by applying a previously validated multiregion visual atrophy scale. We analysed 26 cases with confirmed PART with paired clinical magnetic resonance imaging (MRI) acquisitions. In this selected cohort we found that upon correcting for the effect of age, there is increased atrophy in the medial temporal region with increasing Braak staging (r = 0.3937, p = 0.0466). Upon controlling for Braak staging effect, predominantly two regions, anterior temporal (r = 0.3638, p = 0.0677) and medial temporal (r = 0.3836, p = 0.053), show a trend for increased atrophy with increasing age. Moreover, anterior temporal lobe atrophy was associated with decreased semantic memory/language (r = - 0.5823, p = 0.0056; and r = - 0.6371, p = 0.0019, respectively), as was medial temporal lobe atrophy (r = - 0.4445, p = 0.0435). Overall, these findings support that PART is associated with medial temporal lobe atrophy and predominantly affects semantic memory/language. These findings highlight that other factors associated with aging and beyond NFTs could be involved in PART pathophysiology.
Collapse
Affiliation(s)
| | - Merilee A Teylan
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Lilah Besser
- School of Urban and Regional Planning, Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, Florida, USA
| | | | - Charles N Mock
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Walter A Kukull
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiago Gil Oliveira
- Division of Neuroradiology, Hospital de Braga, Braga, Portugal.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
36
|
Abner EL, Neltner JH, Jicha GA, Patel E, Anderson SL, Wilcock DM, Van Eldik LJ, Nelson PT. Diffuse Amyloid-β Plaques, Neurofibrillary Tangles, and the Impact of APOE in Elderly Persons' Brains Lacking Neuritic Amyloid Plaques. J Alzheimers Dis 2019; 64:1307-1324. [PMID: 30040735 DOI: 10.3233/jad-180514] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Data from a large autopsy series were analyzed to address questions pertinent to primary age-related tauopathy (PART) and Alzheimer's disease (AD): what factors are associated with increased severity of neurofibrillary degeneration in brains that lack neuritic amyloid plaques?; is there an association between Apolipoprotein E (APOE) alleles and PART pathologic severity independent of amyloid-β (Aβ) deposits?; and, how do the stains used to detect plaques and tangles impact the experimental results? Neuropathologic data were evaluated from elderly research volunteers whose brain autopsies were performed at University of Kentucky Alzheimer's Disease Center (UK-ADC; N = 145 subjects). All of the included subjects' brains lacked neuritic amyloid plaques according to the CERAD diagnostic criteria and the average final MMSE score before death was 26.8±4.6 stdev. The study incorporated evaluation of tissue with both silver histochemical stains and immunohistochemical stains to compare results; the immunohistochemical stains (Aβ and phospho-tau) were scanned and quantified using digital pathologic methods. Immunohistochemical stains provided important advantages over histochemical stains due to sensitivity and detectability via digital methods. When AD-type pathology was in its presumed earliest phases, neocortical parenchymal Aβ deposits were associated with increased medial temporal lobe neurofibrillary tangles. The observation supports the NIA-AA consensus recommendation for neuropathologic diagnoses, because even these "diffuse" Aβ deposits signal that AD pathobiologic mechanisms are occurring. Further, the data were most compatible with the hypothesis that the APOEɛ4 allele exerts its effect(s) via driving Aβ deposition, i.e., an "upstream" influence, rather than being associated directly with Aβ- independent PART pathology.
Collapse
Affiliation(s)
- Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Janna H Neltner
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Ela Patel
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Sonya L Anderson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
37
|
Teylan M, Besser LM, Crary JF, Mock C, Gauthreaux K, Thomas NM, Chen YC, Kukull WA. Clinical diagnoses among individuals with primary age-related tauopathy versus Alzheimer's neuropathology. J Transl Med 2019; 99:1049-1055. [PMID: 30710118 PMCID: PMC6609478 DOI: 10.1038/s41374-019-0186-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 01/27/2023] Open
Abstract
Primary age-related tauopathy (PART) is increasingly recognized as a pathologic entity distinct from Alzheimer's disease (AD). Given that the diagnosis of PART is an autopsy diagnosis, it is unclear how PART is perceived in clinical practice. Thus, we investigated the presumptive primary and contributing diagnoses in individuals who had cognitive impairment while alive and who met neuropathologic criteria for PART at autopsy. We also compared these clinical diagnoses for people with PART to those with AD neuropathology (ADNP). We used data on 1354 participants from the National Alzheimer's Coordinating Center, restricting to those with no neuritic plaques (PART) or moderate/frequent neuritic plaques (ADNP); clinical visit within two years of autopsy; and mild cognitive impairment (MCI) or dementia at last visit. To assess if PART participants were less likely to receive a clinical diagnosis of AD at their last visit prior to autopsy, we used logistic regression, controlling for age, sex, education, and APOE ε4 status. There were 161 PART individuals (n = 49 MCI; n = 112 dementia) and 1193 individuals with ADNP (n = 75 MCI; n = 1118 dementia). Primary clinical diagnosis of AD was more common in those with ADNP (MCI: 69%; demented: 86%) than PART (MCI: 57%; demented: 52%). In the adjusted analysis, primary and contributing clinical diagnoses of AD remained less likely in PART vs. ADNP participants with dementia (OR: 0.22, 95% CI: 0.13-0.38). This study suggests that clinicians recognize a distinction in the clinical presentation between PART and ADNP, diagnosing AD less frequently in those with PART. Nonetheless, clinical AD was diagnosed greater than 50% of the time in PART participants with MCI or dementia. Ante-mortem criteria for diagnosis of PART need to be established, as PART is a neuropathological entity that is distinct from AD and has its own clinical and cognitive outcomes.
