1
|
Mundorf A, Merklein SA, Rice LC, Desmond JE, Peterburs J. Early Adversity Affects Cerebellar Structure and Function-A Systematic Review of Human and Animal Studies. Dev Psychobiol 2024; 66:e22556. [PMID: 39378310 DOI: 10.1002/dev.22556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Recent research has highlighted cerebellar involvement in cognition and several psychiatric conditions such as mood and anxiety disorders and schizophrenia. Attention-deficit/hyperactivity disorder and autism spectrum disorder have been linked to reduced cerebellar volume as well. Cerebellar alterations are frequently present after early adversity in humans and animals, but a systematic integration of results is lacking. To this end, a systematic literature search was conducted in PubMed, Web of Science, and EBSCO databases using the keywords "early adversity OR early life stress" AND "cerebellum OR cerebellar." A total of 45 publications met the inclusion criteria: 25 studies investigated human subjects and 20 reported results from animal models. Findings in healthy subjects show bilateral volume reduction and decreased functional connectivity within the cerebellum and between the cerebellum and frontal regions after adversity throughout life, especially when adversity was assessed with the Childhood Trauma Questionnaire. In clinical populations, adults demonstrate increased cerebellar volume and functional connectivity after adversity, whereas pediatric patients show reduced cerebellar volume. Animal findings reveal cerebellar alterations without necessarily co-occurring pathological behavior, highlighting alterations in stress hormone receptor levels, cell density, and neuroinflammation markers. Cerebellar alterations after early adversity are robust findings across human and animal studies and occur independent of clinical symptoms.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sarah A Merklein
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Laura C Rice
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Mark VW. Biomarkers and Rehabilitation for Functional Neurological Disorder. J Pers Med 2024; 14:948. [PMID: 39338202 PMCID: PMC11433361 DOI: 10.3390/jpm14090948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Functional neurological disorder, or FND, is widely misunderstood, particularly when considering recent research indicating that the illness has numerous biological markers in addition to its psychiatric disorder associations. Nonetheless, the long-held view that FND is a mental illness without a biological basis, or even a contrived (malingered) illness, remains pervasive both in current medical care and general society. This is because FND involves intermittent disability that rapidly and involuntarily alternates with improved neurological control. This has in turn caused shaming, perceived low self-efficacy, and social isolation for the patients. Until now, biomarker reviews for FND tended not to examine the features that are shared with canonical neurological disorders. This review, in contrast, examines current research on FND biomarkers, and in particular their overlap with canonical neurological disorders, along with the encouraging outcomes for numerous physical rehabilitation trials for FND. These findings support the perspective endorsed here that FND is unquestionably a neurological disorder that is also associated with many biological markers that lie outside of the central nervous system. These results suggest that FND entails multiple biological abnormalities that are widely distributed in the body. General healthcare providers would benefit their care for their patients through their improved understanding of the illness and recourses for support and treatment that are provided in this review.
Collapse
Affiliation(s)
- Victor W. Mark
- Department of Physical Medicine and Rehabilitation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; ; Tel.: +1-205-934-3499
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249, USA
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Van Patten R, Mordecai K, LaFrance WC. The role of neuropsychology in the care of patients with functional neurological symptom disorder. J Int Neuropsychol Soc 2024; 30:710-717. [PMID: 38813659 DOI: 10.1017/s1355617724000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
OBJECTIVE Functional neurological symptom disorder (FNSD) is a neuropsychiatric condition characterized by signs/symptoms associated with brain network dysfunction. FNSDs are common and are associated with high healthcare costs. FNSDs are relevant to neuropsychologists, as they frequently present with chronic neuropsychiatric symptoms, subjective cognitive concerns, and/or low neuropsychological test scores, with associated disability and reduced quality of life. However, neuropsychologists in some settings are not involved in care of patients with FNSDs. This review summarizes relevant FNSD literature with a focus on the role of neuropsychologists. METHODS A brief review of the literature is provided with respect to epidemiology, public health impact, symptomatology, pathophysiology, and treatment. RESULTS Two primary areas of focus for this review are the following: (1) increasing neuropsychologists' training in FNSDs, and (2) increasing neuropsychologists' role in assessment and treatment of FNSD patients. CONCLUSIONS Patients with FNSD would benefit from increased involvement of neuropsychologists in their care.
Collapse
Affiliation(s)
- Ryan Van Patten
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
| | | | - W Curt LaFrance
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
- Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
4
|
Davenport TE, Blitshteyn S, Clague-Baker N, Davies-Payne D, Treisman GJ, Tyson SF. Long COVID Is Not a Functional Neurologic Disorder. J Pers Med 2024; 14:799. [PMID: 39201991 PMCID: PMC11355889 DOI: 10.3390/jpm14080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Long COVID is a common sequela of SARS-CoV-2 infection. Data from numerous scientific studies indicate that long COVID involves a complex interaction between pathophysiological processes. Long COVID may involve the development of new diagnosable health conditions and exacerbation of pre-existing health conditions. However, despite this rapidly accumulating body of evidence regarding the pathobiology of long COVID, psychogenic and functional interpretations of the illness presentation continue to be endorsed by some healthcare professionals, creating confusion and inappropriate diagnostic and therapeutic pathways for people living with long COVID. The purpose of this perspective is to present a clinical and scientific rationale for why long COVID should not be considered as a functional neurologic disorder. It will begin by discussing the parallel historical development of pathobiological and psychosomatic/sociogenic diagnostic constructs arising from a common root in neurasthenia, which has resulted in the collective understandings of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and functional neurologic disorder (FND), respectively. We will also review the case definition criteria for FND and the distinguishing clinical and neuroimaging findings in FND vs. long COVID. We conclude that considering long COVID as FND is inappropriate based on differentiating pathophysiologic mechanisms and distinguishing clinical findings.
Collapse
Affiliation(s)
- Todd E. Davenport
- Department of Physical Therapy, University of the Pacific, Stockton, CA 95211, USA
- Workwell Foundation, Santa Rosa, CA 95403, USA
| | - Svetlana Blitshteyn
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14203, USA
- Dysautonomia Clinic, Williamsville, NY 14221, USA
| | - Nicola Clague-Baker
- School of Allied Health Professions and Nursing, Institute of Population Health, University of Liverpool, Liverpool L69 7ZX, UK
| | - David Davies-Payne
- Department of Radiology, Starship Children’s Hospital, Auckland 1023, New Zealand
| | - Glenn J. Treisman
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Sarah F. Tyson
- School of Health Sciences, University of Manchester, Manchester M14 4PX, UK;
| |
Collapse
|
5
|
Westlin C, Guthrie AJ, Paredes-Echeverri S, Maggio J, Finkelstein S, Godena E, Millstein D, MacLean J, Ranford J, Freeburn J, Adams C, Stephen C, Diez I, Perez DL. Machine learning classification of functional neurological disorder using structural brain MRI features. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-333499. [PMID: 39033019 DOI: 10.1136/jnnp-2024-333499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Brain imaging studies investigating grey matter in functional neurological disorder (FND) have used univariate approaches to report group-level differences compared with healthy controls (HCs). However, these findings have limited translatability because they do not differentiate patients from controls at the individual-level. METHODS 183 participants were prospectively recruited across three groups: 61 patients with mixed FND (FND-mixed), 61 age-matched and sex-matched HCs and 61 age, sex, depression and anxiety-matched psychiatric controls (PCs). Radial basis function support vector machine classifiers with cross-validation were used to distinguish individuals with FND from HCs and PCs using 134 FreeSurfer-derived grey matter MRI features. RESULTS Patients with FND-mixed were differentiated from HCs with an accuracy of 0.66 (p=0.005; area under the receiving operating characteristic (AUROC)=0.74); this sample was also distinguished from PCs with an accuracy of 0.60 (p=0.038; AUROC=0.56). When focusing on the functional motor disorder subtype (FND-motor, n=46), a classifier robustly differentiated these patients from HCs (accuracy=0.72; p=0.002; AUROC=0.80). FND-motor could not be distinguished from PCs, and the functional seizures subtype (n=23) could not be classified against either control group. Important regions contributing to statistically significant multivariate classifications included the cingulate gyrus, hippocampal subfields and amygdalar nuclei. Correctly versus incorrectly classified participants did not differ across a range of tested psychometric variables. CONCLUSIONS These findings underscore the interconnection of brain structure and function in the pathophysiology of FND and demonstrate the feasibility of using structural MRI to classify the disorder. Out-of-sample replication and larger-scale classifier efforts incorporating psychiatric and neurological controls are needed.
