1
|
Woldeamanuel YW, Sanjanwala BM, Cowan RP. Deep and unbiased proteomics, pathway enrichment analysis, and protein-protein interaction of biomarker signatures in migraine. Ther Adv Chronic Dis 2024; 15:20406223241274302. [PMID: 39314676 PMCID: PMC11418313 DOI: 10.1177/20406223241274302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
Background Currently, there are no biomarkers for migraine. Objectives We aimed to identify proteomic biomarker signatures for diagnosing, subclassifying, and predicting treatment response in migraine. Design This is a cross-sectional and longitudinal study of untargeted serum and cerebrospinal fluid (CSF) proteomics in episodic migraine (EM; n = 26), chronic migraine (CM; n = 26), and healthy controls (HC; n = 26). Methods We developed classification models for biomarker identification and natural clusters through unsupervised classification using agglomerative hierarchical clustering (AHC). Pathway analysis of differentially expressed proteins was performed. Results Of 405 CSF proteins, the top five proteins that discriminated between migraine patients and HC were angiotensinogen, cell adhesion molecule 3, immunoglobulin heavy variable (IGHV) V-III region JON, insulin-like growth factor binding protein 6 (IGFBP-6), and IGFBP-7. The top-performing classifier demonstrated 100% sensitivity and 75% specificity in differentiating the two groups. Of 229 serum proteins, the top five proteins in classifying patients with migraine were immunoglobulin heavy variable 3-74 (IGHV 3-74), proteoglycan 4, immunoglobulin kappa variable 3D-15, zinc finger protein (ZFP)-814, and mediator of RNA polymerase II transcription subunit 12. The best-performing classifier exhibited 94% sensitivity and 92% specificity. AHC separated EM, CM, and HC into distinct clusters with 90% success. Migraine patients exhibited increased ZFP-814 and calcium voltage-gated channel subunit alpha 1F (CACNA1F) levels, while IGHV 3-74 levels decreased in both cross-sectional and longitudinal serum analyses. ZFP-814 remained upregulated during the CM-to-EM reversion but was suppressed when CM persisted. CACNA1F was pronounced in CM persistence. Pathway analysis revealed immune, coagulation, glucose metabolism, erythrocyte oxygen and carbon dioxide exchange, and insulin-like growth factor regulation pathways. Conclusion Our data-driven study provides evidence for identifying novel proteomic biomarker signatures to diagnose, subclassify, and predict treatment responses for migraine. The dysregulated biomolecules affect multiple pathways, leading to cortical spreading depression, trigeminal nociceptor sensitization, oxidative stress, blood-brain barrier disruption, immune response, and coagulation cascades. Trial registration NCT03231241, ClincialTrials.gov.
Collapse
Affiliation(s)
- Yohannes W. Woldeamanuel
- Division of Headache, Department of Neurology, Mayo Clinic Arizona, 6161 E. Mayo Blvd, Phoenix, AZ, USA
| | - Bharati M. Sanjanwala
- Division of Headache and Facial Pain, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA
| | - Robert P. Cowan
- Division of Headache and Facial Pain, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA
| |
Collapse
|
2
|
Albury CL, Sutherland HG, Lam AWY, Tran NK, Lea RA, Haupt LM, Griffiths LR. Identification of Polymorphisms in EAAT1 Glutamate Transporter Gene SLC1A3 Associated with Reduced Migraine Risk. Genes (Basel) 2024; 15:797. [PMID: 38927733 PMCID: PMC11202508 DOI: 10.3390/genes15060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Dysfunction in ion channels or processes involved in maintaining ionic homeostasis is thought to lower the threshold for cortical spreading depression (CSD), and plays a role in susceptibility to associated neurological disorders, including pathogenesis of a migraine. Rare pathogenic variants in specific ion channels have been implicated in monogenic migraine subtypes. In this study, we further examined the channelopathic nature of a migraine through the analysis of common genetic variants in three selected ion channel or transporter genes: SLC4A4, SLC1A3, and CHRNA4. Using the Agena MassARRAY platform, 28 single-nucleotide polymorphisms (SNPs) across the three candidate genes were genotyped in a case-control cohort comprised of 182 migraine cases and 179 matched controls. Initial results identified significant associations between migraine and rs3776578 (p = 0.04) and rs16903247 (p = 0.05) genotypes within the SLC1A3 gene, which encodes the EAAT1 glutamate transporter. These SNPs were subsequently genotyped in an independent cohort of 258 migraine cases and 290 controls using a high-resolution melt assay, and association testing supported the replication of initial findings-rs3776578 (p = 0.0041) and rs16903247 (p = 0.0127). The polymorphisms are in linkage disequilibrium and localise within a putative intronic enhancer region of SLC1A3. The minor alleles of both SNPs show a protective effect on migraine risk, which may be conferred via influencing the expression of SLC1A3.