Collapse
Affiliation(s)
- Merilee Teylan
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA.
| | - Lilah M Besser
- Institute for Healthy Aging and Lifespan Studies, School of Urban and Regional Planning, Florida Atlantic University, Boca Raton, FL, USA
| | - John F Crary
- Departments of Pathology and Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Mock
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kathryn Gauthreaux
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Nicole M Thomas
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Yen-Chi Chen
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Zhu K, Wang X, Sun B, Wu J, Lu H, Zhang X, Liang H, Zhang D, Liu C. Primary Age-Related Tauopathy in Human Subcortical Nuclei. Front Neurosci 2019; 13:529. [PMID: 31191227 PMCID: PMC6549797 DOI: 10.3389/fnins.2019.00529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to determine the spatial distribution patterns of hyperphosphorylated tau-immunoreactive cells in subcortical nuclei of post-mortem human brain with primary age-related tauopathy (PART). Subcortical tauopathy has important pathological and clinical implications. Expression of tau was examined in different subcortical regions of definite PART cases with a Braak neurofibrillary tangle stage >0 and ≤IV, and with a Thal phase 0 (no beta-amyloid present). Post-mortem brain tissue of PART was studied using immunohistochemistry and subsequent semi-quantitative assessment with Braak NFT stage -matched pre-Alzheimer’s disease (AD) and AD cases as a control. Expression of tau was frequently found in subcortical nuclei including the substantia nigra, inferior colliculus, locus coeruleus, medulla oblongata in the brainstem, the caudate, putamen, nucleus globus pallidus in the striatum, the hypothalamus, thalamus, subthalamus in the diencephalon, and the cervical spinal cord in both PART and AD, but not in the dentate nucleus of the cerebellum. A positive correlation was found between the Braak NFT stage and the tau distribution (qualitative)/tau density (quantitative) in PART and AD. Brainstem nuclei were commonly involved in early PART with NFT Braak stage I/II, there was no preference among the substantia nigra, inferior colliculus, locus caeruleus and medulla oblongata. The prevalence and severity of tau pathology in subcortical nuclei of PART and AD were positively correlated with NFT Braak stage, suggesting that these nuclei were increasingly involved as PART and AD progressed. Subcortical nuclei were likely the sites initially affected by aging associated tau pathology, especially the brainstem nuclei including the substantia nigra, inferior colliculus, locus caeruleus and medulla oblongata.
Collapse
Affiliation(s)
- Keqing Zhu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Wang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Sun
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Juanli Wu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Lu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Zhang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huazheng Liang
- Brain Structure and Function, Neuroscience Research Australia, Randwick, NSW, Australia.,Department of Neurology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Dandan Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chong Liu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Brain atrophy in primary age-related tauopathy is linked to transactive response DNA-binding protein of 43 kDa. Alzheimers Dement 2019; 15:799-806. [PMID: 31056344 DOI: 10.1016/j.jalz.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 03/04/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Primary age-related tauopathy (PART) is characterized by the presence of neurofibrillary tangles and absent-minimal β-amyloid deposition. Transactive response DNA-binding protein of 43 kDa (TDP-43), a third protein, has recently garnished a lot of attention in Alzheimer's disease where it is associated with memory loss and amygdala and hippocampal atrophy. We aimed to determine whether TDP-43 is associated with brain atrophy in PART. METHODS We assessed the frequency of TDP-43 in PART and performed voxel-level analysis in SPM12, as well as region-of-interest analysis using linear regression modeling, controlling for variables of interest, to assess for associations between TDP-43 and brain atrophy. RESULTS Of 116 PART cases, 31 (26.7%) had TDP-43. The presence of TDP-43 was associated with significantly greater amygdala, hippocampal, and anterior temporal atrophy in both the region-of-interest and the voxel level analyses. DISCUSSION TDP-43 is associated with greater brain atrophy in PART.