Collapse
Affiliation(s)
- Christiana Westlin
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J Guthrie
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Paredes-Echeverri
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Maggio
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Therapy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sara Finkelstein
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ellen Godena
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Millstein
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie MacLean
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Occupational Therapy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jessica Ranford
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Occupational Therapy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jennifer Freeburn
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Speech, Language, and Swallowing Disorders, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Caitlin Adams
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Stephen
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ibai Diez
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David L Perez
- Functional Neurological Disorder Research Group, Division of Behavioral Neurology & Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Mavroudis I, Kazis D, Kamal FZ, Gurzu IL, Ciobica A, Pădurariu M, Novac B, Iordache A. Understanding Functional Neurological Disorder: Recent Insights and Diagnostic Challenges. Int J Mol Sci 2024; 25:4470. [PMID: 38674056 PMCID: PMC11050230 DOI: 10.3390/ijms25084470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Functional neurological disorder (FND), formerly called conversion disorder, is a condition characterized by neurological symptoms that lack an identifiable organic purpose. These signs, which can consist of motor, sensory, or cognitive disturbances, are not deliberately produced and often vary in severity. Its diagnosis is predicated on clinical evaluation and the exclusion of other medical or psychiatric situations. Its treatment typically involves a multidisciplinary technique addressing each of the neurological symptoms and underlying psychological factors via a mixture of medical management, psychotherapy, and supportive interventions. Recent advances in neuroimaging and a deeper exploration of its epidemiology, pathophysiology, and clinical presentation have shed new light on this disorder. This paper synthesizes the current knowledge on FND, focusing on its epidemiology and underlying mechanisms, neuroimaging insights, and the differentiation of FND from feigning or malingering. This review highlights the phenotypic heterogeneity of FND and the diagnostic challenges it presents. It also discusses the significant role of neuroimaging in unraveling the complex neural underpinnings of FND and its potential in predicting treatment response. This paper underscores the importance of a nuanced understanding of FND in informing clinical practice and guiding future research. With advancements in neuroimaging techniques and growing recognition of the disorder's multifaceted nature, the paper suggests a promising trajectory toward more effective, personalized treatment strategies and a better overall understanding of the disorder.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK;
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat 26000, Morocco
| | - Irina-Luciana Gurzu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania (A.I.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue 20th A, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Manuela Pădurariu
- “Socola” Institute of Psychiatry, Șoseaua Bucium 36, 700282 Iasi, Romania;
| | - Bogdan Novac
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania (A.I.)
| | - Alin Iordache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania (A.I.)
| |
Collapse
|
7
|
Coebergh J, Habib S, Teodoro T, Edwards M, Butler M. From Software to Hardware: A Case Series of Functional Neurological Symptoms and Cerebrovascular Disease. J Neuropsychiatry Clin Neurosci 2024; 36:206-213. [PMID: 38343312 DOI: 10.1176/appi.neuropsych.20220182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Neuroimaging studies have identified alterations in both brain structure and functional connectivity in patients with functional neurological disorder (FND). For many patients, FND emerges from physical precipitating events. Nevertheless, there are a limited number of case series in the literature that describe the clinical presentation and neuroimaging correlates of FND following cerebrovascular disease. METHODS The authors collected data from two clinics in the United Kingdom on 14 cases of acute, improving, or delayed functional neurological symptoms following cerebrovascular events. RESULTS Most patients had functional neurological symptoms that were localized to cerebrovascular lesions, and the lesions mapped onto regions known to be part of functional networks disrupted in FND, including the thalamus, anterior cingulate gyrus, insula, and temporoparietal junction. CONCLUSIONS The findings demonstrate that structural lesions can lead to FND symptoms, possibly explained through changes in relevant mechanistic functional networks.
Collapse
Affiliation(s)
- Jan Coebergh
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| | - Shabana Habib
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| | - Tiago Teodoro
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| | - Mark Edwards
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| | - Matt Butler
- St. George's University Hospitals National Health Service Foundation Trust, London (Coebergh, Teodoro); Department of Neurology, Ashford and St. Peter's Hospitals National Health Service Foundation Trust, Chertsey, United Kingdom (Coebergh, Teodoro); St. John's Institute of Dermatology, London (Habib); Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Edwards, Butler)
| |
Collapse
|
8
|
Gaudio S, Rukh G, Di Ciommo V, Berkins S, Wiemerslage L, Schiöth HB. Higher fresh fruit intake relates to larger grey matter volumes in areas involved in dementia and depression: A UK Biobank study. Neuroimage 2023; 283:120438. [PMID: 37918179 DOI: 10.1016/j.neuroimage.2023.120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
The benefits of consuming fruits and vegetables are widely accepted. While previous studies suggest a protective role of fruits and vegetables against a variety of diseases such as dementia and depression, the biological mechanisms/effects remain unclear. Here we investigated the effect of fruit and vegetable consumption on brain structure. Particularly on grey matter (GM) and white matter (WM) volumes, regional GM volumes and subcortical volumes. Cross-sectional imaging data from UK Biobank cohort was used. A total of 9925 participants (Mean age 62.4 ± 7.5 years, 51.1 % men) were included in the present analysis. Measures included fruit and vegetable intake, other dietary patterns and a number of selected lifestyle factors and clinical data. Brain volumes were derived from structural brain magnetic resonance imaging. General linear model was used to study the associations between brain volumes and fruit/vegetable intakes. After adjusting for selected confounding factors, salad/raw vegetable intake showed a positive association with total white matter volume, fresh fruit intake showed a negative association with total grey matter (GM) volume. Regional GM analyses showed that higher fresh fruit intake was associated with larger GM volume in the left hippocampus, right temporal occipital fusiform cortex, left postcentral gyrus, right precentral gyrus, and right juxtapositional lobule cortex. We conclude that fruit and vegetable consumption seems to specifically modulate brain volumes. In particular, fresh fruit intake may have a protective role in specific cortical areas such as the hippocampus, areas robustly involved in the pathophysiology of dementia and depression.
Collapse
Affiliation(s)
- Santino Gaudio
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden.
| | - Gull Rukh
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Vincenzo Di Ciommo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Samuel Berkins
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Lyle Wiemerslage
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Spagnolo PA, Johnson K, Hodgkinson C, Goldman D, Hallett M. Methylome changes associated with functional movement/conversion disorder: Influence of biological sex and childhood abuse exposure. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110756. [PMID: 36958667 PMCID: PMC10205664 DOI: 10.1016/j.pnpbp.2023.110756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Epigenetic changes, such as DNA methylation (DNAm), may represent an important mechanism implicated in the etiopathogenesis of functional movement/conversion disorder (FMD). Here, we aimed to identify methylomic variations in a case-control cohort of FMD and to uncover specific epigenetic signatures associated with female sex and childhood abuse, two key risk factors for FMD and other functional neurological disorders. Genome-wide DNAm analysis was performed from peripheral blood in 57 patients with FMD and 47 healthy controls with and without childhood abuse. Using principal component analysis, we examined the association of principal components with FMD status in abused and non-abused individuals, in the entire study sample and in female subjects only. Next, we used enrichment pathway analysis to investigate the biological significance of DNAm changes and explored differences in methylation levels of genes annotated to the top enriched biological pathways shared across comparisons. We found that FMD was associated with DNAm variation across the genome and identified a common epigenetic 'signature' enriched for biological pathways implicated in chronic stress and chronic pain. However, methylation levels of genes included in the top two shared pathways hardly overlapped, suggesting that transcriptional profiles may differ as a function of childhood abuse exposure and sex among subjects with FMD. This study is unique in providing genome-wide evidence of DNAm changes in FMD and in indicating a potential mechanism linking childhood abuse exposure and female sex to differences in FMD pathophysiology. Future studies are needed to replicate our findings in independent cohorts.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Mary Horrigan Connors Center for Women's Health and Gender Biology, USA; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Kory Johnson
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Nasrullah N, Kerr WT, Stern JM, Wang Y, Tatekawa H, Lee JK, Karimi AH, Sreenivasan SS, Engel J, Eliashiv DE, Feusner JD, Salamon N, Savic I. Amygdala subfield and prefrontal cortex abnormalities in patients with functional seizures. Epilepsy Behav 2023; 145:109278. [PMID: 37356226 DOI: 10.1016/j.yebeh.2023.109278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Functional seizures (FS) are paroxysmal episodes, resembling epileptic seizures, but without underlying epileptic abnormality. The aetiology and neuroanatomic associations are incompletely understood. Recent brain imaging data indicate cerebral changes, however, without clarifying possible pathophysiology. In the present study, we specifically investigated the neuroanatomic changes in subregions of the amygdala and hippocampus in FS. METHODS T1 MRI scans of 37 female patients with FS and 37 age-matched female seizure naïve controls (SNC) were analyzed retrospectively in FreeSurfer version 7.1. Seizure naïve controls included patients with depression and anxiety disorders. The analysis included whole-brain cortical thickness, subcortical volumes, and subfields of the amygdala and hippocampus. Group comparisons were carried out using multivariable linear models. RESULTS The FS and SNC groups did not differ in the whole hippocampus and amygdala volumes. However, patients had a significant reduction of the right lateral amygdala volume (p = 0.00041), an increase of the right central amygdala, (p = 0.037), and thinning of the left superior frontal gyrus (p = 0.024). Additional findings in patients were increased volumes of the right medial amygdala (p = 0.031), left anterior amygdala (p = 0.017), and left dentate gyrus of the hippocampus (p = 0.035). CONCLUSIONS The observations from the amygdala and hippocampus segmentation affirm that there are neuroanatomic associations of FS. The pattern of these changes aligned with some of the cerebral changes described in chronic stress conditions and depression. The pattern of detected changes further study, and may, after validation, provide biomarkers for diagnosis and treatment.
