1
|
Cui J, Robert C, Teh CM, Jun Yi EC, Chong JR, Tan BY, Venketasubramanian N, Lai MKP, Chen C, Hilal S. Interactive effect of diabetes mellitus and subclinical MRI markers of cerebrovascular disease on cognitive decline and incident dementia: a memory-clinic study. Alzheimers Res Ther 2024; 16:214. [PMID: 39363381 PMCID: PMC11448036 DOI: 10.1186/s13195-024-01577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Cognitive impairment is an increasingly recognized comorbidity of diabetes, yet the mechanisms underlying this association remain poorly understood. This knowledge gap has contributed to conflicting findings regarding the impact of diabetes on long-term cognitive outcomes in older adults. The presence of cerebrovascular disease (CeVD) may potentially modify this relationship. However, interactive effect between diabetes and subclinical MRI markers of CeVD on cognitive trajectories and incident dementia remains unexplored. METHODS A total of 654 participants underwent brain MRI at baseline, from whom 614 with at least one follow-up were selected for longitudinal analysis. Cognitive tests were performed annually up to 5 years. CeVD markers of interest were lacunes, white matter hyperintensities (WMHs), cerebral microbleeds (CMBs), cortical microinfarcts (CMIs), intracranial stenosis (ICS), and cortical infarcts. Blood-based Alzheimer biomarkers, including p-tau181 and p-tau181/Aβ42 ratio, were used as indicators of Alzheimer pathology. RESULTS At baseline, diabetes was associated with lower cognitive performance and higher burden of CeVD, but not p-tau181 or p-tau181/Aβ42 ratio. Longitudinally, we found an interactive effect of diabetes and WMHs, rather than an independent effect of diabetes, on cognitive decline and dementia risk. Subgroup analyses showed association of diabetes with cognitive outcomes was stronger in participants with high WMHs load but non-significant in those with low WMHs load. Moreover, these associations remained unchanged after adjusting for blood-based Alzheimer biomarkers. CONCLUSIONS The effect of diabetes on cognitive decline is contingent upon the presence of WMHs and independent of Alzheimer's pathology. This finding raises the possibility of utilizing WMHs as an imaging biomarker to identify diabetic subgroup at greater risk of developing cognitive impairment. Furthermore, therapeutic interventions targeting WMHs may prevent cognitive deterioration in older adults with diabetes.
Collapse
Affiliation(s)
- Jiangbo Cui
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Caroline Robert
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Chia May Teh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Eddie Chong Jun Yi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | | | | | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Christopher Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
| |
Collapse
|
2
|
Preeti K, Sood A, Fernandes V, Khan I, Khatri DK, Singh SB. Experimental Type 2 diabetes and lipotoxicity-associated neuroinflammation involve mitochondrial DNA-mediated cGAS/STING axis: implication of Type-1 interferon response in cognitive impairment. Mol Neurobiol 2024; 61:6217-6244. [PMID: 38285288 DOI: 10.1007/s12035-024-03933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Type-1 IFN (interferon)-associated innate immune response is increasingly getting attention in neurodegenerative and metabolic diseases like type 2 diabetes (T2DM). However, its significance in T2DM/lipotoxicity-induced neuroglia changes and cognitive impairment is missing. The present study aims to evaluate the involvement of cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon gene), IRF3 (interferon regulatory factor-3), TBK (TANK binding kinase)-mediated Type-1 IFN response in the diabetic brain, and lipotoxicity (palmitate-bovine serum albumin conjugate/PA-BSA)-induced changes in cells (neuro2a and BV2). T2DM was induced in C57/BL6 mice by feeding on a high-fat diet (HFD, 60% Kcal) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) in the 12th week. Plasma biochemical parameter analysis, neurobehavioral assessment, protein expression, and quantitative polymerase chain reaction study were carried out to decipher the hypothesis. T2DM-associated metabolic and lipotoxic stress led to mitochondrial impairment causing leakage of mtDNA to the cytoplasm further commencing cGAS activation and its downstream signaling. The diseased hippocampus and cortex showed decreased expression of synaptophysin (p < 0.01) and PSD-95 (p < 0.01, p < 0.05) with increased expression of cGAS (p < 0.001), p-STING (p < 0.001), p-STAT1 (signal transducer and activator of transcription) (p < 0.01), and IFN-β (p < 0.001) compared to normal control. The IFN-β/p-STAT1-mediated microglia activation was executed employing a conditioned media approach. C-176, a selective STING inhibitor, alleviated cGAS/p-STING/IFN-β expression and proinflammatory microglia/M1-associated markers (CD16 expression, CXCL10, TNF-α, IL-1β mRNA fold change) in the diabetic brain. The present study suggests Type-1IFN response may result in neuroglia dyshomeostasis affecting normal brain function. Alleviating STING signaling has the potential to protect T2DM-associated central ailment.
Collapse
Affiliation(s)
- Kumari Preeti
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai, 400056, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
3
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
van Gils V, Rizzo M, Côté J, Viechtbauer W, Fanelli G, Salas-Salvadó J, Wimberley T, Bulló M, Fernandez-Aranda F, Dalsgaard S, Visser PJ, Jansen WJ, Vos SJB. The association of glucose metabolism measures and diabetes status with Alzheimer's disease biomarkers of amyloid and tau: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105604. [PMID: 38423195 DOI: 10.1016/j.neubiorev.2024.105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Conflicting evidence exists on the relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) biomarkers. Therefore, we conducted a random-effects meta-analysis to evaluate the correlation of glucose metabolism measures (glycated hemoglobin, fasting blood glucose, insulin resistance indices) and DM status with AD biomarkers of amyloid-β and tau measured by positron emission tomography or cerebrospinal fluid. We selected 37 studies from PubMed and Embase, including 11,694 individuals. More impaired glucose metabolism and DM status were associated with higher tau biomarkers (r=0.11[0.03-0.18], p=0.008; I2=68%), but were not associated with amyloid-β biomarkers (r=-0.06[-0.13-0.01], p=0.08; I2=81%). Meta-regression revealed that glucose metabolism and DM were specifically associated with tau biomarkers in population settings (p=0.001). Furthermore, more impaired glucose metabolism and DM status were associated with lower amyloid-β biomarkers in memory clinic settings (p=0.004), and in studies with a higher prevalence of dementia (p<0.001) or lower cognitive scores (p=0.04). These findings indicate that DM is associated with biomarkers of tau but not with amyloid-β. This knowledge is valuable for improving dementia and DM diagnostics and treatment.
