1
|
Tazir M, Nouioua S. Distal hereditary motor neuropathies. Rev Neurol (Paris) 2024:S0035-3787(23)01111-6. [PMID: 38702287 DOI: 10.1016/j.neurol.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 05/06/2024]
Abstract
Distal hereditary motor neuropathies (dHMN) are a group of heterogeneous hereditary disorders characterized by a slowly progressive distal pure motor neuropathy. Electrophysiology, with normal motor and sensory conduction velocities, can suggest the diagnosis of dHMN and guide the genetic study. More than thirty genes are currently associated with HMNs, but around 60 to 70% of cases of dHMN remain uncharacterized genetically. Recent cohort studies showed that HSPB1, GARS, BICB2 and DNAJB2 are among the most frequent dHMN genes and that the prevalence of the disease was calculated as 2.14 and 2.3 per 100,000. The determination of the different genes involved in dHMNs made it possible to observe a genotypic overlap with some other neurogenetic disorders and other hereditary neuropathies such as CMT2, mainly with the HSPB1, HSPB8, BICD2 and TRPV4 genes of AD-inherited transmission and recently observed with SORD gene of AR transmission which seems relatively frequent and potentially curable. Distal hereditary motor neuropathy that predominates in the upper limbs is linked mainly to three genes: GARS, BSCL2 and REEP1, whereas dHMN with vocal cord palsy is associated with SLC5A7, DCTN1 and TRPV4 genes. Among the rare AR forms of dHMN like IGHMBP2 and DNAJB2, the SIGMAR1 gene mutations as well as VRK1 variants are associated with a motor neuropathy phenotype often associated with upper motoneuron involvement. The differential diagnosis of these latter arises with juvenile forms of amyotrophic lateral sclerosis, that could be caused also by variations of these genes, as well as hereditary spastic paraplegia. A differential diagnosis of dHMN related to Brown Vialetto Van Laere syndrome due to riboflavin transporter deficiency is important to consider because of the therapeutic possibility.
Collapse
Affiliation(s)
- Meriem Tazir
- Department of Neurology, University Hospital Mustapha Bacha, Algiers, Algeria; Neurosciences Laboratory, University Benyoucef Benkhedda, Algiers, Algeria.
| | - Sonia Nouioua
- Neurosciences Laboratory, University Benyoucef Benkhedda, Algiers, Algeria; Department of Neurology, EHS El Maham, Cherchell,Tipaza, Algeria
| |
Collapse
|
2
|
Han JE, Kang KH, Kim H, Hong YB, Choi BO, Koh H. PINK1 and Parkin rescue motor defects and mitochondria dysfunction induced by a patient-derived HSPB3 mutant in Drosophila models. Biochem Biophys Res Commun 2023; 682:71-76. [PMID: 37804589 DOI: 10.1016/j.bbrc.2023.09.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones with the α-crystalline domain that is critical to their chaperone activity. Within the sHSP family, three (HSPB1, HSPB3, and HSPB8) proteins are linked with inherited peripheral neuropathies, including distal hereditary motor neuropathy (dHMN) and Charco-Marie-Tooth disease (CMT). In this study, we introduced the HSPB3 Y118H (HSPB3Y118H) mutant gene identified from the CMT2 family in Drosophila. With a missense mutation on its α-crystalline domain, this human HSPB3 mutant gene induced a loss of motor activity accompanied by reduced mitochondrial membrane potential in fly neuronal tissues. Moreover, mitophagy, a critical mechanism of mitochondrial quality control, is downregulated in fly motor neurons expressing HSPB3Y118H. Surprisingly, PINK1 and Parkin, the core regulators of mitophagy, successfully rescued these motor and mitochondrial abnormalities in HSPB3 mutant flies. Results from the first animal model of HSPB3 mutations suggest that mitochondrial dysfunction plays a critical role in HSPB3-associated human pathology.
Collapse
Affiliation(s)
- Ji Eun Han
- Department of Pharmacology, Dong-A University College of Medicine, Busan, 49201, South Korea; Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, South Korea
| | - Kyong-Hwa Kang
- Department of Pharmacology, Dong-A University College of Medicine, Busan, 49201, South Korea; Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan, 49201, South Korea
| | - Hyunjin Kim
- Department of Pharmacology, Dong-A University College of Medicine, Busan, 49201, South Korea; Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan, 49201, South Korea
| | - Young Bin Hong
- Department of Biochemistry, Dong-A University College of Medicine, Busan, 49201, South Korea
| | - Byung-Ok Choi
- Department of Neurology, SAIHST, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Hyongjong Koh
- Department of Pharmacology, Dong-A University College of Medicine, Busan, 49201, South Korea; Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, South Korea; Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan, 49201, South Korea.
| |
Collapse
|
3
|
Gorukmez O, Gorukmez O, Topak A. Clinical exome sequencing findings in 1589 patients. Am J Med Genet A 2023; 191:1557-1564. [PMID: 36964972 DOI: 10.1002/ajmg.a.63190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Clinical exome sequencing (CES) is important for the diagnosis of Mendelian diseases, which are clinically and etiologically heterogeneous. Sharing of large amounts of CES data associated with clinical findings will increase the accuracy of variant interpretation. We performed a retrospective study to state the diagnostic yield of CES in 1589 patients with a wide phenotypic spectrum. CES was performed using the Sophia Clinical Exome Sequencing Kit with 4493 genes, followed by sequencing on a NextSeq 500 system. The diagnosis rate was 36.8% when only pathogenic and likely pathogenic variants were included. Consanguineous unions and positive family history were associated with a high diagnostic yield. The neurological disease group had the highest number of patients. The groups with high diagnosis rates were ear, eye, and muscle disease groups. Seven candidate genes (EFHC2, HSPB3, FAAH2, ITGB1, GYG2, CD177, and CSTF2T) that are not yet associated with human diseases were identified. Owing to the high diagnostic yield of CES compared with that of other genetic tests, it can be used as a standard diagnostic test in patients with rare genetic disorders that require a wide differential diagnosis, especially in laboratories with limited resources.
Collapse
Affiliation(s)
- Ozlem Gorukmez
- Department of Medical Genetics, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey
| | - Orhan Gorukmez
- Department of Medical Genetics, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey
| | - Ali Topak
- Department of Medical Genetics, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
4
|
Evaluation of the Small Heat Shock Protein Family Members HSPB2 and HSPB3 in Bladder Cancer Prognosis and Progression. Int J Mol Sci 2023; 24:ijms24032609. [PMID: 36768927 PMCID: PMC9917356 DOI: 10.3390/ijms24032609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Bladder cancer (BlCa) represents the sixth most commonly diagnosed type of male malignancy. Due to the clinical heterogeneity of BlCa, novel markers would optimize treatment efficacy and improve prognosis. The small heat shock proteins (sHSP) family is one of the major groups of molecular chaperones responsible for the maintenance of proteome functionality and stability. However, the role of sHSPs in BlCa remains largely unknown. The present study aimed to examine the association between HSPB2 and HSPB3 expression and BlCa progression in patients, and to investigate their role in BlCa cells. For this purpose, a series of experiments including reverse transcription-quantitative PCR, Western blotting, MTT assay and flow cytometry were performed. Initial analyses revealed increased vs. human transitional carcinoma cells, expression levels of the HSPB2 and HSPB3 genes and proteins in high grade BlCa cell lines. Therefore, we then evaluated the clinical significance of the HSPB2 and HSPB3 genes expression levels in bladder tumor samples and matched adjusted normal bladder specimens. Total RNA from 100 bladder tumor samples and 49 paired non-cancerous bladder specimens were isolated, and an accurate SYBR-Green based real-time quantitative polymerase chain reaction (qPCR) protocol was developed to quantify HSPB2 and HSPB3 mRNA levels in the two cohorts of specimens. A significant downregulation of the HSPB2 and HSPB3 genes expression was observed in bladder tumors as compared to matched normal urothelium; yet, increased HSPB2 and HSPB3 levels were noted in muscle-invasive (T2-T4) vs. superficial tumors (TaT1), as well as in high-grade vs. low-grade tumors. Survival analyses highlighted the significantly higher risk for post-treatment disease relapse in TaT1 patients poorly expressing HSPB2 and HSPB3 genes; this effect tended to be inverted in advanced disease stages (muscle-invasive tumors) indicating the biphasic impact of HSPB2, HSPB3 genes in BlCa progression. The pro-survival role of HSPB2 and HSPB3 in advanced tumor cells was also evident by our finding that HSPB2, HSPB3 genes expression silencing in high grade BlCa cells enhanced doxorubicin toxicity. These findings indicate that the HSPB2, HSPB3 chaperone genes have a likely pro-survival role in advanced BlCa; thus, they can be targeted as novel molecular markers to optimize treatment efficacy in BlCa and to limit unnecessary interventions.
