1
|
Prosperini L, Arrambide G, Celius EG, Goletti D, Killestein J, Kos D, Lavorgna L, Louapre C, Sormani MP, Stastna D, Ziemssen T, Di Filippo M. COVID-19 and multiple sclerosis: challenges and lessons for patient care. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:100979. [PMID: 39429966 PMCID: PMC11486927 DOI: 10.1016/j.lanepe.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 10/22/2024]
Abstract
During the COVID-19 pandemic, people with multiple sclerosis (MS) and their healthcare providers have faced unique challenges related to the interaction between SARS-CoV-2, underlying neurological disease and the use of disease-modifying treatments (DMTs). Key concerns arose, primarily related to the possibility that SARS-CoV-2 infection could trigger the initial demyelinating event or exacerbate disease activity. Another major concern was the safety and efficacy of the COVID-19 vaccines, especially for patients undergoing specific treatments that could weaken their antibody responses. In the post-infection phase, identifying long COVID in patients with MS has been complicated due to the large overlap between post-infection sequelae and MS symptoms. In addition, disruptions in health and rehabilitation services have made it difficult for MS patients to access care. This Series article explores current evidence on the interaction between MS and SARS-CoV-2, identifies the challenges posed by the COVID-19 pandemic in the care of patients with MS, and discusses the significant adoption of digital health solutions, including telemedicine and new technology-based rehabilitation approaches. Based on lessons learned, recommendations and future directions are offered for managing patients with MS, rethinking healthcare systems and improving health outcomes in the post-COVID-19 pandemic era.
Collapse
Affiliation(s)
- Luca Prosperini
- MS Centre, Department of Neurosciences, S. Camillo-Forlanini Hospital, Rome, Italy
| | - Georgina Arrambide
- Neurology-Neuroimmunology Department Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabeth G. Celius
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Joep Killestein
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Daphne Kos
- National Multiple Sclerosis Center, Melsbroek, Belgium
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Luigi Lavorgna
- DAI Internal Medicine, Geriatric and Neurology, University Hospital “Luigi Vanvitelli”, Naples, Italy
| | - Celine Louapre
- Sorbonne Université, Paris Brain Institute-ICM, CIC Neurosciences, Hôpital de la Pitié Salpêtrière, Assistance Publique Hôpitaux de Paris, INSERM, CNRS, FCRIN4MS, Paris, France
| | - Maria Pia Sormani
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dominika Stastna
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czechia
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | |
Collapse
|
2
|
Alonzi T, Aiello A, Sali M, Delogu G, Villella VR, Raia V, Nicastri E, Piacentini M, Goletti D. Multiple antimicrobial and immune-modulating activities of cysteamine in infectious diseases. Biomed Pharmacother 2024; 178:117153. [PMID: 39024833 DOI: 10.1016/j.biopha.2024.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Infectious diseases are a major threat to global health and cause millions of deaths every year, particularly in developing countries. The emergence of multidrug resistance challenges current antimicrobial treatments, inducing uncertainty in therapeutic protocols. New compounds are therefore necessary. A drug repurposing approach could play a critical role in developing new treatments used either alone or in combination with standard therapy regimens. Herein, we focused on cysteamine, an aminothiol endogenously synthesized by human cells during the degradation of coenzyme-A, which is a drug approved for the treatment of nephropathic cystinosis. Cysteamine influences many biological processes due to the presence of the highly reactive thiol group. This review provides an overview of cysteamine-mediated effects on different viruses, bacteria and parasites, with a particular focus on infections caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacterium tuberculosis, non-tuberculous mycobacteria (NTM), and Pseudomonas aeruginosa. Evidences for a potential use of cysteamine as a direct antimicrobial agent and/or a host-directed therapy, either alone or in combination with other antimicrobial drugs, are described.
Collapse
Affiliation(s)
- Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, India; Dipartimento di Scienze di Laboratorio ed Ematologiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS; Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, India; Mater Olbia Hospital, Olbia, Italy
| | - Valeria Rachela Villella
- CEINGE, Advanced Biotechnologies Franco Salvatore, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Valeria Raia
- Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, Naples, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy; Cell Biology and Electron Microscopy Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Aiello A, Ruggieri S, Navarra A, Tortorella C, Vanini V, Haggiag S, Prosperini L, Cuzzi G, Salmi A, Quartuccio ME, Altera AMG, Meschi S, Matusali G, Vita S, Galgani S, Maggi F, Nicastri E, Gasperini C, Goletti D. Anti-RBD Antibody Levels and IFN-γ-Specific T Cell Response Are Associated with a More Rapid Swab Reversion in Patients with Multiple Sclerosis after the Booster Dose of COVID-19 Vaccination. Vaccines (Basel) 2024; 12:926. [PMID: 39204049 PMCID: PMC11359508 DOI: 10.3390/vaccines12080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
This study investigated the incidence and severity of SARS-CoV-2 breakthrough infections (BIs) and the time to swab reversion in patients with multiple sclerosis (PwMS) after the booster dose of COVID-19 mRNA vaccines. We enrolled 64 PwMS who had completed the three-dose mRNA vaccine schedule and had never experienced COVID-19 before. Among the 64 PwMS, 43.8% had BIs with a median time since the third vaccine dose of 155 days. BIs occurred more frequently in ocrelizumab-treated patients (64.7%). Patients with a relapsing-remitting MS course showed a reduced incidence of BIs compared with those with a primary-progressive disease (p = 0.002). Having anti-receptor-binding domain (RBD) antibodies represented a protective factor reducing the incidence of BIs by 60% (p = 0.042). The majority of BIs were mild, and the only severe COVID-19 cases were reported in patients with a high Expanded Disability Status Scale score (EDSS > 6). The median time for a negative swab was 11 days. Notably, fingolimod-treated patients take longer for a swab-negativization (p = 0.002). Conversely, having anti-RBD antibodies ≥ 809 BAU/mL and an IFN-γ-specific T cell response ≥ 16 pg/mL were associated with a shorter time to swab-negativization (p = 0.051 and p = 0.018, respectively). In conclusion, the immunological protection from SARS-CoV-2 infection may differ among PwMS according to DMTs.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| | - Serena Ruggieri
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy;
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
- Simple Operating Unit Technical Healthcare Professions , National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Luca Prosperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| | - Maria Esmeralda Quartuccio
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.M.); (G.M.); (F.M.)
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.M.); (G.M.); (F.M.)
| | - Serena Vita
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.V.); (E.N.)
| | - Simonetta Galgani
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.M.); (G.M.); (F.M.)
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.V.); (E.N.)
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| |
Collapse
|
4
|
Silva BA, Miglietta E, Casabona JC, Wenker S, Eizaguirre MB, Alonso R, Casas M, Lázaro LG, Man F, Portuondo G, Lopez Bisso A, Zavala N, Casales F, Imhoff G, Steinberg DJ, López PA, Carnero Contentti E, Deri N, Sinay V, Hryb J, Chiganer E, Leguizamon F, Tkachuk V, Bauer J, Ferrandina F, Giachello S, Henestroza P, Garcea O, Pascuale CA, Heitrich M, Podhajcer OL, Vinzón S, D’Alotto-Moreno T, Benatar A, Rabinovich GA, Pitossi FJ, Ferrari CC. Do immunosuppressive treatments influence immune responses against adenovirus-based COVID-19 vaccines in patients with multiple sclerosis? An Argentine multicenter study. Front Immunol 2024; 15:1431403. [PMID: 39224589 PMCID: PMC11366620 DOI: 10.3389/fimmu.2024.1431403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction There are no reports in LATAM related to longitudinal humoral and cellular response to adenovirus based COVID-19 vaccines in people with Multiple Sclerosis (pwMS) under different disease modifying therapies (DMTs) and neutralization of the Omicron and Wuhan variants of SARS-COV-2. Methods IgG anti- SARS-COV-2 spike titer were measured in a cohort of 101 pwMS under fingolimod, dimethyl fumarate, cladribine and antiCD20, as well as 28 healthy controls (HC) were measured 6 weeks after vaccination with 2nd dose (Sputnik V or AZD1222) and 3nd dose (homologous or heterologous schedule). Neutralizing capacity was against Omicron (BA.1) and Wuhan (D614G) variants and pseudotyped particles and Cellular response were analyzed. Results Multivariate regression analysis showed anti-cd20 (β= -,349, 95% CI: -3655.6 - -369.01, p=0.017) and fingolimod (β=-,399, 95% CI: -3363.8 - -250.9, p=0.023) treatments as an independent factor associated with low antibody response (r2 adjusted=0.157). After the 2nd dose we found a correlation between total and neutralizing titers against D614G (rho=0.6; p<0.001; slope 0.8, 95%CI:0.4-1.3), with no differences between DMTs. Neutralization capacity was lower for BA.1 (slope 0.3, 95%CI:0.1-0.4). After the 3rd dose, neutralization of BA.1 improved (slope: 0.9 95%CI:0.6-1.2), without differences between DMTs. A fraction of pwMS generated anti-Spike CD4+ and CD8+ T cell response. In contrast, pwMS under antiCD20 generated CD8+TNF+IL2+ response without differences with HC, even in the absence of humoral response. The 3rd dose significantly increased the neutralization against the Omicron, as observed in the immunocompetent population. Discussion Findings regarding humoral and cellular response are consistent with previous reports.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Multiple Sclerosis Unit, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Esteban Miglietta
- Carrera del Personal de Apoyo (CPA), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Juan Cruz Casabona
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shirley Wenker
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Magdalena Casas
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | | | - Federico Man
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Gustavo Portuondo
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Abril Lopez Bisso
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Noelia Zavala
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Federico Casales
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Gastón Imhoff
- Neurology Deparment, Sanatorio de los Arcos, Buenos Aires, Argentina
| | - Dra Judith Steinberg
- Neurology Deparment, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Norma Deri
- Multiple Sclerosis Unit, Instituto de Asistencia Integral en Diabetes y patologías crónicas (DIABAID), Buenos Aires, Argentina
| | - Vladimiro Sinay
- Multiple Sclerosis Deparment, Fundación Favaloro, Hospital Universitario, Buenos Aires, Argentina
| | - Javier Hryb
- Neurology Deparment, Hospital General de Agudos Carlos G. Durand, Buenos Aires, Argentina
| | - Edson Chiganer
- Neurology Deparment, Hospital General de Agudos Carlos G. Durand, Buenos Aires, Argentina
| | - Felisa Leguizamon
- Neurology Deparment, Hospital General de Agudos Dr. Teodoro Álvarez, Buenos Aires, Argentina
| | - Verónica Tkachuk
- Neurology Deparment, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Johana Bauer
- Asociación Esclerosis Múltiple Argentina, Buenos Aires, Argentina
| | | | - Susana Giachello
- Asociación Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Paula Henestroza
- Asociación Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Orlando Garcea
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Carla Antonela Pascuale
- Carrera del Personal de Apoyo (CPA), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Osvaldo L. Podhajcer
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sabrina Vinzón
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Tomas D’Alotto-Moreno
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Alejandro Benatar
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Gabriel Adrián Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Fernando J. Pitossi
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carina C. Ferrari
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Verstegen NJM, Hagen RR, Kreher C, Kuijper LH, Dijssel JVD, Ashhurst T, Kummer LYL, Palomares Cabeza V, Steenhuis M, Duurland MC, Jongh RD, Schoot CEVD, Konijn VAL, Mul E, Kedzierska K, van Dam KPJ, Stalman EW, Boekel L, Wolbink G, Tas SW, Killestein J, Rispens T, Wieske L, Kuijpers TW, Eftimov F, van Kempen ZLE, van Ham SM, Ten Brinke A, van de Sandt CE. T cell activation markers CD38 and HLA-DR indicative of non-seroconversion in anti-CD20-treated patients with multiple sclerosis following SARS-CoV-2 mRNA vaccination. J Neurol Neurosurg Psychiatry 2024; 95:855-864. [PMID: 38548324 PMCID: PMC11347213 DOI: 10.1136/jnnp-2023-332224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/19/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. METHODS In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). RESULTS Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. CONCLUSION These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.
Collapse
Affiliation(s)
- Niels J M Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christine Kreher
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute, and The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Laura Y L Kummer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Virginia Palomares Cabeza
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rivka de Jongh
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Veronique A L Konijn
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Mul
- Research Facilities, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Koos P J van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center location Reade, Amsterdam, The Netherlands
| | - Gertjan Wolbink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center location Reade, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zoé L E van Kempen
- Department of Neurology, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Gudesblatt M, Bumstead B, Buhse M, Zarif M, Morrow SA, Nicholas JA, Hancock LM, Wilken J, Weller J, Scott N, Gocke A, Lewin JB, Kaczmarek O, Mendoza JP, Golan D. De-escalation of Disease-Modifying Therapy for People with Multiple Sclerosis Due to Safety Considerations: Characterizing 1-Year Outcomes in 25 People Who Switched from Ocrelizumab to Diroximel Fumarate. Adv Ther 2024; 41:3059-3075. [PMID: 38861218 PMCID: PMC11263251 DOI: 10.1007/s12325-024-02902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Switching disease-modifying therapy (DMT) may be considered for relapsing-remitting multiple sclerosis (RRMS) if a patient's current therapy is no longer optimal. This was particularly important during the recent COVID-19 pandemic because of considerations around immune deficiency and impaired vaccine response associated with B cell-depleting DMTs. This real-world, single-center study aimed to evaluate change or decline in functional ability and overall disease stability in people with RRMS who were switched from B cell-depleting ocrelizumab (OCRE) to diroximel fumarate (DRF) because of safety concern related to the COVID-19 pandemic. METHODS Adults with RRMS were included if they had been clinically stable for ≥ 1 year on OCRE. Data collected at baseline and 1 year post switch included relapse rate, magnetic resonance imaging (MRI), blood work for assessment of peripheral immune parameters, the Cognitive Assessment Battery (CAB), optical coherence tomography (OCT), and patient-reported outcomes (PROs). RESULTS Participants (N = 25) had a mean (SD) age of 52 (9) years, and a mean (SD) duration of 26 (8) months' treatment with OCRE before the switch to DRF. Median washout duration since the last OCRE infusion was 7 months (range 4-18 months). No participants relapsed on DRF during follow-up, and all remained persistent on DRF after 1 year. There were no significant changes in peripheral immune parameters, other than an increase in the percentage of CD19+ cells 1 year after switching (p < 0.05). Similarly, there were no significant changes in CAB, OCT, and PROs. CONCLUSION These preliminary findings suggest that transition to DRF from OCRE may be an effective treatment option for people with RRMS who are clinically stable but may need to switch for reasons unrelated to effectiveness. Longer follow-up times on larger samples are needed to confirm these observations.
Collapse
Affiliation(s)
- Mark Gudesblatt
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA.
| | - Barbara Bumstead
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | - Marijean Buhse
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | - Myassar Zarif
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | - Sarah A Morrow
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Jacqueline A Nicholas
- OhioHealth Multiple Sclerosis Center, Riverside Methodist Hospital, Columbus, OH, USA
| | - Laura M Hancock
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey Wilken
- Washington Neuropsychology Research Group, Fairfax, VA, USA
- Department of Neurology, Georgetown University School of Medicine, Washington, DC, USA
| | - Joanna Weller
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | | | | | | | - Olivia Kaczmarek
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | | | - Daniel Golan
- Multiple Sclerosis and Neuroimmunology Center, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Fernández Ó, Montalbán X, Agüera E, Aladro Y, Alonso A, Arroyo R, Brieva L, Calles C, Costa-Frossard L, Eichau S, García-Domínguez JM, Hernández MÁ, Landete L, Llaneza M, Llufriu S, Meca-Lallana JE, Meca-Lallana V, Moral E, Prieto JM, Ramió-Torrentà L, Téllez N, Romero-Pinel L, Vilaseca A, Rodríguez-Antigüedad A. [XVI Post-ECTRIMS Meeting: review of the new developments presented at the 2023 ECTRIMS Congress (II)]. Rev Neurol 2024; 79:51-66. [PMID: 38976584 PMCID: PMC11469095 DOI: 10.33588/rn.7902.2024174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 07/10/2024]
Abstract
The XVI Post-ECTRIMS meeting was held in Seville on 20 and 21 October 2023, where expert neurologists in multiple sclerosis (MS) summarised the main new developments presented at the ECTRIMS 2023 congress, which took place in Milan from 11 to 13 October. The aim of this article is to summarise the content presented at the Post-ECTRIMS Meeting, in an article in two parts. This second part covers the health of women and elderly MS patients, new trends in the treatment of cognitive impairment, focusing particularly on meditation, neuroeducation and cognitive rehabilitation, and introduces the concept of fatigability, which has been used to a limited extent in MS. The key role of digitalization and artificial intelligence in the theoretically near future is subject to debate, along with the potential these technologies can offer. The most recent research on the various treatment algorithms and their efficacy and safety in the management of the disease is reviewed. Finally, the most relevant data for cladribine and evobrutinib are presented, as well as future therapeutic strategies currently being investigated.