Collapse
Affiliation(s)
- Veerle van Gils
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Marianna Rizzo
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jade Côté
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Alimentació, Nutrició, Desenvolupament i Salut Mental, Reus, Spain; CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid 28029, Spain
| | - Theresa Wimberley
- The National Center for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Mònica Bulló
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid 28029, Spain; Nutrition and Metabolic Health Research Group (NuMeH). Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), Reus 43201, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, Reus 43201, Spain
| | - Fernando Fernandez-Aranda
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid 28029, Spain; Department of Clinical Psychology, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain
| | - Søren Dalsgaard
- The National Center for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark; iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Pieter Jelle Visser
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Alzheimer Center and Department of Neurology, Amsterdam Neuroscience Campus, VU University Medical Center, Amsterdam, the Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Grasset L, Frison E, Helmer C, Catheline G, Chêne G, Dufouil C. Understanding the relationship between type-2 diabetes, MRI markers of neurodegeneration and small vessel disease, and dementia risk: a mediation analysis. Eur J Epidemiol 2024; 39:409-417. [PMID: 38190014 PMCID: PMC11101545 DOI: 10.1007/s10654-023-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024]
Abstract
To explore to which extent neurodegeneration and cerebral small vessel disease (SVD) could mediate the association between type-2 diabetes and higher dementia risk. The analytical sample consisted in 2228 participants, out of the Three-City study, aged 65 and older, free of dementia at baseline who underwent brain MRI. Diabetes was defined by medication intake or fasting or non-fasting elevated glucose levels. Dementia status was assessed every 2 to 3 years, during up to 12 years of follow-up. Brain parenchymal fraction (BPF) and white matter hyperintensities volume (WMHV) were selected as markers of neurodegeneration and cerebral SVD respectively. We performed a mediation analysis of the effect of baseline BPF and WMHV (mediators) on the association between diabetes and dementia risk using linear and Cox models adjusted for age, sex, education level, hypertension, hypercholesterolemia, BMI, smoking and alcohol drinking status, APOE-ε4 status, and study site. At baseline, 8.8% of the participants had diabetes. Diabetes (yes vs. no) was associated with higher WMHV (βdiab = 0.193, 95% CI 0.040; 0.346) and lower BPF (βdiab = -0.342, 95% CI -0.474; -0.210), as well as with an increased risk of dementia over 12 years of follow-up (HRdiab = 1.65, 95% CI 1.04; 2.60). The association between diabetes status and dementia risk was statistically mediated by higher WMHV (HRdiab=1.05, 95% CI 1.01; 1.11, mediated part = 10.8%) and lower BPF (HRdiab = 1.12, 95% CI 1.05; 1.20, mediated part = 22.9%). This study showed that both neurodegeneration and cerebral SVD statistically explained almost 30% of the association between diabetes and dementia.
Collapse
Affiliation(s)
- Leslie Grasset
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France.
- INSERM U1219, University of Bordeaux, 146 rue Léo Saignat, 33077, Bordeaux cedex, France.
| | - Eric Frison
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France
- Service d'Information Médicale, CHU Bordeaux, Bordeaux, France
| | - Catherine Helmer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France
| | - Gwénaëlle Catheline
- INCIA, EPHE, CNRS, Université PSL, University of Bordeaux, 33076, Bordeaux, France
| | - Geneviève Chêne
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France
| | - Carole Dufouil
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
6
|
Ma Y, Wei S, Dang L, Gao L, Shang S, Hu N, Peng W, Zhao Y, Yuan Y, Zhou R, Wang Y, Gao F, Wang J, Qu Q. Association between the triglyceride-glucose index and cognitive impairment in China: a community population-based cross-sectional study. Nutr Neurosci 2024; 27:342-352. [PMID: 36976719 DOI: 10.1080/1028415x.2023.2193765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION Insulin resistance (IR) is a feature of metabolic syndrome and plays an important role in cognitive impairment (CI). The triglyceride-glucose (TyG) index is a convenient and cost-effective surrogate for assessing IR. This study aimed to assess the association between the TyG index and CI. METHODS This community population-based cross-sectional study used a cluster-sampling methodology. All participants underwent the education-based Mini-Mental State Examination (MMSE), and those with CI were identified using standard thresholds. The fasting blood triglyceride and glucose levels were measured in the morning, and the TyG index was calculated as ln (½ fasting triglyceride level [mg/dL] × fasting blood glucose level [mg/dL]). Multivariable logistic regression and subgroup analysis were used to assess the relationship between the TyG index and CI. RESULTS This study included 1484 subjects, of which 93 (6.27%) met the CI criteria. Multivariable logistic regression showed that CI incidence increased by 64% per unit increase in the TyG index (odds ratio [OR] = 1.64, 95% confidence interval [CI]: 1.02-2.63, p = 0.042). CI risk was 2.64-fold higher in the highest TyG index quartile compared to the lowest TyG index quartile (OR = 2.64, 95% CI: 1.19-5.85, p = 0.016). Finally, interaction analysis showed that sex, age, hypertension, and diabetes did not significantly affect the association between the TyG index and CI. CONCLUSION The present study suggested that an elevated TyG index was associated with a higher CI risk. Subjects with a higher TyG index should manage and treat at an early stage to alleviate the cognitive decline.