Collapse
|
5
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
6
|
Selig EE, Lynn RJ, Zlatic CO, Mok YF, Ecroyd H, Gooley PR, Griffin MDW. The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends. J Mol Biol 2022; 434:167711. [PMID: 35777462 DOI: 10.1016/j.jmb.2022.167711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions. The ACD forms antiparallel homodimers via an extended β-strand, creating a shared β-sheet at the dimer interface. The N- and C-terminal regions mediate formation of higher order oligomers that are thought to act as storage forms for chaperone-active dimers. We investigated the interactions of the ACD of two human sHSPs, αB-crystallin (αB-C) and Hsp27, with apolipoprotein C-II amyloid fibrils using analytical ultracentrifugation and nuclear magnetic resonance spectroscopy. The ACD was found to interact transiently with amyloid fibrils to inhibit fibril elongation and naturally occurring fibril end-to-end joining. This interaction was sensitive to the concentration of fibril ends indicating a 'fibril-capping' interaction. Furthermore, resonances arising from the ACD monomer were attenuated to a greater extent than those of the ACD dimer in the presence of fibrils, suggesting that the monomer may bind fibrils. This hypothesis was supported by mutagenesis studies in which disulfide cross-linked ACD dimers formed by both αB-C and Hsp27 were less effective at inhibiting amyloid fibril elongation and fibril end-to-end joining than ACD constructs lacking disulfide cross-linking. Our results indicate that sHSP monomers inhibit amyloid fibril elongation, highlighting the importance of the dynamic oligomeric nature of sHSPs for client binding.
Collapse
Affiliation(s)
- Emily E Selig
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Roberta J Lynn
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yee-Foong Mok
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
7
|
Genetic and Clinical Studies of Peripheral Neuropathies with Three Small Heat Shock Protein Gene Variants in Korea. Genes (Basel) 2022; 13:genes13030462. [PMID: 35328016 PMCID: PMC8949397 DOI: 10.3390/genes13030462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones that help correct the folding of denatured proteins and protect cells from stress. Mutations in HSPB1, HSPB8, and HSPB3 are implicated in inherited peripheral neuropathies (IPNs), such as Charcot-Marie-Tooth disease type 2 (CMT2) and distal hereditary motor neuropathies (dHMN). This study, using whole exome sequencing or targeted gene sequencing, identified 9 pathogenic or likely pathogenic variants in these three sHSP genes from 11 Korean IPN families. Most variants were located in the evolutionally well conserved α-crystallin domain, except for p.P182S and p.S187L in HSPB1. As an atypical case, a patient with dHMN2 showed two compound heterozygous variants of p.R127Q and p.Y142H in HSPB1, suggesting a putative case of recessive inheritance, which requires additional research to confirm. Three HSPB8 variants were located in the p.K141 residue, which seemed to be a mutational hot spot. There were no significant differences between patient groups, which divided by sHSP genes for clinical symptoms such as onset age, severity, and nerve conduction. Early-onset patients showed a tendency of slightly decreased sensory nerve conduction values compared with late-onset patients. As a first Korean IPN cohort study examining sHSP genes, these results will, we believe, be helpful for molecular diagnosis and care of patients with CMT2 and dHMN.
Collapse
|
8
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
9
|
Luo X, Dong K, Liu L, An F, Tang D, Fu L, Teng H, Huang Q. Proteins associated with quality deterioration of prepared chicken breast based on differential proteomics during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3489-3499. [PMID: 33274442 DOI: 10.1002/jsfa.10980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Prepared chicken breast deterioration is a complex biochemical process, of which protein change is one of the main features. The present research focuses on the analysis of proteins related to the deterioration in quality of prepared chicken breast through differential proteomics analysis. RESULTS The physicochemical indexes of prepared chicken breast showed that quality gradually decreased at the second week of refrigerated storage, while the deterioration of chicken breast meat was obvious at the third week. Three key time points of quality change were determined to be at 0th, 2th and 5th week, respectively. In addition, 39 differential proteins were successfully identified using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Most of the identified proteins showed significant differences in expression at the three key points of storage, of which actin, myosin, α-1,4-glucan phosphorylase, phosphoglucomutase 1, heat shock protein β-1, tubulin β-7 chain and skeletal muscle type tropomodulin (fragment) were closely related to the quality deterioration of prepared chicken breast, and thus potential indicator proteins to evaluate the quality of chicken breast. CONCLUSION The current study indicated that the physicochemical quality of prepared breast notably changed during refrigerated storage. Three key time points of quality change in the storage process of prepared chicken breast were determined. Furthermore, differential proteomics identified the key proteins related to freshness, which provides a theoretical basis for exploring the mechanism of chicken breast deterioration. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Dong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lan Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daobang Tang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lingyun Fu
- Fujian Zhengda Food Company Limited, Longyan, Fujian, China
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
10
|
Tiago T, Hummel B, Morelli FF, Basile V, Vinet J, Galli V, Mediani L, Antoniani F, Pomella S, Cassandri M, Garone MG, Silvestri B, Cimino M, Cenacchi G, Costa R, Mouly V, Poser I, Yeger-Lotem E, Rosa A, Alberti S, Rota R, Ben-Zvi A, Sawarkar R, Carra S. Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death Dis 2021; 12:452. [PMID: 33958580 PMCID: PMC8102500 DOI: 10.1038/s41419-021-03737-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix. Remarkably, HSPB3 overexpression alone is sufficient to induce the differentiation of two human muscle cell lines, LHCNM2 cells, and rhabdomyosarcoma cells. We also show that mutant R116P-HSPB3 from a myopathy patient with chromatin alterations and muscle fiber disorganization, forms nuclear aggregates that immobilize LBR. We find that R116P-HSPB3 is unable to induce myoblast differentiation and instead activates the unfolded protein response. We propose that HSPB3 is a specialized chaperone engaged in muscle cell differentiation and that dysfunctional HSPB3 causes neuromuscular disease by deregulating LBR.
Collapse
Affiliation(s)
- Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Valentina Basile
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Veronica Galli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesco Antoniani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Giovanna Garone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Marco Cimino
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Vincent Mouly
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, F-75013, Paris, France
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Dewpoint Therapeutics GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, CB2 1QR, UK
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
11
|
Shemesh N, Jubran J, Dror S, Simonovsky E, Basha O, Argov C, Hekselman I, Abu-Qarn M, Vinogradov E, Mauer O, Tiago T, Carra S, Ben-Zvi A, Yeger-Lotem E. The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones. Nat Commun 2021; 12:2180. [PMID: 33846299 PMCID: PMC8042005 DOI: 10.1038/s41467-021-22369-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms.
Collapse
Affiliation(s)
- Netta Shemesh
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Juman Jubran
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shiran Dror
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal Simonovsky
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Chanan Argov
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mehtap Abu-Qarn
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ekaterina Vinogradov
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omry Mauer
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
12
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
13
|
Vendredy L, Adriaenssens E, Timmerman V. Small heat shock proteins in neurodegenerative diseases. Cell Stress Chaperones 2020; 25:679-699. [PMID: 32323160 PMCID: PMC7332613 DOI: 10.1007/s12192-020-01101-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Small heat shock proteins are ubiquitously expressed chaperones, yet mutations in some of them cause tissue-specific diseases. Here, we will discuss how small heat shock proteins give rise to neurodegenerative disorders themselves while we will also highlight how these proteins can fulfil protective functions in neurodegenerative disorders caused by protein aggregation. The first half of this paper will be focused on how mutations in HSPB1, HSPB3, and HSPB8 are linked to inherited peripheral neuropathies like Charcot-Marie-Tooth (CMT) disease and distal hereditary motor neuropathy (dHMN). The second part of the paper will discuss how small heat shock proteins are linked to neurodegenerative disorders like Alzheimer's, Parkinson's, and Huntington's disease.