Collapse
Affiliation(s)
- Óscar Fernández
- Departamento de Farmacología. Facultad de Medicina. Universidad de Málaga, Málaga, EspañaUniversidad de MálagaUniversidad de MálagaMálagaEspaña
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, EspañaInstituto de Investigación Biomédica de Málaga (IBIMA)Instituto de Investigación Biomédica de Málaga (IBIMA)MálagaEspaña
- Hospital Universitario Regional de Málaga-Universidad de Málaga, Málaga, EspañaHospital Universitario Regional de Málaga-Universidad de MálagaHospital Universitario Regional de Málaga-Universidad de MálagaMálagaEspaña
| | - Xavier Montalbán
- CEMCAT. Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona. Barcelona, EspañaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaBarcelonaEspaña
| | - Eduardo Agüera
- Servicio de Neurología. Hospital Reina Sofía. Córdoba, EspañaHospital Reina SofíaHospital Reina SofíaCórdobaEspaña
| | - Yolanda Aladro
- Servicio de Neurología. Hospital Universitario de Getafe. Getafe, EspañaHospital Universitario de GetafeHospital Universitario de GetafeGetafeEspaña
| | - Ana Alonso
- Unidad de Esclerosis Múltiple. Servicio de Neurología, Málaga, EspañaServicio de NeurologíaServicio de NeurologíaMálagaEspaña
| | - Rafael Arroyo
- Servicio de Neurología. Hospital Universitario Quirónsalud. Madrid, EspañaHospital Universitario QuirónsaludHospital Universitario QuirónsaludMadridEspaña
| | - Luis Brieva
- Hospital Universitari Arnau de Vilanova-Universitat de Lleida. Lleida, EspañaHospital Universitari Arnau de Vilanova-Universitat de LleidaHospital Universitari Arnau de Vilanova-Universitat de LleidaLleidaEspaña
| | - Carmen Calles
- Servicio de Neurología. Hospital Universitario Son Espases. Palma de Mallorca, EspañaHospital Universitario Son EspasesHospital Universitario Son EspasesPalma de MallorcaEspaña
| | - Lucienne Costa-Frossard
- CSUR de Esclerosis Múltiple. Hospital Universitario Ramón y Cajal. Madrid, EspañaHospital Universitario Ramón y CajalHospital Universitario Ramón y CajalMadridEspaña
| | - Sara Eichau
- Servicio de Neurología. Hospital Universitario Virgen Macarena. Sevilla, EspañaHospital Universitario Virgen MacarenaHospital Universitario Virgen MacarenaSevillaEspaña
| | - José M. García-Domínguez
- Hospital Universitario Gregorio Marañón. Madrid, EspañaHospital Universitario Gregorio MarañónHospital Universitario Gregorio MarañónMadridEspaña
| | - Miguel Á. Hernández
- Servicio de Neurología. Hospital Nuestra Señora de Candelaria. Santa Cruz de Tenerife, EspañaHospital Nuestra Señora de CandelariaHospital Nuestra Señora de CandelariaSanta Cruz de TenerifeEspaña
| | - Lamberto Landete
- Servicio de Neurología. Hospital Universitario Doctor Peset. Valencia, EspañaHospital Universitario Doctor PesetHospital Universitario Doctor PesetValenciaEspaña
| | - Miguel Llaneza
- Servicio de Neurología. Hospital Universitario Central de Asturias. Oviedo, EspañaHospital Universitario Central de AsturiasHospital Universitario Central de AsturiasOviedoEspaña
| | - Sara Llufriu
- Unidad de Neuroinmunología y Esclerosis Múltiple. Hospital Clínic de Barcelona e IDIBAPS. Barcelona, EspañaHospital Clínic de Barcelona e IDIBAPSHospital Clínic de Barcelona e IDIBAPSBarcelonaEspaña
| | - José E. Meca-Lallana
- Unidad de Neuroinmunología Clínica y CSUR Esclerosis Múltiple. Servicio de Neurología. Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca). Murcia, EspañaHospital Clínico Universitario Virgen de la Arrixaca (IMIB-ArrixacaHospital Clínico Universitario Virgen de la Arrixaca (IMIB-ArrixacaMurciaEspaña
- Cátedra de Neuroinmunología Clínica y Esclerosis Múltiple. Universidad Católica San Antonio (UCAM). Murcia, EspañaUniversidad Católica San Antonio (UCAM)Universidad Católica San Antonio (UCAM)MurciaEspaña
| | - Virginia Meca-Lallana
- Servicio de Neurología. Hospital Universitario de La Princesa. Madrid, EspañaHospital Universitario de La PrincesaHospital Universitario de La PrincesaMadridEspaña
| | - Ester Moral
- Servicio de Neurología. Complejo Hospitalario Universitario Moisès Broggi. Sant Joan Despí, EspañaComplejo Hospitalario Universitario Moisès BroggiComplejo Hospitalario Universitario Moisès BroggiSant Joan DespíEspaña
| | - José M. Prieto
- Servicio de Neurología. Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Santiago de Compostela, EspañaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Santiago de CompostelaEspaña
| | - Lluís Ramió-Torrentà
- Unitat de Neuroimmunologia i Esclerosi Múltiple Territorial de Girona (UNIEMTG). Hospital Universitari Dr. Josep Trueta. Girona, EspañaHospital Universitari Dr. Josep TruetaHospital Universitari Dr. Josep TruetaGironaEspaña
- Hospital Santa Caterina. IDIBGI. Girona, EspañaHospital Santa CaterinaHospital Santa CaterinaGironaEspaña
- Grup Neurodegeneració i Neuroinflamació. IDIBGI. Girona, EspañaIDIBGIIDIBGIGironaEspaña
- Departamento de Ciencias Médicas. Universitat de Girona. Girona, EspañaUniversitat de GironaUniversitat de GironaGironaEspaña
| | - Nieves Téllez
- Hospital Clínico Universitario de Valladolid. Valladolid, EspañaHospital Clínico Universitario de ValladolidHospital Clínico Universitario de ValladolidValladolidEspaña
| | - Lucía Romero-Pinel
- Hospital Universitari de Bellvitge-IDIBELL. L’Hospitalet de Llobregat. Barakaldo, EspañaHospital Universitari de Bellvitge-IDIBELLHospital Universitari de Bellvitge-IDIBELLBarakaldoEspaña
| | - Andreu Vilaseca
- CEMCAT. Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona. Barcelona, EspañaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaBarcelonaEspaña
| | - Alfredo Rodríguez-Antigüedad
- Servicio de Neurología. Hospital Universitario Cruces. Barakaldo, EspañaHospital Universitario CrucesHospital Universitario CrucesBarakaldoEspaña
| |
Collapse
|
8
|
Kister I, Curtin R, Piquet AL, Borko T, Pei J, Banbury BL, Bacon TE, Kim A, Tuen M, Velmurugu Y, Nyovanie S, Selva S, Samanovic MI, Mulligan MJ, Patskovsky Y, Priest J, Cabatingan M, Winger RC, Krogsgaard M, Silverman GJ. Longitudinal study of immunity to SARS-CoV2 in ocrelizumab-treated MS patients up to 2 years after COVID-19 vaccination. Ann Clin Transl Neurol 2024; 11:1750-1764. [PMID: 38713096 PMCID: PMC11251481 DOI: 10.1002/acn3.52081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVES (1) To plot the trajectory of humoral and cellular immune responses to the primary (two-dose) COVID-19 mRNA series and the third/booster dose in B-cell-depleted multiple sclerosis (MS) patients up to 2 years post-vaccination; (2) to identify predictors of immune responses to vaccination; and (3) to assess the impact of intercurrent COVID-19 infections on SARS CoV-2-specific immunity. METHODS Sixty ocrelizumab-treated MS patients were enrolled from NYU (New York) and University of Colorado (Anschutz) MS Centers. Samples were collected pre-vaccination, and then 4, 12, 24, and 48 weeks post-primary series, and 4, 12, 24, and 48 weeks post-booster. Binding anti-Spike antibody responses were assessed with multiplex bead-based immunoassay (MBI) and electrochemiluminescence (Elecsys®, Roche Diagnostics), and neutralizing antibody responses with live-virus immunofluorescence-based microneutralization assay. Spike-specific cellular responses were assessed with IFNγ/IL-2 ELISpot (Invitrogen) and, in a subset, by sequencing complementarity determining regions (CDR)-3 within T-cell receptors (Adaptive Biotechnologies). A linear mixed-effect model was used to compare antibody and cytokine levels across time points. Multivariate analyses identified predictors of immune responses. RESULTS The primary vaccination induced an 11- to 208-fold increase in binding and neutralizing antibody levels and a 3- to 4-fold increase in IFNγ/IL-2 responses, followed by a modest decline in antibody but not cytokine responses. Booster dose induced a further 3- to 5-fold increase in binding antibodies and 4- to 5-fold increase in IFNγ/IL-2, which were maintained for up to 1 year. Infections had a variable impact on immunity. INTERPRETATION Humoral and cellular benefits of COVID-19 vaccination in B-cell-depleted MS patients were sustained for up to 2 years when booster doses were administered.
Collapse
MESH Headings
- Humans
- COVID-19/immunology
- COVID-19/prevention & control
- Male
- Female
- Middle Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Adult
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Longitudinal Studies
- SARS-CoV-2/immunology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/drug therapy
- Antibodies, Viral/blood
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunity, Cellular/drug effects
- Vaccination
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- BNT162 Vaccine/administration & dosage
- BNT162 Vaccine/immunology
Collapse
Affiliation(s)
- Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Ryan Curtin
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Amanda L. Piquet
- Rocky Mountain MS CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Tyler Borko
- Rocky Mountain MS CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Jinglan Pei
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Tamar E. Bacon
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Angie Kim
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Michael Tuen
- NYU Langone Vaccine Center and Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Yogambigai Velmurugu
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Samantha Nyovanie
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Sean Selva
- Rocky Mountain MS CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Marie I. Samanovic
- NYU Langone Vaccine Center and Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Mark J. Mulligan
- NYU Langone Vaccine Center and Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Yury Patskovsky
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | | | | | | | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Gregg J. Silverman
- Division of Rheumatology, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
9
|
Agarwal G, Moore S, Sadler R, Varghese S, Turner A, Chen LY, Larham J, Gray N, Carty O, Barrett J, Koshiaris C, Kothari J, Bowcock S, Oppermann U, Gamble V, Cook G, Kyriakou C, Drayson M, Basu S, McDonald S, McKinley S, Gooding S, Javaid MK, Ramasamy K. Longitudinal dynamics and clinically available predictors of poor response to COVID-19 vaccination in multiple myeloma. Haematologica 2024; 109:1960-1965. [PMID: 38268439 PMCID: PMC11141678 DOI: 10.3324/haematol.2023.284286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Division of Haematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Ross Sadler
- Oxford University Hospitals NHS Trust, Oxford
| | | | - Alison Turner
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford
| | | | | | - Nathanael Gray
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford
| | | | - Joe Barrett
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford
| | | | | | | | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford
| | - Vicky Gamble
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford
| | - Gordon Cook
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds
| | | | | | - Supratik Basu
- The Royal Wolverhampton NHS Trust, Wolverhampton, UK; University of Wolverhampton, Wolverhampton
| | | | | | - Sarah Gooding
- Oxford University Hospitals NHS Trust, Oxford, UK; MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine
| | - Muhammad K Javaid
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford
| | | |
Collapse
|
10
|
Schiavetti I, Signori A, Albanese A, Frau J, Cocco E, Lorefice L, di Lemme S, Fantozzi R, Centonze D, Landi D, Marfia G, Signoriello E, Lus G, Zecca C, Gobbi C, Iodice R, Malimpensa L, Cordioli C, Ferraro D, Ruscica F, Pasquali L, Repice A, Immovilli P, Ferrò MT, Bonavita S, Di Filippo M, Abbadessa G, Govone F, Sormani MP. Therapeutic choices and disease activity after 2 years of treatment with cladribine: An Italian multicenter study (CladStop). Eur J Neurol 2024; 31:e16250. [PMID: 38549186 PMCID: PMC11236058 DOI: 10.1111/ene.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 02/04/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND AND PURPOSE Cladribine tablets, a purine analogue antimetabolite, offer a unique treatment regimen, involving short courses at the start of the first and second year, with no further treatment needed in years 3 and 4. However, comprehensive evidence regarding patient outcomes beyond the initial 24 months of cladribine treatment is limited. METHODS This retrospective, multicenter study enrolled 204 patients with multiple sclerosis who had completed the 2-year course of cladribine treatment. The primary outcomes were therapeutic choices and clinical disease activity assessed by annualized relapse rate after the 2-year treatment course. RESULTS A total of 204 patients were enrolled; most patients (75.4%) did not initiate new treatments in the 12 months postcladribine. The study found a significant reduction in annualized relapse rate at the 12-month follow-up after cladribine completion compared to the year prior to starting therapy (0.07 ± 0.25 vs. 0.82 ± 0.80, p < 0.001). Furthermore, patients with relapses during cladribine treatment were more likely to start new therapies, whereas older patients were less likely. The safety profile of cladribine was favorable, with lymphopenia being the primary registered adverse event. CONCLUSIONS This study provides insights into therapeutic choices and disease activity following cladribine treatment. It highlights cladribine's effectiveness in reducing relapse rates and disability progression, reaffirming its favorable safety profile. Real-world data, aligned with previous reports, draw attention to ocrelizumab and natalizumab as common choices after cladribine. However, larger, prospective studies for validation and a more comprehensive understanding of cladribine's long-term impact are necessary.
Collapse
Affiliation(s)
| | | | | | - Jessica Frau
- Centro Sclerosi Multipla Ospedale Binaghi CagliariAzienda Sanitaria Locale (ASL) CagliariCagliariItaly
| | - Eleonora Cocco
- Centro Sclerosi Multipla Ospedale Binaghi CagliariAzienda Sanitaria Locale (ASL) CagliariCagliariItaly
- Dipartimento Scienze Mediche e Sanità PubblicaUniversità di CagliariCagliariItaly
| | - Lorena Lorefice
- Centro Sclerosi Multipla Ospedale Binaghi CagliariAzienda Sanitaria Locale (ASL) CagliariCagliariItaly
| | - Sonia di Lemme
- Unit of NeurologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) NeuromedPozzilliItaly
| | - Roberta Fantozzi
- Unit of NeurologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) NeuromedPozzilliItaly
| | - Diego Centonze
- Unit of NeurologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) NeuromedPozzilliItaly
- Department of Systems MedicineTor Vergata UniversityRomeItaly
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems MedicineTor Vergata UniversityRomeItaly
| | - Girolama Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems MedicineTor Vergata UniversityRomeItaly
| | - Elisabetta Signoriello
- Centro Sclerosi Multipla, II Clinica NeurologicaUniversità della Campania Luigi VanvitelliNaplesItaly
| | - Giacomo Lus
- Centro Sclerosi Multipla, II Clinica NeurologicaUniversità della Campania Luigi VanvitelliNaplesItaly
| | - Chiara Zecca
- Multiple Sclerosis Center, Neurocenter of Southern SwitzerlandEOCLuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
| | - Claudio Gobbi
- Multiple Sclerosis Center, Neurocenter of Southern SwitzerlandEOCLuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
| | - Rosa Iodice
- Clinica NeurologicaDSNRO Università Federico II di NapoliNapoliItaly
| | - Leonardo Malimpensa
- Mediterranean Neurological Institute NeuromedIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS)PozzilliItaly
| | - Cinzia Cordioli
- Centro Sclerosi MultiplaAzienda Socio Sanitaria Territoriale (ASST) Spedali Civili di BresciaMontichiariItaly
| | - Diana Ferraro
- Department of Neurosciences, Ospedale Civile di BaggiovaraAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - Francesca Ruscica
- Unità operativa di NeurologiaFondazione Istituto G.GiglioPalermoItaly
| | - Livia Pasquali
- Neurology Unit, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Anna Repice
- Department of Neurology 2Careggi University HospitalFlorenceItaly
| | - Paolo Immovilli
- Neurology Unit, Emergency DepartmentGuglielmo da Saliceto HospitalPiacenzaItaly
| | - Maria Teresa Ferrò
- Neurological Unit, Cerebrovascular Department, Neuroimmunology, Center for Multiple SclerosisASST CremaCremaItaly
| | - Simona Bonavita
- Dipartimento di Scienze Mediche e Chirurgiche AvanzateUniversità della Campania Luigi VanvitelliNaplesItaly
| | | | | | - Flora Govone
- Centro Sclerosi Multipla–Neurologia di MondovìCuneoItaly
| | - Maria Pia Sormani
- Department of Health SciencesUniversity of GenoaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
11
|
Razonable RR. Protecting the vulnerable: addressing the COVID-19 care needs of people with compromised immunity. Front Immunol 2024; 15:1397040. [PMID: 38756784 PMCID: PMC11096526 DOI: 10.3389/fimmu.2024.1397040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
While the general population regained a certain level of normalcy with the end of the global health emergency, the risk of contracting COVID-19 with a severe outcome is still a major concern for people with compromised immunity. This paper reviews the impact of COVID-19 on people with immunocompromised status, identifies the gaps in the current management landscape, and proposes actions to address this unmet need. Observational studies have demonstrated that people with immune dysfunction have a higher risk of COVID-19-related hospitalization and death, despite vaccination, than the general population. More research is needed to define the optimal prevention and treatment strategies that are specific to people with immunocompromised status, including novel vaccination strategies, monoclonal antibodies that provide passive immunity and complement suboptimal vaccination responses, and improved and safer antiviral treatment for COVID-19. Preventive measures beyond vaccination alone are urgently needed to protect this vulnerable population.