Collapse
Affiliation(s)
- Yimeng Ma
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ling Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ningwei Hu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wei Peng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ye Yuan
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Rong Zhou
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanyu Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fan Gao
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
7
|
Ackley S, Calmasini C, Bouteloup V, Hill-Jarrett TG, Swinnerton KN, Chêne G, Dufouil C, Glymour MM. Contribution of Global Amyloid-PET Imaging for Predicting Future Cognition in the MEMENTO Cohort. Neurology 2024; 102:e208054. [PMID: 38412412 DOI: 10.1212/wnl.0000000000208054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/16/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Global amyloid-PET is associated with cognition and cognitive decline, but most research on this association does not account for past cognitive information. We assessed the prognostic benefit of amyloid-PET measures for future cognition when prior cognitive assessments are available, evaluating the added value of amyloid measures beyond information on multiple past cognitive assessments. METHODS The French MEMENTO cohort (a cohort of outpatients from French research memory centers to improve knowledge on Alzheimer disease and related disorders) includes older outpatients with incipient cognitive changes, but no dementia diagnosis at inclusion. Global amyloid burden was assessed using positron emission tomography (amyloid-PET) for a subset of participants; semiannual cognitive testing was subsequently performed. We predicted mini-mental state examination (MMSE) scores using demographic characteristics (age, sex, marital status, and education) alone or in combination with information on prior cognitive measures. The added value of amyloid burden as a predictor in these models was evaluated with percent reduction of the mean squared error (MSE). All models were conducted separately for evaluating the added value of dichotomous amyloid positivity status compared with a continuous amyloid-standardized uptake-value ratio. RESULTS Our analytic sample comprised 510 individuals who underwent amyloid-PET scans with at least 4 MMSE assessments. The mean age at the PET scan was 71.6 (standard deviation 7.4) years; 60.7% were female. The median follow-up was 4.6 years (interquartile range: 0.9 years). Adding amyloid burden when adjusting for only demographic characteristics reduced the MSE of predictions by 5.08% (95% CI 0.97%-10.86%) and 12.64% (95% CI 3.35%-25.28%) for binary and continuous amyloid, respectively. If the model included 1 past MMSE measure, the MSE improvement was 3.51% (95% CI 1.01%-7.28%) when adding binary amyloid and 8.83% (95% CI 2.63%-16.37%) when adding continuous amyloid. Improvements in model fit were smaller with the addition of amyloid burden when more than 1 past cognitive assessment was included. For all models incorporating past cognitive assessments, differences in predictions amounted to a fraction of 1 MMSE point on average. DISCUSSION In a clinical setting, global amyloid burden did not appreciably improve cognitive predictions when past cognitive assessments were available. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT02164643.
Collapse
Affiliation(s)
- Sarah Ackley
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Camilla Calmasini
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Vincent Bouteloup
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Tanisha G Hill-Jarrett
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Kaitlin N Swinnerton
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Geneviève Chêne
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - Carole Dufouil
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| | - M M Glymour
- From the Department of Epidemiology (S.A., M.M.G.), Boston University, MA; Department of Epidemiology and Biostatistics (C.C., K.N.S.), University of California, San Francisco; University Bordeaux (V.B., G.C., C.D.), Inserm, UMR 1219; Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux (V.B., G.C., C.D.), France; and Memory & Aging Center (T.G.H.-J.), University of California, San Francisco
| |
Collapse
|
8
|
Ganz T, Ben-Hur T. The "Hit and Run" Hypothesis for Alzheimer's Disease Pathogenesis. Int J Mol Sci 2024; 25:3245. [PMID: 38542219 PMCID: PMC10970628 DOI: 10.3390/ijms25063245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting millions worldwide. Emerging research has challenged the conventional notion of a direct correlation between amyloid deposition and neurodegeneration in AD. Recent studies have suggested that amyloid and Tau deposition act as a central nervous system (CNS) innate immune driver event, inducing chronic microglial activation that increases the susceptibility of the AD brain to the neurotoxicity of infectious insults. Although modifiable risk factors account for up to 50% of AD risk, the mechanisms by which they interact with the core process of misfolded protein deposition and neuroinflammation in AD are unclear and require further investigation. This update introduces a novel perspective, suggesting that modifiable risk factors act as external insults that, akin to infectious agents, cause neurodegeneration by inducing recurrent acute neurotoxic microglial activation. This pathological damage occurs in AD pathology-primed regions, creating a "hit and run" mechanism that leaves no discernible pathological trace of the external insult. This model, highlighting microglia as a pivotal player in risk factor-mediated neurodegeneration, offers a new point of view on the complex associations of modifiable risk factors and proteinopathy in AD pathogenesis, which may act in parallel to the thoroughly studied amyloid-driven Tau pathology, and strengthens the therapeutic rationale of combining immune modulation with tight control of risk factor-driven insults.
Collapse
Affiliation(s)
- Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Tamir Ben-Hur
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
9
|
Kapasi A, Capuano AW, Lamar M, Leurgans SE, Evia AM, Bennett DA, Arfanakis K, Schneider JA. Atherosclerosis and Hippocampal Volumes in Older Adults: The Role of Age and Blood Pressure. J Am Heart Assoc 2024; 13:e031551. [PMID: 38240240 PMCID: PMC11056126 DOI: 10.1161/jaha.123.031551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Lower hippocampal volume is associated with late-life cognitive decline and is an important, but nonspecific marker for clinical Alzheimer's dementia. Cerebrovascular disease may also be associated with hippocampal volume. Here we study the role of intracranial large vessel disease (atherosclerosis) in association with hippocampal volume and the potential role of age, average late-life blood pressure across all visits, and other factors (sex, apolipoprotein ε4 [APOE ε4], and diabetes). METHODS AND RESULTS Data came from 765 community-based older people (91 years old on average at death; 72% women), from 2 ongoing clinical-pathologic cohort studies. Participants completed baseline assessment, annual standardized blood pressure measurements, vascular risk assessment for diabetes, and blood draws to determine APOE genotype, and at death, brains were removed and underwent ex vivo magnetic resonance imaging and neuropathologic evaluation for atherosclerosis pathology and other cerebrovascular and neurodegenerative pathologies. Linear regression models examined the association of atherosclerosis and hippocampal to hemisphere volume ratio and whether age at death, blood pressure, and other factors modified associations. In linear regression models adjusted for demographics and neurodegenerative and other cerebrovascular pathologies, atherosclerosis severity was associated with a lower hippocampal to hemisphere volume ratio. In separate models, we found the effect of atherosclerosis on the ratio of hippocampal to hemisphere volume was attenuated among advanced age at death or having higher systolic blood pressure (interaction terms P≤0.03). We did not find confounding or interactions with sex, diabetes, or APOE ε4. CONCLUSIONS Atherosclerosis severity is associated with lower hippocampal volume, independent of neurodegenerative and other cerebrovascular pathologies. Higher systolic blood pressures and advanced age attenuate associations.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Pathology (Neuropathology)Rush University Medical CenterChicagoIL