Collapse
Affiliation(s)
- Cassie L. Albury
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Heidi G. Sutherland
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Alexis W. Y. Lam
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Ngan K. Tran
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Rod A. Lea
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| | - Larisa M. Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia;
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology(QUT), Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Kelvin Grove, QLD 4059, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia
| | - Lyn R. Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (C.L.A.); (H.G.S.); (A.W.Y.L.); (N.K.T.); (R.A.L.)
| |
Collapse
|
3
|
de Vries PS, Reventun P, Brown MR, Heath AS, Huffman JE, Le NQ, Bebo A, Brody JA, Temprano-Sagrera G, Raffield LM, Ozel AB, Thibord F, Jain D, Lewis JP, Rodriguez BAT, Pankratz N, Taylor KD, Polasek O, Chen MH, Yanek LR, Carrasquilla GD, Marioni RE, Kleber ME, Trégouët DA, Yao J, Li-Gao R, Joshi PK, Trompet S, Martinez-Perez A, Ghanbari M, Howard TE, Reiner AP, Arvanitis M, Ryan KA, Bartz TM, Rudan I, Faraday N, Linneberg A, Ekunwe L, Davies G, Delgado GE, Suchon P, Guo X, Rosendaal FR, Klaric L, Noordam R, van Rooij F, Curran JE, Wheeler MM, Osburn WO, O'Connell JR, Boerwinkle E, Beswick A, Psaty BM, Kolcic I, Souto JC, Becker LC, Hansen T, Doyle MF, Harris SE, Moissl AP, Deleuze JF, Rich SS, van Hylckama Vlieg A, Campbell H, Stott DJ, Soria JM, de Maat MPM, Almasy L, Brody LC, Auer PL, Mitchell BD, Ben-Shlomo Y, Fornage M, Hayward C, Mathias RA, Kilpeläinen TO, Lange LA, Cox SR, März W, Morange PE, Rotter JI, Mook-Kanamori DO, Wilson JF, van der Harst P, Jukema JW, Ikram MA, Blangero J, Kooperberg C, Desch KC, Johnson AD, Sabater-Lleal M, Lowenstein CJ, Smith NL, Morrison AC. A genetic association study of circulating coagulation factor VIII and von Willebrand factor levels. Blood 2024; 143:1845-1855. [PMID: 38320121 PMCID: PMC11443575 DOI: 10.1182/blood.2023021452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
ABSTRACT Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.
Collapse
Affiliation(s)
- Paul S. de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Paula Reventun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael R. Brown
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Adam S. Heath
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Jennifer E. Huffman
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA
| | - Ngoc-Quynh Le
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
| | - Allison Bebo
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | | | - Laura M. Raffield
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Florian Thibord
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA
| | - Deepti Jain
- Department of Biostatistics, Genetic Analysis Center, School of Public Health, University of Washington, Seattle, WA
| | - Joshua P. Lewis
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Benjamin A. T. Rodriguez
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kent D. Taylor
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Ming-Huei Chen
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA
| | - Lisa R. Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - German D. Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Marcus E. Kleber
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
- Fifth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Jie Yao
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Angel Martinez-Perez
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tom E. Howard
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Alex P. Reiner
- Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marios Arvanitis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Traci M. Bartz
- Departments of Biostatistics and Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Gail Davies
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland
| | - Graciela E. Delgado
- Fifth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pierre Suchon
- C2VN, INSERM, INRAE, Aix Marseille University, Marseille, France
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Xiuqing Guo
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank van Rooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | - Marsha M. Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - William O. Osburn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Andrew Beswick
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Departments of Epidemiology and Health Systems and Population Health, Seattle, WA
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Juan Carlos Souto
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lewis C. Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Colchester, VT
| | - Sarah E. Harris
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland
| | - Angela P. Moissl
- Institute of Nutritional Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health Halle-Jena-Leipzig, Jena, Germany
