1
|
Arends T, Hamm DC, van der Maarel S, Tapscott SJ. Facioscapulohumeral Dystrophy: Molecular Basis and Therapeutic Opportunities. Cold Spring Harb Perspect Biol 2025; 17:a041492. [PMID: 39009417 PMCID: PMC11733064 DOI: 10.1101/cshperspect.a041492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Facioscapulohumeral dystrophy (FSHD) is caused by misexpression of the early embryonic transcription factor Double Homeobox Protein 4 (DUX4) in skeletal muscle. DUX4 is normally expressed at the 4-cell stage of the human embryo and initiates a portion of the first wave of embryonic gene expression that establishes the totipotent cells of the embryo. Following brief expression, the DUX4 locus is suppressed by epigenetic silencing and remains silenced in nearly all somatic cells. Mutations that cause FSHD decrease the efficiency of epigenetic silencing of the DUX4 locus and result in aberrant expression of this transcription factor in skeletal muscles. DUX4 expression in these skeletal muscles reactivates part of the early totipotent program and suppresses the muscle program-resulting in a progressive muscular dystrophy that affects some muscles earlier than others. These advances in understanding the cause of FSHD have led to multiple therapeutic strategies that are now entering clinical trials.
Collapse
Affiliation(s)
- Tessa Arends
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Danielle C Hamm
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Silvère van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
2
|
Luglio A, Maggi E, Riviello FN, Conforti A, Sorrentino U, Zuccarello D. Hereditary Neuromuscular Disorders in Reproductive Medicine. Genes (Basel) 2024; 15:1409. [PMID: 39596609 PMCID: PMC11593801 DOI: 10.3390/genes15111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Neuromuscular disorders (NMDs) encompass a broad range of hereditary and acquired conditions that affect motor units, significantly impacting patients' quality of life and reproductive health. This narrative review aims to explore in detail the reproductive challenges associated with major hereditary NMDs, including Charcot-Marie-Tooth disease (CMT), dystrophinopathies, Myotonic Dystrophy (DM), Facioscapulohumeral Muscular Dystrophy (FSHD), Spinal Muscular Atrophy (SMA), Limb-Girdle Muscular Dystrophy (LGMD), and Amyotrophic Lateral Sclerosis (ALS). Specifically, it discusses the stages of diagnosis and genetic testing, recurrence risk estimation, options for preimplantation genetic testing (PGT) and prenatal diagnosis (PND), the reciprocal influence between pregnancy and disease, potential obstetric complications, and risks to the newborn.
Collapse
Affiliation(s)
- Agnese Luglio
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | | | | | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Ugo Sorrentino
- Department of Women’s and Children’s Health, University Hospital of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Daniela Zuccarello
- Unit of Medical Genetics and Genomics, San Bortolo Hospital, ULSS n.8 “Berica”, 36100 Vicenza, Italy;
| |
Collapse
|
3
|
Wong MMK, Hachmer S, Gardner E, Runfola V, Arezza E, Megeney LA, Emerson CP, Gabellini D, Dilworth FJ. SMCHD1 activates the expression of genes required for the expansion of human myoblasts. Nucleic Acids Res 2024; 52:9450-9462. [PMID: 38994563 PMCID: PMC11381350 DOI: 10.1093/nar/gkae600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
SMCHD1 is an epigenetic regulatory protein known to modulate the targeted repression of large chromatin domains. Diminished SMCHD1 function in muscle fibers causes Facioscapulohumeral Muscular Dystrophy (FSHD2) through derepression of the D4Z4 chromatin domain, an event which permits the aberrant expression of the disease-causing gene DUX4. Given that SMCHD1 plays a broader role in establishing the cellular epigenome, we examined whether loss of SMCHD1 function might affect muscle homeostasis through additional mechanisms. Here we show that acute depletion of SMCHD1 results in a DUX4-independent defect in myoblast proliferation. Genomic and transcriptomic experiments determined that SMCHD1 associates with enhancers of genes controlling cell cycle to activate their expression. Amongst these cell cycle regulatory genes, we identified LAP2 as a key target of SMCHD1 required for the expansion of myoblasts, where the ectopic expression of LAP2 rescues the proliferation defect of SMCHD1-depleted cells. Thus, the epigenetic regulator SMCHD1 can play the role of a transcriptional co-activator for maintaining the expression of genes required for muscle progenitor expansion. This DUX4-independent role for SMCHD1 in myoblasts suggests that the pathology of FSHD2 may be a consequence of defective muscle regeneration in addition to the muscle wasting caused by spurious DUX4 expression.