| | - Ana W. Capuano
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Melissa Lamar
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIL
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Arnold M. Evia
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
| | - David A. Bennett
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIL
- Department of Diagnostic RadiologyRush University Medical CenterChicagoIL
| | - Julie A. Schneider
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Pathology (Neuropathology)Rush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| |
Collapse
|
10
|
Lesman-Segev OH, Golan Shekhtman S, Springer RR, Livny A, Lin HM, Yuxia O, Zadok M, Ganmore I, Heymann A, Hoffmann C, Domachevsky L, Schnaider Beeri M. Amyloid deposition and small vessel disease are associated with cognitive function in older adults with type 2 diabetes. Sci Rep 2024; 14:2741. [PMID: 38302529 PMCID: PMC10834442 DOI: 10.1038/s41598-024-53043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetes is associated with cognitive decline, but the underlying mechanisms are complex and their relationship with Alzheimer's Disease biomarkers is not fully understood. We assessed the association of small vessel disease (SVD) and amyloid burden with cognitive functioning in 47 non-demented older adults with type-2 diabetes from the Israel Diabetes and Cognitive Decline Study (mean age 78Y, 64% females). FLAIR-MRI, Vizamyl amyloid-PET, and T1W-MRI quantified white matter hyperintensities as a measure of SVD, amyloid burden, and gray matter (GM) volume, respectively. Mean hemoglobin A1c levels and duration of type-2 diabetes were used as measures of diabetic control. Cholesterol level and blood pressure were used as measures of cardiovascular risk. A broad neuropsychological battery assessed cognition. Linear regression models revealed that both higher SVD and amyloid burden were associated with lower cognitive functioning. Additional adjustments for type-2 diabetes-related characteristics, GM volume, and cardiovascular risk did not alter the results. The association of amyloid with cognition remained unchanged after further adjustment for SVD, and the association of SVD with cognition remained unchanged after further adjustment for amyloid burden. Our findings suggest that SVD and amyloid pathology may independently contribute to lower cognitive functioning in non-demented older adults with type-2 diabetes, supporting a multimodal approach for diagnosing, preventing, and treating cognitive decline in this population.
Collapse
Affiliation(s)
- Orit H Lesman-Segev
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel.
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Sapir Golan Shekhtman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ramit Ravona Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ouyang Yuxia
- Department of Population Health Science and Policy, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maya Zadok
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel
| | - Anthony Heymann
- Maccabi Healthcare Services, Tel Aviv, Israel
- Department of Family Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Hoffmann
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liran Domachevsky
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Lesman-Segev OH, Golan S, Springer RR, Livny A, Lin HM, Yuxia O, Zadok M, Ganmore I, Heymann A, Hoffmann C, Domachevsky L, Beeri MS. Amyloid deposition and small vessel disease are associated with cognitive function in older adults with type 2 diabetes. RESEARCH SQUARE 2023:rs.3.rs-3373943. [PMID: 37841857 PMCID: PMC10571611 DOI: 10.21203/rs.3.rs-3373943/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Diabetes is associated with cognitive decline, but the underlying mechanisms are complex and their relationship with Alzheimer's Disease biomarkers is not fully understood. We assessed the association of small vessel disease (SVD) and amyloid burden with cognitive functioning in 47 non-demented older adults with type-2 diabetes from the Israel Diabetes and Cognitive Decline Study (mean age 78Y, 64% females). FLAIR-MRI, Vizamyl amyloid-PET, and T1W-MRI quantified white matter hyperintensities as a measure of SVD, amyloid burden, and gray matter (GM) volume, respectively. Mean hemoglobin A1c levels and duration of type-2 diabetes were used as measures of diabetic control. Cholesterol level and blood pressure were used as measures of cardiovascular risk. A broad neuropsychological battery assessed cognition. Linear regression models revealed that both higher SVD and amyloid burden were associated with lower cognitive functioning. Additional adjustments for type-2 diabetes-related characteristics, GM volume, and cardiovascular risk did not alter the results. The association of amyloid with cognition remained unchanged after further adjustment for SVD. Our findings suggest that SVD and amyloid pathology may independently contribute to lower cognitive functioning in non-demented older adults with type-2 diabetes, supporting a multimodal approach for diagnosing, preventing, and treating cognitive decline in this population.
Collapse
|
12
|
Chi H, Song M, Zhang J, Zhou J, Liu D. Relationship between acute glucose variability and cognitive decline in type 2 diabetes: A systematic review and meta-analysis. PLoS One 2023; 18:e0289782. [PMID: 37656693 PMCID: PMC10473499 DOI: 10.1371/journal.pone.0289782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Cognitive decline is one of the most widespread chronic complications of diabetes, which occurs in more than half of the patients with type 2 diabetes (T2DM). Emerging evidences have suggested that glucose variability (GV) is associated with the pathogenesis of diabetic complications. However, the influence of acute GV on cognitive dysfunction in T2DM is still controversial. The aim of the study was to evaluate the association between acute GV and cognitive defect in T2DM, and provide a most recent and comprehensive summary of the evidences in this research field. METHODS PubMed, Cochrane library, EMBASE, Web of science, Sinomed, China National Knowledge Infrastructure (CNKI), and Wanfang were searched for articles that reported on the association between acute GV and cognitive impairment in T2DM. RESULTS 9 eligible studies were included, with a total of 1263 patients with T2DM involved. Results showed that summary Fisher's z value was -0.23 [95%CI (-0.39, -0.06)], suggesting statistical significance (P = 0.006). Summary r value was -0.22 [95%CI (-0.37, -0.06)]. A lower cognitive performance was found in the subjects with greater glucose variation, which has statistical significance. Mean amplitude of glycemic excursions (MAGE) was associated with a higher risk of poor functional outcomes. Fisher's z value was -0.35 [95%CI (-0.43, -0.25)], indicating statistical significance (P = 0.011). Sensitivity analyses by omitting individual studies showed stability of the results. CONCLUSIONS Overall, higher acute GV is associated with an increased risk of cognitive impairment in patients with T2DM. Further studies should be required to determine whether targeted intervention of reducing acute GV could prevent cognitive decline.