Collapse
Affiliation(s)
- Nilab Nasrullah
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Neurology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Wesley T Kerr
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Yanlu Wang
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Hiroyuki Tatekawa
- Department of Radiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - John K Lee
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Siddhika S Sreenivasan
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dawn E Eliashiv
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Ivanka Savic
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Neurology Clinic, Karolinska University Hospital, Stockholm, Sweden; Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Ricciardi L, Bologna M, Marsili L, Espay AJ. Dysfunctional Networks in Functional Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:157-176. [PMID: 37338701 DOI: 10.1007/978-3-031-26220-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Functional dystonia, the second most common functional movement disorder, is characterized by acute or subacute onset of fixed limb, truncal, or facial posturing, incongruent with the action-induced, position-sensitive, and task-specific manifestations of dystonia. We review neurophysiological and neuroimaging data as the basis for a dysfunctional networks in functional dystonia. Reduced intracortical and spinal inhibition contributes to abnormal muscle activation, which may be perpetuated by abnormal sensorimotor processing, impaired selection of movements, and hypoactive sense of agency in the setting of normal movement preparation but abnormal connectivity between the limbic and motor networks. Phenotypic variability may be related to as-yet undefined interactions between abnormal top-down motor regulation and overactivation of areas implicated in self-awareness, self-monitoring, and active motor inhibition such as the cingulate and insular cortices. While there remain many gaps in knowledge, further combined neurophysiological and neuroimaging assessments stand to inform the neurobiological subtypes of functional dystonia and the potential therapeutic applications.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
- Nuffield Department of Clinical Neurosciences, Medical Research Council Brain Network Dynamics Unit, Oxford, UK
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Alberto J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Jungilligens J, Popkirov S, Perez DL, Diez I. Linking gene expression patterns and brain morphometry to trauma and symptom severity in patients with functional seizures. Psychiatry Res Neuroimaging 2022; 326:111533. [PMID: 36055038 PMCID: PMC9968826 DOI: 10.1016/j.pscychresns.2022.111533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/05/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Within stress-diathesis models, adverse life experiences (ALEs) increase the susceptibility to functional neurological symptoms through neuroplasticity effects. We aimed to characterize potential genetic influences on this relationship in 20 patients with functional seizures. Questionnaires, structural MRIs and Allen Human Brain Atlas gene expression information were used to probe the intersection of symptom severity (Somatoform Dissociation Questionnaire, SDQ-20), ALE burden, and gray matter volumes. SDQ-20 scores positively correlated with sexual trauma, emotional neglect, and threat to life experiences. Higher SDQ-20 scores related to lower bilateral insula, left orbitofrontal, right amygdala, and perigenual/posterior cingulate volumes. Higher sexual trauma burden correlated with lower right posterior insula and putamen volumes; higher emotional neglect related to lower bilateral insula/right amygdala volumes. Findings in left insula/ventral precentral gyrus (SDQ-20), right insula/putamen (sexual trauma), and right amygdala (emotional neglect) held when controlling for comorbid psychopathology. At the intersection of symptom severity and sexual trauma volumetric findings, genes overrepresented in adrenergic, serotonergic, and oxytocin receptor signaling as well as in cortical and amygdala development were spatially correlated. In conclusion, ALEs and symptom severity were associated with gray matter volumes in cingulo-insular and amygdala areas, spatially overlapping with expression patterns of genes involved in stress-related signaling and neurodevelopment.
Collapse
Affiliation(s)
- Johannes Jungilligens
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany; Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Stoyan Popkirov
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany
| | - David L Perez
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Division of Neuropsychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Ibai Diez
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
13
|
Kerr WT, Tatekawa H, Lee JK, Karimi AH, Sreenivasan SS, O'Neill J, Smith JM, Hickman LB, Savic I, Nasrullah N, Espinoza R, Narr K, Salamon N, Beimer NJ, Hadjiiski LM, Eliashiv DS, Stacey WC, Engel J, Feusner JD, Stern JM. Clinical MRI morphological analysis of functional seizures compared to seizure-naïve and psychiatric controls. Epilepsy Behav 2022; 134:108858. [PMID: 35933959 DOI: 10.1016/j.yebeh.2022.108858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/26/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE Functional seizures (FS), also known as psychogenic nonepileptic seizures (PNES), are physical manifestations of acute or chronic psychological distress. Functional and structural neuroimaging have identified objective signs of this disorder. We evaluated whether magnetic resonance imaging (MRI) morphometry differed between patients with FS and clinically relevant comparison populations. METHODS Quality-screened clinical-grade MRIs were acquired from 666 patients from 2006 to 2020. Morphometric features were quantified with FreeSurfer v6. Mixed-effects linear regression compared the volume, thickness, and surface area within 201 regions-of-interest for 90 patients with FS, compared to seizure-naïve patients with depression (n = 243), anxiety (n = 68), and obsessive-compulsive disorder (OCD, n = 41), respectively, and to other seizure-naïve controls with similar quality MRIs, accounting for the influence of multiple confounds including depression and anxiety based on chart review. These comparison populations were obtained through review of clinical records plus research studies obtained on similar scanners. RESULTS After Bonferroni-Holm correction, patients with FS compared with seizure-naïve controls exhibited thinner bilateral superior temporal cortex (left 0.053 mm, p = 0.014; right 0.071 mm, p = 0.00006), thicker left lateral occipital cortex (0.052 mm, p = 0.0035), and greater left cerebellar white-matter volume (1085 mm3, p = 0.0065). These findings were not accounted for by lower MRI quality in patients with FS. CONCLUSIONS These results reinforce prior indications of structural neuroimaging correlates of FS and, in particular, distinguish brain morphology in FS from that in depression, anxiety, and OCD. Future work may entail comparisons with other psychiatric disorders including bipolar and schizophrenia, as well as exploration of brain structural heterogeneity within FS.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Hiroyuki Tatekawa
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John K Lee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Siddhika S Sreenivasan
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jena M Smith
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - L Brian Hickman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ivanka Savic
- Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Nilab Nasrullah
- Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine Narr
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nicholas J Beimer
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lubomir M Hadjiiski
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dawn S Eliashiv
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William C Stacey
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
14
|
Jungilligens J, Paredes-Echeverri S, Popkirov S, Barrett LF, Perez DL. A new science of emotion: implications for functional neurological disorder. Brain 2022; 145:2648-2663. [PMID: 35653495 PMCID: PMC9905015 DOI: 10.1093/brain/awac204] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 01/11/2023] Open
Abstract
Functional neurological disorder reflects impairments in brain networks leading to distressing motor, sensory and/or cognitive symptoms that demonstrate positive clinical signs on examination incongruent with other conditions. A central issue in historical and contemporary formulations of functional neurological disorder has been the mechanistic and aetiological role of emotions. However, the debate has mostly omitted fundamental questions about the nature of emotions in the first place. In this perspective article, we first outline a set of relevant working principles of the brain (e.g. allostasis, predictive processing, interoception and affect), followed by a focused review of the theory of constructed emotion to introduce a new understanding of what emotions are. Building on this theoretical framework, we formulate how altered emotion category construction can be an integral component of the pathophysiology of functional neurological disorder and related functional somatic symptoms. In doing so, we address several themes for the functional neurological disorder field including: (i) how energy regulation and the process of emotion category construction relate to symptom generation, including revisiting alexithymia, 'panic attack without panic', dissociation, insecure attachment and the influential role of life experiences; (ii) re-interpret select neurobiological research findings in functional neurological disorder cohorts through the lens of the theory of constructed emotion to illustrate its potential mechanistic relevance; and (iii) discuss therapeutic implications. While we continue to support that functional neurological disorder is mechanistically and aetiologically heterogenous, consideration of how the theory of constructed emotion relates to the generation and maintenance of functional neurological and functional somatic symptoms offers an integrated viewpoint that cuts across neurology, psychiatry, psychology and cognitive-affective neuroscience.