Collapse
Affiliation(s)
- Raymund R. Razonable
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Immovilli P, Schiavetti I, Franceschini A, De Mitri P, Gelati L, Rota E, Guidetti D. Breakthrough COVID-19 in people with multiple sclerosis on disease modifying treatments: Is it still a severe disease? Mult Scler Relat Disord 2024; 85:105547. [PMID: 38518506 DOI: 10.1016/j.msard.2024.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Disease modifying treatments (DMTs) for multiple sclerosis (MS) are effective in preventing both relapses and disability progression. Highly effective treatments (HETs) are more effective than platform therapy in preventing confirmed disability progression (CDP), when used early. Infections may complicate HETs administration, and their prevention through vaccination is crucial in order to assure the safety of people with MS (pwMS). The aim of the present study is to describe the effect of MS DMTs on COVID-19 vaccination and the risk of breakthrough infection in a cohort of pwMS. MATERIALS AND METHODS This is a monocentric retrospective observational study conducted at the MS center of the Guglielmo da Saliceto Hospital in Piacenza, Italy. One hundred and fifty-seven (157) pwMS who received two doses of the SARS-CoV-2 vaccine (with 80.3 % receiving a booster dose) were included in the study. RESULTS fifty-six pwMS (35.7 %) were females, the mean age was 48.6 (SD: 12.87) years, and 59 (37.6 %) had at least one comorbidity. Twenty-five (15.9 %) breakthrough infections were observed, with 17 (68.0 %) classified as mild and 8 (32.0 %) as moderate. A multivariable linear regression model confirmed that B-cell suppressor DMTs and EDSS were factors associated with the latest antibody titre. Patients treated with B-cell suppressors exhibited a risk almost four times higher for breakthrough infections compared to other patients, with a hazard ratio (HR) of 3.72 (95 % CI: 1.50 - 9.27) (p = 0.005). CONCLUSIONS B-cell suppressor DMTs are associated with the risk of breakthrough COVID-19 in our cohort, but vaccination fully protected pwMS against severe breakthrough disease.
Collapse
Affiliation(s)
- Paolo Immovilli
- Neurology Unit, Emergency Department, Guglielmo da Saliceto Hospital, via Taverna 38, Piacenza 29121, Italy.
| | - Irene Schiavetti
- Department of Health Sciences, University of Genova, via Pastore 1, Genoa 16132, Italy
| | - Alessandro Franceschini
- Neurology Unit, Medicine and Surgery Department, University of Parma, via Abbeveratoia 4, Parma 43126, Italy
| | - Paola De Mitri
- Neurology Unit, Emergency Department, Guglielmo da Saliceto Hospital, via Taverna 38, Piacenza 29121, Italy
| | - Lorenza Gelati
- Neurology Unit, Emergency Department, Guglielmo da Saliceto Hospital, via Taverna 38, Piacenza 29121, Italy
| | - Eugenia Rota
- Neurology Unit, San Giacomo Hospital, ASL Alessandria, via E. Raggio 12, Novi Ligure 15067, Italy
| | - Donata Guidetti
- Neurology Unit, Emergency Department, Guglielmo da Saliceto Hospital, via Taverna 38, Piacenza 29121, Italy
| |
Collapse
|
13
|
Kapten K, Orczyk K, Maeser A, Smolewska E. Interferon-γ Release Assay in the Assessment of Cellular Immunity-A Single-Centre Experience with mRNA SARS-CoV-2 Vaccine in Patients with Juvenile Idiopathic Arthritis. J Clin Med 2024; 13:2523. [PMID: 38731052 PMCID: PMC11084224 DOI: 10.3390/jcm13092523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Background: As the SARS-CoV-2 virus remains one of the main causes of severe respiratory system infections, the Food and Drug Administration strongly advises the continuation of current vaccination programs, including the distribution of updated boosters, especially in high-risk groups of patients. Therefore, there is an unceasing need for further research on the safety and, no less importantly, the clinical effectivity of the vaccines, with an extra focus on cohorts of patients with underlying health problems. This study aimed to assess the efficacy of the SARS-CoV-2 vaccine in possibly immunocompromised children with rheumatic disease while utilizing the interferon-gamma release assay (IGRA) as a marker for COVID-19 immunity in the study follow-up. Methods: This prospective study was performed in a group of 55 pediatric patients diagnosed with juvenile idiopathic arthritis. Eight participants were immunized with the Comirnaty mRNA vaccine before the research commenced, while the rest of the group (n = 47) had not been vaccinated against SARS-CoV-2. At the study baseline, the cellular response to the virus antigen was measured using a specific quantitative IGRA in whole blood; subsequently, the anti-SARS-CoV-2 test was performed, marking the antibodies' levels in serum. Around four months after the enrollment of the last patient in the study, a follow-up survey regarding the events of COVID-19 infection within the cohort was conducted. Results: The study confirmed that all the vaccinated children developed specific T-cell (p = 0.0016) and humoral (p = 0.001 for IgA antibodies, p = 0.008 for IgG antibodies) responses to the inoculation, including those receiving biological treatment and those on conventional disease-modifying anti-rheumatic drugs. The study also showed the different patterns of immunity elicited both after infection and post-vaccination, with higher levels of antibodies and T-cell response after inoculation than after natural exposure to the pathogen. According to the follow-up survey, six children developed PCR-confirmed SARS-CoV-2 infection, whereas the additional 10 patients admitted to having COVID-like symptoms with no laboratory verification. Conclusions: SARS-CoV-2 vaccinations elicit valid immune responses in pediatric rheumatic patients. Including the assessment of T-cell immunity in the evaluation of inoculation-induced immunization can enhance the accuracy of sole humoral response assays.
Collapse
Affiliation(s)
- Katarzyna Kapten
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Krzysztof Orczyk
- Department of Pediatric Infectious Diseases, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Anna Maeser
- Department of Pediatric Cardiology and Rheumatology, Central Teaching Hospital of Medical University of Lodz, 91-738 Lodz, Poland;
| | - Elzbieta Smolewska
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, 91-738 Lodz, Poland;
| |
Collapse
|
14
|
Freedman MS, Coyle PK, Hellwig K, Singer B, Wynn D, Weinstock-Guttman B, Markovic-Plese S, Galazka A, Dangond F, Korich J, Reder AT. Twenty Years of Subcutaneous Interferon-Beta-1a for Multiple Sclerosis: Contemporary Perspectives. Neurol Ther 2024; 13:283-322. [PMID: 38206453 PMCID: PMC10951191 DOI: 10.1007/s40120-023-00565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 01/12/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive, inflammatory disorder of the central nervous system. Relapsing-remitting MS (RRMS), the most common form of the disease, is characterized by transient neurological dysfunction with concurrent accumulation of disability. Over the past three decades, disease-modifying therapies (DMTs) capable of reducing the frequency of relapses and slowing disability worsening have been studied and approved for use in patients with RRMS. The first DMTs were interferon-betas (IFN-βs), which were approved in the 1990s. Among them was IFN-β-1a for subcutaneous (sc) injection (Rebif®), which was approved for the treatment of MS in Europe and Canada in 1998 and in the USA in 2002. Twenty years of clinical data and experience have supported the efficacy and safety of IFN-β-1a sc in the treatment of RRMS, including pivotal trials, real-world data, and extension studies lasting up to 15 years past initial treatment. Today, IFN-β-1a sc remains an important therapeutic option in clinical use, especially around pregnancy planning and lactation, and may also be considered for aging patients, in which MS activity declines and long-term immunosuppression associated with some alternative therapies is a concern. In addition, IFN-β-1a sc is used as a comparator in many clinical studies and provides a framework for research into the mechanisms by which MS begins and progresses.
Collapse
Affiliation(s)
- Mark S Freedman
- Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
- The Ottawa Hospital Research Institute, 501 Smyth, Ottawa, ON, K1H 8L6, Canada.
| | - Patricia K Coyle
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, New York, NY, 11794, USA
| | - Kerstin Hellwig
- Katholisches Klinikum Bochum, Ruhr University, 44787, Bochum, Germany
| | - Barry Singer
- The MS Center for Innovations in Care, Missouri Baptist Medical Center, 3009 N. Ballas Road, Suite 105B, St. Louis, MO, 63131, USA
| | - Daniel Wynn
- Neurology MS Center, Consultants in Neurology, Ltd, 1535 Lake Cook Road, Suite 601, Northbrook, IL, 60062, USA
| | - Bianca Weinstock-Guttman
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, 14215, USA
- Jacobs MS Center for Treatment and Research, Buffalo, NY, 14202, USA
- Pediatric MS Center, NY State MS Consortium, 1010 Main Street, Buffalo, NY, 14203, USA
| | - Silva Markovic-Plese
- Division of Neuroimmunology, Department of Neurology, Thomas Jefferson University, 900 Walnut St, Rm 305-B, Philadelphia, PA, 19107, USA
| | | | - Fernando Dangond
- EMD Serono Research & Development Institute Inc., an affiliate of Merck GKaA, Billerica, MA, 01821, USA
| | - Julie Korich
- EMD Serono Inc., an affiliate of Merck KGaA, Rockland, MA, 02370, USA
| | - Anthony T Reder
- Department of Neurology A-205, University of Chicago Medicine, MC-2030, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
15
|
De Biasi S, Lo Tartaro D, Neroni A, Rau M, Paschalidis N, Borella R, Santacroce E, Paolini A, Gibellini L, Ciobanu AL, Cuccorese M, Trenti T, Rubio I, Vitetta F, Cardi M, Argüello RJ, Ferraro D, Cossarizza A. Immunosenescence and vaccine efficacy revealed by immunometabolic analysis of SARS-CoV-2-specific cells in multiple sclerosis patients. Nat Commun 2024; 15:2752. [PMID: 38553477 PMCID: PMC10980723 DOI: 10.1038/s41467-024-47013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Disease-modifying therapies (DMT) administered to patients with multiple sclerosis (MS) can influence immune responses to SARS-CoV-2 and vaccine efficacy. However, data on the detailed phenotypic, functional and metabolic characteristics of antigen (Ag)-specific cells following the third dose of mRNA vaccine remain scarce. Here, using flow cytometry and 45-parameter mass cytometry, we broadly investigate the phenotype, function and the single-cell metabolic profile of SARS-CoV-2-specific T and B cells up to 8 months after the third dose of mRNA vaccine in a cohort of 94 patients with MS treated with different DMT, including cladribine, dimethyl fumarate, fingolimod, interferon, natalizumab, teriflunomide, rituximab or ocrelizumab. Almost all patients display functional immune response to SARS-CoV-2. Different metabolic profiles characterize antigen-specific-T and -B cell response in fingolimod- and natalizumab-treated patients, whose immune response differs from all the other MS treatments.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Moritz Rau
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | | | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Francesca Vitetta
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Cardi
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Rafael José Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
16
|
Barone S, Palmieri C, Gallelli L, Rania V, Pascarella A, Abatino A, Bruno PA, Casarella A, Pasquale M, Manzo L, De Sarro G, Gambardella A, Valentino P. Humoral and T-cell response to SARS-CoV-2 mRNA vaccine in multiple sclerosis patients: Correlations with DMTs and clinical variables. Neurotherapeutics 2024; 21:e00307. [PMID: 38237381 DOI: 10.1016/j.neurot.2023.e00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 03/24/2024] Open
Abstract
Disease-modifying therapies (DMTs) can affect vaccine responses in individuals with multiple sclerosis (MS). We assessed the humoral and T-cell responses following SARS-CoV-2 mRNA vaccination in MS patients receiving various DMTs. We prospectively enrolled 243 participants, including 113 healthy control subjects and 130 MS patients. Blood samples for detecting SARS-CoV-2 antibodies were collected at three time points: T0, before the first vaccine dose; T1, before the second dose; and T2, one month after the second dose. In a subgroup of 51 patients and 20 controls, samples were collected at T0 and T2 to assess the T-cell immune response to the Spike antigen of SARS-CoV-2 using ELISPOT-IFNγ. The IgG levels in patients treated with fingolimod and ocrelizumab (159.1 AU/ml and 467.1 AU/ml, respectively) were significantly lower than those in healthy controls and patients on other DMTs (P < 0.0001). The mean Ig titers were higher in patients with an absolute lymphocyte count ≥1000 cells/mm3 compared to those with a count between 500 and 1000 and with a count <500 (mean ± SD:7205.6 ± 7339.2, 2413.1 ± 4515.4 and 165.9 ± 152.2, respectively; p = 0.008). We found correlations between antibody levels and age (r = 0.233, p = 0.008). A positive Spike-specific T-cell response was detectable in 100 % of vaccinated healthy controls and patients treated with teriflunomide, dimethyl-fumarate, and natalizumab, in 90.5 % of fingolimod patients, and in 63.8 % of ocrelizumab patients. There is a correlation between IgG-specific titer after SARS-CoV-2 vaccination and clinical variables (age, lymphocyte count). Notably, a T-cell-specific response to SARS-CoV-2 developed in patients treated with fingolimod and ocrelizumab, even with lower rates of humoral response.
Collapse
Affiliation(s)
- Stefania Barone
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, Chair of Clinical Biochemistry, Unit of Clinical Biochemistry, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Luca Gallelli
- Clinical Pharmacology Unit, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Vincenzo Rania
- Clinical Pharmacology Unit, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Angelo Pascarella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Antonio Abatino
- Department of Experimental and Clinical Medicine, Chair of Clinical Biochemistry, Unit of Clinical Biochemistry, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Pietro Antonio Bruno
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Casarella
- Clinical Pharmacology Unit, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Marilisa Pasquale
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Lucia Manzo
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Clinical Pharmacology Unit, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Paola Valentino
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
17
|
D’Abramo A, Vita S, Beccacece A, Navarra A, Pisapia R, Fusco FM, Matusali G, Girardi E, Maggi F, Goletti D, Nicastri E. B-cell-depleted patients with persistent SARS-CoV-2 infection: combination therapy or monotherapy? A real-world experience. Front Med (Lausanne) 2024; 11:1344267. [PMID: 38487021 PMCID: PMC10937561 DOI: 10.3389/fmed.2024.1344267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Objectives The aim of the study was to describe a cohort of B-cell-depleted immunocompromised (IC) patients with prolonged or relapsing COVID-19 treated with monotherapy or combination therapy. Methods This is a multicenter observational retrospective study conducted on IC patients consecutively hospitalized with a prolonged or relapsing SARS-CoV-2 infection from November 2020 to January 2023. IC COVID-19 subjects were stratified according to the monotherapy or combination anti-SARS-CoV-2 therapy received. Results Eighty-eight patients were enrolled, 19 under monotherapy and 69 under combination therapy. The study population had a history of immunosuppression (median of 2 B-cells/mm3, IQR 1-24 cells), and residual hypogammaglobulinemia was observed in 55 patients. A reduced length of hospitalization and time to negative SARS-CoV-2 molecular nasopharyngeal swab (NPS) in the combination versus monotherapy group was observed. In the univariable and multivariable analyses, the percentage change in the rate of days to NPS negativity showed a significant reduction in patients receiving combination therapy compared to those receiving monotherapy. Conclusion In IC persistent COVID-19 patients, it is essential to explore new therapeutic strategies such as combination multi-target therapy (antiviral or double antiviral plus antibody-based therapies) to avoid persistent viral shedding and/or severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alessandra D’Abramo
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Serena Vita
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Alessia Beccacece
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Assunta Navarra
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Raffaella Pisapia
- Infectious Diseases Unit, "D. Cotugno" Hospital, AORN dei Colli, Naples, Italy
| | | | - Giulia Matusali
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Enrico Girardi
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| |
Collapse
|
18
|
Millán-Pascual J, Valero-López G, Iniesta-Martinez F, Hellin-Gil MF, Jimenez-Veiga J, López-Tovar IA, Morales-Ortiz A, Meca-Lallana JE. Humoral Response to SARS-COV-2 Vaccination in Patients with Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Real-World Study. Neurol Ther 2024; 13:153-164. [PMID: 38097868 PMCID: PMC10787726 DOI: 10.1007/s40120-023-00572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024] Open
Abstract
INTRODUCTION The risk of SARS-CoV-2 infection or severe coronavirus disease 2019 (COVID-19) has been shown to increase in patients with multiple sclerosis (MS). Vaccination is recommended in this patient population, and the effect of disease-modifying treatments (DMTs) on response to vaccination should be considered. METHODS This prospective, observational, cross-sectional study investigated humoral response after COVID-19 vaccination as well as possible predictors for response in patients with MS and other neuroinflammatory diseases who received DMTs in routine clinical practice in Spain. Responses were compared versus those seen in healthy controls. RESULTS After vaccination against COVID-19, most patients with MS developed an immune response comparable to that of healthy individuals. However, approximately half of patients receiving a sphingosine-1-phosphate modulator (SP1-M, fingolimod or siponimod) or a B-cell-depleting agent (aCD20, ocrelizumab or rituximab) did not develop protective antibodies, although patients receiving other DMTs had humoral immune responses comparable to healthy controls. Lymphocyte count was not associated with reduced humoral response in patients receiving an SP1-M or aCD20, whereas, in patients receiving an aCD20 or SP1-M, older age was associated with lower anti-SARS-CoV-2 spike protein immunoglobulin G antibody levels. CONCLUSIONS Treatment with aCD20 or SP1-M therapies appears to be associated with a lower humoral response to vaccines against SARS-CoV-2. Vaccination prior to initiation of these DMTs should be recommended whenever possible.
Collapse
Affiliation(s)
- Jorge Millán-Pascual
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain.