Collapse
Affiliation(s)
- Leen Vendredy
- Department of Biomedical Sciences and Institute Born Bunge, Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium
| | - Elias Adriaenssens
- Department of Biomedical Sciences and Institute Born Bunge, Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Department of Biomedical Sciences and Institute Born Bunge, Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
14
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
15
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
16
|
Kalioraki MA, Artemaki PI, Sklirou AD, Kontos CK, Adamopoulos PG, Papadopoulos IN, Trougakos IP, Scorilas A. Heat shock protein beta 3 (HSPB3) is an unfavorable molecular biomarker in colorectal adenocarcinoma. Mol Carcinog 2019; 59:116-125. [PMID: 31709619 DOI: 10.1002/mc.23133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Small heat shock proteins (sHSPs) participate in numerous cellular functions including cell signaling, differentiation, and apoptosis. Deregulation of the physiological expression level of sHSPs has been associated with several malignancies. Heat shock protein beta 3 (HSPB3) is the third member of the sHSP family in human and is mainly expressed in skeletal and smooth muscles. In this study, we investigated the potential prognostic significance of HSPB3 expression in colorectal adenocarcinoma, the most frequent type of colorectal cancer. For this purpose, we isolated total RNA from 188 colorectal adenocarcinoma specimens and 68 paired noncancerous ones. After reverse transcription of 2 μg total RNA, we quantified HSPB3 levels by using an in-house-developed real-time quantitative polymerase chain reaction method, based on the SYBR Green chemistry. Comparison of HSPB3 levels among 68 pairs of colorectal tumors and their adjacent noncancerous mucosae uncovered the downregulation of HSPB3 expression in the majority of malignant colorectal tumors. More importantly, high HSPB3 expression is associated with poor relapse-free survival (RFS) and overall survival (OS) of patients with colorectal adenocarcinoma. Multivariable Cox regression analysis revealed that HSPB3 overexpression could serve as an adverse prognostic biomarker in colorectal adenocarcinoma, independent of tumor location, histological grade, and TNM stage. Patients' stratification according to tumor location, histological grade, and TNM stage revealed that high HSPB3 messenger RNA expression retains its unfavorable prognostic potential regarding OS, in particular groups of patients with substantially different prognosis. In conclusion, high HSPB3 expression is associated with poor RFS and OS of patients with colorectal adenocarcioma, independently of clinicopathological prognosticators.
Collapse
Affiliation(s)
- Maria-Anna Kalioraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Pinelopi I Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019; 24:295-308. [PMID: 30758704 PMCID: PMC6439001 DOI: 10.1007/s12192-019-00979-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wilbert Boelens
- Department of Biomolecular Chemistry, Institute of Molecules and Materials, Radboud University, NL-6500, Nijmegen, The Netherlands
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, D-85748, Garching, Germany
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125, Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 117234
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Brent Lockwood
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Univrsità degli Studi di Milano, Milan, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, Tongji School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Robert M Tanguay
- Laboratory of Cell and Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, QC, Québec, G1V 0A6, Canada.
| |
Collapse
|
19
|
Weihl CC, Udd B, Hanna M. 234th ENMC International Workshop: Chaperone dysfunction in muscle disease Naarden, The Netherlands, 8-10 December 2017. Neuromuscul Disord 2018; 28:1022-1030. [PMID: 30424919 DOI: 10.1016/j.nmd.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | - Bjarne Udd
- Tampere Neuromuscular Center and Folkhalsan Genetic Institute, Helsinki, Finland
| | - Michael Hanna
- UCL Institute of Neurology, Queen Square, London, UK
| | | |
Collapse
|
20
|
Terminal Regions Confer Plasticity to the Tetrameric Assembly of Human HspB2 and HspB3. J Mol Biol 2018; 430:3297-3310. [PMID: 29969581 PMCID: PMC6119766 DOI: 10.1016/j.jmb.2018.06.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 01/17/2023]
Abstract
Heterogeneity in small heat shock proteins (sHsps) spans multiple spatiotemporal regimes-from fast fluctuations of part of the protein, to conformational variability of tertiary structure, plasticity of the interfaces, and polydispersity of the inter-converting, and co-assembling oligomers. This heterogeneity and dynamic nature of sHsps has significantly hindered their structural characterization. Atomic coordinates are particularly lacking for vertebrate sHsps, where most available structures are of extensively truncated homomers. sHsps play important roles in maintaining protein levels in the cell and therefore in organismal health and disease. HspB2 and HspB3 are vertebrate sHsps that are found co-assembled in neuromuscular cells, and variants thereof are associated with disease. Here, we present the structure of human HspB2/B3, which crystallized as a hetero-tetramer in a 3:1 ratio. In the HspB2/B3 tetramer, the four α-crystallin domains (ACDs) assemble into a flattened tetrahedron which is pierced by two non-intersecting approximate dyads. Assembly is mediated by flexible "nuts and bolts" involving IXI/V motifs from terminal regions filling ACD pockets. Parts of the N-terminal region bind in an unfolded conformation into the anti-parallel shared ACD dimer grooves. Tracts of the terminal regions are not resolved, most likely due to their disorder in the crystal lattice. This first structure of a full-length human sHsp heteromer reveals the heterogeneous interactions of the terminal regions and suggests a plasticity that is important for the cytoprotective functions of sHsps.
Collapse
|
21
|
Aberrant Compartment Formation by HSPB2 Mislocalizes Lamin A and Compromises Nuclear Integrity and Function. Cell Rep 2018; 20:2100-2115. [PMID: 28854361 PMCID: PMC5583511 DOI: 10.1016/j.celrep.2017.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 11/23/2022] Open
Abstract
Small heat shock proteins (HSPBs) contain intrinsically disordered regions (IDRs), but the functions of these IDRs are still unknown. Here, we report that, in mammalian cells, HSPB2 phase separates to form nuclear compartments with liquid-like properties. We show that phase separation requires the disordered C-terminal domain of HSPB2. We further demonstrate that, in differentiating myoblasts, nuclear HSPB2 compartments sequester lamin A. Increasing the nuclear concentration of HSPB2 causes the formation of aberrant nuclear compartments that mislocalize lamin A and chromatin, with detrimental consequences for nuclear function and integrity. Importantly, phase separation of HSPB2 is regulated by HSPB3, but this ability is lost in two identified HSPB3 mutants that are associated with myopathy. Our results suggest that HSPB2 phase separation is involved in reorganizing the nucleoplasm during myoblast differentiation. Furthermore, these findings support the idea that aberrant HSPB2 phase separation, due to HSPB3 loss-of-function mutations, contributes to myopathy. HSPB2 undergoes concentration-dependent liquid-liquid phase separation in cells HSPB2 phase separation requires its intrinsically disordered C-terminal tail Aberrant HSPB2 phase separation mislocalizes lamin A HSPB3, but not two HSPB3 myopathy mutants, inhibits HSPB2 phase separation
Collapse
|
22
|
Nam DE, Nam SH, Lee AJ, Hong YB, Choi BO, Chung KW. Small heat shock protein B3 (HSPB3) mutation in an axonal Charcot-Marie-Tooth disease family. J Peripher Nerv Syst 2018; 23:60-66. [PMID: 29341343 DOI: 10.1111/jns.12249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Abstract
Heat shock protein B3 (HSPB3) gene encodes a small heat-shock protein 27-like protein which has a high sequence homology with HSPB1. A mutation in the HSPB3 was reported as the putative underlying cause of distal hereditary motor neuropathy 2C (dHMN2C) in 2010. We identified a heterozygous mutation (c.352T>C, p.Tyr118His) in the HSPB3 from a Charcot-Marie-Tooth disease type 2 (CMT2) family by the method of targeted next generation sequencing. The mutation was located in the well conserved alpha-crystalline domain, and several in silico predictions indicated a pathogenic effect of the mutation. Clinical and electrophysiological features of the patients indicated the axonal type of CMT. Clinical symptoms without sensory involvements were similar between the present family and the previous family. Mutations in the HSPB1 and HSPB8 genes have been reported to be relevant with both types of CMT2 and dHMN. Our findings will help in the molecular diagnosis of CMT2 by expanding the phenotypic range due to the HSPB3 mutations.