Collapse
Affiliation(s)
- Johannes Jungilligens
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Paredes-Echeverri
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stoyan Popkirov
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David L Perez
- Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Neuropsychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Gray Matter Abnormalities in Patients with Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Brain Sci 2022; 12:brainsci12081115. [PMID: 36009176 PMCID: PMC9405829 DOI: 10.3390/brainsci12081115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Current findings on brain structural alterations in complex regional pain syndrome (CRPS) are heterogenous and controversial. This study aimed to perform a systematic review and meta-analysis to explore the significant gray matter volume (GMV) abnormalities between patients with CRPS and healthy controls (HCs). A systematic search of the PubMed, Web of Science, and MEDLINE databases was performed, updated through 27 January 2022. A total of five studies (93 CRPS patients and 106 HCs) were included. Peak coordinates and effect sizes were extracted and meta-analyzed by anisotropic effect size-signed differential mapping (AES-SDM). Heterogeneity, sensitivity, and publication bias of the main results were checked by the Q test, jackknife analysis, and the Egger test, respectively. Meta-regression analysis was performed to explore the potential impact of risk factors on GMV alterations in patients with CRPS. The main analysis exhibited that patients with CRPS had increased GMV in the left medial superior frontal gyrus (SFGmedial.L), left striatum, and an undefined area (2, 0, -8) that may be in hypothalamus, as well as decreased GMV in the corpus callosum (CC) (extending to right supplementary motor area (SMA.R), right median cingulate/paracingulate gyri (MCC.R)), and an undefined area (extending to the right caudate nucleus (CAU.R), and right thalamus (THA.R)). Meta-regression analysis showed a negative relationship between increased GMV in the SFGmedial.L and disease duration, and the percentage of female patients with CRPS. Brain structure abnormalities in the sensorimotor regions (e.g., SFGmedial.L, SMA.R, CAU.R, MCC.R, and THA.R) may be susceptible in patients with CRPS. Additionally, sex differences and disease duration may have a negative effect on the increased GMV in SFGmedial.L.
Collapse
|
16
|
Baykara M, Baykara S, Atmaca M. Magnetic resonance imaging histogram analysis of amygdala in functional neurological disorder: Histogram Analysis of Amygdala in Functional Neurological Disorder. Psychiatry Res Neuroimaging 2022; 323:111487. [PMID: 35523011 DOI: 10.1016/j.pscychresns.2022.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/27/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Murat Baykara
- Fırat University, Faculty of Medicine, Department of Radiology, Elazig, Turkey
| | - Sema Baykara
- Fırat University, Faculty of Medicine, Department of Psychiatry, Elazig, Turkey.
| | - Murad Atmaca
- Fırat University, Faculty of Medicine, Department of Psychiatry, Elazig, Turkey
| |
Collapse
|
17
|
Paredes-Echeverri S, Guthrie AJ, Perez DL. Toward a possible trauma subtype of functional neurological disorder: Impact on symptom severity and physical health. Front Psychiatry 2022; 13:1040911. [PMID: 36458126 PMCID: PMC9706184 DOI: 10.3389/fpsyt.2022.1040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND As a group, individuals with functional neurological disorder (FND) report an approximately 3-fold increase in adverse life experiences (ALEs) compared to healthy controls. In patients with FND, studies have identified a positive correlation between symptom severity and the magnitude of ALEs. While not all individuals with FND report ALEs, such findings raise the possibility of a trauma-subtype of FND. OBJECTIVE This study investigated if patients with FND, with or without probable post-traumatic stress disorder (PTSD) and/or significant childhood maltreatment, differed in their symptom severity and physical health. MATERIALS AND METHODS Seventy-eight patients with FND were recruited (functional seizures, n = 34; functional movement disorder, n = 56). Participants completed self-report measures of symptom severity [Somatoform Dissociation Questionniare-20 (SDQ-20), Screening for Somatoform Disorders: Conversion Disorder subscale (SOMS:CD), Patient Health Questionniare-15 (PHQ-15)], physical health [Short Form Health Survey-36 (SF36-physical health)], childhood maltreatment [Childhood Trauma Questionnaire (CTQ)], and PTSD [PTSD Checklist-5 (PCL-5)]; a psychometric battery of other common predisposing vulnerabilities was also completed. To adjust for multiple comparisons, a Bonferroni correction was applied to all univariate analyses. RESULTS Patients with FND and probable PTSD (n = 33) vs. those without probable PTSD (n = 43) had statistically significant increased scores on all symptom severity measures - as well as decreased physical health scores. In secondary post-hoc regression analyses, these findings remained significant adjusting for age, sex, race, college education, and: pathological dissociation; alexithymia; attachment styles; personality characteristics; resilience scores; functional seizures subtype; or moderate-to-severe childhood abuse and neglect scores; SOMS:CD and SDQ-20 findings also held adjusting for depression and anxiety scores. In a separate set of analyses, patients with FND and moderate-to-severe childhood abuse (n = 46) vs. those without moderate-to-severe childhood abuse (n = 32) showed statistically significant increased SDQ-20 and PHQ-15 scores; in post-hoc regressions, these findings held adjusting for demographic and other variables. Stratification by childhood neglect did not relate to symptom severity or physical health scores. CONCLUSION This study provides support for a possible trauma-subtype of FND. Future research should investigate the neurobiological and treatment relevance of a FND trauma-subtype, as well as continuing to delineate clinical characteristics and mechanisms in individuals with FND that lack a history of ALEs.
Collapse
Affiliation(s)
- Sara Paredes-Echeverri
- Functional Neurological Disorder Research Group, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Andrew J Guthrie
- Functional Neurological Disorder Research Group, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David L Perez
- Functional Neurological Disorder Research Group, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Functional Neurological Disorder Unit, Division of Cognitive Behavioral Neurology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Division of Neuropsychiatry, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Piramide N, Sarasso E, Tomic A, Canu E, Petrovic IN, Svetel M, Basaia S, Dragasevic Miskovic N, Kostic VS, Filippi M, Agosta F. Functional MRI connectivity of the primary motor cortex in functional dystonia patients. J Neurol 2021; 269:2961-2971. [PMID: 34773159 DOI: 10.1007/s00415-021-10879-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Functional movement disorders include a wide spectrum of clinically documented movement disorders without an apparent organic substrate. OBJECTIVE To explore the functional connectivity (FC) of the primary motor (M1) cortex in functional dystonia (FD) patients relative to healthy controls, with a focus on different clinical phenotypes. METHODS Forty FD patients (12 fixed [FixFD]; 28 mobile [MobFD]) and 43 healthy controls (14 young FixFD-age-matched [yHC]; 29 old MobFD-age-matched [oHC]) underwent resting state fMRI. A seed-based FC analysis was performed using bilateral M1 as regions of interest. RESULTS Compared to controls, FD patients showed reduced FC between left M1 and left dorsal anterior cingulate cortex, and between right M1 and left M1, premotor/supplementary motor area (SMA), dorsal posterior cingulate cortex (PCC), and bilateral precuneus. Relative to yHC, FixFD patients showed reduced FC between M1 and precuneus bilaterally. Compared to oHC, MobFD patients revealed reduced FC between right M1 and left M1, premotor/SMA, dorsal-PCC, bilateral primary sensory cortices and parieto-occipital areas, and increased FC of right M1 with right associative visual cortex and bilateral ventral-PCC. FixFD patients, relative to MobFD, showed lower FC between the right M1 and right associative visual area, and bilateral precuneus and ventral-PCC. CONCLUSIONS This study suggests an altered brain FC of the motor circuit with areas involved in emotional processes and sense of agency in FD. FixFD patients showed FC abnormalities mainly in areas related to sense of agency, while MobFD in regions involved in sensorimotor functions (reduced FC) and emotional processing (increased FC).
Collapse
Affiliation(s)
- Noemi Piramide
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Aleksandra Tomic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Igor N Petrovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Svetel
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | | | - Vladimir S Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy.
| |
Collapse
|
19
|
Functional Movement Disorder and Functional Seizures: What have we learned from different subtypes of functional neurological disorders? Epilepsy Behav Rep 2021; 18:100510. [PMID: 35198951 PMCID: PMC8844274 DOI: 10.1016/j.ebr.2021.100510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/17/2022] Open
Abstract
Functional seizures (FS) and functional movement disorders (FMD) are the most common manifestations of functional neurological disorders. FMD and FS may have similarities in etiology and pathophysiology. FMD and FS share disabling comorbidities of chronic pain, fatigue, and cognitive symptoms. Neuroimaging has demonstrated structural and functional changes in emotional and motor planning pathways in FND. A multidisciplinary approach and psychotherapy are the treatments for FMD and FS, respectively.
The objective of this paper is to compare and contrast FMD and FS, and highlight important differences in etiology and the clinical approach towards these two entities. While patients with FMD often experience abnormal movements on a daily basis, FS is characterized by paroxysmal events. Both patient populations share psychiatric and environmental comorbidities, but patients with FS may have increased anxiety and neuroticism and a higher percentage of childhood trauma. Functional MRI scans have demonstrated impaired executive control over motor behavior in both groups. FMD responds well to multidisciplinary rehabilitation-oriented treatment, while psychotherapy remains the mainstay of treatment for FS. For practicing clinicians, recognizing commonalities and differences in patients with FMD and FS is important to develop the most appropriate treatment plan.