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain.
| | - Gabriel Valero-López
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| | - Francisca Iniesta-Martinez
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| | - Maria Fuensanta Hellin-Gil
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| | - Judith Jimenez-Veiga
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| | | | - Ana Morales-Ortiz
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
| | - José E Meca-Lallana
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| |
Collapse
|
19
|
Thomas Κ, Grigoropoulos I, Alexopoulou P, Karofylakis E, Galani I, Papadopoulou KK, Tsiavou A, Ntourou A, Mavrou E, Qevani I, Katsimbri P, Koutsianas C, Mavrea E, Vassilopoulos D, Pournaras S, Tsiodras S, Boumpas D, Antoniadou A. Sustained cell-mediated but not humoral responses in rituximab-treated rheumatic patients after vaccination against SARS-CoV-2. Rheumatology (Oxford) 2024; 63:534-541. [PMID: 37228039 PMCID: PMC10836975 DOI: 10.1093/rheumatology/kead236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES B-cell depleting monoclonal antibodies are associated with increased COVID-19 severity and impaired immune response to vaccination. We aimed to assess the humoral and cell mediated (CMI) immune response after SARS-CoV-2 vaccination in rituximab (RTX)-treated rheumatic patients. METHODS Serum and whole blood samples were collected from RTX-treated rheumatic patients 3-6 months after last vaccination against SARS-CoV-2. Serum was tested by ELISA for quantitative detection of anti-spike SARS-CoV-2 IgG. Cell-mediated variant-specific SARS-CoV-2 immunity (CMI) was assessed by interferon-γ release assay Covi-FERON FIA. Patients were interviewed for breakthrough COVID-19 infection (BTI) 3 months post sampling. RESULTS Sixty patients were studied after a median (IQR) of 179 (117-221.5) days from last vaccine to sampling. Forty (66.7%) patients had positive Covi-FERON and 23 (38.3%) had detectable anti-spike IgG. Covi-FERON positive patients had lower median RTX cumulative dose [6 (4-10.75) vs 11 (6.75-14.75) grams, (P = 0.019)]. Patients with positive anti-spike IgG had received fewer RTX cycles [2 (2-4) vs 6 (4-8), P = 0.002] and cumulative dose [4 (3-7) vs 10 (6.25-13) grams, P = 0.002] and had shorter time from last vaccination to sampling [140 (76-199) vs 192 (128-230) days, P = 0.047]. Thirty-seven percent were positive only for Covi-FERON and 7% only for anti-spike IgG. Twenty (33.3%) BTI occurred post sampling, exclusively during Omicron variant predominance. The proportion of patients with CMI response against Delta variant was lower in patients who experienced BTI (25% vs 55%, P = 0.03). CONCLUSIONS Four out of ten RTX-treated vaccinated patients show lasting cell-mediated immune response despite undetectable anti-spike antibodies. Cumulative RTX dose affects both humoral and cell-mediated responses to SARS-CoV-2 vaccines. Cell-mediated immune responses call for attention as a vaccine efficacy marker against SARS-CoV-2.
Collapse
Affiliation(s)
- Κonstantinos Thomas
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Ioannis Grigoropoulos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Panagiota Alexopoulou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Emmanouil Karofylakis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Irene Galani
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Kyriaki Korina Papadopoulou
- Clinical Microbiology Laboratory, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Anastasia Tsiavou
- Clinical Microbiology Laboratory, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Aliki Ntourou
- Clinical Immunology-Rheumatology Unit, 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Eleftheria Mavrou
- Clinical Immunology-Rheumatology Unit, 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Irina Qevani
- Clinical Immunology-Rheumatology Unit, 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Pelagia Katsimbri
- Clinical Immunology-Rheumatology Unit, 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Christos Koutsianas
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens School of Medicine, Hippokration General Hospital, Athens, Greece
| | - Evgenia Mavrea
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens School of Medicine, Hippokration General Hospital, Athens, Greece
| | - Dimitrios Vassilopoulos
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens School of Medicine, Hippokration General Hospital, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Dimitrios Boumpas
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
- Clinical Immunology-Rheumatology Unit, 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Attikon University General Hospital, Chaidari, Greece
| |
Collapse
|
20
|
Komoni E, Jashari F, Boshnjaku D, Myftiu B, Pushka M, Blyta A, Nallbani-Komoni R. Risk Factors and Clinical Outcomes of COVID-19 Infection in Multiple Sclerosis Patients: A Retrospective Study from a Single Center in Kosovo. Med Sci Monit 2024; 30:e942992. [PMID: 38287659 PMCID: PMC10838007 DOI: 10.12659/msm.942992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/21/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is treated with disease-modifying therapies (DMTs) that can increase susceptibility to viral infections. This retrospective study aimed to evaluate the presentation, management, and outcomes of patients with MS on DMTs admitted with symptoms of COVID-19 to a single center in Prishtina, Kosovo between March 2020 and April 2022. MATERIAL AND METHODS In this observational, single-center study, we included 282 patients with MS (mean age 37.8±11, 64.9% females), of whom 272 (96.4%) had confirmed COVID-19 infection, either through the presence of antibodies in the serum or a positive PCR test. RESULTS Most patients with COVID-19 infection were either asymptomatic or mildly symptomatic, while 11 patients were hospitalized due to moderate to severe symptoms. Among those with severe infection, 2 patients have died. Patients with moderate and severe COVID-19 had more advanced MS disease (P=0.001) and higher disability scales (P<0.001). In a logistic regression analysis, advanced MS remained significantly associated with worse symptoms, even after adjusting for other risk factors, with a relative risk (RR) of 2.8 (95% CI=1.1-6.6, P=0.018). MS patients on anti-CD20 DMTs more frequently experienced moderate and severe symptoms (RR=2.1, 95% CI=1.1-4.0, P=0.012). Anti-SARS-CoV-2 IgG was also lower in patients treated with anti-CD20. Notably, patients receiving vitamin D supplementation experienced a lower frequency of moderate to severe symptoms (P=0.007). CONCLUSIONS Patients with advanced MS exhibiting higher disability scales and those on anti-CD20 therapy faced an increased risk of experiencing more pronounced symptoms after COVID-19 infection. Patients on vitamin D supplementation had better clinical outcomes.
Collapse
Affiliation(s)
- Edmond Komoni
- Department of Neurology, Faculty of Medicine, University of Pristina “Hasan Prishtina”, Pristina, Kosovo
| | - Fisnik Jashari
- Department of Neurology, Faculty of Medicine, University of Pristina “Hasan Prishtina”, Pristina, Kosovo
| | - Dren Boshnjaku
- Department of Neurology, Faculty of Medicine, University of Pristina “Hasan Prishtina”, Pristina, Kosovo
| | - Blerim Myftiu
- Department of Neurology, University of Prishtina, Prishtina, Kosovo
| | - Melihate Pushka
- Department of Neurology, Faculty of Medicine, University of Pristina “Hasan Prishtina”, Pristina, Kosovo
| | - Afrim Blyta
- Department of Neurology, Faculty of Medicine, University of Pristina “Hasan Prishtina”, Pristina, Kosovo
| | - Rajmonda Nallbani-Komoni
- Department of Anesthesiology and Reanimation, Faculty of Medicine, University of Prishtina, Prishtine, Kosovo
| |
Collapse
|
21
|
Mimpen M, Kreiter D, Kempkens T, Knippenberg S, Hupperts R, Gerlach O. Humoral immune response after SARS-CoV-2 vaccination in cladribine-treated multiple sclerosis patients. Vaccine X 2024; 16:100445. [PMID: 38304878 PMCID: PMC10832451 DOI: 10.1016/j.jvacx.2024.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Multiple sclerosis immunomodulatory treatments such as cladribine, which affects both B- and T-lymphocytes, can potentially alter the humoral response to SARS-CoV-2 vaccination. This monocenter retrospective study reports on anti-SARS-CoV-2 IgG antibody response in cladribine treated MS patients and we compare the response in patients vaccinated before and after an 18-week interval after last cladribine dose. Of the 34 patients (5 patients ≤ 18 weeks and 29 patients > 18 weeks after last cladribine dose) that were included, 32 reached seropositivity (94 %). All patients vaccinated < 18 weeks after last cladribine dose reached seropositivity. This study confirms findings of earlier reports that cladribine-treated MS patients show an adequate humoral response after SARS-CoV-2 vaccination, even when vaccinated early (≤18 weeks) after last cladribine dose.
Collapse
Affiliation(s)
- M. Mimpen
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - D. Kreiter
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - T. Kempkens
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
| | - S. Knippenberg
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
| | - R. Hupperts
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - O. Gerlach
- Academic MS Center Zuyderland, Zuyderland Medical Center Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
22
|
Lineburg KE, Crooks P, Raju J, Le Texier L, Khaledi P, Berry K, Swaminathan S, Panikkar A, Rehan S, Guppy-Coles K, Neller MA, Khanna R, Smith C. Breakthrough SARS-COV-2 infection induces broad anti-viral T cell immunity. iScience 2023; 26:108474. [PMID: 38077128 PMCID: PMC10698266 DOI: 10.1016/j.isci.2023.108474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 05/18/2024] Open
Abstract
Vaccines have curtailed the devastation wrought by COVID-19. Nevertheless, emerging variants result in a high incidence of breakthrough infections. Here we assess the impact of vaccination and breakthrough infection on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cell immunity. We demonstrate that COVID-19 vaccination induces robust spike-specific T cell responses that, within the CD4+ compartment, display comparable IFN-γ responses to SARS-CoV-2 infection without vaccination. Vaccine-induced CD8+ IFN-γ responses however, were significantly greater than those primed by SARS-CoV-2 infection alone. This increased responsiveness is associated with induction of novel HLA-restricted CD8+ T cell epitopes not primed by infection alone (without vaccination). Despite these augmented responses, breakthrough infection still induced de novo T cell responses against additional SARS-CoV-2 CD8+ epitopes that display HLA-associated immunodominance hierarchies consistent with those in unvaccinated COVID-19 convalescent individuals. This study demonstrates the unique modulation of anti-viral T cell responses against multiple viral antigens following consecutive yet distinct priming events in COVID-19 vaccination and breakthrough infection.
Collapse
Affiliation(s)
- Katie Eireann Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jyothy Raju
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Laetitia Le Texier
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Panteha Khaledi
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kiana Berry
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Srividhya Swaminathan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Archana Panikkar
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Sweera Rehan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kristyan Guppy-Coles
- Cardiology, Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Services, Queensland Health, QLD 4006, Australia
| | - Michelle Anne Neller
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
23
|
Jeantin L, Abdi B, Soulié C, Sterlin D, Maillart E, Beigneux Y, Hippolyte A, Belin L, Marcelin AG, Pourcher V, Louapre C. Is vaccine response to SARS-CoV-2 preserved after switching to anti-CD20 therapies in patients with multiple sclerosis or related disorders? J Neurol Neurosurg Psychiatry 2023; 95:19-28. [PMID: 37479463 DOI: 10.1136/jnnp-2023-331770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Although vaccination against SARS-CoV-2 is recommended prior to introducing anti-CD20 therapies, limited data are available regarding the evolution of post-vaccinal immunity. METHODS This retrospective study compared anti-Spike antibody titres at 6 and 12 months from SARS-CoV-2 vaccination between patients vaccinated before switching to anti-CD20 ('Switch') and two control groups: (1) patients vaccinated under disease-modifying therapies (DMTs) other than fingolimod and anti-CD20 ('Other DMTs'); (2) patients vaccinated on anti-CD20 ('Anti-CD20'). Anti-Spike-specific T-cell responses were compared between 'Switch' and 'Anti-CD20' groups. RESULTS Fifty-three patients were included in the 'Switch' group, 54 in the 'Other DMTs' group and 141 in the 'Anti-CD20' group. At 6 months, in the subset of patients who received a booster dose, the 'Switch' group had lower anti-Spike titres compared with the 'Other DMTs' group (median 241.0 IQR (88.0; 504.0) BAU/mL vs 2034 (1155; 4634) BAU/mL, p<0.001), and less patients in the 'Switch' group reached the protective threshold of 264 BAU/mL. The 'Switch' group had higher anti-Spike titres than the 'Anti-CD20' group (7.5 (0.0; 62.1) BAU/mL, p=0.001). Anti-Spike titres were not different between the 'Switch' and 'Other DMTs' groups before booster administration. These results were similar at 12 months. Spike-specific T-cell positivity was similar between the 'Switch' and 'Anti-CD20' groups at 6 and 12 months (60.4% vs 61.0%, p=0.53, and 79.4% vs 87.5%, p=0.31, respectively). CONCLUSIONS Despite a primary vaccination performed before the first anti-CD20 cycle, our results suggest weaker immune responses at 6 and 12 months and decreased booster efficacy after introducing anti-CD20. Patients vaccinated prior to anti-CD20 introduction might falsely be considered as fully protected by vaccination.
Collapse
Affiliation(s)
- Lina Jeantin
- Department of Neurology, Pitié-Salpêtrière University Hospital, AP-HP, Paris, France
| | - Basma Abdi
- Sorbonne University, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, laboratoty of virology, Paris, France
| | - Cathia Soulié
- Sorbonne University, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, laboratoty of virology, Paris, France
| | - Delphine Sterlin
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Département d'Immunologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Elisabeth Maillart
- Department of Neurology, Pitié-Salpêtrière University Hospital, AP-HP, Paris, France
| | - Ysoline Beigneux
- Department of Neurology, Pitié-Salpêtrière University Hospital, AP-HP, Paris, France
| | - Amandine Hippolyte
- Sorbonne Université, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, CIC neurosciences, Paris, France
| | - Lisa Belin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Département de Santé Publique, Unité de Recherche Clinique Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne University, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, laboratoty of virology, Paris, France
| | - Valérie Pourcher
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Service de Maladies infectieuses et Tropicales, Paris, France
| | - Céline Louapre
- Department of Neurology, Pitié-Salpêtrière University Hospital, AP-HP, Paris, France
- Sorbonne Université, Paris Brain Institute - ICM, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, CIC neurosciences, Paris, France
| |
Collapse
|
24
|
Rabenstein M, Thomas OG, Carlin G, Khademi M, Högelin KA, Malmeström C, Axelsson M, Brandt AF, Gafvelin G, Grönlund H, Kockum I, Piehl F, Lycke J, Olsson T, Hessa T. The impact of hybrid immunity on immune responses after SARS-CoV-2 vaccination in persons with multiple sclerosis treated with disease-modifying therapies. Eur J Neurol 2023; 30:3789-3798. [PMID: 37522464 DOI: 10.1111/ene.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND AND PURPOSE Hybrid immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develops from a combination of natural infection and vaccine-generated immunity. Multiple sclerosis (MS) disease-modifying therapies (DMTs) have the potential to impact humoral and cellular immunity induced by SARS-CoV-2 vaccination and infection. The aims were to compare antibody and T-cell responses after SARS-CoV-2 mRNA vaccination in persons with MS (pwMS) treated with different DMTs and to assess differences between naïvely vaccinated pwMS and pwMS with hybrid immunity vaccinated following a previous SARS-CoV-2 infection. METHODS Antibody and T-cell responses were determined in pwMS at baseline and 4 and 12 weeks after the second dose of SARS-CoV-2 vaccination in 143 pwMS with or without previous SARS-CoV-2 infection and 40 healthy controls (HCs). The MS cohort comprised natalizumab (n = 22), dimethylfumarate (n = 23), fingolimod (n = 38), cladribine (n = 30), alemtuzumab (n = 17) and teriflunomide (n = 13) treated pwMS. Immunoglobulin G antibody responses to SARS-CoV-2 antigens were measured using a multiplex bead assay and FluoroSpot was used to assess T-cell responses (interferon γ and interleukin 13). RESULTS Humoral and T-cell responses to vaccination were comparable between naïvely vaccinated HCs and pwMS treated with natalizumab, dimethylfumarate, cladribine, alemtuzumab and teriflunomide, but were suppressed in fingolimod-treated pwMS. Both fingolimod-treated pwMS and HCs vaccinated following a previous SARS-CoV-2 infection had higher antibody levels 4 weeks after vaccination compared to naïvely vaccinated individuals. Antibody and interferon γ levels 12 weeks after vaccination were positively correlated with time from last treatment course of cladribine. CONCLUSION These findings are of relevance for infection risk mitigation and for vaccination strategies amongst pwMS undergoing DMT.
Collapse
Affiliation(s)
- Monika Rabenstein
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Olivia G Thomas
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| | - Giorgia Carlin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Khademi
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Klara Asplund Högelin
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Frandsen Brandt
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Guro Gafvelin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| | - Hans Grönlund
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Kockum
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Fredrik Piehl
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Olsson
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Tara Hessa
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
25
|
Da Silva L, Klopfenstein T, Gendrin V, Clouet J, Toko L, Richier Q, Leriche T, Nicolas R, Queijo A, Sreiri N, Lacombe K, Zayet S. Prolonged SARS-CoV-2 Infection in Patients Receiving Anti-CD20 Monoclonal Antibodies: A Diagnostic Challenged by Negative Nasopharyngeal RT-PCR and Successful Treatment with COVID-19 High-Titer Convalescent Plasma. Viruses 2023; 15:2220. [PMID: 38005897 PMCID: PMC10675708 DOI: 10.3390/v15112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
We highlighted in this current paper similar prolonged respiratory presentation with COVID-19 pneumonia in four severely immunocompromised patients currently being treated with anti-CD20 monoclonal antibodies (mAbs), such as ocrelizumab and rituximab, for multiple sclerosis or rheumatoid polyarthritis. Real-time reverse transcription-polymerase chain reaction on a nasopharyngeal swab specimen was negative in all patients. SARS-CoV-2 infection was confirmed from bronchoalveolar lavage fluid. A high titer of post-vaccine COVID-19 convalescent plasma was administered with complete recovery in all patients.
Collapse
Affiliation(s)
- Léa Da Silva
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Timothée Klopfenstein
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Vincent Gendrin
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Julien Clouet
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Lynda Toko
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Quentin Richier
- Infectious Diseases Department, Assistance Publique Hopitaux de Paris, Saint-Antoine Hospital, 75012 Paris, France; (Q.R.)
| | - Thomas Leriche
- Rheumatology Department, Nord Franche-Comte Hospital, 90400 Trevenans, France;
| | - Raoul Nicolas
- Pneumologie Department, Nord Franche-Comte Hospital, 90400 Trevenans, France;
| | - Alexis Queijo
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Nour Sreiri
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Karine Lacombe
- Infectious Diseases Department, Assistance Publique Hopitaux de Paris, Saint-Antoine Hospital, 75012 Paris, France; (Q.R.)