Collapse
Affiliation(s)
- Haiyan Chi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Min Song
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Junyu Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Motuma A, Gobena T, Roba KT, Berhane Y, Worku A, Regassa LD, Tolera A. Co-occurrence of hypertension and type 2 diabetes: prevalence and associated factors among Haramaya University employees in Eastern Ethiopia. Front Public Health 2023; 11:1038694. [PMID: 37497022 PMCID: PMC10366366 DOI: 10.3389/fpubh.2023.1038694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background Both hypertension (HTN) and diabetes are public health concerns in low- and middle-income countries, particularly in sub-Saharan African countries. The co-occurrence of HTN and diabetes is associated with an increased risk of mortality, morbidity, and reduced productivity in the working force. In Ethiopia, there is limited evidence on the co-occurrence of HTN and type 2 diabetes (T2DM). Therefore, this study was conducted to assess the co-occurrence of HTN and T2DM and their associated factors among Haramaya University employees in Eastern Ethiopia. Methods A cross-sectional survey was conducted among 1,200 employees at Haramaya University using a simple random sampling technique from December 2018 to February 2019. Demographic and behavioral factors were collected on a semi-structured questionnaire, followed by measurement of anthropometry and blood pressure. Blood glucose and lipid profile measurements were performed by collecting 6 ml of venous blood samples after 8 h of overnight fasting. Data were entered into EpiData 3.1 version and analyzed using Stata 16 software. Bivariable and multivariable logistic regressions were applied to observe the association between independent variables with co-occurrence of HPN and T2DM using odds ratio, 95% confidence interval (CI), and p-values of ≤ 0.05 were considered statistically significant. Results The prevalence of HTN and T2DM was 27.3 and 7.4%, respectively. The co-occurrence of HTN and T2DM was 3.8%. The study found that being older (AOR = 3.97; 95 % CI: 1.80-8.74), khat chewing (AOR = 2.76; 95 % CI: 1.23-6.18), body mass index ≥ 25 kg/m2 (AOR = 5.11; 95 % CI: 2.06-12.66), and sedentary behavior ≥8 h per day (AOR = 6.44; 95 % CI: 2.89-14.34) were statistically associated with co-occurrence of HTN and T2DM. On the other hand, consuming fruits and vegetables (AOR = 0.10; 95 % CI: 0.04-0.22) and a higher level of education (AOR = 0.39; 95% CI: 0.17-0.89) were negatively statistically associated with the co-occurrence of HTN and T2DM. Conclusion The co-occurrence of HTN and T2DM was prevalent among the study participants. This may create a substantial load on the healthcare system as an end result of increased demand for healthcare services. Therefore, rigorous efforts are needed to develop strategies for screening employees to tackle the alarming increase in HTN and T2DM in university employees.
Collapse
Affiliation(s)
- Aboma Motuma
- School of Nursing and Midwifery, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Tesfaye Gobena
- Department of Environmental Health Science, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Kedir Teji Roba
- School of Nursing and Midwifery, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Yemane Berhane
- Department of Epidemiology and Biostatics, Addis Continental Institute of Public Health, Addis Ababa, Ethiopia
| | - Alemayehu Worku
- Department of Epidemiology and Biostatistics, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lemma Demissie Regassa
- School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Abebe Tolera
- School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| |
Collapse
|
14
|
Association between cardiopulmonary function, health-related quality of life and cognitive impairment among the older nursing home residents in Shanghai, China. Prim Health Care Res Dev 2023; 24:e18. [PMID: 36919826 PMCID: PMC10050953 DOI: 10.1017/s1463423623000075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND This study aimed to examine the association between cardiopulmonary function, health-related quality of life (HRQOL) and cognitive function among nursing home residents aged 80 years and over. METHODS A nursing home-based, cross-sectional study was implemented among 677 aged over 80 years in Shanghai, China. A total of 197 participants underwent effective cardiopulmonary function examinations. Mini-Mental Status Examination (MMSE) and Short Form-36 scales (SF-36) were used to assess cognitive function and HRQOL, respectively. RESULTS Decline in left ventricular ejection fractions (LVEF) [adjusted odds ratio (AOR), 1.98; 95% confidential interval (CI), 1.03-3.81)] and vital capacity (VC) (AOR, 2.08; 95%CI, 1.07-4.04) was associated with cognitive impairment. After adjusting confounding factors, relationships between cognitive function and physical functioning (PF) (AOR, 0.98; 95%CI, 0.97-0.99) still existed. CONCLUSIONS Healthcare professionals should pay more attention to cardiopulmonary health and HRQOL in the nursing home residents. Actions of public health strategies focus on the improvement of cardiopulmonary function, and PF among older nursing home residents with cognitive impairment is required.
Collapse
|
15
|
Preeti K, Fernandes V, Sood A, Khan I, Khatri DK, Singh SB. Necrostatin-1S mitigates type-2 diabetes-associated cognitive decrement and lipotoxicity-induced neuro-microglia changes through p-RIPK-RIPK3-p-MLKL axis. Metab Brain Dis 2023; 38:1581-1612. [PMID: 36897515 DOI: 10.1007/s11011-023-01185-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Type-2 diabetes mellitus (T2DM) is associated with neuroinflammation and cognitive decrement. Necroptosis programmed necrosis is emerging as the major contributing factor to central changes. It is best characterized by the upregulation of p-RIPK(Receptor Interacting Kinase), p-RIPK3, and the phosphorylated-MLKL (mixed-lineage kinase domain-like protein). The present study aims to evaluate the neuroprotective effect of Necrostatin (Nec-1S), a p-RIPK inhibitor, on cognitive changes in the experimental T2DM model in C57BL/6 mice and lipotoxicity-induced neuro-microglia changes in neuro2A and BV2 cells. Further, the study also explores whether Nec-1S would restore mitochondrial and autophago-lysosomal function.T2DM was developed in mice by feeding them a high-fat diet (HFD) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) on the 12th week. Nec-1S was administered for 3 weeks at (10 mg/kg, i.p) once every 3 days. Lipotoxicity was induced in neuro2A, and BV2 cells using 200 µM palmitate/bovine serum albumin conjugate. Nec-1S (50 µM), and GSK-872(10 µM) were further used to explore their relative effect. The neurobehavioral performance was assessed using mazes and task-assisted performance tests. To decipher the hypothesis plasma parameters, western blot, immunofluorescence, microscopy, and quantitative reverse transcription-PCR studies were carried out. The Nec-1S treatment restored cognitive performance and reduced the p-RIPK-p-RIPK3-p-MLKL mediated neuro-microglia changes in the brain and in cells as well, under lipotoxic stress. Nec-1S reduced tau, and amyloid oligomer load. Moreover, Nec-1S restored mitochondrial function and autophago-lysosome clearance. The findings highlight the central impact of metabolic syndrome and how Nes-1S, by acting as a multifaceted agent, improved central functioning.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India.