Collapse
|
20
|
Hao X, Zhang J, Huang Y. The pretender of Parkinson's disease: What neurologists need to know about functional movement disorders. CNS Neurosci Ther 2021; 27:1097-1098. [PMID: 34254722 PMCID: PMC8339524 DOI: 10.1111/cns.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiaodi Hao
- Department of NeurologyZhengzhou University People's HospitalZhengzhouChina
| | - Jiewen Zhang
- Department of NeurologyZhengzhou University People's HospitalZhengzhouChina
| | - Yue Huang
- Department of NeurologyZhengzhou University People's HospitalZhengzhouChina
| |
Collapse
|
21
|
Spagnolo PA, Garvey M, Hallett M. A dimensional approach to functional movement disorders: Heresy or opportunity. Neurosci Biobehav Rev 2021; 127:25-36. [PMID: 33848511 DOI: 10.1016/j.neubiorev.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
Functional movement disorders (FMD) are a common and disabling neuropsychiatric condition, part of the spectrum of functional neurological/conversion disorder. FMD represent one of the most enigmatic disorders in the history of medicine. However, in the twenty years after the first report of distinctive abnormal brain activity associated with functional motor symptoms, there have been tremendous advances in the pathophysiologic understanding of these disorders. FMD can be characterized as a disorder of aberrant neurocircuitry interacting with environmental and genetic factors. These developments suggest that research on FMD could be better served by an integrative, neuroscience-based approach focused on functional domains and their neurobiological substrates. This approach has been developed in 'Research Domain Criteria' (RDoC) project, which promotes a dimensional approach to psychiatric disorders. Here, we use the RDoC conceptualization to review recent neuroscience research on FMD, focusing on the domains most relevant to these disorders. We discuss how the adoption of a similar integrative framework may facilitate the identification of the mechanisms underlying FMD and could also have potential clinical applicability.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Mary Horrigan Connors Center for Women's Health and Gender Biology, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Marjorie Garvey
- Novel Strategies for Treatment of Developmental Psychopathology Program, Biomarker and Intervention Development for Childhood-Onset Mental Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Sasikumar S, Strafella AP. The neuroimaging evidence of brain abnormalities in functional movement disorders. Brain 2021; 144:2278-2283. [PMID: 33744915 DOI: 10.1093/brain/awab131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 11/14/2022] Open
Abstract
Neuroimaging has been pivotal in identifying and reframing our understanding of functional movement disorders (FMDs). If accessible, it compensates for the limitations of the clinical exam and is especially useful where there is overlap of functional symptoms with classical presentations of disease. Imaging in FMDs has increasingly identified structural and functional abnormalities that implicate hypoactivation of the cortical and subcortical motor pathways and increased modulation by the limbic system. Neurobiological theories suggest an impaired sense of agency, faulty top-down regulation of motor movement and abnormal emotional processing in these individuals. This framework challenges our traditional understanding of FMDs as distinct from the deceptive term of 'organic' diseases and proposes that these conditions not be considered as mutually exclusive. This review summarizes the literature to date and explores the role of imaging in the diagnosis of FMDs and in detecting its underlying molecular network.
Collapse
Affiliation(s)
- Sanskriti Sasikumar
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Depart. of Medicine, Toronto Western Hospital, UHN, University of Toronto, Ontario, M5G 2C4 Canada
| | - Antonio P Strafella
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Depart. of Medicine, Toronto Western Hospital, UHN, University of Toronto, Ontario, M5G 2C4 Canada.,Krembil Research Institute, UHN, University of Toronto, Ontario, M5T 2S8 Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, M5T 2S8 Canada
| |
Collapse
|
23
|
Perez DL, Nicholson TR, Asadi-Pooya AA, Bègue I, Butler M, Carson AJ, David AS, Deeley Q, Diez I, Edwards MJ, Espay AJ, Gelauff JM, Hallett M, Horovitz SG, Jungilligens J, Kanaan RAA, Tijssen MAJ, Kozlowska K, LaFaver K, LaFrance WC, Lidstone SC, Marapin RS, Maurer CW, Modirrousta M, Reinders AATS, Sojka P, Staab JP, Stone J, Szaflarski JP, Aybek S. Neuroimaging in Functional Neurological Disorder: State of the Field and Research Agenda. Neuroimage Clin 2021; 30:102623. [PMID: 34215138 PMCID: PMC8111317 DOI: 10.1016/j.nicl.2021.102623] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Functional neurological disorder (FND) was of great interest to early clinical neuroscience leaders. During the 20th century, neurology and psychiatry grew apart - leaving FND a borderland condition. Fortunately, a renaissance has occurred in the last two decades, fostered by increased recognition that FND is prevalent and diagnosed using "rule-in" examination signs. The parallel use of scientific tools to bridge brain structure - function relationships has helped refine an integrated biopsychosocial framework through which to conceptualize FND. In particular, a growing number of quality neuroimaging studies using a variety of methodologies have shed light on the emerging pathophysiology of FND. This renewed scientific interest has occurred in parallel with enhanced interdisciplinary collaborations, as illustrated by new care models combining psychological and physical therapies and the creation of a new multidisciplinary FND society supporting knowledge dissemination in the field. Within this context, this article summarizes the output of the first International FND Neuroimaging Workgroup meeting, held virtually, on June 17th, 2020 to appraise the state of neuroimaging research in the field and to catalyze large-scale collaborations. We first briefly summarize neural circuit models of FND, and then detail the research approaches used to date in FND within core content areas: cohort characterization; control group considerations; task-based functional neuroimaging; resting-state networks; structural neuroimaging; biomarkers of symptom severity and risk of illness; and predictors of treatment response and prognosis. Lastly, we outline a neuroimaging-focused research agenda to elucidate the pathophysiology of FND and aid the development of novel biologically and psychologically-informed treatments.
Collapse
Affiliation(s)
- David L Perez
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Timothy R Nicholson
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz Iran; Department of Neurology, Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Indrit Bègue
- Division of Adult Psychiatry, Department of Psychiatry, University of Geneva, Geneva Switzerland; Service of Neurology Department of Clinical Neuroscience, University of Geneva, Geneva, Switzerland
| | - Matthew Butler
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alan J Carson
- Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, UK
| | - Anthony S David
- Institute of Mental Health, University College London, London, UK
| | - Quinton Deeley
- South London and Maudsley NHS Foundation Trust, London UK Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Ibai Diez
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark J Edwards
- Neurosciences Research Centre, St George's University of London, London, UK
| | - Alberto J Espay
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Jeannette M Gelauff
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Silvina G Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Johannes Jungilligens
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Germany
| | - Richard A A Kanaan
- Department of Psychiatry, University of Melbourne, Austin Health Heidelberg, Australia
| | - Marina A J Tijssen
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, University of Groningen, The Netherlands
| | - Kasia Kozlowska
- The Children's Hospital at Westmead, Westmead Institute of Medical Research, University of Sydney Medical School, Sydney, NSW, Australia
| | - Kathrin LaFaver
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W Curt LaFrance
- Departments of Psychiatry and Neurology, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Sarah C Lidstone
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - Ramesh S Marapin
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, University of Groningen, The Netherlands
| | - Carine W Maurer
- Department of Neurology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Mandana Modirrousta
- Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Antje A T S Reinders
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Petr Sojka
- Department of Psychiatry, University Hospital Brno, Czech Republic
| | - Jeffrey P Staab
- Departments of Psychiatry and Psychology and Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic Rochester, MN, USA
| | - Jon Stone
- Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, UK
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham Epilepsy Center, Department of Neurology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Selma Aybek
- Neurology Department, Psychosomatic Medicine Unit, Bern University Hospital Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Frucht L, Perez DL, Callahan J, MacLean J, Song PC, Sharma N, Stephen CD. Functional Dystonia: Differentiation From Primary Dystonia and Multidisciplinary Treatments. Front Neurol 2021; 11:605262. [PMID: 33613415 PMCID: PMC7894256 DOI: 10.3389/fneur.2020.605262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Dystonia is a common movement disorder, involving sustained muscle contractions, often resulting in twisting and repetitive movements and abnormal postures. Dystonia may be primary, as the sole feature (isolated) or in combination with other movement disorders (combined dystonia), or as one feature of another neurological process (secondary dystonia). The current hypothesis is that dystonia is a disorder of distributed brain networks, including the basal ganglia, cerebellum, thalamus and the cortex resulting in abnormal neural motor programs. In comparison, functional dystonia (FD) may resemble other forms of dystonia (OD) but has a different pathophysiology, as a subtype of functional movement disorders (FMD). FD is the second most common FMD and amongst the most diagnostically challenging FMD subtypes. Therefore, distinguishing between FD and OD is important, as the management of these disorders is distinct. There are also different pathophysiological underpinnings in FD, with for example evidence of involvement of the right temporoparietal junction in functional movement disorders that is believed to serve as a general comparator of internal predictions/motor intentions with actual motor events resulting in disturbances in self-agency. In this article, we present a comprehensive review across the spectrum of FD, including oromandibular and vocal forms and discuss the history, clinical clues, evidence for adjunctive "laboratory-based" testing, pathophysiological research and prognosis data. We also provide the approach used at the Massachusetts General Hospital Dystonia Center toward the diagnosis, management and treatment of FD. A multidisciplinary approach, including neurology, psychiatry, physical, occupational therapy and speech therapy, and cognitive behavioral psychotherapy approaches are frequently required; pharmacological approaches, including possible targeted use of botulinum toxin injections and inpatient programs are considerations in some patients. Early diagnosis and treatment may help prevent unnecessary investigations and procedures, while facilitating the appropriate management of these highly complex patients, which may help to mitigate frequently poor clinical outcomes.