Collapse
Affiliation(s)
- Da E Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Soo H Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Ah J Lee
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Young B Hong
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki W Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
23
|
Bouhy D, Juneja M, Katona I, Holmgren A, Asselbergh B, De Winter V, Hochepied T, Goossens S, Haigh JJ, Libert C, Ceuterick-de Groote C, Irobi J, Weis J, Timmerman V. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol 2018; 135:131-148. [PMID: 28780615 PMCID: PMC5756276 DOI: 10.1007/s00401-017-1756-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces impairments in autophagy that may aggravate the phenotype.
Collapse
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Manisha Juneja
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Holmgren
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, University of Antwerp, Antwerpen, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Tino Hochepied
- Transgenic Mouse Core Facility, VIB Inflammation Research Center, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Steven Goossens
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
- VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Jody J Haigh
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Claude Libert
- VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Chantal Ceuterick-de Groote
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge and Translational Neurosciences, University of Antwerp, Antwerpen, Belgium
| | - Joy Irobi
- Neurofunctional Genomics, Biomedical Research Institute (BIOMED), Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium.
| |
Collapse
|
24
|
Adriaenssens E, Geuens T, Baets J, Echaniz-Laguna A, Timmerman V. Novel insights in the disease biology of mutant small heat shock proteins in neuromuscular diseases. Brain 2017; 140:2541-2549. [PMID: 28969372 DOI: 10.1093/brain/awx187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/11/2017] [Indexed: 12/12/2022] Open
Abstract
Small heat shock proteins are molecular chaperones that exert diverse cellular functions. To date, mutations in the coding regions of HSPB1 (Hsp27) and HSPB8 (Hsp22) were reported to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Recently, the clinical spectrum of HSPB1 and HSPB8 mutations was expanded to also include myopathies. Here we provide an update on the molecular genetics and biology of small heat shock protein mutations in neuromuscular diseases.
Collapse
Affiliation(s)
- Elias Adriaenssens
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Thomas Geuens
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Jonathan Baets
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerpen, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Andoni Echaniz-Laguna
- Department of Neurology, Neuromuscular Disease Center (CERNEST), Strasbourg University Hospital, Strasbourg, France
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
25
|
Morelli FF, Mediani L, Heldens L, Bertacchini J, Bigi I, Carrà AD, Vinet J, Carra S. An interaction study in mammalian cells demonstrates weak binding of HSPB2 to BAG3, which is regulated by HSPB3 and abrogated by HSPB8. Cell Stress Chaperones 2017; 22:531-540. [PMID: 28181153 PMCID: PMC5465030 DOI: 10.1007/s12192-017-0769-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
The ten mammalian small heat shock proteins (sHSPs/HSPBs) show a different expression profile, although the majority of them are abundant in skeletal and cardiac muscles. HSPBs form hetero-oligomers and homo-oligomers by interacting together and complexes containing, e.g., HSPB2/HSPB3 or HSPB1/HSPB5 have been documented in mammalian cells and muscles. Moreover, HSPB8 associates with the Hsc70/Hsp70 co-chaperone BAG3, in mammalian, skeletal, and cardiac muscle cells. Interaction of HSPB8 with BAG3 regulates its stability and function. Weak association of HSPB5 and HSPB6 with BAG3 has been also reported upon overexpression in cells, supporting the idea that BAG3 might indirectly modulate the function of several HSPBs. However, it is yet unknown whether other HSPBs highly expressed in muscles such as HSPB2 and HSPB3 also bind to BAG3. Here, we report that in mammalian cells, upon overexpression, HSPB2 binds to BAG3 with an affinity weaker than HSPB8. HSPB2 competes with HSPB8 for binding to BAG3. In contrast, HSPB3 negatively regulates HSPB2 association with BAG3. In human myoblasts that express HSPB2, HSPB3, HSPB8, and BAG3, the latter interacts selectively with HSPB8. Combining these data, it supports the interpretation that HSPB8-BAG3 is the preferred interaction.
Collapse
Affiliation(s)
- Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Lonneke Heldens
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Jessika Bertacchini
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Ilaria Bigi
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Arianna Dorotea Carrà
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
- Department of Cell Biology, University Medical Center Groningen; University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 2017; 22:601-611. [PMID: 28364346 PMCID: PMC5465036 DOI: 10.1007/s12192-017-0787-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Patrick A. Arrigo
- Université de Lyon, 69622 Lyon, France
- CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | | | - Ivor J. Benjamin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-5650 USA
| | - Wilbert Boelens
- Biomolecular Chemistry, 284, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - John A. Carver
- The Research School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Heath Ecroyd
- Illawara Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Stephanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russia
| | | | - Lawrence E. Hightower
- Department of Molecular & Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125 USA
| | - Harm H. Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Kathryn A. McMenimen
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Roy Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Melinda E. Toth
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Elizabeth Vierling
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003 USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 USA
| | - Robert M. Tanguay
- Laboratory of Cell & Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, Québec (Qc), G1V 0A6 Canada
| |
Collapse
|
27
|
Echaniz-Laguna A, Geuens T, Petiot P, Péréon Y, Adriaenssens E, Haidar M, Capponi S, Maisonobe T, Fournier E, Dubourg O, Degos B, Salachas F, Lenglet T, Eymard B, Delmont E, Pouget J, Juntas Morales R, Goizet C, Latour P, Timmerman V, Stojkovic T. Axonal Neuropathies due to Mutations in Small Heat Shock Proteins: Clinical, Genetic, and Functional Insights into Novel Mutations. Hum Mutat 2017; 38:556-568. [PMID: 28144995 DOI: 10.1002/humu.23189] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/29/2017] [Indexed: 12/12/2022]
Abstract
In this study, we describe the phenotypic spectrum of distal hereditary motor neuropathy caused by mutations in the small heat shock proteins HSPB1 and HSPB8 and investigate the functional consequences of newly discovered variants. Among 510 unrelated patients with distal motor neuropathy, we identified mutations in HSPB1 (28 index patients/510; 5.5%) and HSPB8 (four index patients/510; 0.8%) genes. Patients have slowly progressive distal (100%) and proximal (13%) weakness in lower limbs (100%), mild lower limbs sensory involvement (31%), foot deformities (73%), progressive distal upper limb weakness (29%), mildly raised serum creatine kinase levels (100%), and central nervous system involvement (9%). We identified 12 HSPB1 and four HSPB8 mutations, including five and three not previously reported. Transmission was either dominant (78%), recessive (3%), or de novo (19%). Three missense mutations in HSPB1 (Pro7Ser, Gly53Asp, and Gln128Arg) cause hyperphosphorylation of neurofilaments, whereas the C-terminal mutant Ser187Leu triggers protein aggregation. Two frameshift mutations (Leu58fs and Ala61fs) create a premature stop codon leading to proteasomal degradation. Two mutations in HSPB8 (Lys141Met/Asn) exhibited increased binding to Bag3. We demonstrate that HSPB1 and HSPB8 mutations are a major cause of inherited motor axonal neuropathy. Mutations lead to diverse functional outcomes further demonstrating the pleotropic character of small heat shock proteins.