- INSERM, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Sorbonne University, 75646 Paris, France
| | - Souheil Zayet
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| |
Collapse
|
26
|
Blanco Y, Escudero D, Lleixà C, Llufriu S, Egri N, García RR, Alba M, Aguilar E, Artola M, Aldea Novo M, Alvarez S, Caballero E, Cabrera-Maqueda JM, Fonseca E, Guasp M, Hernando A, Martinez-Hernandez E, Olivé-Cirera G, Lopez-Contreras J, Martín-Aguilar L, Martinez-Martinez L, Rombauts A, Rodés M, Sabater L, Sepulveda M, Solana E, Tejada-Illa C, Vidal-Fernández N, Vilella A, Fortuny C, Armangué T, Dalmau JO, Querol L, Saiz A. mRNA COVID-19 Vaccination Does Not Exacerbate Symptoms or Trigger Neural Antibody Responses in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200163. [PMID: 37679040 PMCID: PMC10484689 DOI: 10.1212/nxi.0000000000200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND AND OBJECTIVE In people with multiple sclerosis (pwMS), concern for potential disease exacerbation or triggering of other autoimmune disorders contributes to vaccine hesitancy. We assessed the humoral and T-cell responses to SARS-CoV-2 after mRNA vaccination, changes in disease activity, and development of antibodies against central or peripheral nervous system antigens. METHODS This was a prospective 1-year longitudinal observational study of pwMS and a control group of patients with other inflammatory neurologic disorders (OIND) who received an mRNA vaccine. Blood samples were obtained before the first dose (T1), 1 month after the first dose (T2), 1 month after the second dose (T3), and 6 (T4), 9 (T5), and 12 (T6) months after the first dose. Patients were assessed for the immune-specific response, annualized relapse rate (ARR), and antibodies to onconeuronal, neural surface, glial, ganglioside, and nodo-paranodal antigens. RESULTS Among 454 patients studied, 390 had MS (22 adolescents) and 64 OIND; the mean (SD) age was 44 (14) years; 315 (69%) were female; and 392 (87%) were on disease-modifying therapies. Antibodies to the receptor-binding domain were detected in 367 (86%) patients at T3 and 276 (83%) at T4. After a third dose, only 13 (22%) of 60 seronegative patients seroconverted, and 255 (92%) remained seropositive at T6. Cellular responses were present in 381 (93%) patients at T3 and in 235 (91%) patients at T6 including all those receiving anti-CD20 therapies and in 79% of patients receiving fingolimod. At T3 (429 patients) or T6 (395 patients), none of the patients had developed CNS autoantibodies. Seven patients had neural antibodies that were already present before immunization (3 adult patients with MS had MOG-IgG, 2 with MG and 1 with MS had neuronal cell surface antibodies [unknown antigen], and 1 with MS had myelin antibody reactivity [unknown antigen]. Similarly, no antibodies against PNS antigens were identified at T3 (427 patients). ARR was lower in MS and not significantly different in patients with OIND. Although 182 (40%) patients developed SARS-CoV-2 infection, no cases of severe COVID-19 or serious adverse events occurred. DISCUSSION In this study, mRNA COVID-19 vaccination was safe and did not exacerbate the autoimmune disease nor triggered neural autoantibodies or immune-mediated neurologic disorders. The outcome of patients who developed SARS-CoV-2 infection was favorable.
Collapse
Affiliation(s)
- Yolanda Blanco
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Domingo Escudero
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Cinta Lleixà
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Sara Llufriu
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Natalia Egri
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Raquel Ruiz García
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Mercedes Alba
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Esther Aguilar
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Montse Artola
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Marta Aldea Novo
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Silvia Alvarez
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Eva Caballero
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Jose Maria Cabrera-Maqueda
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Elianet Fonseca
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Mar Guasp
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Ana Hernando
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Eugenia Martinez-Hernandez
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Gemma Olivé-Cirera
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Joaquin Lopez-Contreras
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Lorena Martín-Aguilar
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Laura Martinez-Martinez
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Alexander Rombauts
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Maria Rodés
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Lidia Sabater
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Maria Sepulveda
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Elisabeth Solana
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Clara Tejada-Illa
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Nuria Vidal-Fernández
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Anna Vilella
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Claudia Fortuny
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Thaís Armangué
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Josep O Dalmau
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Luis Querol
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| | - Albert Saiz
- From the Neuroimmunology and Multiple Sclerosis Unit (Y.B., D.E., S.L., R.R.G., M.A., S.A., J.M.C.-M., M.G., A.H., E.M.-H., M.S., T.A., J.D., A.S.), Hospital Clinic de Barcelona, and Universitat de Barcelona; Neurommunology Program, Fundació de Recerca Clinic Barcelona-IDIBAPS (Y.B., S.L., R.R.G., M.A., E.A., M.A., E.C., J.M.C.-M., E.F., M.G., E.M.-H., G.O.-C., M.R., L.S., M.S., E.S., T.A., J.D., A.S.), Barcelona; Neuromuscular Diseases Unit, Neurology Department (C.L., L.M.-A., C.T.-I., N.V.-F., L.Q.), Hospital de Sant Pau, Barcelona; Centro para la Investigación en Red en Enfermedades Raras (CIBERER) (C.L., M.G., C.T.-I., J.D., L.Q.), Madrid; Department of Immunology (N.E., R.R.G.), Hospital Clinic de Barcelona; Department of Preventive Medicine and Epidemiology (M.A., A.V.), Hospital Clinic de Barcelona, Spain; Department of Neurology (E.F.), School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile; Pediatric Neurology Unit (G.O.-C.), Hospital Parc Taulí de Sabadell, Barcelona; Infectious Diseases Unit, Department of Internal Medicine, (J.L.-C., A.R.) Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Immunology Department (L.M.-M.), Sant Pau, Institut de Recerca del Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona; Department of Pediatrics, and Infectious Diseases Department (C.F.), Institut de Recerca Pediàtrica Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona; Pediatric Neuroimmunology Unit, Department of Neurology (S.J.D.), Sant Joan de Déu Children´s Hospital (T.A), University of Barcelona, Spain; Department of Neurology, (J.D.) Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Catalan Institute for Research and Advanced Studies (ICREA) (J.D.), Barcelona, Spain
| |
Collapse
|
27
|
Algu P, Hameed N, DeAngelis T, Stern J, Harel A. Post-vaccination SARS-Cov-2 T-cell receptor repertoires in patients with multiple sclerosis and related disorders. Mult Scler Relat Disord 2023; 79:104965. [PMID: 37657307 DOI: 10.1016/j.msard.2023.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Attenuation in post-vaccination SARS-CoV-2 humoral responses has been demonstrated in people treated with either anti-CD20 therapies or sphingosine-1-phosphate (S1P) receptor modulators. In the setting of disease modifying therapy (DMT) use, humoral response may not correlate with effective immunity, and analysis of vaccine-mediated SARS-CoV-2-specific memory T-cell responses is crucial. While vaccination in patients treated with anti-CD20 agents leads to deficient antibody production, emerging data from live cell assays suggests intact T-cell responses to vaccination. We evaluated post-vaccination SARS-CoV-2 T-cell receptor (TCR) repertoires in DMT-treated patients using the ImmunoSeqR assay, an assay that does not require live cells. METHODS Adults 18-80 years old without prior COVID-19, with neuroimmune conditions, who had been vaccinated with two doses of Pfizer-BioNTech or Moderna mRNA vaccines at least 3 weeks and up to 6 months prior, were recruited. Whole blood was obtained for immunosequencing, and matched serum was obtained for humoral analysis. Immunosequencing of the CDR3 regions of human TCRβ chains was completed using the immunoSEQR Assay (Adaptive Biotechnologies). TCR sequences were mapped across a set of TCR sequences reactive to SARS-CoV-2. Clonal diversity (breadth) and frequency (depth) of TCRs specific to SARS-CoV-2 spike protein were calculated and relationships with clinical variables were assessed. RESULTS Forty patients were recruited into the study, aged 25-77, and 27 female. 37 had MS, 2 had neuromyelitis optica spectrum disorder (NMOSD), and 1 had hypophysitis. Subjects treated with anti-CD20 agents and S1P receptor modulators had severely attenuated humoral responses, but SARS-CoV-2-spike-specific TCR clonal depth and breadth were robust across all treatment classes except S1P modulators. No spike-specific or non-spike-specific SARS-CoV-2-associated TCRs were found in those treated with S1P modulators (p = 0.002 for both breadth and depth). Subjects treated with fumarates exhibited somewhat lower spike TCR breadth than subjects treated with other or no DMTs (median 2.27 × 10^-5 for fumarates and 4.96 × 10^-5 for all others, p = 0.008), but no statistically significant difference was demonstrated with spike TCR depth. No other significant associations with DMT type were found. We found no significant correlations between depth or breadth and age, duration of treatment, type of vaccination, or time interval since vaccination. CONCLUSION This is the first study to characterize post-vaccination SARS-CoV-2 TCR repertoires in DMT-treated individuals. We demonstrated a dichotomous response to SARS-CoV-2 vaccination in anti-CD20-treated patients, with severely attenuated humoral response but intact TCR depth and breadth. It is unclear to what degree each arm of the adaptive immune system impacts post-vaccine immunity, both from the standpoint of incidence of post-vaccine infections and that of infection severity, and further clinical studies are necessary. S1P modulator-treated subjects exhibited both severely attenuated humoral responses and absent spike-specific TCR depth and breadth, information which is crucial for counseling of patients on these agents. Our methodology can be used in larger studies to determine the benefit of repeated vaccination doses, including those that are modified to better target modern or seasonal variants, without the use of live cell assays.
Collapse
Affiliation(s)
- Priyanka Algu
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
| | - Natasha Hameed
- Northwell Multiple Sclerosis Center, 611 Northern Blvd, Great Neck, NY 11021, United States
| | - Tracy DeAngelis
- Neurological Associates of Long Island, 1991 Marcus Ave, New Hyde Park, NY 11042, United States
| | - Joel Stern
- Northwell Multiple Sclerosis Center, 350 Community Drive, Manhasset NY 11030, United States
| | - Asaff Harel
- Northwell Multiple Sclerosis Center, 130 East 77th Street, 8 Black Hall, NY 10075, United States.
| |
Collapse
|
28
|
Carlini F, Lusi V, Rizzi C, Assogna F, Laroni A. Cladribine Tablets Mode of Action, Learning from the Pandemic: A Narrative Review. Neurol Ther 2023; 12:1477-1490. [PMID: 37421556 PMCID: PMC10444742 DOI: 10.1007/s40120-023-00520-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system, characterized by chronic, inflammatory, demyelinating, and neurodegenerative processes. MS management relies on disease-modifying drugs that suppress/modulate the immune system. Cladribine tablets (CladT) have been approved by different health authorities for patients with various forms of relapsing MS. The drug has been demonstrated to deplete CD4+ and CD8+ T-cells, with a higher effect described in the former, and to decrease total CD19+, CD20+, and naive B-cell counts. COVID-19 is expected to become endemic, suggesting its potential infection risk for immuno-compromised patients, including MS patients treated with disease-modifying drugs. We report here the available data on disease-modifying drug-treated-MS patients and COVID-19 infection and vaccination, with a focus on CladT. MS patients treated with CladT are not at higher risk of developing severe COVID-19. While anti-SARS-CoV-2 vaccination is recommended in all MS patients with guidelines addressing vaccination timing according to the different disease-modifying drugs, no vaccination timing restrictions seem to be necessary for cladribine, based on its mechanism of action and available evidence. Published data suggest that CladT treatment does not impact the production of anti-SARS-CoV-2 antibodies after COVID-19 vaccination, possibly due to its relative sparing effect on naïve B-cells and the rapid B-cell reconstitution following treatment. Slightly lower specific T-cell responses are likely not impacting the risk of breakthrough COVID-19. It could be stated that cladribine's transient effect on innate immune cells likely contributes to maintaining an adequate first line of defense against the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Federico Carlini
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, Italy
| | - Valeria Lusi
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, Italy
| | - Caterina Rizzi
- Merck Serono S.P.A., Italy an Affiliate of Merck KGaA, Piazza del Pigneto 9, Rome, Italy
| | - Francesco Assogna
- Merck Serono S.P.A., Italy an Affiliate of Merck KGaA, Piazza del Pigneto 9, Rome, Italy
| | - Alice Laroni
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, Genoa, Italy.
| |
Collapse
|
29
|
Spierer R, Lavi I, Bloch S, Mazar M, Golan D. Risk of breakthrough COVID-19 after vaccination among people with multiple sclerosis on disease-modifying therapies. J Neurol 2023; 270:4632-4639. [PMID: 37589743 DOI: 10.1007/s00415-023-11935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Disease-modifying therapies (DMTs) for people with multiple sclerosis (pwMS) may decrease vaccine effectiveness. We aimed to explore the association between various DMTs and the risk for breakthrough COVID-19. METHODS Population-based data from Clalit Health Services, Israel's largest healthcare organization, were used. PwMS treated with DMTs without prior COVID-19 were followed from the commencement of the mass vaccination campaign in December 2020. The end of follow-up was at the time of COVID-19 infection, the receipt of a third vaccine dose or until the end of August 2021. Time-dependent multivariate Cox proportional hazard models were used to estimate hazard ratios for COVID-19 according to vaccination, DMT, age, gender, disability and comorbidities. RESULTS 2511 PwMS treated with DMTs were included (Age: 46.2 ± 14.6, 70% Female, EDSS: 3.0 ± 2.1). Of whom, 2123 (84.5%) received 2 vaccine doses. On multivariate models that included all pwMS, vaccination was protective (HR = 0.41, P < 0.001). On multivariate models that included only fully vaccinated pwMS cladribine, ocrelizumab, S1P receptor modulators and natalizumab were associated with breakthrough COVID-19 (HR = 6.1, 4.7, 3.7 and 3.3; P = 0.004, 0.008, 0.02 and 0.05, respectively). On multivariate models that included unvaccinated and fully vaccinated pwMS on each DMT separately, a protective trend was noted for vaccination on all DMTs (0.09 < HR < 0.65), except for cladribine (HR = 1.1). This protective trend was not statistically significant on ocrelizumab, S1P receptor modulators and natalizumab. COVID-19 among pwMS was generally mild. Only 2 vaccinated pwMS had a severe infection with eventual recovery. CONCLUSIONS Vaccination effectively protects pwMS from COVID-19. An increased risk of breakthrough infection was noted on high-efficacy DMTs, however COVID-19 after vaccination was usually mild.
Collapse
Affiliation(s)
- Ronen Spierer
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, 7 Mikhal St, 3436212, Haifa, Israel
| | - Idit Lavi
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Sivan Bloch
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, 7 Mikhal St, 3436212, Haifa, Israel
| | | | - Daniel Golan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neurology, Lady Davis Carmel Medical Center, 7 Mikhal St, 3436212, Haifa, Israel.
- Multiple Sclerosis and Neuroimmunology Center, Clalit Health Services, Nazareth, Israel.
| |
Collapse
|
30
|
Groß-Albenhausen E, Weier A, Velten M, Heider T, Chunder R, Kuerten S. Immune monitoring of SARS-CoV-2-specific T cell and B cell responses in patients with multiple sclerosis treated with ocrelizumab. Front Immunol 2023; 14:1254128. [PMID: 37841269 PMCID: PMC10569464 DOI: 10.3389/fimmu.2023.1254128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Since the development of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there has been significant interest in determining the effectiveness of SARS-CoV-2 vaccines in patients under immunomodulatory or immunosuppressive therapies. The aim of this study was to evaluate the impact of ocrelizumab, a monoclonal anti-CD20 antibody, on SARS-CoV-2-specific T cell and B cell responses in patients with relapsing-remitting multiple sclerosis (RRMS). Methods To this end, peripheral blood mononuclear cells (PBMCs) were isolated from n = 23 patients with RRMS. Of these patients, n = 17 were tested before (time point t0) and one month after (time point t1) their first dose of ocrelizumab. In addition, we studied n = 9 RRMS patients that got infected with SARS-CoV-2 over the course of ocrelizumab therapy (time point t2). PBMCs were also isolated from n = 19 age- and gender-matched healthy controls (HCs) after vaccination or infection with SARS-CoV-2, respectively. Interferon-γ (IFN-γ)/interleukin-2 (IL-2) and granzyme B (GzB)/perforin (PFN) double-color enzyme-linked immunospot (ELISPOT) assays or single-color ELISPOT assays were performed to measure SARS-CoV-2 antigen-specific T cell and B cell responses. Anti-viral antibody titers were quantified in the serum by chemiluminescence immunoassay. Results Our data indicate a significant difference in the SARS-CoV-2 specific IFN-γ (P = 0.0119) and PFN (P = 0.0005) secreting T cell compartment in the MS cohort at t0 compared to HCs. Following the first dose of ocrelizumab treatment, a significant decrease in the number of SARS-CoV-2 spike protein-specific B cells was observed (P = 0.0012). Infection with SARS-CoV-2 in MS patients under ocrelizumab therapy did not significantly alter their existing immune response against the virus. Kaplan-Meier survival analysis suggested that the spike S1 protein-specific immunoglobulin (Ig)G response might be a key parameter for predicting the probability of (re)infection with SARS-CoV-2. Discussion Our results call for a critical discussion regarding appropriate vaccination intervals and potential biomarkers for the prediction of (re)infection with SARS-CoV-2 in patients with MS receiving ocrelizumab. Unique identifier DRKS00029110; URL: http://apps.who.int/trialsearch/.