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, Evry, France
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
| | - Stephen S. Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | | | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - David J. Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Jose Manuel Soria
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
| | - Moniek P. M. de Maat
- Department of Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lawrence C. Brody
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Paul L. Auer
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland, Baltimore, MD
- Geriatric Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Yoav Ben-Shlomo
- Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Myriam Fornage
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Rasika A. Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Leslie A. Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Simon R. Cox
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland
| | - Winfried März
- Fifth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Pierre-Emmanuel Morange
- C2VN, INSERM, INRAE, Aix Marseille University, Marseille, France
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Jerome I. Rotter
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Pim van der Harst
- Division of Heart and Lungs, Department of Cardiology, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX
| | | | - Karl C. Desch
- Department of Pediatrics, University of Michigan, C.S. Mott Children's Hospital, Ann Arbor, MI
| | - Andrew D. Johnson
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, MA
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Disease, Institut de Recerca Sant Pau, Barcelona, Spain
- Department of Medicine, Cardiovascular Medicine Unit, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | | | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
- Department of Veterans Affairs Office of Research and Development, Seattle Epidemiologic and Information Center, Seattle, WA
| | - Alanna C. Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
4
|
Sutherland HG, Jenkins B, Griffiths LR. Genetics of migraine: complexity, implications, and potential clinical applications. Lancet Neurol 2024; 23:429-446. [PMID: 38508838 DOI: 10.1016/s1474-4422(24)00026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/22/2024]
Abstract
Migraine is a common neurological disorder with large burden in terms of disability for individuals and costs for society. Accurate diagnosis and effective treatments remain priorities. Understanding the genetic factors that contribute to migraine risk and symptom manifestation could improve individual management. Migraine has a strong genetic basis that includes both monogenic and polygenic forms. Some distinct, rare, familial migraine subtypes are caused by pathogenic variants in genes involved in ion transport and neurotransmitter release, suggesting an underlying vulnerability of the excitatory-inhibitory balance in the brain, which might be exacerbated by disruption of homoeostasis and lead to migraine. For more prevalent migraine subtypes, genetic studies have identified many susceptibility loci, implicating genes involved in both neuronal and vascular pathways. Genetic factors can also reveal the nature of relationships between migraine and its associated biomarkers and comorbidities and could potentially be used to identify new therapeutic targets and predict treatment response.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bronwyn Jenkins
- Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Gagnon E, Daghlas I, Zagkos L, Sargurupremraj M, Georgakis MK, Anderson CD, Cronje HT, Burgess S, Arsenault BJ, Gill D. Mendelian Randomization Applied to Neurology: Promises and Challenges. Neurology 2024; 102:e209128. [PMID: 38261980 PMCID: PMC7615637 DOI: 10.1212/wnl.0000000000209128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 01/25/2024] Open
Abstract
The Mendelian randomization (MR) paradigm allows for causal inferences to be drawn using genetic data. In recent years, the expansion of well-powered publicly available genetic association data related to phenotypes such as brain tissue gene expression, brain imaging, and neurologic diseases offers exciting opportunities for the application of MR in the field of neurology. In this review, we discuss the basic principles of MR, its myriad applications to research in neurology, and potential pitfalls of injudicious applications. Throughout, we provide examples where MR-informed findings have shed light on long-standing epidemiologic controversies, provided insights into the pathophysiology of neurologic conditions, prioritized drug targets, and informed drug repurposing opportunities. With the ever-expanding availability of genome-wide association data, we project MR to become a key driver of progress in the field of neurology. It is therefore paramount that academics and clinicians within the field are familiar with the approach.