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| |
Collapse
|
16
|
Wang ZT, Fu Y, Zhang YR, Chen SD, Huang SY, Yang L, Li HQ, Ou YN, Feng JF, Dong Q, Cheng W, Tan L, Wang HF, Yu JT. Modified dementia risk score as a tool for the prediction of dementia: a prospective cohort study of 239745 participants. Transl Psychiatry 2022; 12:509. [PMID: 36496374 PMCID: PMC9741578 DOI: 10.1038/s41398-022-02269-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Based on risk profiles, several approaches for predicting dementia risk have been developed. Predicting the risk of dementia with accuracy is a significant clinical challenge. The goal was to create a modified dementia risk score (MDRS) based on a big sample size. A total of 239,745 participants from UK Biobank were studied (mean follow-up of 8.7 years). The score value of each risk factor was estimated according to the β coefficient in the logistic regression model. The total dementia risk score was the sum of each risk score. Kaplan Meier survival curves and Cox proportional hazards analyses were used to assess the associations between total score and dementia. Among all participants included, 3531 incident cases of all-cause dementia (ACD), 1729 cases of Alzheimer's disease (AD), and 925 cases of vascular dementia (VD) were identified. Several vascular risk factors (physical activity, current smoking status, and glycemic status) and depressive symptoms were found to be significantly related to dementia risk. The modified dementia risk scores predicted dementia well (model 1, area under curve 0.810; model 2, area under curve 0.832). In model 1, the cut-off value for high risk (HR) was 81 or higher, and in model 2 (including the APOE4), it was 98 or higher. According to Kaplan-Meier survival analyses, patients in the HR group had faster clinical progression (p < 0.0001) in either model 1 or 2. Cox regression analyses for HR versus low risk (LR) revealed that the Hazard radio for ACD was 7.541 (6.941 to 8.193) in model 1 and 8.348 (7.727 to 9.019) in model 2. MDRS is appropriate for dementia primary prevention, and may help quickly identify individuals with elevated risk of dementia.
Collapse
Affiliation(s)
- Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Yi Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Savelieff MG, Chen KS, Elzinga SE, Feldman EL. Diabetes and dementia: Clinical perspective, innovation, knowledge gaps. J Diabetes Complications 2022; 36:108333. [PMID: 36240668 PMCID: PMC10076101 DOI: 10.1016/j.jdiacomp.2022.108333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 10/31/2022]
Abstract
The world faces a pandemic-level prevalence of type 2 diabetes. In parallel with this massive burden of metabolic disease is the growing prevalence of dementia as the population ages. The two health issues are intertwined. The Lancet Commission on dementia prevention, intervention, and care was convened to tackle the growing global concern of dementia by identifying risk factors. It concluded, along with other studies, that diabetes as well as obesity and the metabolic syndrome more broadly, which are frequently comorbid, raise the risk of developing dementia. Type 2 diabetes is a modifiable risk factor; however, it is uncertain whether anti-diabetic drugs mitigate risk of developing dementia. Reasons are manifold but constitute a critical knowledge gap in the field. This review outlines studies of type 2 diabetes on risk of dementia, illustrating key concepts. Moreover, it identifies knowledge gaps, reviews strategies to help fill these gaps, and concludes with a series of recommendations to mitigate risk and advance understanding of type 2 diabetes and dementia.
Collapse
Affiliation(s)
- Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S Chen
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Lachner C, Day GS, Camsari GB, Kouri N, Ertekin-Taner N, Boeve BF, Labuzan SA, Lucas JA, Thompson EA, Siddiqui H, Crook JE, Cabrera-Rodriguez JN, Josephs KA, Petersen RC, Dickson DW, Reichard RR, Mielke MM, Knopman DS, Graff-Radford NR, Murray ME. Cancer and Vascular Comorbidity Effects on Dementia Risk and Neuropathology in the Oldest-Old. J Alzheimers Dis 2022; 90:405-417. [PMID: 36213996 PMCID: PMC9661335 DOI: 10.3233/jad-220440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dementia, vascular disease, and cancer increase with age, enabling complex comorbid interactions. Understanding vascular and cancer contributions to dementia risk and neuropathology in oldest-old may improve risk modification and outcomes. OBJECTIVE Investigate the contributions of vascular factors and cancer to dementia and neuropathology. METHODS Longitudinal clinicopathologic study of prospectively followed Mayo Clinic participants dying≥95 years-old who underwent autopsy. Participants were stratified by dementia status and compared according to demographics, vascular risk factors, cancer, and neuropathology. RESULTS Participants (n = 161; 83% female; 99% non-Hispanic whites)≥95 years (95-106 years-old) with/without dementia did not differ based on demographics. APOE ɛ2 frequency was higher in no dementia (20/72 [28%]) versus dementia (11/88 [12%]; p = 0.03), but APOE ɛ4 frequency did not differ. Coronary artery disease was more frequent in no dementia (31/72 [43%]) versus dementia (23/89 [26%]; p = 0.03) associated with 56% lower dementia odds (odds ratio [OR] = 0.44 [confidence interval (CI) = 0.19-0.98]; p = 0.04) and fewer neuritic/diffuse plaques. Diabetes had an 8-fold increase in dementia odds (OR = 8.42 [CI = 1.39-163]; p = 0.02). Diabetes associated with higher cerebrovascular disease (Dickson score; p = 0.05). Cancer associated with 63% lower dementia odds (OR = 0.37 [CI = 0.17-0.78]; p < 0.01) and lower Braak stage (p = 0.01). CONCLUSION Cancer exposure in the oldest-old was associated with lower odds of dementia and tangle pathology, whereas history of coronary artery disease was associated with lower odds of dementia and amyloid-β plaque pathology. History of diabetes mellitus was associated with increased odds of dementia and cerebrovascular disease pathology. Cancer-related mechanisms and vascular risk factor reduction strategies may alter dementia risk and neuropathology in oldest-old.