Collapse
Affiliation(s)
- Lucy Frucht
- Faculty of Arts and Sciences, Harvard University, Boston, MA, United States
| | - David L. Perez
- Cognitive Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Functional Neurological Disorder Research Program, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neuropsychiatry Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Janet Callahan
- MGH Institute of Healthcare Professionals, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Julie MacLean
- Occupational Therapy Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Phillip C. Song
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Nutan Sharma
- Functional Neurological Disorder Research Program, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Dystonia Center and Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Christopher D. Stephen
- Functional Neurological Disorder Research Program, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Dystonia Center and Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Diez I, Williams B, Kubicki MR, Makris N, Perez DL. Reduced limbic microstructural integrity in functional neurological disorder. Psychol Med 2021; 51:485-493. [PMID: 31769368 PMCID: PMC7247956 DOI: 10.1017/s0033291719003386] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Functional neurological disorder (FND) is a condition at the intersection of neurology and psychiatry. Individuals with FND exhibit corticolimbic abnormalities, yet little is known about the role of white matter tracts in the pathophysiology of FND. This study characterized between-group differences in microstructural integrity, and correlated fiber bundle integrity with symptom severity, physical disability, and illness duration. METHODS A diffusion tensor imaging (DTI) study was performed in 32 patients with mixed FND compared to 36 healthy controls. Diffusion-weighted magnetic resonance images were collected along with patient-reported symptom severity, physical disability (Short Form Health Survey-36), and illness duration data. Weighted-degree and link-level graph theory and probabilistic tractography analyses characterized fractional anisotropy (FA) values across cortico-subcortical connections. Results were corrected for multiple comparisons. RESULTS Compared to controls, FND patients showed reduced FA in the stria terminalis/fornix, medial forebrain bundle, extreme capsule, uncinate fasciculus, cingulum bundle, corpus callosum, and striatal-postcentral gyrus projections. Except for the stria terminalis/fornix, these differences remained significant adjusting for depression and anxiety. In within-group analyses, physical disability inversely correlated with stria terminalis/fornix and medial forebrain bundle FA values; illness duration negatively correlated with stria terminalis/fornix white matter integrity. A FND symptom severity composite score did not correlate with FA in patients. CONCLUSIONS In this first DTI study of mixed FND, microstructural differences were observed in limbic and associative tracts implicated in salience, defensive behaviors, and emotion regulation. These findings advance our understanding of neurocircuit pathways in the pathophysiology of FND.
Collapse
Affiliation(s)
- Ibai Diez
- Department of Neurology, Functional Neurology Research Group, Behavioral Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Gordon Center, Department of Nuclear Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neurotechnology Laboratory, Tecnalia Health Department, Derio, Spain
| | - Benjamin Williams
- Department of Neurology, Functional Neurology Research Group, Behavioral Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek R. Kubicki
- Department of Psychiatry, Center for Morphometric Analysis, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Department of Psychiatry, Center for Morphometric Analysis, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David L. Perez
- Department of Neurology, Functional Neurology Research Group, Behavioral Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Psychiatry, Neuropsychiatry Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Rossetti MG, Delvecchio G, Calati R, Perlini C, Bellani M, Brambilla P. Structural neuroimaging of somatoform disorders: A systematic review. Neurosci Biobehav Rev 2020; 122:66-78. [PMID: 33359097 DOI: 10.1016/j.neubiorev.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Although there has been an increment in neuroimaging research in somatoform disorders (SD), to date little is known about the neural correlates of these diseases. Therefore, in this systematic, review we aimed at summarizing the existing evidence of structural brain alterations in SD as per DSM-IV and DSM-5 criteria. Three electronic databases (Scopus, PubMed and Web of Science) were searched. Only case-control studies using structural neuroimaging were included. Forty-five out of 369 articles fulfilled inclusion criteria and were reviewed. Compared to controls, subjects with SD showed morphological alterations encompassing motor, limbic and somatosensory circuits. Although far from being conclusive, the results suggested that SD are characterized by selective alterations of large-scale brain networks implicated in cognitive control, emotion regulation and processing, stress and somatic-visceral perception. This review highlights the need for further multimodal neuroimaging studies with longitudinal designs, in larger and better-characterized samples, to elucidate the temporal and causal relationship between neuroanatomical changes and SD, which is paramount for informing tailored treatments.
Collapse
Affiliation(s)
- Maria Gloria Rossetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Raffaella Calati
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Department of Adult Psychiatry, Nîmes University Hospital, Nîmes, France
| | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy; USD Clinical Psychology, Azienda Ospedaliera Universitaria Integrata (AOUI) of Verona, Verona, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy; UOC Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI) of Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy.
| |
Collapse
|
27
|
Sojka P, Diez I, Bareš M, Perez DL. Individual differences in interoceptive accuracy and prediction error in motor functional neurological disorders: A DTI study. Hum Brain Mapp 2020; 42:1434-1445. [PMID: 33615622 PMCID: PMC7927304 DOI: 10.1002/hbm.25304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022] Open
Abstract
In motor functional neurological disorders (mFND), relationships between interoception (a construct of high theoretical relevance to its pathophysiology) and neuroanatomy have not been previously investigated. This study characterized white matter in mFND patients compared to healthy controls (HCs), and investigated associations between fiber bundle integrity and cardiac interoception. Voxel‐based analysis and tractography quantified fractional anisotropy (FA) in 38 mFND patients compared to 38 HCs. Secondary analyses compared functional seizures (FND‐seiz; n = 21) or functional movement disorders (n = 17) to HCs. Network lesion mapping identified gray matter origins of implicated fiber bundles. Within‐group mFND analyses investigated relationships between FA, heartbeat tracking accuracy and interoceptive trait prediction error (discrepancies between interoceptive accuracy and self‐reported bodily awareness). Results were corrected for multiple comparisons, and all findings were adjusted for depression and trait anxiety. mFND and HCs did not show any between‐group interoceptive accuracy or FA differences. However, the FND‐seiz subgroup compared to HCs showed decreased integrity in right‐lateralized tracts: extreme capsule/inferior fronto‐occipital fasciculus, arcuate fasciculus, inferior longitudinal fasciculus, and thalamic/striatum to occipital cortex projections. These alterations originated predominantly from the right temporoparietal junction and inferior temporal gyrus. In mFND patients, individual differences in interoceptive accuracy and interoceptive trait prediction error correlated with fiber bundle integrity originating from the insula, temporoparietal junction, putamen and thalamus among other regions. In this first study investigating brain‐interoception relationships in mFND, individual differences in interoceptive accuracy and trait prediction error mapped onto multimodal integration‐related fiber bundles. Right‐lateralized limbic and associative tract disruptions distinguished FND‐seiz from HCs.
Collapse
Affiliation(s)
- Petr Sojka
- Department of Psychiatry, Faculty of Medicine, Masaryk University Brno and University Hospital, Brno, Brno, Czech Republic.,Department of Psychology and Psychosomatics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Ibai Diez
- Department of Neurology, Functional Neurological Disorder Research Program, Behavioral Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Gordon Center, Department of Nuclear Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.,Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - David L Perez
- Department of Neurology, Functional Neurological Disorder Research Program, Behavioral Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Psychiatry, Neuropsychiatry Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Thomsen BLC, Teodoro T, Edwards MJ. Biomarkers in functional movement disorders: a systematic review. J Neurol Neurosurg Psychiatry 2020; 91:1261-1269. [PMID: 33087421 DOI: 10.1136/jnnp-2020-323141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/11/2020] [Accepted: 09/23/2020] [Indexed: 11/04/2022]
Abstract
Functional movement disorders (FMD) are proposed to reflect a specific problem with voluntary control of movement, despite normal intent to move and an intact neural capacity for movement. In many cases, a positive diagnosis of FMD can be established on clinical grounds. However, the diagnosis remains challenging in certain scenarios, and there is a need for predictors of treatment response and long-term prognosis.In this context, we performed a systematic review of biomarkers in FMD. Eighty-six studies met our predefined criteria and were included.We found fairly reliable electroencephalography and electromyography-based diagnostic biomarkers for functional myoclonus and tremor. Promising biomarkers have also been described for functional paresis, gait and balance disorders. In contrast, there is still a lack of diagnostic biomarkers of functional dystonia and tics, where clinical diagnosis is often also more challenging. Importantly, many promising findings focus on pathophysiology and reflect group-level comparisons, but cannot differentiate on an individual basis. Some biomarkers also require access to time-consuming and resource-consuming techniques such as functional MRI.In conclusion, there are important gaps in diagnostic biomarkers in FMD in the areas of most clinical uncertainty. There is also is a lack of treatment response and prognostic biomarkers to aid in the selection of patients who would benefit from rehabilitation and other forms of treatment.