Collapse
Affiliation(s)
- Eloi Gagnon
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Iyas Daghlas
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Loukas Zagkos
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Muralidharan Sargurupremraj
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Marios K Georgakis
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Christopher D Anderson
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Helene T Cronje
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Stephen Burgess
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Benoit J Arsenault
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| | - Dipender Gill
- From the Quebec Heart and Lung Institute (E.G., B.J.A.), Laval University, Quebec, Canada; Department of Neurology (I.D.), University of California San Francisco; Department of Epidemiology and Biostatistics (L.Z., D.G.), School of Public Health, Imperial College London, United Kingdom; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (M.S.), University of Texas Health Sciences Center, San Antonio; Broad Institute of MIT and Harvard (M.K.G., C.D.A.), Cambridge, MA; Institute for Stroke and Dementia Research (ISD) (M.K.G.), University Hospital, LMU Munich, Germany; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital; Department of Neurology (C.D.A.), Brigham and Women's Hospital, Boston, MA; Department of Public Health (H.T.C.), Section of Epidemiology, University of Copenhagen, Denmark; MRC Biostatistics Unit (S.B.), and Cardiovascular Epidemiology Unit (S.B.), Department of Public Health and Primary Care, University of Cambridge, United Kingdom; and Department of Medicine (B.J.A.), Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
6
|
Grangeon L, Lange KS, Waliszewska-Prosół M, Onan D, Marschollek K, Wiels W, Mikulenka P, Farham F, Gollion C, Ducros A. Genetics of migraine: where are we now? J Headache Pain 2023; 24:12. [PMID: 36800925 PMCID: PMC9940421 DOI: 10.1186/s10194-023-01547-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023] Open
Abstract
Migraine is a complex brain disorder explained by the interaction of genetic and environmental factors. In monogenic migraines, including familial hemiplegic migraine and migraine with aura associated with hereditary small-vessel disorders, the identified genes code for proteins expressed in neurons, glial cells, or vessels, all of which increase susceptibility to cortical spreading depression. The study of monogenic migraines has shown that the neurovascular unit plays a prominent role in migraine. Genome-wide association studies have identified numerous susceptibility variants that each result in only a small increase in overall migraine risk. The more than 180 known variants belong to several complex networks of "pro-migraine" molecular abnormalities, which are mainly neuronal or vascular. Genetics has also highlighted the importance of shared genetic factors between migraine and its major co-morbidities, including depression and high blood pressure. Further studies are still needed to map all of the susceptibility loci for migraine and then to understand how these genomic variants lead to migraine cell phenotypes.
Collapse
Affiliation(s)
- Lou Grangeon
- grid.41724.340000 0001 2296 5231Neurology Department, CHU de Rouen, Rouen, France
| | - Kristin Sophie Lange
- grid.6363.00000 0001 2218 4662Neurology Department, Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin, Berlin, Germany
| | - Marta Waliszewska-Prosół
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Dilara Onan
- grid.14442.370000 0001 2342 7339Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Ankara, Turkey
| | - Karol Marschollek
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Wietse Wiels
- grid.8767.e0000 0001 2290 8069Department of Neurology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Petr Mikulenka
- grid.412819.70000 0004 0611 1895Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Fatemeh Farham
- grid.411705.60000 0001 0166 0922Headache Department, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Cédric Gollion
- grid.411175.70000 0001 1457 2980Neurology Department, CHU de Toulouse, Toulouse, France
| | - Anne Ducros
- Neurology Department, CHU de Montpellier, 80 avenue Augustin Fliche, 34295, Montpellier, France.
| | | |
Collapse
|
7
|
Harder AV, Terwindt GM, Nyholt DR, van den Maagdenberg AM. Migraine genetics: Status and road forward. Cephalalgia 2023; 43:3331024221145962. [PMID: 36759319 DOI: 10.1177/03331024221145962] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Migraine is considered a multifactorial genetic disorder. Different platforms and methods are used to unravel the genetic basis of migraine. Initially, linkage analysis in multigenerational families followed by Sanger sequencing of protein-coding parts (exons) of genes in the genomic region shared by affected family members identified high-effect risk DNA mutations for rare Mendelian forms of migraine, foremost hemiplegic migraine. More recently, genome-wide association studies testing millions of DNA variants in large groups of patients and controls have proven successful in identifying many dozens of low-effect risk DNA variants for the more common forms of migraine with the number of associated DNA variants increasing steadily with larger sample sizes. Currently, next-generation sequencing, utilising whole exome and whole genome sequence data, and other omics data are being used to facilitate their functional interpretation and the discovery of additional risk factors. Various methods and analysis tools, such as genetic correlation and causality analysis, are used to further characterise genetic risk factors. FINDINGS We describe recent findings in genome-wide association studies and next-generation sequencing analysis in migraine. We show that the combined results of the two most recent and most powerful migraine genome-wide association studies have identified a total of 178 LD-independent (r2 < 0.1) genome-wide significant single nucleotide polymorphisms (SNPs), of which 99 were unique to Hautakangas et al., 11 were unique to Choquet et al., and 68 were identified by both studies. When considering that Choquet et al. also identified three SNPs in a female-specific genome-wide association studies then these two recent studies identified 181 independent SNPs robustly associated with migraine. Cross-trait and causal analyses are beginning to identify and characterise specific biological factors that contribute to migraine risk and its comorbid conditions. CONCLUSION This review provides a timely update and overview of recent genetic findings in migraine.