Collapse
Affiliation(s)
- Christian Lachner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory S. Day
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naomi Kouri
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - John A. Lucas
- Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Habeeba Siddiqui
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Julia E. Crook
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - R. Ross Reichard
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M. Mielke
- Departments of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Melissa E. Murray
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,Correspondence to: Melissa E. Murray, PhD, Associate Professor, Translational Neuropathology Laboratory, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 1083; Fax: +1 904 953 7117; E-mail:
| |
Collapse
|
19
|
Wilkins CH, Windon CC, Dilworth-Anderson P, Romanoff J, Gatsonis C, Hanna L, Apgar C, Gareen IF, Hill CV, Hillner BE, March A, Siegel BA, Whitmer RA, Carrillo MC, Rabinovici GD. Racial and Ethnic Differences in Amyloid PET Positivity in Individuals With Mild Cognitive Impairment or Dementia: A Secondary Analysis of the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) Cohort Study. JAMA Neurol 2022; 79:2796653. [PMID: 36190710 PMCID: PMC9531087 DOI: 10.1001/jamaneurol.2022.3157] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023]
Abstract
Importance Racial and ethnic groups with higher rates of clinical Alzheimer disease (AD) are underrepresented in studies of AD biomarkers, including amyloid positron emission tomography (PET). Objective To compare amyloid PET positivity among a diverse cohort of individuals with mild cognitive impairment (MCI) or dementia. Design, Setting, and Participants Secondary analysis of the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS), a single-arm multisite cohort study of Medicare beneficiaries who met appropriate-use criteria for amyloid PET imaging between February 2016 and September 2017 with follow-up through January 2018. Data were analyzed between April 2020 and January 2022. This study used 2 approaches: the McNemar test to compare amyloid PET positivity proportions between matched racial and ethnic groups and multivariable logistic regression to assess the odds of having a positive amyloid PET scan. IDEAS enrolled participants at 595 US dementia specialist practices. A total of 21 949 were enrolled and 4842 (22%) were excluded from the present analysis due to protocol violations, not receiving an amyloid PET scan, not having a positive or negative scan, or because of small numbers in some subgroups. Exposures In the IDEAS study, participants underwent a single amyloid PET scan. Main Outcomes and Measures The main outcomes were amyloid PET positivity proportions and odds. Results Data from 17 107 individuals (321 Asian, 635 Black, 829 Hispanic, and 15 322 White) with MCI or dementia and amyloid PET were analyzed between April 2020 and January 2022. The median (range) age of participants was 75 (65-105) years; 8769 participants (51.3%) were female and 8338 (48.7%) were male. In the optimal 1:1 matching analysis (n = 3154), White participants had a greater proportion of positive amyloid PET scans compared with Asian participants (181 of 313; 57.8%; 95% CI, 52.3-63.2 vs 142 of 313; 45.4%; 95% CI, 39.9-50.9, respectively; P = .001) and Hispanic participants (482 of 780; 61.8%; 95% CI, 58.3-65.1 vs 425 of 780; 54.5%; 95% CI, 51.0-58.0, respectively; P = .003) but not Black participants (359 of 615; 58.4%; 95% CI, 54.4-62.2 vs 333 of 615; 54.1%; 95% CI, 50.2-58.0, respectively; P = .13). In the adjusted model, the odds of having a positive amyloid PET scan were lower for Asian participants (odds ratio [OR], 0.47; 95% CI, 0.37-0.59; P < .001), Black participants (OR, 0.71; 95% CI, 0.60-0.84; P < .001), and Hispanic participants (OR, 0.68; 95% CI, 0.59-0.79; P < .001) compared with White participants. Conclusions and Relevance Racial and ethnic differences found in amyloid PET positivity among individuals with MCI and dementia in this study may indicate differences in underlying etiology of cognitive impairment and guide future treatment and prevention approaches.
Collapse
Affiliation(s)
- Consuelo H. Wilkins
- Department of Medicine, Division of Geriatric Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charles C. Windon
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Peggye Dilworth-Anderson
- Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill
| | - Justin Romanoff
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Constantine Gatsonis
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Lucy Hanna
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Charles Apgar
- Center for Research and Innovation, American College of Radiology, Reston, Virginia
| | - Ilana F. Gareen
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | | | - Bruce E. Hillner
- Department of Medicine, Virginia Commonwealth University, Richmond
| | - Andrew March
- Center for Research and Innovation, American College of Radiology, Philadelphia, Pennsylvania
| | - Barry A. Siegel
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Rachel A. Whitmer
- Division of Research, Kaiser Permanente, Oakland, California
- Department of Public Health Sciences, University of California, Davis
| | | | - Gil D. Rabinovici
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
- Associate Editor, JAMA Neurology
- Department of Radiology & Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
20
|
Risk Factors of Cognitive Decline in Older Caregivers With HIV: An Emerging Hypothesis. J Assoc Nurses AIDS Care 2022; 33:676-681. [PMID: 35878046 DOI: 10.1097/jnc.0000000000000349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT People with HIV (PWH) are living longer and healthier lives; thanks to combination antiretroviral therapy. As many PWH age, they find themselves providing care to family members and friends, just as their counterparts without HIV. The literature indicates that becoming a caregiver creates conditions that compromise one's cognitive function. Additionally, nearly 45% of all PWH experience HIV-associated neurocognitive disorder and are already vulnerable to cognitive impairment due to HIV, aging, and accompanying health conditions, and lifestyle factors. Given what is known, we assert that caregivers with HIV, especially as they age, are at additional risk for developing cognitive impairments. The purpose of this commentary was to briefly examine the juxtaposition between cognitive vulnerability of caregiving and the cognitive vulnerability of aging with HIV. Potential factors contributing to impaired cognition include stress, lack of social support, stigma, lifestyle, and comorbidities. Implications for clinical practice and research are provided.