Collapse
|
40
|
Takeuchi J, Kikukawa T, Saito H, Hasegawa I, Takeda A, Hatsuta H, Kawabe J, Wada Y, Mawatari A, Igesaka A, Doi H, Watanabe Y, Shimada H, Kitamura S, Higuchi M, Suhara T, Itoh Y. Amyloid-Negative Dementia in the Elderly is Associated with High Accumulation of Tau in the Temporal Lobes. Open Biomed Eng J 2019. [DOI: 10.2174/1874120701913010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background:
We previously reported that among cases clinically diagnosed with Alzheimer’s disease, the proportion of amyloid beta (Aβ) -negative case increases in the elderly population. Tauopathy including Argyrophilic Grain Disease (AGD) and Neurofibrillary Tangle-Predominant Dementia (NFTPD), may be the leading causes of such dementia.
Objective:
To evaluate the involvement of tau, we studied tau accumulation in Amyloid-Negative Dementia Cases in the Elderly (ANDE) with Positron Emission Tomography (PET).
Methods:
Seven cases with slowly progressive dementia who were older than 80 years and were negative for Aβ were studied. In one case, autopsy obtained 2 years after the PET examination revealed neurofibrillary tangles limited around the parahippocampal gyrus. Four cases showed strong laterality in magnetic resonance imaging atrophy (clinical AGD), while the other three cases had no significant laterality in atrophy (clinical NFTPD). Age-corrected PET data of healthy controls (HC; n = 12) were used as control. Tau accumulation was evaluated with [11C]PBB3-PET.
Results:
High accumulation was found in the lateral temporal cortex in ANDE. In autopsy case, scattered neurofibrillary tangles were found in the parahippocampal gyrus. In addition, there was a very high accumulation of PBB3 in the large area of bilateral parietal lobes, although no corresponding tau component was found in the autopsied case.
Conclusion:
Relatively high burden of tau deposition was commonly observed in the lateral temporal cortex and parietal cortex of ANDE, part of which may explain dementia in these subjects. [11C]PBB3 may be useful in detecting tauopathy in ANDE.
Collapse
|
41
|
Gazulla J, Ferrer I, Izquierdo-Alvarez S, Alvarez S, Sánchez-Alcudia R, Bestué-Cardiel M, Seral M, Benavente I, Sierra-Martínez E, Berciano J. Hereditary primary lateral sclerosis and progressive nonfluent aphasia. J Neurol 2019; 266:1079-1090. [DOI: 10.1007/s00415-019-09235-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
|
42
|
Besser LM, Mock C, Teylan MA, Hassenstab J, Kukull WA, Crary JF. Differences in Cognitive Impairment in Primary Age-Related Tauopathy Versus Alzheimer Disease. J Neuropathol Exp Neurol 2019; 78:219-228. [PMID: 30715383 PMCID: PMC6380319 DOI: 10.1093/jnen/nly132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This study examined differences in neuropsychological test scores between individuals with primary age-related tauopathy (PART) and Alzheimer disease (AD) using cross-sectional data from the National Alzheimer's Coordinating Center. Linear regression tested for differences in 4 cognitive domains stratified by cognitive status (global Clinical Dementia Rating [CDR]). The sample included 240 participants with no neuritic plaques (NP) (definite PART), 186 with sparse NP (possible PART), and 510 with moderate/frequent NP (AD). Four cognitive domain z-score outcome variables (memory, attention, executive function, and semantic memory/language) were calculated using 12 neuropsychological tests. Definite PART participants had a sparing of semantic memory/language compared to those with AD, with a mean adjusted z-score difference of 0.37 (95% confidence interval [CI]: 0.16-0.58) for those with CDR = 0.5 or 1 and of 0.92 (CI: 0.22-1.63) for those with CDR = 2 or 3. Compared to participants with AD, definite PART participants with CDR = 0.5 or 1 had sparing of memory (adjusted z-score difference: 0.61; CI: 0.39-0.84) and definite PART participants with CDR = 2 or 3 had sparing of attention (adjusted z-score difference: 0.76: CI: 0.09-1.43). Patterns of cognitive impairment differed between definite PART and AD, suggesting significant differences in clinical presentation between individuals from these 2 groups.