Collapse
Affiliation(s)
- Elina Groß-Albenhausen
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Bonn, Bonn, Germany
| | - Thorsten Heider
- Clinic for Neurology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
31
|
Woopen C, Dunsche M, Al Rahbani GK, Dillenseger A, Atta Y, Haase R, Raposo C, Pedotti R, Ziemssen T, Akgün K. Long-Term Immune Response Profiles to SARS-CoV-2 Vaccination and Infection in People with Multiple Sclerosis on Anti-CD20 Therapy. Vaccines (Basel) 2023; 11:1464. [PMID: 37766140 PMCID: PMC10537223 DOI: 10.3390/vaccines11091464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Our objective was to analyze longitudinal cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in people with multiple sclerosis (pwMS) on B-cell depleting treatment (BCDT) compared to pwMS without immunotherapy. We further evaluated the impact of COVID-19 infection and vaccination timing. PwMS (n = 439) on BCDT (ocrelizumab, rituximab, ofatumumab) or without immunotherapy were recruited for this prospective cohort study between June 2021 and June 2022. SARS-CoV-2 spike-specific antibodies and interferon-γ release of CD4 and CD8 T-cells upon stimulation with spike protein peptide pools were analyzed at different timepoints (after primary vaccination, 3 and 6 months after primary vaccination, after booster vaccination, 3 months after booster). Humoral response to SARS-CoV-2 was consistently lower whereas T-cell response was higher in patients with BCDT compared to controls. Cellular and humoral responses decreased over time after primary vaccination and increased again upon booster vaccination, with significantly higher antibody titers after booster than after primary vaccination in both untreated and B-cell-depleted pwMS. COVID-19 infection further led to a significant increase in SARS-CoV-2-specific responses. Despite attenuated B-cell responses, a third vaccination for patients with BCDT seems recommendable, since at least partial protection can be expected from the strong T-cell response. Moreover, our data show that an assessment of T-cell responses may be helpful in B-cell-depleted patients to evaluate the efficacy of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Christina Woopen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Marie Dunsche
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Georges Katoul Al Rahbani
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Anja Dillenseger
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Yassin Atta
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | | | | | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|
32
|
Koehm M, Klippstein M, Dauth S, Hallmann K, Kohmer N, Burkhardt H, Ciesek S, Geisslinger G, Rabenau HF, Behrens F. Impact of different classes of immune-modulating treatments on B cell-related and T cell-related immune response before and after COVID-19 booster vaccination in patients with immune-mediated diseases and primary immunodeficiency: a cohort study. RMD Open 2023; 9:e003094. [PMID: 37652553 PMCID: PMC10476126 DOI: 10.1136/rmdopen-2023-003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES To evaluate the potential of immunosuppressed patients to mount B-cell and T-cell responses to COVID-19 booster vaccination (third vaccination). METHODS Patients with primary immunodeficiency (PID), immune-mediated inflammatory diseases (IMIDs) on CD20-depleting treatment with rituximab (RTX), or IMIDs treated with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) or biological disease-modifying antirheumatic drug (bDMARDs) were included and assessed before (baseline visit (BL)) and 2, 4 and 8 weeks after COVID-19 booster vaccination. Serum B-cell responses were assessed by antibody levels against SARS-CoV-2 spike protein (anti-spike IgG antibody (S-AB)) and a surrogate virus neutralisation test (sVNT). T-cell responses were assessed by an interferon gamma release assay (IGRA). RESULTS Fifty patients with PID (n=6), treated with RTX therapy (n=13), or treated with csDMARDs/bDMARDs (n=31) were included. At BL, anti-S-AB titres in PID and csDMARD/bDMARD-treated patients were low (although significantly higher than RTX patients); measures of B-cell-mediated response increased significantly after booster vaccination. In the RTX cohort, low BL anti-S-AB and sVNT values did not improve after booster vaccination, but patients had significantly elevated IGRA responses post booster vaccination compared with the other groups. csDMARD/bDMARD-treated patients showed the highest BL values in all three assays with greater increases in all parameters after booster vaccination compared with patients with PID. CONCLUSION Patients with IMID on therapeutic B-cell depletion have low anti-S-AB and sVNT values before and after booster vaccination but show significantly higher levels of IGRA compared with other immunosuppressed patients, suggesting an underlying mechanism attempting to compensate compromised humoral immunity by upregulating T-cell responsiveness. PID appears to have a stronger impact on antiviral immune response than csDMARD/bDMARD treatment.
Collapse
Affiliation(s)
- Michaela Koehm
- Department of Rheumatology, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Maximilian Klippstein
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Stephanie Dauth
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Konstantin Hallmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Niko Kohmer
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Harald Burkhardt
- Department of Rheumatology, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Virology, German Centre for Infection Research, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Holger F Rabenau
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Behrens
- Department of Rheumatology, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Mueller-Enz M, Woopen C, Katoul Al Rahbani G, Haase R, Dunsche M, Ziemssen T, Akgün K. NVX-CoV2373-induced T- and B-cellular immunity in immunosuppressed people with multiple sclerosis that failed to respond to mRNA and viral vector SARS-CoV-2 vaccines. Front Immunol 2023; 14:1081933. [PMID: 37545513 PMCID: PMC10399811 DOI: 10.3389/fimmu.2023.1081933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Importance Immunological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is important, especially in people with multiple sclerosis (pwMS) on immunosuppressive therapies. Objective This study aims to determine whether adjuvanted protein-based vaccine NVX-CoV2373 is able to induce an immune response to SARS-CoV-2 in pwMS with inadequate responses to prior triple mRNA/viral vector vaccination. Design setting and participants We conducted a single-center, prospective longitudinal cohort study at the MS Center in Dresden, Germany. In total, 65 participants were included in the study in accordance with the following eligibility criteria: age > 18 years, immunomodulatory treatment, and insufficient T-cellular and humoral response to prior vaccination with at least two doses of SARS-CoV-2 mRNA (BNT162b2, mRNA-1273) or viral vector vaccines (AZD1222, Ad26.COV2.S). Interventions Intramuscular vaccination with two doses of NVX-CoV2373 at baseline and 3 weeks of follow-up. Main outcomes and measures The development of SARS-CoV-2-specific antibodies and T-cell responses was evaluated. Results For the final analysis, data from 47 patients on stable treatment with sphingosine-1-phosphate receptor (S1PR) modulators and 17 on ocrelizumab were available. The tolerability of the NVX-CoV2373 vaccination was overall good and comparable to the one reported for the general population. After the second NVX-CoV2373 vaccination, 59% of S1PR-modulated patients developed antispike IgG antibodies above the predefined cutoff of 200 binding antibody units (BAU)/ml (mean, 1,204.37 [95% CI, 693.15, 2,092.65] BAU/ml), whereas no clinically significant T-cell response was found. In the subgroup of the patients on ocrelizumab treatment, 23.5% developed antispike IgG > 200 BAU/ml (mean, 116.3 [95% CI, 47.04, 287.51] BAU/ml) and 53% showed positive spike-specific T-cellular responses (IFN-gamma release to antigen 1: mean, 0.2 [95% CI, 0.11, 0.31] IU/ml; antigen 2: mean, 0.24 [95% CI, 0.14, 0.37]) after the second vaccination. Conclusions Vaccination with two doses of NVX-CoV2373 was able to elicit a SARS-CoV-2-specific immune response in pwMS lacking adequate immune responses to previous mRNA/viral vector vaccination. For patients receiving S1PR modulators, an increase in anti-SARS-CoV-2 IgG antibodies was detected after NVX-CoV2373 vaccination, whereas in ocrelizumab-treated patients, the increase of antiviral T-cell responses was more pronounced. Our data may impact clinical decision-making by influencing the preference for NVX-CoV2373 vaccination in pwMS receiving treatment with S1PR modulation or anti-CD20 treatment.
Collapse
|
34
|
Otero-Romero S, Lebrun-Frénay C, Reyes S, Amato MP, Campins M, Farez M, Filippi M, Hacohen Y, Hemmer B, Juuti R, Magyari M, Oreja-Guevara C, Siva A, Vukusic S, Tintoré M. ECTRIMS/EAN consensus on vaccination in people with multiple sclerosis: Improving immunization strategies in the era of highly active immunotherapeutic drugs. Mult Scler 2023; 29:904-925. [PMID: 37293841 PMCID: PMC10338708 DOI: 10.1177/13524585231168043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/30/2023] [Accepted: 03/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND With the new highly active drugs available for people with multiple sclerosis (pwMS), vaccination becomes an essential part of the risk management strategy. OBJECTIVE To develop a European evidence-based consensus for the vaccination strategy of pwMS who are candidates for disease-modifying therapies (DMTs). METHODS This work was conducted by a multidisciplinary working group using formal consensus methodology. Clinical questions (defined as population, interventions, and outcomes) considered all authorized DMTs and vaccines. A systematic literature search was conducted and quality of evidence was defined according to the Oxford Centre for Evidence-Based Medicine Levels of Evidence. The recommendations were formulated based on the quality of evidence and the risk-benefit balance. RESULTS Seven questions, encompassing vaccine safety, vaccine effectiveness, global vaccination strategy and vaccination in sub-populations (pediatric, pregnant women, elderly and international travelers) were considered. A narrative description of the evidence considering published studies, guidelines, and position statements is presented. A total of 53 recommendations were agreed by the working group after three rounds of consensus. CONCLUSION This first European consensus on vaccination in pwMS proposes the best vaccination strategy according to current evidence and expert knowledge, with the goal of homogenizing the immunization practices in pwMS.
Collapse
Affiliation(s)
- Susana Otero-Romero
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Barcelona Hospital, Barcelona, Spain Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | | | - Saúl Reyes
- Fundación Santa Fe de Bogotá, Bogotá, Colombia School of Medicine, Universidad de los Andes, Bogotá, Colombia Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Magda Campins
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - Mauricio Farez
- Centro para la Investigación de Enfermedades Neuroinmunológicas (CIEN), FLENI, Buenos Aires, Argentina
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy Vita-Salute San Raffaele University, Milan, Italy
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rosa Juuti
- Multiple Sclerosis International Federation, London, UK
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center and the Danish Multiple Sclerosis Registry, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, IdISSC, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Aksel Siva
- Department of Neurology, School of Medicine, Istanbul University Cerrahpasa, Cerrahpasa, Istanbul, Turkey
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| |
Collapse
|
35
|
Zaloum SA, Wood CH, Tank P, Upcott M, Vickaryous N, Anderson V, Baker D, Chance R, Evangelou N, George K, Giovannoni G, Harding KE, Hibbert A, Ingram G, Jolles S, Kang AS, Loveless S, Moat SJ, Richards A, Robertson NP, Rios F, Schmierer K, Willis M, Dobson R, Tallantyre EC. Risk of COVID-19 in people with multiple sclerosis who are seronegative following vaccination. Mult Scler 2023; 29:979-989. [PMID: 37431627 PMCID: PMC10333979 DOI: 10.1177/13524585231185247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 04/22/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND People with multiple sclerosis (pwMS) treated with certain disease-modifying therapies (DMTs) have attenuated IgG response following COVID-19 vaccination; however, the clinical consequences remain unclear. OBJECTIVE To report COVID-19 rates in pwMS according to vaccine serology. METHODS PwMS with available (1) serology 2-12 weeks following COVID-19 vaccine 2 and/or vaccine 3 and (2) clinical data on COVID-19 infection/hospitalisation were included. Logistic regression was performed to examine whether seroconversion following vaccination predicted risk of subsequent COVID-19 infection after adjusting for potential confounders. Rates of severe COVID-19 (requiring hospitalisation) were also calculated. RESULTS A total of 647 pwMS were included (mean age 48 years, 500 (77%) female, median Expanded Disability Status Scale (EDSS) 3.5% and 524 (81%) exposed to DMT at the time of vaccine 1). Overall, 472 out of 588 (73%) were seropositive after vaccines 1 and 2 and 222 out of 305 (73%) after vaccine 3. Seronegative status after vaccine 2 was associated with significantly higher odds of subsequent COVID-19 infection (odds ratio (OR): 2.35, 95% confidence interval (CI): 1.34-4.12, p = 0.0029), whereas seronegative status after vaccine 3 was not (OR: 1.05, 95% CI: 0.57-1.91). Five people (0.8%) experienced severe COVID-19, all of whom were seronegative after most recent vaccination. CONCLUSION Attenuated humoral response to initial COVID-19 vaccination predicts increased risk of COVID-19 in pwMS, but overall low rates of severe COVID-19 were seen.
Collapse
Affiliation(s)
- Safiya A Zaloum
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Callum H Wood
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Pooja Tank
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Matthew Upcott
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Nicola Vickaryous
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Valerie Anderson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Randy Chance
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Centre for Oral Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nikos Evangelou
- Clinical Neurology, Academic Unit of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Katila George
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK/Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Department of Neurology, Barts Health NHS Trust, London, UK
| | | | - Aimee Hibbert
- Clinical Neurology, Academic Unit of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Gillian Ingram
- Department of Neurology, Morriston Hospital, Swansea, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK/School of Medicine, Cardiff University, Cardiff, UK
| | - Angray S Kang
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Centre for Oral Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Samantha Loveless
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Stuart J Moat
- Wales Newborn Screening Laboratory, Department of Medical Biochemistry, Immunology and Toxicology, University Hospital of Wales, Cardiff, UK/School of Medicine, Cardiff University, Cardiff, UK
| | - Aidan Richards
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK/Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Francesca Rios
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Klaus Schmierer
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Department of Neurology, Barts Health NHS Trust, London, UK
| | - Mark Willis
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK/Department of Neurology, Barts Health NHS Trust, London, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK/Department of Neurology, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
36
|
Alfonso-Dunn R, Lin J, Lei J, Liu J, Roche M, De Oliveira A, Raisingani A, Kumar A, Kirschner V, Feuer G, Malin M, Sadiq SA. Humoral and cellular responses to repeated COVID-19 exposure in multiple sclerosis patients receiving B-cell depleting therapies: a single-center, one-year, prospective study. Front Immunol 2023; 14:1194671. [PMID: 37449202 PMCID: PMC10338057 DOI: 10.3389/fimmu.2023.1194671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis patients treated with anti-CD20 therapy (aCD20-MS) are considered especially vulnerable to complications from SARS-CoV-2 infection due to severe B-cell depletion with limited viral antigen-specific immunoglobulin production. Therefore, multiple vaccine doses as part of the primary vaccination series and booster updates have been recommended for this group of immunocompromised individuals. Even though much less studied than antibody-mediated humoral responses, T-cell responses play an important role against CoV-2 infection and are induced efficiently in vaccinated aCD20-MS patients. For individuals with such decoupled adaptive immunity, an understanding of the contribution of T-cell mediated immunity is essential to better assess protection against CoV-2 infection. Here, we present results from a prospective, single-center study for the assessment of humoral and cellular immune responses induced in aCD20-MS patients (203 donors/350 samples) compared to a healthy control group (43/146) after initial exposure to CoV-2 spike antigen and subsequent re-challenges. Low rates of seroconversion and RBD-hACE2 blocking activity were observed in aCD20-MS patients, even after multiple exposures (responders after 1st exposure = 17.5%; 2nd exposure = 29.3%). Regarding cellular immunity, an increase in the number of spike-specific monofunctional IFNγ+-, IL-2+-, and polyfunctional IFNγ+/IL-2+-secreting T-cells after 2nd exposure was found most noticeably in healthy controls. Nevertheless, a persistently higher T-cell response was detected in aCD20-MS patients compared to control individuals before and after re-exposure (mean fold increase in spike-specific IFNγ+-, IL-2+-, and IFNγ+/IL-2+-T cells before re-exposure = 3.9X, 3.6X, 3.5X/P< 0.001; after = 3.2X, 1.4X, 2.2X/P = 0.002, P = 0.05, P = 0.004). Moreover, cellular responses against sublineage BA.2 of the currently circulating omicron variant were maintained, to a similar degree, in both groups (15-30% T-cell response drop compared to ancestral). Overall, these results highlight the potential for a severely impaired humoral response in aCD20-MS patients even after multiple exposures, while still generating a strong T-cell response. Evaluating both humoral and cellular responses in vaccinated or infected MS patients on B-cell depletion therapy is essential to better assess individual correlations of immune protection and has implications for the design of future vaccines and healthcare strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, United States
| |
Collapse
|
37
|
Petrone L, Sette A, de Vries RD, Goletti D. The Importance of Measuring SARS-CoV-2-Specific T-Cell Responses in an Ongoing Pandemic. Pathogens 2023; 12:862. [PMID: 37513709 PMCID: PMC10385870 DOI: 10.3390/pathogens12070862] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neutralizing antibodies are considered a correlate of protection against SARS-CoV-2 infection and severe COVID-19, although they are not the only contributing factor to immunity: T-cell responses are considered important in protecting against severe COVID-19 and contributing to the success of vaccination effort. T-cell responses after vaccination largely mirror those of natural infection in magnitude and functional capacity, but not in breadth, as T-cells induced by vaccination exclusively target the surface spike glycoprotein. T-cell responses offer a long-lived line of defense and, unlike humoral responses, largely retain reactivity against the SARS-CoV-2 variants. Given the increasingly recognized role of T-cell responses in protection against severe COVID-19, the circulation of SARS-CoV-2 variants, and the potential implementation of novel vaccines, it becomes imperative to continuously monitor T-cell responses. In addition to "classical" T-cell assays requiring the isolation of peripheral blood mononuclear cells, simple whole-blood-based interferon-γ release assays have a potential role in routine T-cell response monitoring. These assays could be particularly useful for immunocompromised people and other clinically vulnerable populations, where interactions between cellular and humoral immunity are complex. As we continue to live alongside COVID-19, the importance of considering immunity as a whole, incorporating both humoral and cellular responses, is crucial.