Collapse
Affiliation(s)
- Andoni Echaniz-Laguna
- Department of Neurology, Neuromuscular Disease Centre (CERNEST), Strasbourg University Hospital, Strasbourg, France
| | - Thomas Geuens
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Philippe Petiot
- Neuromuscular Disease Centre, Lyon University Hospital, Lyon, France
| | - Yann Péréon
- Neuromuscular Disease Centre, Nantes University Hospital, Nantes, France
| | - Elias Adriaenssens
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Mansour Haidar
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Simona Capponi
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Thierry Maisonobe
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Emmanuel Fournier
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Odile Dubourg
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Bertrand Degos
- APHP, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - François Salachas
- APHP, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Timothée Lenglet
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Bruno Eymard
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| | - Emilien Delmont
- Neuromuscular Disease Centre, Nice University Hospital, Nice, France
| | - Jean Pouget
- Neuromuscular Disease Centre, Marseille University Hospital, APHM, Marseille, France
| | - Raul Juntas Morales
- Neuromuscular Disease Centre, Montpellier University Hospital, Montpellier, France
| | - Cyril Goizet
- Department of Genetics, Bordeaux University Hospital, Bordeaux, France
| | - Philippe Latour
- Biology and Pathology Department, Lyon University Hospital, Bron, France
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics and Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Tanya Stojkovic
- Neuromuscular Disease Centre, Hôpital de la Pitié-Salpétrière, APHP, Paris, France
| |
Collapse
|
28
|
Iyadurai S, Arnold WD, Kissel JT, Ruhno C, Mcgovern VL, Snyder PJ, Prior TW, Roggenbuck J, Burghes AH, Kolb SJ. Variable phenotypic expression and onset in MYH14 distal hereditary motor neuropathy phenotype in a large, multigenerational North American family. Muscle Nerve 2017; 56:341-345. [PMID: 27875632 DOI: 10.1002/mus.25491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2016] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Distal hereditary motor neuropathy (dHMN) causes distal-predominant weakness without prominent sensory loss. Myosin heavy chain disorders most commonly result in distal myopathy and cardiomyopathy with or without hearing loss, but a complex phenotype with dHMN, myopathy, hoarseness, and hearing loss was reported in a Korean family with a c.2822G>T mutation in MYH14. In this study we report phenotypic features in a North American family with the c.2822G>T in MYH14. METHODS Clinical and molecular characterization was performed in a large, 6-generation, Caucasian family with MYH14 dHMN. RESULTS A total of 11 affected and 7 unaffected individuals were evaluated and showed varying age of onset and severity of weakness. Genotypic concordance was confirmed with molecular analysis. Electrophysiological studies demonstrated distal motor axonal degeneration without myopathy in all affected subjects tested. CONCLUSION Mutation of MYH14 can result in a range of neuromuscular phenotypes that includes a dHMN and hearing loss phenotype with variable age of onset. Muscle Nerve 56: 341-345, 2017.
Collapse
Affiliation(s)
- Stanley Iyadurai
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA.,Department of Pediatric Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - W David Arnold
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - John T Kissel
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA.,Department of Pediatric Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Corey Ruhno
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Vicki L Mcgovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Pamela J Snyder
- Department of Molecular Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas W Prior
- Department of Molecular Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jennifer Roggenbuck
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Arthur H Burghes
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Stephen J Kolb
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
29
|
Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiol Dis 2017; 102:11-20. [PMID: 28161391 DOI: 10.1016/j.nbd.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
30
|
Lupo V, Aguado C, Knecht E, Espinós C. Chaperonopathies: Spotlight on Hereditary Motor Neuropathies. Front Mol Biosci 2016; 3:81. [PMID: 28018906 PMCID: PMC5155517 DOI: 10.3389/fmolb.2016.00081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022] Open
Abstract
Distal hereditary motor neuropathies (dHMN) are a group of rare hereditary neuromuscular disorders characterized by an atrophy that affects peroneal muscles in the absence of sensory symptoms. To date, 23 genes are thought to be responsible for dHMN, four of which encode chaperones: DNAJB2, which encodes a member of the HSP40/DNAJ co-chaperone family; and HSPB1, HSPB3, and HSPB8, encoding three members of the small heat shock protein family. While around 30 different mutations in HSPB1 have been identified, the remaining three genes are altered in many fewer cases. Indeed, a mutation of HSPB3 has only been described in one case, whereas a few cases have been reported carrying mutations in DNAJB2 and HSPB8, most of them caused by a founder c.352+1G>A mutation in DNAJB2 and by mutations affecting the K141 residue in the HSPB8 chaperone. Hence, their rare occurrence makes it difficult to understand the pathological mechanisms driven by such mutations in this neuropathy. Chaperones can assemble into multi-chaperone complexes that form an integrated chaperone network within the cell. Such complexes fulfill relevant roles in a variety of processes, such as the correct folding of newly synthesized proteins, in which chaperones escort them to precise cellular locations, and as a response to protein misfolding, which includes the degradation of proteins that fail to refold properly. Despite this range of functions, mutations in some of these chaperones lead to diseases with a similar clinical profile, suggesting common pathways. This review provides an overview of the genetics of those dHMNs that share a common disease mechanism and that are caused by mutations in four genes encoding chaperones: DNAJB2, HSPB1, HSPB3, and HSPB8.
Collapse
Affiliation(s)
- Vincenzo Lupo
- Molecular Basis of Human Diseases Program, Centro de Investigación Príncipe FelipeValencia, Spain; INCLIVA & IIS La Fe Rare Diseases Joint UnitsValencia, Spain
| | - Carmen Aguado
- Molecular Basis of Human Diseases Program, Centro de Investigación Príncipe FelipeValencia, Spain; INCLIVA & IIS La Fe Rare Diseases Joint UnitsValencia, Spain; Centro de Investigación Biomédica en RedValencia, Spain
| | - Erwin Knecht
- Molecular Basis of Human Diseases Program, Centro de Investigación Príncipe FelipeValencia, Spain; INCLIVA & IIS La Fe Rare Diseases Joint UnitsValencia, Spain; Centro de Investigación Biomédica en RedValencia, Spain
| | - Carmen Espinós
- Molecular Basis of Human Diseases Program, Centro de Investigación Príncipe FelipeValencia, Spain; INCLIVA & IIS La Fe Rare Diseases Joint UnitsValencia, Spain
| |
Collapse
|
31
|
Nefedova VV, Muranova LK, Sudnitsyna MV, Ryzhavskaya AS, Gusev NB. Small Heat Shock Proteins and Distal Hereditary Neuropathies. BIOCHEMISTRY (MOSCOW) 2016; 80:1734-47. [PMID: 26878578 DOI: 10.1134/s000629791513009x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Classification of small heat shock proteins (sHsp) is presented and processes regulated by sHsp are described. Symptoms of hereditary distal neuropathy are described and the genes whose mutations are associated with development of this congenital disease are listed. The literature data and our own results concerning physicochemical properties of HspB1 mutants associated with Charcot-Marie-Tooth disease are analyzed. Mutations of HspB1, associated with hereditary motor neuron disease, can be accompanied by change of the size of HspB1 oligomers, by decreased stability under unfavorable conditions, by changes in the interaction with protein partners, and as a rule by decrease of chaperone-like activity. The largest part of these mutations is accompanied by change of oligomer stability (that can be either increased or decreased) or by change of intermonomer interaction inside an oligomer. Data on point mutation of HspB3 associated with axonal neuropathy are presented. Data concerning point mutations of Lys141 of HspB8 and those associated with hereditary neuropathy and different forms of Charcot-Marie-Tooth disease are analyzed. It is supposed that point mutations of sHsp associated with distal neuropathies lead either to loss of function (for instance, decrease of chaperone-like activity) or to gain of harmful functions (for instance, increase of interaction with certain protein partners).
Collapse
Affiliation(s)
- V V Nefedova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
32
|
La Padula V, Staszewski O, Nestel S, Busch H, Boerries M, Roussa E, Prinz M, Krieglstein K. HSPB3 protein is expressed in motoneurons and induces their survival after lesion-induced degeneration. Exp Neurol 2016; 286:40-49. [PMID: 27567740 DOI: 10.1016/j.expneurol.2016.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/08/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
Abstract
The human small heat shock proteins (HSPBs) form a family of molecular chaperones comprising ten members (HSPB1-HSPB10), whose functions span from protein quality control to cytoskeletal dynamics and cell death control. Mutations in HSPBs can lead to human disease and particularly point mutations in HSPB1 and HSPB8 are known to lead to peripheral neuropathies. Recently, a missense mutation (R7S) in yet another member of this family, HSPB3, was found to cause an axonal motor neuropathy (distal hereditary motor neuropathy type 2C, dHMN2C). Until now, HSPB3 protein localization and function in motoneurons (MNs) have not yet been characterized. Therefore, we studied the endogenous HSPB3 protein distribution in the spinal cords of chicken and mouse embryos and in the postnatal nervous system (central and peripheral) of chicken, mouse and human. We further investigated the impact of wild-type and mutated HSPB3 on MN cell death via overexpressing these genes in ovo in an avian model of MN degeneration, the limb-bud removal. Altogether, our findings represent a first step for a better understanding of the cellular and molecular mechanisms leading to dHMN2C.