Collapse
Affiliation(s)
- Birgitte Liang Chen Thomsen
- Neurology, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tiago Teodoro
- Neurosciences Research Centre, St George's University of London, London, UK.,Instituto de Medicina Molecular, University of Lisbon, Lisboa, Portugal
| | - Mark J Edwards
- Neurosciences Research Centre, St George's University of London, London, UK
| |
Collapse
|
29
|
Sun C, Liu X, Bao C, Wei F, Gong Y, Li Y, Liu J. Advanced non-invasive MRI of neuroplasticity in ischemic stroke: Techniques and applications. Life Sci 2020; 261:118365. [PMID: 32871181 DOI: 10.1016/j.lfs.2020.118365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022]
Abstract
Ischemic stroke represents a serious medical condition which could cause survivors suffer from long-term and even lifetime disabilities. After a stroke attack, the brain would undergo varying degrees of recovery, in which the central nervous system could be reorganized spontaneously or with the help of appropriate rehabilitation. Magnetic resonance imaging (MRI) is a non-invasive technique which can provide comprehensive information on structural, functional and metabolic features of brain tissue. In the last decade, there has been an increased technical advancement in MR techniques such as voxel-based morphological analysis (VBM), diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI), arterial spin-labeled perfusion imaging (ASL), magnetic sensitivity weighted imaging (SWI), quantitative sensitivity magnetization (QSM) and magnetic resonance spectroscopy (MRS) which have been proven to be a valuable tool to study the brain tissue reorganization. Due to MRI indices of neuroplasticity related to neurological outcome could be translated to the clinic. The ultimate goal of this review is to equip readers with a fundamental understanding of advanced MR techniques and their corresponding clinical application for improving the ability to predict neuroplasticity that are most suitable for stroke management.
Collapse
Affiliation(s)
- Chao Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xuehuan Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Cuiping Bao
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Feng Wei
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Yi Gong
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Yiming Li
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Jun Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China.
| |
Collapse
|
30
|
Lin D, Castro P, Edwards A, Sekar A, Edwards MJ, Coebergh J, Bronstein AM, Kaski D. Dissociated motor learning and de-adaptation in patients with functional gait disorders. Brain 2020; 143:2594-2606. [DOI: 10.1093/brain/awaa190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract
Walking onto a stationary platform that had been previously experienced as moving generates a locomotor after-effect—the so-called ‘broken escalator’ phenomenon. The motor responses that occur during locomotor after-effects have been mapped theoretically using a hierarchal Bayesian model of brain function that takes into account current sensory information that is weighted according to prior contextually-relevant experiences; these in turn inform automatic motor responses. Here, we use the broken escalator phenomenon to explore motor learning in patients with functional gait disorders and probe whether abnormal postural mechanisms override ascending sensory information and conscious intention, leading to maladaptive and disabling gait abnormalities. Fourteen patients with functional gait disorders and 17 healthy control subjects walked onto a stationary sled (‘Before’ condition, five trials), then onto a moving sled (‘Moving’ condition, 10 trials) and then again onto the stationary sled (‘After’ condition, five trials). Subjects were warned of the change in conditions. Kinematic gait measures (trunk displacement, step timing, gait velocity), EMG responses, and subjective measures of state anxiety/instability were recorded per trial. Patients had slower gait velocities in the Before trials (P < 0.05) but were able to increase this to accommodate the moving sled, with similar learning curves to control subjects (P = 0.87). Although trunk and gait velocity locomotor after-effects were present in both groups, there was a persistence of the locomotor after-effect only in patients (P < 0.05). We observed an increase in gait velocity during After trials towards normal values in the patient group. Instability and state anxiety were greater in patients than controls (P < 0.05) only during explicit phases (Before/After) of the task. Mean ‘final’ gait termination EMG activity (right gastrocnemius) was greater in the patient group than controls. Despite a dysfunctional locomotor system, patients show normal adaptive learning. The process of de-adaptation, however, is prolonged in patients indicating a tendency to perpetuate learned motor programmes. The trend to normalization of gait velocity following a period of implicit motor learning has implications for gait rehabilitation potential in patients with functional gait disorders and related disorders (e.g. fear of falling).
Collapse
Affiliation(s)
- Denise Lin
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
| | - Patricia Castro
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
- Universidad del Desarrollo, Escuela de Fonoaudiología, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Amy Edwards
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
| | - Akila Sekar
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
| | - Mark J Edwards
- Department of Neurology, St George’s Hospital, London, UK
| | - Jan Coebergh
- Department of Neurology, St George’s Hospital, London, UK
| | - Adolfo M Bronstein
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
| | - Diego Kaski
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
- Department of Clinical and Motor Neurosciences, Centre for Vestibular and Behavioural Neurosciences, University College London, London, UK
| |
Collapse
|
31
|
Zhang DX, Zheng WC, Bai Y, Bai J, Fu L, Wang XP, Zhang LM. CORM-3 improves emotional changes induced by hemorrhagic shock via the inhibition of pyroptosis in the amygdala. Neurochem Int 2020; 139:104784. [PMID: 32652269 DOI: 10.1016/j.neuint.2020.104784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
Abstract
Hemorrhagic shock and resuscitation (HSR) may lead to long-term neurological dysfunction, such as depression and anxiety. Carbon monoxide (CO) has emerged as an excellent neuroprotective agent against caspase-1-associated pyroptosis, following HSR. We evaluated the effects and determined the mechanism through which CO protects against emotional changes in a model of HSR, in rats. We subjected rats to treatments with an exogenous, CO-releasing compound (CORM-3, 4 mg/kg), in vivo, after HSR. We measured sucrose preference and performed tail suspension and open field tests 7 days after HSR, assessed brain magnetic resonance imaging 12 h after HSR and evaluated pyroptosis, and neuronal and astrocyte death in the amygdala 12 h post-HSR. We also measured changes in behavior and pathology, following an injection of recombinant murine interleukin (IL)-18 into the amygdala. HSR-treated rats displayed increased depression-like and anxiety-like behaviors, increased amygdalar injury, as indicated by T2-weighted magnetic resonance imaging (MRI) and cerebral blood flow with arterial spin labeling (CBFASL), associated with both neuronal and astrocytic death and pyroptosis, and upregulated IL-18 expression was observed in astrocytes. CORM-3 administration after resuscitation, via a femoral vein injection, provided neuroprotection against HSR, and this neuroprotective effect could be partially reversed by the injection of recombinant murine IL-18 into the amygdala. Therefore, CORM-3 alleviated HSR-induced neuronal pyroptosis and emotional changes, through the downregulation of IL-18 in astrocytes.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yang Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
32
|
Powell A, Hurelbrink CB, Hayes MW. Therapeutic benefits of early electrophysiological testing in a functional neurology case. Neurol Clin Pract 2019; 9:532-534. [DOI: 10.1212/cpj.0000000000000681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/28/2019] [Indexed: 11/15/2022]
|
33
|
van Wouwe NC, Mohanty D, Lingaiah A, Wylie SA, LaFaver K. Impaired Action Control in Patients With Functional Movement Disorders. J Neuropsychiatry Clin Neurosci 2019; 32:73-78. [PMID: 31587628 PMCID: PMC11163944 DOI: 10.1176/appi.neuropsych.19030076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Despite being a major cause of neurological disability, the neural mechanisms of functional movement disorders (FMDs) remain poorly understood. Recent studies suggest that FMD is linked to dysfunctional motor and prefrontal regions that could lead to motor and cognitive impairments. The aim of this study was to investigate different components of action control in FMD by using choice-reaction, stop-signal, and Simon tasks. METHODS Thirty patients with an FMD were prospectively recruited from the University of Louisville Movement Disorders Clinic and compared with 53 healthy control subjects, recruited from the Vanderbilt University Medical Center Movement Disorders Clinic. FMD motor symptom severity was rated with the Simplified Functional Movement Disorder Rating Scale (S-FMDRS). By using a computer and handheld response grips, participants completed three action-control tasks (choice-reaction task, stop-signal task, and Simon task) that tested action initiation, action cancelation, and interference control over actions. Action-control measures were compared between groups with analyses of variance. RESULTS Patients with FMD were less proficient in suppressing incorrect response impulses on the Simon task and were slower to stop on the stop-signal task compared with healthy control subjects. No significant correlation with neuropsychological measurements, S-FMDRS scores, and action-control measurements was observed. CONCLUSIONS These results suggest that two forms of inhibitory control, selective impulse inhibition and global action cancelation, are impaired in patients with FMD, independent of slowing on go reaction times. Improved understanding of action control in FMD may help in the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Nelleke C van Wouwe