Collapse
Affiliation(s)
- Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA;
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Rory D. de Vries
- Department Viroscience, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands;
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| |
Collapse
|
38
|
Maglione A, Francese R, Arduino I, Rosso R, Matta M, Rolla S, Lembo D, Clerico M. Long-lasting neutralizing antibodies and T cell response after the third dose of mRNA anti-SARS-CoV-2 vaccine in multiple sclerosis. Front Immunol 2023; 14:1205879. [PMID: 37409134 PMCID: PMC10318111 DOI: 10.3389/fimmu.2023.1205879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Background and objectives Long lasting immune response to anti-SARS-CoV-2 vaccination in people with Multiple Sclerosis (pwMS) is still largely unexplored. Our study aimed at evaluating the persistence of the elicited amount of neutralizing antibodies (Ab), their activity and T cell response after three doses of anti-SARS-CoV-2 vaccine in pwMS. Methods We performed a prospective observational study in pwMS undergoing SARS-CoV-2 mRNA vaccinations. Anti-Region Binding Domain (anti-RBD) of the spike (S) protein immunoglobulin G (IgG) titers were measured by ELISA. The neutralization efficacy of collected sera was measured by SARS-CoV-2 pseudovirion-based neutralization assay. The frequency of Spike-specific IFNγ-producing CD4+ and CD8+ T cells was measured by stimulating Peripheral Blood Mononuclear Cells (PBMCs) with a pool of peptides covering the complete protein coding sequence of the SARS-CoV-2 S. Results Blood samples from 70 pwMS (11 untreated pwMS, 11 under dimethyl fumarate, 9 under interferon-γ, 6 under alemtuzumab, 8 under cladribine, 12 under fingolimod and 13 under ocrelizumab) and 24 healthy donors were collected before and up to six months after three vaccine doses. Overall, anti-SARS-CoV-2 mRNA vaccine elicited comparable levels of anti-RBD IgGs, neutralizing activity and anti-S T cell response both in untreated, treated pwMS and HD that last six months after vaccination. An exception was represented by ocrelizumab-treated pwMS that showed reduced levels of IgGs (p<0.0001) and a neutralizing activity under the limit of detection (p<0.001) compared to untreated pwMS. Considering the occurrence of a SARS-CoV-2 infection after vaccination, the Ab neutralizing efficacy (p=0.04), as well as CD4+ (p=0.016) and CD8+ (p=0.04) S-specific T cells, increased in treated COVID+ pwMS compared to uninfected treated pwMS at 6 months after vaccination. Discussion Our follow-up provides a detailed evaluation of Ab, especially in terms of neutralizing activity, and T cell responses after anti-SARS-CoV-2 vaccination in MS context, over time, considering a wide number of therapies, and eventually breakthrough infection. Altogether, our observations highlight the vaccine response data to current protocols in pwMS and underline the necessity to carefully follow-up anti-CD20- treated patients for higher risk of breakthrough infections. Our study may provide useful information to refine future vaccination strategies in pwMS.
Collapse
Affiliation(s)
- Alessandro Maglione
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Irene Arduino
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Simona Rolla
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Laboratory of Neuroimmunology, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
39
|
Bazylewicz M, Gudowska-Sawczuk M, Mroczko B, Kochanowicz J, Kułakowska A. COVID-19: The Course, Vaccination and Immune Response in People with Multiple Sclerosis: Systematic Review. Int J Mol Sci 2023; 24:9231. [PMID: 37298185 PMCID: PMC10253145 DOI: 10.3390/ijms24119231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
When the Coronavirus Disease 2019 (COVID-19) appeared, it was unknown what impact it would have on the condition of patients with autoimmunological disorders. Attention was focused on the course of infection in patients suffering from multiple sclerosis (MS), specially treated with disease-modifying therapies (DMTs) or glucocorticoids. The impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection on the occurrence of MS relapses or pseudo-relapses was important. This review focuses on the risk, symptoms, course, and mortality of COVID-19 as well as immune response to vaccinations against COVID-19 in patients with MS (PwMS). We searched the PubMed database according to specific criteria. PwMS have the risk of infection, hospitalization, symptoms, and mortality due to COVID-19, mostly similar to the general population. The presence of comorbidities, male sex, a higher degree of disability, and older age increase the frequency and severity of the COVID-19 course in PwMS. For example, it was reported that anti-CD20 therapy is probably associated with an increased risk of severe COVID-19 outcomes. After SARS-CoV-2 infection or vaccination, MS patients acquire humoral and cellular immunity, but the degree of immune response depends on applied DMTs. Additional studies are necessary to corroborate these findings. However, indisputably, some PwMS need special attention within the context of COVID-19.
Collapse
Affiliation(s)
- Marcin Bazylewicz
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| |
Collapse
|
40
|
Grifoni A, Alonzi T, Alter G, Noonan DM, Landay AL, Albini A, Goletti D. Impact of aging on immunity in the context of COVID-19, HIV, and tuberculosis. Front Immunol 2023; 14:1146704. [PMID: 37292210 PMCID: PMC10246744 DOI: 10.3389/fimmu.2023.1146704] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Knowledge of aging biology needs to be expanded due to the continuously growing number of elderly people worldwide. Aging induces changes that affect all systems of the body. The risk of cardiovascular disease and cancer increases with age. In particular, the age-induced adaptation of the immune system causes a greater susceptibility to infections and contributes to the inability to control pathogen growth and immune-mediated tissue damage. Since the impact of aging on immune function, is still to be fully elucidated, this review addresses some of the recent understanding of age-related changes affecting key components of immunity. The emphasis is on immunosenescence and inflammaging that are impacted by common infectious diseases that are characterized by a high mortality, and includes COVID-19, HIV and tuberculosis.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Douglas McClain Noonan
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alan L. Landay
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| |
Collapse
|
41
|
Alicandro G, Orena BS, Rosazza C, Cariani L, Russo M, Zatelli M, Badolato R, Gramegna A, Blasi F, Daccò V. Humoral and cell-mediated immune responses to BNT162b2 vaccine against SARS-CoV-2 in people with cystic fibrosis. Vaccine 2023:S0264-410X(23)00590-X. [PMID: 37263872 DOI: 10.1016/j.vaccine.2023.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
People with cystic fibrosis (pwCF) were considered to be clinically vulnerable to COVID-19 and were therefore given priority in the vaccination campaign. Vaccines induced a humoral response in these patients that was comparable to the response observed among the general population. However, the role of the cell-mediated immune response in providing long-term protection against SARS-CoV-2 in pwCF has not yet been defined. In this study, humoral (antibody titre) and cell-mediated immune responses (interferon-γ release) to the BNT162b2 vaccine were measured at different time points, from around 6-8 months after the 2nd dose and up to 8 months after the 3rd dose, in 118 CF patients and 26 non-CF subjects. Subjects were sampled between November 2021 and September 2022 and followed-up for breakthrough infection through October 2022. pwCF mounted a cell-mediated response that was similar to that observed in non-CF subjects. Low antibody titres (<1st quartile) were associated with a higher risk of breakthrough infection (HR: 2.39, 95 % CI: 1.17-4.88), while there was no significant association with low INF-γ levels (<0.3 IU/mL) (HR: 1.38, 95 % CI: 0.64-2.99). Further studies are needed in subgroup of pwCF receiving immunosuppressive therapy, such as organ transplant recipients. This data is important for tailoring vaccination strategies for this clinically vulnerable population.
Collapse
Affiliation(s)
- G Alicandro
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Center, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - B S Orena
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Microbiology Unit, Milan, Italy
| | - C Rosazza
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Center, Milan, Italy
| | - L Cariani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Microbiology Unit, Milan, Italy
| | - M Russo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Center, Milan, Italy
| | - M Zatelli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Microbiology Unit, Milan, Italy
| | - R Badolato
- Department of Pediatrics, ASST Spedali Civili, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - A Gramegna
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
| | - F Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
| | - V Daccò
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Center, Milan, Italy.
| |
Collapse
|
42
|
Ruggieri S, Aiello A, Tortorella C, Navarra A, Vanini V, Meschi S, Lapa D, Haggiag S, Prosperini L, Cuzzi G, Salmi A, Quartuccio ME, Altera AMG, Garbuglia AR, Ascoli Bartoli T, Galgani S, Notari S, Agrati C, Puro V, Nicastri E, Gasperini C, Goletti D. Dynamic Evolution of Humoral and T-Cell Specific Immune Response to COVID-19 mRNA Vaccine in Patients with Multiple Sclerosis Followed until the Booster Dose. Int J Mol Sci 2023; 24:ijms24108525. [PMID: 37239872 DOI: 10.3390/ijms24108525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
This study characterizes antibody and T-cell immune responses over time until the booster dose of COronaVIrus Disease 2019 (COVID-19) vaccines in patients with multiple sclerosis (PwMS) undergoing different disease-modifying treatments (DMTs). We prospectively enrolled 134 PwMS and 99 health care workers (HCWs) having completed the two-dose schedule of a COVID-19 mRNA vaccine within the last 2-4 weeks (T0) and followed them 24 weeks after the first dose (T1) and 4-6 weeks after the booster (T2). PwMS presented a significant reduction in the seroconversion rate and anti-receptor-binding domain (RBD)-Immunoglobulin (IgG) titers from T0 to T1 (p < 0.0001) and a significant increase from T1 to T2 (p < 0.0001). The booster dose in PwMS showed a good improvement in the serologic response, even greater than HCWs, as it promoted a significant five-fold increase of anti-RBD-IgG titers compared with T0 (p < 0.0001). Similarly, the T-cell response showed a significant 1.5- and 3.8-fold increase in PwMS at T2 compared with T0 (p = 0.013) and T1 (p < 0.0001), respectively, without significant modulation in the number of responders. Regardless of the time elapsed since vaccination, most ocrelizumab- (77.3%) and fingolimod-treated patients (93.3%) showed only a T-cell-specific or humoral-specific response, respectively. The booster dose reinforces humoral- and cell-mediated-specific immune responses and highlights specific DMT-induced immune frailties, suggesting the need for specifically tailored strategies for immune-compromised patients to provide primary prophylaxis, early SARS-CoV-2 detection and the timely management of COVID-19 antiviral treatments.
Collapse
Affiliation(s)
- Serena Ruggieri
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
- UOS Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Luca Prosperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | | | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Simonetta Galgani
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Stefania Notari
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Chiara Agrati
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Vincenzo Puro
- UOC Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| |
Collapse
|
43
|
Tütüncü M, Demir S, Arslan G, Dinç Ö, Şen S, Gündüz T, Uzunköprü C, Gümüş H, Tütüncü M, Akçin R, Özakbaş S, Köseoğlu M, Bünül SD, Gezen O, Tezer DÇ, Baba C, Özen PA, Koç R, Elverdi T, Uygunoğlu U, Kürtüncü M, Beckmann Y, Doğan İG, Turan ÖF, Boz C, Terzi M, Tuncer A, Saip S, Karabudak R, Kocazeybek B, Efendi H, Bilge U, Siva A. mRNA versus inactivated virus COVID-19 vaccines in multiple sclerosis: Humoral responses and protectivity-Does it matter? Mult Scler Relat Disord 2023; 75:104761. [PMID: 37247488 DOI: 10.1016/j.msard.2023.104761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND COVID-19 vaccines are recommended for people with multiple sclerosis (pwMS). Adequate humoral responses are obtained in pwMS receiving disease-modifying therapies (DMTs) after vaccination, with the exception of those receiving B-cell-depleting therapies and non-selective S1P modulators. However, most of the reported studies on the immunity of COVID-19 vaccinations have included mRNA vaccines, and information on inactivated virus vaccine responses, long-term protectivity, and comparative studies with mRNA vaccines are very limited. Here, we aimed to investigate the association between humoral vaccine responses and COVID-19 infection outcomes following mRNA and inactivated virus vaccines in a large national cohort of pwMS receiving DMTs. METHODS This is a cross-sectional and prospective multicenter study on COVID-19-vaccinated pwMS. Blood samples of pwMS with or without DMTs and healthy controls were collected after two doses of inactivated virus (Sinovac) or mRNA (Pfizer-BioNTech) vaccines. PwMS were sub-grouped according to the mode of action of the DMTs that they were receiving. SARS-CoV-2 IgG titers were evaluated by chemiluminescent microparticle immunoassay. A representative sample of this study cohort was followed up for a year. COVID-19 infection status and clinical outcomes were compared between the mRNA and inactivated virus groups as well as among pwMS subgroups. RESULTS A total of 1484 pwMS (1387 treated, 97 untreated) and 185 healthy controls were included in the analyses (male/female: 544/1125). Of those, 852 (51.05%) received BioNTech, and 817 (48.95%) received Sinovac. mRNA and inactivated virus vaccines result in similar seropositivity; however, the BioNTech vaccination group had significantly higher antibody titers (7.175±10.074) compared with the Sinovac vaccination group (823±1.774) (p<0.001). PwMS under ocrelizumab, fingolimod, and cladribine treatments had lower humoral responses compared with the healthy controls in both vaccine types. After a mean of 327±16 days, 246/704 (34.9%) of pwMS who were contacted had COVID-19 infection, among whom 83% had asymptomatic or mild disease. There was no significant difference in infection rates of COVID-19 between participants vaccinated with BioNTech or Sinovac vaccines. Furthermore, regression analyses show that no association was found regarding age, sex, Expanded Disability Status Scale score (EDSS), the number of vaccination, DMT type, or humoral antibody responses with COVID-19 infection rate and disease severity, except BMI Body mass index (BMI). CONCLUSION mRNA and inactivated virus vaccines had similar seropositivity; however, mRNA vaccines appeared to be more effective in producing SARS-CoV-2 IgG antibodies. B-cell-depleting therapies fingolimod and cladribine were associated with attenuated antibody titer. mRNA and inactive virus vaccines had equal long-term protectivity against COVID-19 infection regardless of the antibody status.
Collapse
Affiliation(s)
- Melih Tütüncü
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Serkan Demir
- Neurology Department, Sancaktepe Şehit Prof. Dr. Ilhan Varank Research and Training Hospital, Istanbul, Turkey
| | - Gökhan Arslan
- Faculty of Medicine, Department of Physiology, Ondokuz Mayıs University, Samsun, Turkey
| | - Öykü Dinç
- Faculty Of Pharmacy, Department Of Pharmaceutical Microbiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Sedat Şen
- Faculty of Medicine, Department of Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Tuncay Gündüz
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Cihat Uzunköprü
- Faculty of Medicine, Department of Neurology, Katip Celebi University, Izmir, Turkey
| | - Haluk Gümüş
- Faculty of Medicine, Department of Neurology, Selçuk University, Konya, Turkey
| | - Mesude Tütüncü
- Department of Neurology, Istanbul Bakırköy Prof. Dr. Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Rüveyda Akçin
- Cerrahpaşa Faculty of Medicine, Department of Medical Microbiology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Serkan Özakbaş
- Faculty of Medicine, Department of Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Mesrure Köseoğlu
- Department of Neurology, Istanbul Bakırköy Prof. Dr. Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Sena Destan Bünül
- Faculty of Medicine, Department of Neurology, Kocaeli University, İzmit/Kocaeli, Turkey
| | - Ozan Gezen
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Damla Çetinkaya Tezer
- Neurology Department, Sancaktepe Şehit Prof. Dr. Ilhan Varank Research and Training Hospital, Istanbul, Turkey
| | - Cavid Baba
- Department of Neurosciences, Dokuz Eylül University, Institute of Health Sciences, Izmir, Turkey
| | - Pınar Acar Özen
- Faculty of Medicine, Department of Neurology, Haccettepe University, Ankara, Turkey
| | - Rabia Koç
- Faculty of Medicine, Department of Neurology, Uludag University, Bursa, Turkey
| | - Tuğrul Elverdi
- Cerrahpaşa Faculty of Medicine, Department of Hematology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Uğur Uygunoğlu
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Murat Kürtüncü
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Yeşim Beckmann
- Faculty of Medicine, Department of Neurology, Katip Celebi University, Izmir, Turkey
| | - İpek Güngör Doğan
- Neurology Department, Sancaktepe Şehit Prof. Dr. Ilhan Varank Research and Training Hospital, Istanbul, Turkey
| | - Ömer Faruk Turan
- Faculty of Medicine, Department of Neurology, Uludag University, Bursa, Turkey
| | - Cavit Boz
- Faculty of Medicine, Department of Neurology, Karadeniz Technical University, Trabzon, Turkey
| | - Murat Terzi
- Faculty of Medicine, Department of Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Asli Tuncer
- Faculty of Medicine, Department of Neurology, Haccettepe University, Ankara, Turkey
| | - Sabahattin Saip
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Rana Karabudak
- Faculty of Medicine, Department of Neurology, Haccettepe University, Ankara, Turkey
| | - Bekir Kocazeybek
- Cerrahpaşa Faculty of Medicine, Department of Microbiology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hüsnü Efendi
- Faculty of Medicine, Department of Neurology, Kocaeli University, İzmit/Kocaeli, Turkey
| | - Uğur Bilge
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Akdeniz University, Antalya, Turkey
| | - Aksel Siva
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey; Faculty of Medicine, Department of Neurology, Uludag University, Bursa, Turkey
| |
Collapse
|
44
|
Holroyd KB, Conway SE. Central Nervous System Neuroimmunologic Complications of COVID-19. Semin Neurol 2023. [PMID: 37080234 DOI: 10.1055/s-0043-1767713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Autoimmune disorders of the central nervous system following COVID-19 infection include multiple sclerosis (MS), neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, autoimmune encephalitis, acute disseminated encephalomyelitis, and other less common neuroimmunologic disorders. In general, these disorders are rare and likely represent postinfectious phenomena rather than direct consequences of the SARS-CoV-2 virus itself. The impact of COVID-19 infection on patients with preexisting neuroinflammatory disorders depends on both the disorder and disease-modifying therapy use. Patients with MS do not have an increased risk for severe COVID-19, though patients on anti-CD20 therapies may have worse clinical outcomes and attenuated humoral response to vaccination. Data are limited for other neuroinflammatory disorders, but known risk factors such as older age and medical comorbidities likely play a role. Prophylaxis and treatment for COVID-19 should be considered in patients with preexisting neuroinflammatory disorders at high risk for developing severe COVID-19.