Collapse
Affiliation(s)
- Veronica La Padula
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albertstraße 17, 79104 Freiburg, Germany.
| | - Ori Staszewski
- Institute of Neuropathology, Neurozentrum, Breisacherstraße 64, 79106 Freiburg, Germany.
| | - Sigrun Nestel
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Albertstraße 17, 79104 Freiburg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albertstraße 17, 79104 Freiburg, Germany; Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Albertstraße 17, 79104 Freiburg, Germany.
| | - Marco Prinz
- Institute of Neuropathology, Neurozentrum, Breisacherstraße 64, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albertstraße 17, 79104 Freiburg, Germany.
| |
Collapse
|
33
|
Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy. Sci Rep 2015; 5:15174. [PMID: 26490709 PMCID: PMC4614888 DOI: 10.1038/srep15174] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGFβ1 and PGC-1α were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3:BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments.
Collapse
|
34
|
Duncan EJ, Cheetham ME, Chapple JP, van der Spuy J. The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcell Biochem 2015; 78:243-73. [PMID: 25487025 DOI: 10.1007/978-3-319-11731-7_12] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein folding, quality control and function. In particular, the HSP70 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and its co-chaperones have been recognised as potent modulators of inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. In has become evident that the HSP70 chaperone machine functions not only in folding, but also in proteasome mediated degradation of neurodegenerative disease proteins. Thus, there has been a great deal of interest in the potential manipulation of molecular chaperones as a therapeutic approach for many neurodegenerations. Furthermore, mutations in several HSP70 co-chaperones and putative co-chaperones have been identified as causing inherited neurodegenerative and cardiac disorders, directly linking the HSP70 chaperone system to human disease.
Collapse
Affiliation(s)
- Emma J Duncan
- Molecular Endocrinology Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charter House Square, EC1M 6BQ, London, UK,
| | | | | | | |
Collapse
|
35
|
Pareyson D, Saveri P, Sagnelli A, Piscosquito G. Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett 2015; 596:66-77. [PMID: 25847151 DOI: 10.1016/j.neulet.2015.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Peripheral nerves have peculiar energetic requirements because of considerable length of axons and therefore correct mitochondria functioning and distribution along nerves is fundamental. Mitochondrial dynamics refers to the continuous change in size, shape, and position of mitochondria within cells. Abnormalities of mitochondrial dynamics produced by mutations in proteins involved in mitochondrial fusion (mitofusin-2, MFN2), fission (ganglioside-induced differentiation-associated protein-1, GDAP1), and mitochondrial axonal transport usually present with a Charcot-Marie-Tooth disease (CMT) phenotype. MFN2 mutations cause CMT type 2A by altering mitochondrial fusion and trafficking along the axonal microtubule system. CMT2A is an axonal autosomal dominant CMT type which in most cases is characterized by early onset and rather severe course. GDAP1 mutations also alter fission, fusion and transport of mitochondria and are associated either with recessive demyelinating (CMT4A) and axonal CMT (AR-CMT2K) and, less commonly, with dominant, milder, axonal CMT (CMT2K). OPA1 (Optic Atrophy-1) is involved in fusion of mitochondrial inner membrane, and its heterozygous mutations lead to early-onset and progressive dominant optic atrophy which may be complicated by other neurological symptoms including peripheral neuropathy. Mutations in several proteins fundamental for the axonal transport or forming the axonal cytoskeleton result in peripheral neuropathy, i.e., CMT, distal hereditary motor neuropathy (dHMN) or hereditary sensory and autonomic neuropathy (HSAN), as well as in hereditary spastic paraplegia. Indeed, mitochondrial transport involves directly or indirectly components of the kinesin superfamily (KIF5A, KIF1A, KIF1B), responsible of anterograde transport, and of the dynein complex and related proteins (DYNC1H1, dynactin, dynamin-2), implicated in retrograde flow. Microtubules, neurofilaments, and chaperones such as heat shock proteins (HSPs) also have a fundamental role in mitochondrial transport and mutations in some of related encoding genes cause peripheral neuropathy (TUBB3, NEFL, HSPB1, HSPB8, HSPB3, DNAJB2). In this review, we address the abnormalities in mitochondrial dynamics and their role in determining CMT disease and related neuropathies.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy.
| | - Paola Saveri
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| | - Anna Sagnelli
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| | - Giuseppe Piscosquito
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| |
Collapse
|
36
|
Abstract
Spinal muscular atrophies (SMAs) are a group of inherited disorders characterized by motor neuron loss in the spinal cord and lower brainstem, muscle weakness, and atrophy. The clinical and genetic phenotypes incorporate a wide spectrum that is differentiated based on age of onset, pattern of muscle involvement, and inheritance pattern. Over the past several years, rapid advances in genetic technology have accelerated the identification of causative genes and provided important advances in understanding the molecular and biological basis of SMA and insights into the selective vulnerability of the motor neuron. Common pathophysiological themes include defects in RNA metabolism and splicing, axonal transport, and motor neuron development and connectivity. Together these have revealed potential novel treatment strategies, and extensive efforts are being undertaken towards expedited therapeutics. While a number of promising therapies for SMA are emerging, defining therapeutic windows and developing sensitive and relevant biomarkers are critical to facilitate potential success in clinical trials. This review incorporates an overview of the clinical manifestations and genetics of SMA, and describes recent advances in the understanding of mechanisms of disease pathogenesis and development of novel treatment strategies.
Collapse
Affiliation(s)
- Michelle A. Farrar
- />Discipline of Paediatrics, School of Women’s and Children’s Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Department of Neurology, Sydney Children’s Hospital, Randwick, NSW 2031 Australia
| | - Matthew C. Kiernan
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Smith HL, Li W, Cheetham ME. Molecular chaperones and neuronal proteostasis. Semin Cell Dev Biol 2015; 40:142-52. [PMID: 25770416 PMCID: PMC4471145 DOI: 10.1016/j.semcdb.2015.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) is essential for maintaining the functionality of the proteome. The disruption of proteostasis, due to genetic mutations or an age-related decline, leads to aberrantly folded proteins that typically lose their function. The accumulation of misfolded and aggregated protein is also cytotoxic and has been implicated in the pathogenesis of neurodegenerative diseases. Neurons have developed an intrinsic protein quality control network, of which molecular chaperones are an essential component. Molecular chaperones function to promote efficient folding and target misfolded proteins for refolding or degradation. Increasing molecular chaperone expression can suppress protein aggregation and toxicity in numerous models of neurodegenerative disease; therefore, molecular chaperones are considered exciting therapeutic targets. Furthermore, mutations in several chaperones cause inherited neurodegenerative diseases. In this review, we focus on the importance of molecular chaperones in neurodegenerative diseases, and discuss the advances in understanding their protective mechanisms.