- The Department of Neurosurgery (van Wouwe, Wylie) and the Department of Neurology (Mohanty, Lingaiah, LaFaver), University of Louisville, Louisville, Ky.; and the Department of Neurology, Vanderbilt University Medical Center, Nashville (van Wouwe)
| | - Diksha Mohanty
- The Department of Neurosurgery (van Wouwe, Wylie) and the Department of Neurology (Mohanty, Lingaiah, LaFaver), University of Louisville, Louisville, Ky.; and the Department of Neurology, Vanderbilt University Medical Center, Nashville (van Wouwe)
| | - Anushree Lingaiah
- The Department of Neurosurgery (van Wouwe, Wylie) and the Department of Neurology (Mohanty, Lingaiah, LaFaver), University of Louisville, Louisville, Ky.; and the Department of Neurology, Vanderbilt University Medical Center, Nashville (van Wouwe)
| | - Scott A Wylie
- The Department of Neurosurgery (van Wouwe, Wylie) and the Department of Neurology (Mohanty, Lingaiah, LaFaver), University of Louisville, Louisville, Ky.; and the Department of Neurology, Vanderbilt University Medical Center, Nashville (van Wouwe)
| | - Kathrin LaFaver
- The Department of Neurosurgery (van Wouwe, Wylie) and the Department of Neurology (Mohanty, Lingaiah, LaFaver), University of Louisville, Louisville, Ky.; and the Department of Neurology, Vanderbilt University Medical Center, Nashville (van Wouwe)
| |
Collapse
|
34
|
Hallett M. Functional movement disorders: Is the crisis resolved? Mov Disord 2019; 34:971-974. [DOI: 10.1002/mds.27713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 11/07/2022] Open
Affiliation(s)
- Mark Hallett
- Human Motor Control SectionNINDS, NIH Bethesda Maryland USA
| |
Collapse
|
35
|
Bègue I, Adams C, Stone J, Perez DL. Structural alterations in functional neurological disorder and related conditions: a software and hardware problem? Neuroimage Clin 2019; 22:101798. [PMID: 31146322 PMCID: PMC6484222 DOI: 10.1016/j.nicl.2019.101798] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 01/01/2023]
Abstract
Functional neurological (conversion) disorder (FND) is a condition at the interface of neurology and psychiatry. A "software" vs. "hardware" analogy describes abnormal neurobiological mechanisms occurring in the context of intact macroscopic brain structure. While useful for explanatory and treatment models, this framework may require more nuanced considerations in the context of quantitative structural neuroimaging findings in FND. Moreover, high co-occurrence of FND and somatic symptom disorders (SSD) as defined in DSM-IV (somatization disorder, somatoform pain disorder, and undifferentiated somatoform disorder; referred to as SSD for brevity in this article) raises the possibility of a partially overlapping pathophysiology. In this systematic review, we use a transdiagnostic approach to review and appraise the structural neuroimaging literature in FND and SSD. While larger sample size studies are needed for definitive characterization, this article highlights that individuals with FND and SSD may exhibit sensorimotor, prefrontal, striatal-thalamic, paralimbic, and limbic structural alterations. The structural neuroimaging literature is contextualized within the neurobiology of stress-related neuroplasticity, gender differences, psychiatric comorbidities, and the greater spectrum of functional somatic disorders. Future directions that could accelerate the characterization of the pathophysiology of FND and DSM-5 SSD are outlined, including "disease staging" discussions to contextualize subgroups with or without structural changes. Emerging neuroimaging evidence suggests that some individuals with FND and SSD may have a "software" and "hardware" problem, although if structural alterations are present the neural mechanisms of functional disorders remain distinct from lesional neurological conditions. Furthermore, it remains unclear whether structural alterations relate to predisposing vulnerabilities or consequences of the disorder.
Collapse
Affiliation(s)
- Indrit Bègue
- Department of Psychiatry, University of Geneva, Switzerland; Service of Adult Psychiatry, Department of Mental Health and Psychiatry, University Hospitals of Geneva, Switzerland; Laboratory for Behavioral Neurology and Imaging of Cognition, Geneva Neuroscience Center, University of Geneva, Switzerland
| | - Caitlin Adams
- Functional Neurology Research Group, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Inpatient Psychiatry Division, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jon Stone
- Centre for Clinical Brain Sciences, Western General Hospital, NHS Lothian and University of Edinburgh, Edinburgh, UK
| | - David L Perez
- Functional Neurology Research Group, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
36
|
Baizabal-Carvallo JF, Hallett M, Jankovic J. Pathogenesis and pathophysiology of functional (psychogenic) movement disorders. Neurobiol Dis 2019; 127:32-44. [PMID: 30798005 DOI: 10.1016/j.nbd.2019.02.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/31/2019] [Accepted: 02/20/2019] [Indexed: 11/17/2022] Open
Abstract
Functional movement disorders (FMDs), known over time as "hysteria", "dissociative", "conversion", "somatoform", "non-organic" and "psychogenic" disorders, are characterized by having a voluntary quality, being modifiable by attention and distraction but perceived by the patient as involuntary. Although a high prevalence of depression and anxiety is observed in these patients, a definitive role of psychiatric disorders in FMDs has not been proven, and many patients do not endorse such manifestations. Stressful events, social influences and minor trauma may precede the onset of FMDs, but their pathogenic mechanisms are unclear. Patients with FMDs have several abnormalities in their neurobiology including strengthened connectivity between the limbic and motor networks. Additionally, there is altered top-down regulation of motor activities and increased activation of areas implicated in self-awareness, self-monitoring, and active motor inhibition such as the cingulate and insular cortex. Decreased activation of the supplementary motor area (SMA) and pre-SMA, implicated in motor control and preparation, is another finding. The sense of agency defined as the feeling of controlling external events through one's own action also seems to be impaired in individuals with FMDs. Correlating with this is a loss of intentional binding, a subjective time compression between intentional action and its sensory consequences. Organic and functional dystonia may be difficult to differentiate since they share diverse neurophysiological features including decreased cortical inhibition, and similar local field potentials in the globus pallidus and thalamus; although increased cortical plasticity is observed only in patients with organic dystonia. Advances in the pathogenesis and pathophysiology of FMDs may be helpful to understand the nature of these disorders and plan further treatment strategies.
Collapse
Affiliation(s)
- José Fidel Baizabal-Carvallo
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA; University of Guanajuato, Mexico.
| | - Mark Hallett
- Human Motor Control Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
37
|
Ospina JP, Jalilianhasanpour R, Perez DL. The role of the anterior and midcingulate cortex in the neurobiology of functional neurologic disorder. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:267-279. [PMID: 31731915 DOI: 10.1016/b978-0-444-64196-0.00014-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functional neurologic disorder (FND)/conversion disorder is a prevalent and disabling condition at the intersection of neurology and psychiatry. Clinicians often report feeling ill-equipped treating patients with FND, perpetuated by a historically limited understanding of neurobiologic disease mechanisms. In this review, we summarize the neuroimaging literature across the spectrum of sensorimotor FND, including functional imaging studies during rest, sensorimotor performance, and emotional-processing tasks as well as structural magnetic resonance imaging findings. Particular attention is given to studies implicating the anterior and middle cingulate cortex and related salience network structures (insula, amygdala, and periaqueductal gray) in the neurobiology of FND. Neuroimaging studies identify cingulo-insular functional alterations during rest, motor performance, and emotion processing in FND populations. The literature also supports that patients with FND exhibit heightened amygdalar and periaqueductal gray reactivity to emotionally valenced stimuli, enhanced coupling between amygdalar and motor control areas, and increased amygdalar volumes. The structural neuroimaging literature also implicates cingulo-insular areas in the pathophysiology of FND, though these findings require replication and clarification. While more research is needed to fully elucidate the pathophysiology of FND, salience network alterations appear present in some FND populations and can be contextualized using biopsychosocial models for FND.
Collapse
Affiliation(s)
- Juan Pablo Ospina
- Department of Neurology, Cognitive Behavioral Neurology Unit, Functional Neurology Research Group, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rozita Jalilianhasanpour
- Department of Neurology, Cognitive Behavioral Neurology Unit, Functional Neurology Research Group, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David L Perez
- Departments of Neurology and Psychiatry, Cognitive Behavioral Neurology and Neuropsychiatry Units, Functional Neurology Research Group, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|