Collapse
Affiliation(s)
- Kathryn B Holroyd
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sarah E Conway
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
45
|
Sainz de la Maza S, Walo-Delgado PE, Rodríguez-Domínguez M, Monreal E, Rodero-Romero A, Chico-García JL, Pariente R, Rodríguez-Jorge F, Ballester-González R, Villarrubia N, Romero-Hernández B, Masjuan J, Costa-Frossard L, Villar LM. Short- and Long-Term Humoral and Cellular Immune Responses to SARS-CoV-2 Vaccination in Patients with Multiple Sclerosis Treated with Disease-Modifying Therapies. Vaccines (Basel) 2023; 11:vaccines11040786. [PMID: 37112698 PMCID: PMC10145338 DOI: 10.3390/vaccines11040786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND This study aimed to evaluate short- and long-term humoral and T-cell-specific immune responses to SARS-CoV-2 vaccines in patients with multiple sclerosis (MS) treated with different disease-modifying therapies (DMTs). METHODS Single-center observational longitudinal study including 102 patients with MS who consecutively received vaccination against SARS-CoV-2. Serum samples were collected at baseline and after receiving the second dose of the vaccine. Specific Th1 responses following in vitro stimulation with spike and nucleocapsid peptides were analyzed by quantifying levels of IFN-γ. Serum IgG-type antibodies against the spike region of SARS-CoV-2 were studied by chemiluminescent microparticle immunoassay. RESULTS Patients undergoing fingolimod and anti-CD20 therapies had a markedly lower humoral response than those treated with other DMTs and untreated patients. Robust antigen-specific T-cell responses were detected in all patients except those treated with fingolimod, who had lower IFN-γ levels than those treated with other DMTs (25.8 pg/mL vs. 868.7 pg/mL, p = 0.011). At mid-term follow-up, a decrease in vaccine-induced anti-SARS-CoV-2 IgG antibodies was observed in all subgroups of patients receiving DMTs, although most patients receiving induction DMTs or natalizumab and non-treated patients remained protected. Cellular immunity was maintained above protective levels in all DMT subgroups except the fingolimod subgroup. CONCLUSIONS SARS-CoV-2 vaccines induce robust and long-lasting humoral and cell-mediated specific immune responses in most patients with MS.
Collapse
Affiliation(s)
- Susana Sainz de la Maza
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Paulette Esperanza Walo-Delgado
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Mario Rodríguez-Domínguez
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER en Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Alexander Rodero-Romero
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Juan Luis Chico-García
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Roberto Pariente
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Fernando Rodríguez-Jorge
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Rubén Ballester-González
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Beatriz Romero-Hernández
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER en Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Lucienne Costa-Frossard
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Luisa María Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| |
Collapse
|
46
|
Conway S, Saxena S, Baecher-Allan C, Krishnan R, Houtchens M, Glanz B, Saraceno TJ, Polgar-Turcsanyi M, Bose G, Bakshi R, Bhattacharyya S, Galetta K, Kaplan T, Severson C, Singhal T, Stazzone L, Zurawski J, Paul A, Weiner HL, Healy BC, Chitnis T. Preserved T cell but attenuated antibody response in MS patients on fingolimod and ocrelizumab following 2nd and 3rd SARS-CoV-2 mRNA vaccine. Mult Scler J Exp Transl Clin 2023; 9:20552173231165196. [PMID: 37057191 PMCID: PMC10086198 DOI: 10.1177/20552173231165196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
Background There is limited knowledge about T cell responses in patients with multiple sclerosis (MS) after 3 doses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine. Objectives Assess the SARS-CoV-2 spike antibody and T cell responses in MS patients and healthy controls (HCs) after 2 doses (2-vax) and 3 doses (3-vax) of SARS-CoV-2 mRNA vaccination. Methods We studied seroconversion rates and T cell responses by flow cytometry in HC and MS patients on fingolimod or ocrelizumab. Results After 2-vax, 8/33 (24.2%) patients in ocrelizumab group, 5/7 (71.4%) in fingolimod group, and 29/29 (100%) in HC group (P = 5.7 × 10-11) seroconverted. After 3-vax, 9/22 (40.9%) patients in ocrelizumab group, 19/21 (90.5%) in fingolimod group, and 7/7 (100%) in HC group seroconverted (P = 0.0003). The percentage of SARS-CoV-2 peptide reactive total CD4+ T cells increased in HC and ocrelizumab group but not in fingolimod group after 2-vax and 3-vax (P < 0.0001). The percentage of IFNγ and TNFα producing total CD4+ and CD8+ T cells increased in fingolimod group as compared to HC and ocrelizumab group after 2-vax and 3-vax (P < 0.0001). Conclusions MS patients on ocrelizumab and fingolimod had attenuated humoral responses, but preserved cytokine producing T cell responses compared to HCs after SARS-CoV-2 mRNA vaccination. Clinical Trials Registration NCT05060354.
Collapse
Affiliation(s)
- Sarah Conway
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shrishti Saxena
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Clare Baecher-Allan
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rajesh Krishnan
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Maria Houtchens
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bonnie Glanz
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Taylor J Saraceno
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariann Polgar-Turcsanyi
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Gauruv Bose
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shamik Bhattacharyya
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kristin Galetta
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tamara Kaplan
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher Severson
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lynn Stazzone
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan Zurawski
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
van Kempen ZLE, Stalman EW, Steenhuis M, Kummer LYL, van Dam KPJ, Wilbrink MF, Ten Brinke A, van Ham SM, Kuijpers T, Rispens T, Eftimov F, Wieske L, Killestein J. SARS-CoV-2 omicron breakthrough infections in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:280-283. [PMID: 36564175 DOI: 10.1136/jnnp-2022-330100] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/06/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND It is unclear which patients with multiple sclerosis (MS) are most susceptible for omicron breakthrough infections. METHODS We assessed omicron breakthrough infections in vaccinated patients with MS with and without disease-modifying therapies enrolled in an ongoing large prospective study. We longitudinally studied humoral responses after primary and booster vaccinations and breakthrough infections. RESULTS Omicron breakthrough infections were reported in 110/312 (36%) patients with MS, and in 105/110 (96%) infections were mild. Omicron breakthrough infections occurred more frequently in patients treated with anti-CD20 therapies and sphingosine-1 phosphate receptor (S1PR) modulators, patients with impaired humoral responses after primary immunisation (regardless of treatment) and patients without prior SARS-CoV-2 infections. After infection, antibody titres increased in patients on S1PR modulator treatment while anti-CD20 treated patients did not show an increase. CONCLUSIONS SARS-COV-2 omicron breakthrough infections are more prevalent in patients with MS on anti-CD20 therapies and S1PR modulators compared with other patients with MS, which correlated with decreased humoral responses after vaccination. Humoral responses after infection were higher in S1PR modulator-treated patients in comparison to patients on anti-CD20 therapies, suggesting that immunological protection from contracting infection or repeated exposures may differ between these therapies.
Collapse
Affiliation(s)
- Zoé L E van Kempen
- Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Eileen W Stalman
- Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Maurice Steenhuis
- Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands.,Biologics Laboratory, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Laura Y L Kummer
- Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| | - Koos P J van Dam
- Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Maarten F Wilbrink
- Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - S Marieke van Ham
- Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands.,Swammerdam Insitute for Life Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Taco Kuijpers
- Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Theo Rispens
- Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| | - Filip Eftimov
- Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Luuk Wieske
- Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Clinical Neurophysiology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Joep Killestein
- Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | | |
Collapse
|
48
|
Aiello A, Coppola A, Ruggieri S, Farroni C, Altera AMG, Salmi A, Vanini V, Cuzzi G, Petrone L, Meschi S, Lapa D, Bettini A, Haggiag S, Prosperini L, Galgani S, Quartuccio ME, Bevilacqua N, Garbuglia AR, Agrati C, Puro V, Tortorella C, Gasperini C, Nicastri E, Goletti D. Longitudinal characterisation of B and T-cell immune responses after the booster dose of COVID-19 mRNA-vaccine in people with multiple sclerosis using different disease-modifying therapies. J Neurol Neurosurg Psychiatry 2023; 94:290-299. [PMID: 36522154 PMCID: PMC10086471 DOI: 10.1136/jnnp-2022-330175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The decline of humoral response to COVID-19 vaccine led to authorise a booster dose. Here, we characterised the kinetics of B-cell and T-cell immune responses in patients with multiple sclerosis (PwMS) after the booster dose. METHODS We enrolled 22 PwMS and 40 healthcare workers (HCWs) after 4-6 weeks from the booster dose (T3). Thirty HCWs and 19 PwMS were also recruited 6 months (T2) after the first dose. Antibody response was measured by anti-receptor-binding domain (RBD)-IgG detection, cell-mediated response by an interferon (IFN)-γ release assay (IGRA), Th1 cytokines and T-cell memory profile by flow cytometry. RESULTS Booster dose increased anti-RBD-IgG titers in fingolimod-treated, cladribine-treated and IFN-β-treated patients, but not in ocrelizumab-treated patients, although antibody titres were lower than HCWs. A higher number of fingolimod-treated patients seroconverted at T3. Differently, T-cell response evaluated by IGRA remained stable in PwMS independently of therapy. Spike-specific Th1-cytokine response was mainly CD4+ T-cell-mediated, and in PwMS was significantly reduced (p<0.0001) with impaired IL-2 production compared with HCWs at T3. In PwMS, total Th1 and IFN-γ CD4+ T-cell responders to spike protein were increased from T2 to T3.Compared with HCWs, PwMS presented a higher frequency of CD4+ and CD8+ terminally differentiated effector memory cells and of CD4+ effector memory (TEM) cells, independently of the stimulus suggesting the association of this phenotype with MS status. CD4+ and CD8+ TEM cell frequency was further increased at T3 compared with T2. CONCLUSIONS COVID-19 vaccine booster strengthens humoral and Th1-cell responses and increases TEM cells in PwMS.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Andrea Coppola
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Serena Ruggieri
- Department of Human Neurosciences, University of Rome La Sapienza, Rome, Italy.,Neuroimmunology Unit, Santa Lucia Foundation Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy.,Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Aurora Bettini
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Luca Prosperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Simonetta Galgani
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | | | - Nazario Bevilacqua
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Chiara Agrati
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy.,Department of Pediatric Hematology and Oncology, Bambino Gesu Pediatric Hospital, Rome, Italy
| | - Vincenzo Puro
- UOC Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani Institute for Hospitalization and Care Scientific, Rome, Italy
| |
Collapse
|
49
|
Severa M, Rizzo F, Sinigaglia A, Ricci D, Etna MP, Cola G, Landi D, Buscarinu MC, Valdarchi C, Ristori G, Riccetti S, Piubelli C, Palmerini P, Rosato A, Gobbi F, Balducci S, Marfia GA, Salvetti M, Barzon L, Coccia EM. A specific anti‐COVID‐19 BNT162b2 vaccine‐induced early innate immune signature positively correlates with the humoral protective response in healthy and multiple sclerosis vaccine recipients. Clin Transl Immunology 2023; 12:e1434. [PMID: 36969367 PMCID: PMC10036198 DOI: 10.1002/cti2.1434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 03/25/2023] Open
Abstract
Objectives The very rapidly approved mRNA‐based vaccines against SARS‐CoV‐2 spike glycoprotein, including Pfizer‐BioNTech BNT162b2, are effective in protecting from severe coronavirus disease 2019 (COVID‐19) in immunocompetent population. However, establishing the duration and identifying correlates of vaccine‐induced protection will be crucial to optimise future immunisation strategies. Here, we studied in healthy vaccine recipients and people with multiple sclerosis (pwMS), undergoing different therapies, the regulation of innate immune response by mRNA vaccination in order to correlate it with the magnitude of vaccine‐induced protective humoral responses. Methods Healthy subjects (n = 20) and matched pwMS (n = 22) were longitudinally sampled before and after mRNA vaccination. Peripheral blood mononuclear cell (PBMC)‐associated type I and II interferon (IFN)‐inducible gene expression, serum innate cytokine/chemokine profile as well as binding and neutralising anti‐SARS‐COV‐2 antibodies (Abs) were measured. Results We identified an early immune module composed of the IFN‐inducible genes Mx1, OAS1 and IRF1, the serum cytokines IL‐15, IL‐6, TNF‐α and IFN‐γ and the chemokines IP‐10, MCP‐1 and MIG, induced 1 day post second and third BNT162b2 vaccine doses, strongly correlating with magnitude of humoral response to vaccination in healthy and MS vaccinees. Moreover, induction of the early immune module was dramatically affected in pwMS treated with fingolimod and ocrelizumab, both groups unable to induce a protective humoral response to COVID‐19 vaccine. Conclusion Overall, this study suggests that the vaccine‐induced early regulation of innate immunity is mediated by IFN signalling, impacts on the magnitude of adaptive responses and it might be indicative of vaccine‐induced humoral protection.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious DiseaseIstituto Superiore di SanitàRomeItaly
| | - Fabiana Rizzo
- Department of Infectious DiseaseIstituto Superiore di SanitàRomeItaly
| | | | - Daniela Ricci
- Department of Infectious DiseaseIstituto Superiore di SanitàRomeItaly
| | | | - Gaia Cola
- Department of Systems MedicineMS center Tor Vergata UniversityRomeItaly
| | - Doriana Landi
- Department of Systems MedicineMS center Tor Vergata UniversityRomeItaly
| | | | - Catia Valdarchi
- Department of Infectious DiseaseIstituto Superiore di SanitàRomeItaly
| | - Giovanni Ristori
- Center for Experimental Neurological TherapiesSant'Andrea HospitalRomeItaly
- Neuroimmunology UnitIRCCS Fondazione Santa LuciaRomeItaly
| | - Silvia Riccetti
- Department of Molecular MedicineUniversity of PadovaPaduaItaly
| | - Chiara Piubelli
- Department of Infectious‐Tropical Diseases and MicrobiologyIRCCS Sacro Cuore Don Calabria HospitalNegrar di ValpolicellaItaly
| | - Pierangela Palmerini
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology SectionUniversity of PadovaPaduaItaly
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology SectionUniversity of PadovaPaduaItaly
- Veneto Institute of Oncology IOV – IRCCSPaduaItaly
| | - Federico Gobbi
- Department of Infectious‐Tropical Diseases and MicrobiologyIRCCS Sacro Cuore Don Calabria HospitalNegrar di ValpolicellaItaly
| | | | | | - Marco Salvetti
- Center for Experimental Neurological TherapiesSant'Andrea HospitalRomeItaly
- IRCCS Istituto Neurologico Mediterraneo NeuromedPozzilliItaly
| | - Luisa Barzon
- Department of Molecular MedicineUniversity of PadovaPaduaItaly
| | | |
Collapse
|
50
|
Damato V, Spagni G, Monte G, Scandiffio L, Cavalcante P, Zampetti N, Fossati M, Falso S, Mantegazza R, Battaglia A, Fattorossi A, Evoli A. Immunological response after SARS-CoV-2 infection and mRNA vaccines in patients with myasthenia gravis treated with Rituximab. Neuromuscul Disord 2023; 33:288-294. [PMID: 36842303 PMCID: PMC9922162 DOI: 10.1016/j.nmd.2023.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
In this study we employed a comprehensive immune profiling approach to determine innate and adaptive immune response to SARS-CoV-2 infection and mRNA vaccines in patients with myasthenia gravis receiving rituximab. By multicolour cytometry, dendritic and natural killer cells, B- and T-cell subsets, including T-cells producing IFN-γ stimulated with SARS-CoV-2 peptides, were analysed after infection and mRNA vaccination. In the same conditions, anti-spike antibodies and cytokines' levels were measured in sera. Despite the impaired B cell and humoral response, rituximab patients showed an intact innate, CD8 T-cell and IFN-γ specific CD4+ and CD8+ T-cell response after infection and vaccination, comparable to controls. No signs of cytokine mediated inflammatory cascade was observed. Our study provides evidence of protective immune response after SARS-CoV-2 infection and mRNA vaccines in patients with myasthenia gravis on B cell depleting therapy and highlights the need for prospective studies with larger cohorts to clarify the role of B cells in SARS-CoV-2 immune response.
Collapse
Affiliation(s)
- Valentina Damato
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Neurosciences, Drugs and Child Health, University of Florence, Italy.
| | - Gregorio Spagni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Neurology Institute, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Gabriele Monte
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Neuroscience Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Letizia Scandiffio
- Neurology IV- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Cavalcante
- Neurology IV- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nicole Zampetti
- Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marco Fossati
- Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Silvia Falso
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Renato Mantegazza
- Neurology IV- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Battaglia
- Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Andrea Fattorossi
- Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Amelia Evoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Neurology Institute, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| |
Collapse
|