Collapse
Affiliation(s)
- Heather L Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
38
|
Ylikallio E, Konovalova S, Dhungana Y, Hilander T, Junna N, Partanen JV, Toppila JP, Auranen M, Tyynismaa H. Truncated HSPB1 causes axonal neuropathy and impairs tolerance to unfolded protein stress. BBA CLINICAL 2015; 3:233-42. [PMID: 26675522 PMCID: PMC4661565 DOI: 10.1016/j.bbacli.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/26/2022]
Abstract
Background HSPB1 belongs to the family of small heat shock proteins (sHSP) that have importance in protection against unfolded protein stress, in cancer cells for escaping drug toxicity stress and in neurons for suppression of protein aggregates. sHSPs have a conserved α-crystalline domain (ACD), flanked by variable N- and C-termini, whose functions are not fully understood. Dominant missense variants in HSPB1, locating mostly to the ACD, have been linked to inherited neuropathy. Methods Patients underwent detailed clinical and neurophysiologic characterization. Disease causing variants were identified by exome or gene panel sequencing. Primary patient fibroblasts were used to investigate the effects of the dominant defective HSPB1 proteins. Results Frameshift variant predicting ablation of the entire C-terminus p.(Met169Cfs2*) of HSPB1 and a missense variant p.(Arg127Leu) were identified in patients with dominantly inherited motor-predominant axonal Charcot–Marie–Tooth neuropathy. We show that the truncated protein is stable and binds wild type HSPB1. Both mutations impaired the heat stress tolerance of the fibroblasts. This effect was particularly pronounced for the cells with the truncating variant, independent of heat-induced nuclear translocation and induction of global transcriptional heat response. Furthermore, the truncated HSPB1 increased cellular sensitivity to protein misfolding. Conclusion Our results suggest that truncation of the non-conserved C-terminus impairs the function of HSPB1 in cellular stress response. General significance sHSPs have important roles in prevention of protein aggregates that induce toxicity. We showed that C-terminal part of HSPB1 is critical for tolerance of unfolded protein stress, and when lacking causes axonal neuropathy in patients. C-terminal truncation of small heat shock protein HSPB1 causes neuropathy. Truncated HSPB1 is stable in patient fibroblasts and binds wild type HSPB1. C-terminus of HSPB1 is critical for tolerance to unfolded protein stress. Neuropathy may develop as a consequence of impaired cellular stress response.
Collapse
Key Words
- ACD, α-crystalline domain
- CADD, combined annotation dependent depletion
- CMT, Charcot–Marie–Tooth disease
- Charcot–Marie–Tooth neuropathy
- EMG, electromyography
- ENMG, electroneuromyography
- EVS, exome variant server
- HSPB1
- MUP, motor unit potential
- Protein misfolding
- QST, quantitative sensory testing
- SISu, Sequencing Initiative Suomi
- dHMN, distal hereditary motor neuropathy
- heat shock protein
- sHSP, small heat shock protein
Collapse
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Yogesh Dhungana
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Taru Hilander
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Nella Junna
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Juhani V Partanen
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Central Hospital, Finland
| | - Jussi P Toppila
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Central Hospital, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland ; Department of Neurology, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland ; Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
39
|
Der Perng M, Quinlan RA. The Dynamic Duo of Small Heat Proteins and IFs Maintain Cell Homeostasis, Resist Cellular Stress and Enable Evolution in Cells and Tissues. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Kim HJ, Lee J, Hong YB, Kim YJ, Lee JH, Nam SH, Choi BO, Chung KW. Ser135Phe mutation in HSPB1 (HSP27) from Charcot–Marie–Tooth disease type 2F families. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0259-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO. Neuropathy- and myopathy-associated mutations in human small heat shock proteins: Characteristics and evolutionary history of the mutation sites. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 761:15-30. [PMID: 24607769 PMCID: PMC4157968 DOI: 10.1016/j.mrrev.2014.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Mutations in four of the ten human small heat shock proteins (sHSP) are associated with various forms of motor neuropathies and myopathies. In HspB1, HspB3, and HspB8 all known mutations cause motor neuropathies, whereas in HspB5 they cause myopathies. Several features are common to the majority of these mutations: (i) they are missense mutations, (ii) most associated disease phenotypes exhibit a dominant inheritance pattern and late disease onset, (iii) in the primary protein sequences, the sites of most mutations are located in the conserved α-crystallin domain and the variable C-terminal extensions, and (iv) most human mutation sites are highly conserved among the vertebrate orthologs and have been historically exposed to significant purifying selection. In contrast, a minor fraction of these mutations deviate from these rules: they are (i) frame shifting, nonsense, or elongation mutations, (ii) associated with recessive or early onset disease phenotypes, (iii) positioned in the N-terminal domain of the proteins, and (iv) less conserved among the vertebrates and were historically not subject to a strong selective pressure. In several vertebrate sHSPs (including primate sHSPs), homologous sites differ from the human sequence and occasionally even encode the same amino acid residues that cause the disease in humans. Apparently, a number of these mutations sites are not crucial for the protein function in single species or entire taxa, and single species even seem to have adopted mechanisms that compensate for potentially adverse effects of 'mutant-like' sHSPs. The disease-associated dominant sHSP missense mutations have a number of cellular consequences that are consistent with gain-of-function mechanisms of genetic dominance: dominant-negative effects, the formation of cytotoxic amyloid protein oligomers and precipitates, disruption of cytoskeletal networks, and increased downstream enzymatic activities. Future therapeutic concepts should aim for reducing these adverse effects of mutant sHSPs in patients. Indeed, initial experimental results are encouraging.
Collapse
Affiliation(s)
- Rainer Benndorf
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Cardiovascular Institute, Loyola University Medical Center, Maywood, IL, USA.
| | | | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, University of California, San Diego, CA, USA.
| |
Collapse
|
42
|
Heat shock response associated with hepatocarcinogenesis in a murine model of hereditary tyrosinemia type I. Cancers (Basel) 2014; 6:998-1019. [PMID: 24762634 PMCID: PMC4074813 DOI: 10.3390/cancers6020998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/15/2014] [Accepted: 04/03/2014] [Indexed: 01/19/2023] Open
Abstract
Hereditary Tyrosinemia type 1 (HT1) is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH), an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic use of NTBC (2-[2-nitro-4-(trifluoromethyl)benzoyl] cyclohexane-1,3-dione). However despite the treatment, chronic hepatopathy and development of hepatocellular carcinoma (HCC) are still observed in some HT1 patients. Growing evidence show the important role of heat shock proteins (HSPs) in many cellular processes and their involvement in pathological diseases including cancer. Their survival-promoting effect by modulation of the apoptotic machinery is often correlated with poor prognosis and resistance to therapy in a number of cancers. Here, we sought to gain insight into the pathophysiological mechanisms associated with liver dysfunction and tumor development in a murine model of HT1. Differential gene expression patterns in livers of mice under HT1 stress, induced by drug retrieval, have shown deregulation of stress and cell death resistance genes. Among them, genes coding for HSPB and HSPA members, and for anti-apoptotic BCL-2 related mitochondrial proteins were associated with the hepatocarcinogenetic process. Our data highlight the variation of stress pathways related to HT1 hepatocarcinogenesis suggesting the role of HSPs in rendering tyrosinemia-affected liver susceptible to the development of HCC.
Collapse
|
43
|
Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech 2014; 7:421-34. [PMID: 24719117 PMCID: PMC3974453 DOI: 10.1242/dmm.014563] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.
Collapse
Affiliation(s)
- Vaishali Kakkar
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melanie Meister-Broekema
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melania Minoia
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Serena Carra
- Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, via G. Campi 287, 41125 Modena, Italy
| | - Harm H. Kampinga
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
44
|
Bartelt-Kirbach B, Golenhofen N. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons. Cell Stress Chaperones 2014; 19:145-53. [PMID: 23959629 PMCID: PMC3857434 DOI: 10.1007/s12192-013-0452-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 01/17/2023] Open
Abstract
Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability.We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.
Collapse
Affiliation(s)
- Britta Bartelt-Kirbach
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
45
|
Bouhy D, Timmerman V. Animal models and therapeutic prospects for Charcot-Marie-Tooth disease. Ann Neurol 2013; 74:391-6. [PMID: 23913540 DOI: 10.1002/ana.23987] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/04/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are inherited neuromuscular disorders caused by a length-dependent neurodegeneration of peripheral nerves. More than 900 mutations in 60 different genes are causative of the neuropathy. Despite significant progress in therapeutic strategies, the disease remains incurable. The increasing number of genes linked to the disease, and their considerable clinical and genetic heterogeneity render the development of these strategies particularly challenging. In this context, cellular and animals models provide powerful tools. Efficient motor and sensory tests have been developed to assess the behavioral phenotype in transgenic animal models (rodent and fly). When these models reproduce a phenotype comparable to CMT, they allow therapeutic approaches and the discovery of modifiers and biomarkers. In this review, we describe the most convincing transgenic rodent and fly models of CMT and how they can lead to clinical trial. We also discuss the challenges that the research, the clinic, and the pharmaceutical industry will face in developing efficient and accessible treatment for CMT patients.