Collapse
Affiliation(s)
- Aster Ve Harder
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
| | - Arn Mjm van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
8
|
van der Weerd N, van Os HJA, Ali M, Schoones JW, van den Maagdenberg AMJM, Kruyt ND, Siegerink B, Wermer MJH. Sex Differences in Hemostatic Factors in Patients With Ischemic Stroke and the Relation With Migraine-A Systematic Review. Front Cell Neurosci 2021; 15:711604. [PMID: 34858141 PMCID: PMC8632366 DOI: 10.3389/fncel.2021.711604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Women are more affected by stroke than men. This might, in part, be explained by sex differences in stroke pathophysiology. The hemostasis system is influenced by sex hormones and associated with female risk factors for stroke, such as migraine. Aim: To systematically review possible sex differences in hemostatic related factors in patients with ischemic stroke in general, and the influence of migraine on these factors in women with ischemic stroke. Results: We included 24 studies with data on sex differences of hemostatic factors in 7247 patients with ischemic stroke (mean age 57–72 years, 27–57% women) and 25 hemostatic related factors. Levels of several factors were higher in women compared with men; FVII:C (116% ± 30% vs. 104% ± 30%), FXI (0.14 UI/mL higher in women), PAI-1 (125.35 ± 49.37 vs. 96.67 ± 38.90 ng/mL), D-dimer (1.25 ± 0.31 vs. 0.95 ± 0.24 μg/mL), and aPS (18.7% vs. 12.0% positive). In contrast, protein-S (86.2% ± 23.0% vs. 104.7% ± 19.8% antigen) and P-selectin (48.9 ± 14.4 vs. 79.1 ± 66.7 pg/mL) were higher in men. Most factors were investigated in single studies, at different time points after stroke, and in different stroke subtypes. Only one small study reported data on migraine and hemostatic factors in women with ischemic stroke. No differences in fibrinogen, D-dimer, t-PA, and PAI-1 levels were found between women with and without migraine. Conclusion: Our systematic review suggests that sex differences exist in the activation of the hemostatic system in ischemic stroke. Women seem to lean more toward increased levels of procoagulant factors whereas men exhibit increased levels of coagulation inhibitors. To obtain better insight in sex-related differences in hemostatic factors, additional studies are needed to confirm these findings with special attention for different stroke phases, stroke subtypes, and not in the least women specific risk factors, such as migraine.
Collapse
Affiliation(s)
- Nelleke van der Weerd
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, Netherlands
| | - Hine J A van Os
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Mariam Ali
- Department of Neurology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Centre, Leiden, Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, Netherlands
| | - Nyika D Kruyt
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands.,Department of Neurology, University Neurovascular Centre, The Hague, Netherlands
| | - Bob Siegerink
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands.,Department of Neurology, University Neurovascular Centre, The Hague, Netherlands
| |
Collapse
|
9
|
Abstract
Migraine is a complex brain disorder explained by the interaction of genetic and environmental factors. In monogenic migraines, including familial hemiplegic migraine and migraine with aura associated with hereditary small-vessel disorders, the identified genes encode proteins expressed in neurons, astrocytes or vessels, which all increase the susceptibility to cortical spreading depression. Study of monogenic migraines showed that the neurovascular unit plays a prominent role in migraine. Genome-wide association studies have identified multiple susceptibility variants that only cause a small increase of the global migraine risk. The variants belong to several complex networks of "pro-migraine" molecular abnormalities, which are mainly neuronal or vascular. Genetics has also underscored the importance of genetic factors shared between migraine and its major co-morbidities including depression and high blood pressure. Further studies are still needed to map all of the susceptibility loci for migraine and then to understand how these genomic variants lead to migraine cell phenotypes. Thanks to the advent of new technologies such as induced pluripotent stem cells, genetic data will hopefully finally be able to lead to therapeutic progress.
Collapse
|