Collapse
Affiliation(s)
- Lilah M Besser
- School of Urban and Regional Planning, Institute for Healthy Aging and Lifespan Studies, Florida Atlantic University, Boca Raton, Florida
| | - Charles Mock
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington
| | - Merilee A Teylan
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Walter A Kukull
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington
| | - John F Crary
- Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize current conceptual models of cognitive reserve (CR) and related concepts and to discuss evidence for these concepts within the context of aging and Alzheimer's disease. RECENT FINDINGS Evidence to date supports the notion that higher levels of CR, as measured by proxy variables reflective of lifetime experiences, are associated with better cognitive performance, and with a reduced risk of incident mild cognitive impairment/dementia. However, the impact of CR on longitudinal cognitive trajectories is unclear and may be influenced by a number of factors. Although there is promising evidence that some proxy measures of CR may influence structural brain measures, more research is needed. The protective effects of CR may provide an important mechanism for preserving cognitive function and cognitive well-being with age, in part because it can be enhanced throughout the lifespan. However, more research on the mechanisms by which CR is protective is needed.
Collapse
Affiliation(s)
- Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall 1-West, Baltimore, MD, 21205, USA
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall 1-West, Baltimore, MD, 21205, USA.
| |
Collapse
|
44
|
Bell WR, An Y, Kageyama Y, English C, Rudow GL, Pletnikova O, Thambisetty M, O'Brien R, Moghekar AR, Albert MS, Rabins PV, Resnick SM, Troncoso JC. Neuropathologic, genetic, and longitudinal cognitive profiles in primary age-related tauopathy (PART) and Alzheimer's disease. Alzheimers Dement 2018; 15:8-16. [PMID: 30465754 DOI: 10.1016/j.jalz.2018.07.215] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Primary age-related tauopathy (PART) is a recently described entity that can cause cognitive impairment in the absence of Alzheimer's disease (AD). Here, we compared neuropathological features, tau haplotypes, apolipoprotein E (APOE) genotypes, and cognitive profiles in age-matched subjects with PART and AD pathology. METHODS Brain autopsies (n = 183) were conducted on participants 85 years and older from the Baltimore Longitudinal Study of Aging and Johns Hopkins Alzheimer's Disease Research Center. Participants, normal at enrollment, were followed with periodic cognitive evaluations until death. RESULTS Compared with AD, PART subjects showed significantly slower rates of decline on measures of memory, language, and visuospatial performance. They also showed lower APOE ε4 allele frequency (4.1% vs. 17.6%, P = .0046). DISCUSSION Our observations suggest that PART is separate from AD and its distinction will be important for the clinical management of patients with cognitive impairment and for public health care planning.
Collapse
Affiliation(s)
- W Robert Bell
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yusuke Kageyama
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Collin English
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gay L Rudow
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard O'Brien
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter V Rabins
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Jellinger KA. Different patterns of hippocampal tau pathology in Alzheimer's disease and PART. Acta Neuropathol 2018; 136:811-813. [PMID: 30088091 DOI: 10.1007/s00401-018-1894-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
46
|
Besser LM, Kukull WA, Teylan MA, Bigio EH, Cairns NJ, Kofler JK, Montine TJ, Schneider JA, Nelson PT. The Revised National Alzheimer's Coordinating Center's Neuropathology Form-Available Data and New Analyses. J Neuropathol Exp Neurol 2018; 77:717-726. [PMID: 29945202 PMCID: PMC6044344 DOI: 10.1093/jnen/nly049] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neuropathologic evaluation remains the gold standard for determining the presence and severity of aging-related neurodegenerative diseases. Researchers at U.S. Alzheimer's Disease Centers (ADCs) have worked for >30 years studying human brains, with the goals of achieving new research breakthroughs. Harmonization and sharing among the 39 current and past ADCs is promoted by the National Alzheimer's Coordinating Center (NACC), which collects, audits, and disburses ADC-derived data to investigators on request. The past decades have witnessed revised disease definitions paired with dramatic expansion in the granularity and multimodality of the collected data. The NACC database now includes cognitive test scores, comorbidities, drug history, neuroimaging, and links to genomics. Relatively, recent advances in the neuropathologic diagnoses of Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and vascular contributions to cognitive impairment and dementia catalyzed a 2014 update to the NACC Neuropathology Form completed by all ADCs. New focal points include cerebrovascular disease (including arteriolosclerosis, microbleeds, and microinfarcts), hippocampal sclerosis, TDP-43, and FTLD. Here, we provide summary data and analyses to illustrate the potential for both hypothesis-testing and also generating new hypotheses using the NACC Neuropathology data set, which represents one of the largest multi-center databases of carefully curated neuropathologic information that is freely available to researchers worldwide.
Collapse
Affiliation(s)
- Lilah M Besser
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington
- Institute for Healthy Aging and Lifespan Studies and School of Urban and Regional Planning, Florida Atlantic University, Boca Raton, Florida
| | - Walter A Kukull
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington
| | - Merilee A Teylan
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington
| | - Eileen H Bigio
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Nigel J Cairns
- Department of Neurology, Washington University in St Louis, St. Louis, Missouri
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California
| | | | - Peter T Nelson
- Sanders-Brown Center on Aging, Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|