Collapse
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
46
|
Bouhy D, Timmerman V. Modèles animaux dans la maladie de Charcot-Marie-Tooth et applications de la compréhension de la maladie chez l’homme. Rev Neurol (Paris) 2013; 169:971-7. [DOI: 10.1016/j.neurol.2013.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/26/2022]
|
47
|
Penttilä S, Jokela M, Huovinen S, Saukkonen AM, Toivanen J, Lindberg C, Baumann P, Udd B. Late-onset spinal motor neuronopathy - a common form of dominant SMA. Neuromuscul Disord 2013; 24:259-68. [PMID: 24360573 DOI: 10.1016/j.nmd.2013.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
We previously described two Finnish families with a new autosomal dominant late-onset spinal motor neuronopathy that was mapped to chromosome 22q11.2-q13.2. In the current screening study of 43 lower motor neuron disease patients from Finland and Sweden, we identified 26 new late-onset spinal motor neuronopathy patients sharing the founder haplotype. In addition to the main symptoms and signs: painful cramps, fasciculations, areflexia and slowly evolving muscle weakness, new features such as mild bulbar findings, were identified. The disease is relatively benign in terms of life expectancy and rate of disability progression, and it is therefore noteworthy that three patients were initially misdiagnosed with ALS. Significant recombinants in this new patient cohort restricted the disease locus by 90% to 1.8Mb. Late-onset spinal motor neuronopathy seems not to be very rare, at least not in Finland, with 38 patients identified in a preliminary ascertainment.
Collapse
Affiliation(s)
- Sini Penttilä
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.
| | - Manu Jokela
- Department of Neurology, Turku University Hospital, Turku, Finland.
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | | | - Jari Toivanen
- Department of Neurology, Central Hospital of Northern Karelia, Joensuu, Finland
| | - Christopher Lindberg
- Neuromuscular Center, Department of Neurology, Sahlgrenska Academy at University Gothenburg, Gothenburg, Sweden
| | - Peter Baumann
- Central Hospital of Lapland, Department of Neurology, Rovaniemi, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vasa Central Hospital, Vasa, Finland
| |
Collapse
|
48
|
Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease. Orphanet J Rare Dis 2013; 8:104. [PMID: 23844677 PMCID: PMC3728151 DOI: 10.1186/1750-1172-8-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/08/2013] [Indexed: 12/17/2022] Open
Abstract
Background Mutations in the Pleckstrin homology domain-containing, family G member 5 (PLEKHG5) gene has been reported in a family harboring an autosomal recessive lower motor neuron disease (LMND). However, the PLEKHG5 mutation has not been described to cause Charcot-Marie-Tooth disease (CMT). Methods To identify the causative mutation in an autosomal recessive intermediate CMT (RI-CMT) family with childhood onset, whole exome sequencing (WES), histopathology, and lower leg MRIs were performed. Expression and activity of each mutant protein were analyzed. Results We identified novel compound heterozygous (p.Thr663Met and p.Gly820Arg) mutations in the PLEKHG5 gene in the present family. The patient revealed clinical manifestations of sensory neuropathy. Fatty replacements in the distal lower leg muscles were more severe than in the thigh muscles. Although the symptoms and signs of this patient harboring slow nerve conduction velocities suggested the possibility of demyelinating neuropathy, a distal sural nerve biopsy was compatible with axonal neuropathy. Immunohistochemical analysis revealed that the patient has a low level of PLEKHG5 in the distal sural nerve and an in vitro assay suggested that the mutant proteins have a defect in activating the NF-κB signaling pathway. Conclusions This study identifies compound heterozygous PLEKHG5 mutations as the cause of RI-CMT. We suggest that PLEKHG5 might play a role in the peripheral motor and sensory nervous system. This study expands the phenotypic spectrum of PLEKHG5 mutations.
Collapse
|
49
|
Nakhro K, Park JM, Kim YJ, Yoon BR, Yoo JH, Koo H, Choi BO, Chung KW. A novel Lys141Thr mutation in small heat shock protein 22 (HSPB8) gene in Charcot-Marie-Tooth disease type 2L. Neuromuscul Disord 2013; 23:656-63. [PMID: 23796487 DOI: 10.1016/j.nmd.2013.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/30/2013] [Accepted: 05/23/2013] [Indexed: 01/11/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is a group of clinically and genetically heterogeneous peripheral neuropathies. HSPB8 gene encodes heat shock protein 22 (HSP22) which belongs to the superfamily of small stress induced proteins. Mutations in HSPB8 are implicated to CMT2L and distal hereditary motor neuropathy 2A (dHMN2A). All three reported HSPB8 mutations are interestingly located in the Lys141 residue. In the present study, we examined a Korean axonal CMT patient who presented distal limb atrophy, sensory loss, areflexia, and axonal loss of large myelinated fibers. Whole exome sequencing identified a novel missense mutation c.422A>C (p.Lys141Thr) in HSPB8 as the underlying cause of the CMT2 patient. The mutation was regarded as a de novo case because both unaffected parents have no such mutation. The patient with HSPB8 mutation is the first case in Koreans. Clinical heterogeneities have been revealed in patients with Lys141 mutation; the present patient revealed similar phenotype of CMT2L. In addition, the lower limb MRI revealed a similarity between our HSPB8 and HSPB1 patients. It seems that the Lys141 site in the alpha-crystallin domain of HSPB8 is regarded as a mutational hot spot for peripheral neuropathy development, and mutations even in the same codon can exhibit different CMT phenotypes.
Collapse
Affiliation(s)
- Khriezhanuo Nakhro
- Department of Biological Science, Kongju National University, Gongju 314-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Neveling K, Martinez-Carrera L, Hölker I, Heister A, Verrips A, Hosseini-Barkooie S, Gilissen C, Vermeer S, Pennings M, Meijer R, te Riele M, Frijns C, Suchowersky O, MacLaren L, Rudnik-Schöneborn S, Sinke R, Zerres K, Lowry R, Lemmink H, Garbes L, Veltman J, Schelhaas H, Scheffer H, Wirth B. Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. Am J Hum Genet 2013; 92:946-54. [PMID: 23664116 DOI: 10.1016/j.ajhg.2013.04.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a heterogeneous group of neuromuscular disorders caused by degeneration of lower motor neurons. Although functional loss of SMN1 is associated with autosomal-recessive childhood SMA, the genetic cause for most families affected by dominantly inherited SMA is unknown. Here, we identified pathogenic variants in bicaudal D homolog 2 (Drosophila) (BICD2) in three families afflicted with autosomal-dominant SMA. Affected individuals displayed congenital slowly progressive muscle weakness mainly of the lower limbs and congenital contractures. In a large Dutch family, linkage analysis identified a 9q22.3 locus in which exome sequencing uncovered c.320C>T (p.Ser107Leu) in BICD2. Sequencing of 23 additional families affected by dominant SMA led to the identification of pathogenic variants in one family from Canada (c.2108C>T [p.Thr703Met]) and one from the Netherlands (c.563A>C [p.Asn188Thr]). BICD2 is a golgin and motor-adaptor protein involved in Golgi dynamics and vesicular and mRNA transport. Transient transfection of HeLa cells with all three mutant BICD2 cDNAs caused massive Golgi fragmentation. This observation was even more prominent in primary fibroblasts from an individual harboring c.2108C>T (p.Thr703Met) (affecting the C-terminal coiled-coil domain) and slightly less evident in individuals with c.563A>C (p.Asn188Thr) (affecting the N-terminal coiled-coil domain). Furthermore, BICD2 levels were reduced in affected individuals and trapped within the fragmented Golgi. Previous studies have shown that Drosophila mutant BicD causes reduced larvae locomotion by impaired clathrin-mediated synaptic endocytosis in neuromuscular junctions. These data emphasize the relevance of BICD2 in synaptic-vesicle recycling and support the conclusion that BICD2 mutations cause congenital slowly progressive dominant SMA.
Collapse
|