Collapse
|
21
|
Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, Zhan G, Zhou Z, Zhao Y, Li S. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022; 137:104642. [PMID: 35367221 DOI: 10.1016/j.neubiorev.2022.104642] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2D) and its target organ injuries cause distressing impacts on personal health and put an enormous burden on the healthcare system, and increasing attention has been paid to T2D-associated cognitive dysfunction (TDACD). TDACD is characterized by cognitive dysfunction, delayed executive ability, and impeded information-processing speed. Brain imaging data suggest that extensive brain regions are affected in patients with T2D. Based on current findings, a wide spectrum of non-specific neurodegenerative mechanisms that partially overlap with the mechanisms of neurodegenerative diseases is hypothesized to be associated with TDACD. However, it remains unclear whether TDACD is a consequence of T2D or a complication that co-occurs with T2D. Theoretically, anti-diabetes methods are promising neuromodulatory approaches to reduce brain injury in patients with T2D. In this review, we summarize potential mechanisms underlying TDACD and promising neurotropic effects of anti-diabetes methods and some neuroprotective natural compounds. Constructing screening or diagnostic tools and developing targeted treatment and preventive strategies would be expected to reduce the burden of TDACD.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
22
|
Peripheral Aβ acts as a negative modulator of insulin secretion. Proc Natl Acad Sci U S A 2022; 119:e2117723119. [PMID: 35290109 PMCID: PMC8944757 DOI: 10.1073/pnas.2117723119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cerebral accumulation of amyloid β (Aβ) is a hallmark of Alzheimer’s disease (AD). While type 2 diabetes mellitus is known to be a risk factor for AD, the underlying mechanisms remain unclear. In the present study, we demonstrate that plasma Aβ is produced from glucose- and insulin-susceptible peripheral tissues, such as the pancreas, adipose tissues, skeletal muscles, and liver, to inhibit insulin secretion from islet β-cells. Our findings suggest a physiological role of peripheral Aβ in glucose and insulin metabolism and a possible mechanism linking diabetes to AD. In addition, although plasma Aβ levels are currently used as a diagnostic biomarker of AD, our data suggest they should be used with caution. Type 2 diabetes mellitus is known to be a risk factor for Alzheimer’s disease (AD), but the underlying mechanisms remain unclear. In AD, the cerebral accumulation of amyloid β (Aβ) triggers a pathological cascade leading to neurodegeneration. Plasma Aβ levels are thought to reflect the brain amyloid pathology and currently used as a diagnostic biomarker of AD. However, amyloid precursor protein and Aβ-generating enzymes, β- and γ-secretases, are widely expressed in various peripheral tissues. Previous reports have shown that glucose and insulin loading cause a transient increase of plasma Aβ in mice and humans. These findings led us to speculate that plasma Aβ is produced from glucose- and insulin-susceptible peripheral tissues to play a role in glucose and insulin metabolism. To test this hypothesis, we investigated the effects of glucose and insulin on Aβ secretion and the effect of Aβ on insulin secretion in vivo, ex vivo, and in vitro. Aβ was found to be secreted from β-cells of the pancreas along with insulin upon glucose stimulation. Upon insulin stimulation, Aβ was secreted from cells of insulin-targeted organs, such as adipose tissues, skeletal muscles, and the liver, along with their organokines. Furthermore, Aβ inhibited the glucose-triggered insulin secretion from β-cells, slowing down glucose clearance from the blood. These results suggest that peripheral Aβ acts as a negative modulator of insulin secretion. Our findings provide a possible mechanism linking diabetes to AD and call attention to how plasma Aβ levels are used in AD diagnosis.
Collapse
|
23
|
Alqudah MA, Al-Nosairy A, Alzoubi KH, Kahbour OF, Alazzam SI. Edaravone prevents memory impairment in diabetic rats: Role of oxidative stress. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
24
|
Vintimilla R, Nevin T, Hall J, Johnson L, O’Bryant S. Cardiovascular Risk Factors and Cognitive Performance in Cognitively Normal Non-Hispanic Whites and Mexican Americans From the HABS-HD Cohort. Gerontol Geriatr Med 2022; 8:23337214221142958. [PMID: 36518808 PMCID: PMC9742682 DOI: 10.1177/23337214221142958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives: This study aimed to compare the impact of cardiovascular disease (CVD) and cardiovascular risk factors (CVRF) on cognition in non-Hispanic Whites (NHW) versus Mexicans Americans (MA). Methods: A cross sectional analysis was conducted on 663 NHW and 632 MA. Prevalence of specific CVRF were compared between both demographics. Cognition was tested with various neuropsychologic tests. Results: MA had a higher percentage of hypertension, abdominal circumference, diabetes, and current smoking while NHW had a higher prevalence of other CVD. However, specific CVRF impacted NHW neuropsychologic testing on cognition, executive function, and processing, while only memory was affected in MA. Discussion: MA have less access to healthcare services with a higher prevalence of specific CVRF, however previous research has cited a lower mortality compared to NHW, this is known as the Hispanic paradox effect. The Mexican American ethnicity may be a protective factor in cognition creating increased neuropsychologic resilience from CVRF.
Collapse
Affiliation(s)
- Raul Vintimilla
- University of North Texas Health Science Center, Fort Worth, USA
| | - Thomas Nevin
- University of North Texas Health Science Center, Fort Worth, USA
| | - James Hall
- University of North Texas Health Science Center, Fort Worth, USA
| | - Leigh Johnson
- University of North Texas Health Science Center, Fort Worth, USA
| | - Sid O’Bryant
- University of North Texas Health Science Center, Fort Worth, USA
| |
Collapse
|