Collapse
Affiliation(s)
- Matthew Man-Kin Wong
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Sarah Hachmer
- Department of Cell and Regenerative Biology, University of Wisconsin; Madison, WI 53705, USA
| | - Ed Gardner
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Valeria Runfola
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - Eric Arezza
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
| | - Lynn A Megeney
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Davide Gabellini
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
- Department of Cell and Regenerative Biology, University of Wisconsin; Madison, WI 53705, USA
| |
Collapse
|
4
|
Giardina E, Camaño P, Burton-Jones S, Ravenscroft G, Henning F, Magdinier F, van der Stoep N, van der Vliet PJ, Bernard R, Tomaselli PJ, Davis MR, Nishino I, Oflazer P, Race V, Vishnu VY, Williams V, Sobreira CFR, van der Maarel SM, Moore SA, Voermans NC, Lemmers RJLF. Best practice guidelines on genetic diagnostics of facioscapulohumeral muscular dystrophy: Update of the 2012 guidelines. Clin Genet 2024; 106:13-26. [PMID: 38685133 PMCID: PMC11147721 DOI: 10.1111/cge.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
The gold standard for facioscapulohumeral muscular dystrophy (FSHD) genetic diagnostic procedures was published in 2012. With the increasing complexity of the genetics of FSHD1 and 2, the increase of genetic testing centers, and the start of clinical trials for FSHD, it is crucial to provide an update on our knowledge of the genetic features of the FSHD loci and renew the international consensus on the molecular testing recommendations. To this end, members of the FSHD European Trial Network summarized the evidence presented during the 2022 ENMC meeting on Genetic diagnosis, clinical outcome measures, and biomarkers. The working group additionally invited genetic and clinical experts from the USA, India, Japan, Australia, South-Africa, and Brazil to provide a global perspective. Six virtual meetings were organized to reach consensus on the minimal requirements for genetic confirmation of FSHD1 and FSHD2. Here, we present the clinical and genetic features of FSHD, specific features of FSHD1 and FSHD2, pros and cons of established and new technologies (Southern blot in combination with either linear or pulsed-field gel electrophoresis, molecular combing, optical genome mapping, FSHD2 methylation analysis and FSHD2 genotyping), the possibilities and challenges of prenatal testing, including pre-implantation genetic testing, and the minimal requirements and recommendations for genetic confirmation of FSHD1 and FSHD2. This consensus is expected to contribute to current clinical management and trial-readiness for FSHD.
Collapse
Affiliation(s)
- Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Pilar Camaño
- Molecular Diagnostics Platform, Biogipuzkoa Health Research Institute, Hospital Universitario Donostia, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science & Innovation, Carlos III Health Institute, Madrid, Spain
| | | | - Gina Ravenscroft
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Franclo Henning
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, The Netherlands
| | | | - Rafaëlle Bernard
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
- Centre Hospitalier Universitaire Timone Adultes, Biogénopôle, Service de Génétique Médicale, Marseille, France
| | - Pedro J Tomaselli
- Department of Neurosciences, Division of Neurology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of Genome Medicine Development, Clinical Genome Analysis, Medical Genome Center (MGC), National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Piraye Oflazer
- Department of Neurology, Koç University Hospital Muscle Center, Koç University Medical Faculty, Istanbul, Turkey
| | - Valerie Race
- Clinical Laboratory Geneticist, Human Genetics, UZ Leuven, Leuven, Belgium
| | - Venugopalan Y Vishnu
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | | | - Cláudia F R Sobreira
- Department of Neurosciences, Division of Neurology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Steve A Moore
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Pathology, Roy J. And Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nicol C Voermans
- Department of Neurology, Radboud university medical center, Nijmegen, The Netherlands
| | | |
Collapse
|
5
|
Agarwal A, Ghosh Kar A, Joshi D, Harshanayana H. Clinicopathological Profile of Muscle Diseases Presenting the Adult Population in Northern India: Preliminary Analysis in a Limited Resource Setting. Cureus 2024; 16:e60084. [PMID: 38860083 PMCID: PMC11163857 DOI: 10.7759/cureus.60084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Muscle diseases are of various types, viz., muscular dystrophies, inflammatory myopathies, myotonic disorders, congenital myopathies, and metabolic myopathies. They all present with muscle weakness, be it proximal or distal. The assessment of muscle biopsy with the help of enzyme histochemistry, histopathological, and immunohistochemical methods is an essential component in the diagnosis of neuromuscular disorders. The authors outline brief data on muscle diseases prevalent in the North Indian region. METHODS Muscle biopsy was done, and the biopsy was freshly frozen in liquid nitrogen and sections were taken on a cryostat. Slides were then stained with hematoxylin and eosin (H&E), modified Gomori trichome (MGT), nicotinamide adenine dinucleotide hydrogenase (NADH), and succinic dehydrogenase (SDH) stains. Further specific immunohistochemistry tests were also done. RESULT Out of n=16 cases, three cases were diagnosed as Becker's muscular dystrophy, two cases were diagnosed as inflammatory myopathy, four cases were diagnosed as Facioscapulohumeral muscular dystrophy, and one each case of dysferlinopathy and alpha sarcoglycanopathy. CONCLUSION Muscle diseases can cause different levels of physical disability and thus it is important to diagnose at the appropriate time to ensure proper treatment.
Collapse
Affiliation(s)
- Apoorva Agarwal
- Pathology, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Amrita Ghosh Kar
- Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Deepika Joshi
- Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | | |
Collapse
|
6
|
Magdinier F, Ganne B, Delourme M, Nguyen K, Bernard R. [Facio-scapulo-humeral muscular dystrophy: towards a molecular diagnosis extended to FSHD2]. Med Sci (Paris) 2022; 38 Hors série n° 1:52-54. [PMID: 36649639 DOI: 10.1051/medsci/2022184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Frédérique Magdinier
- Aix Marseille Univ, INSERM Marseille Medical Genetics, Marseille, France - Département de Génétique Médicale, AP-HM, Hôpital d'enfants de la Timone, Marseille, France - Laboratoire Marseille Medical Genetics, U1251, INSERM ; Aix Marseille University. Faculté des Sciences Médicales et Paramédicales de la Timone. 27, Bd Jean Moulin 13005 Marseille, France
| | - Benjamin Ganne
- Aix Marseille Univ, INSERM Marseille Medical Genetics, Marseille, France
| | - Mégane Delourme
- Aix Marseille Univ, INSERM Marseille Medical Genetics, Marseille, France
| | - Karine Nguyen
- Aix Marseille Univ, INSERM Marseille Medical Genetics, Marseille, France - Département de Génétique Médicale, AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| | - Rafaëlle Bernard
- Aix Marseille Univ, INSERM Marseille Medical Genetics, Marseille, France - Département de Génétique Médicale, AP-HM, Hôpital d'enfants de la Timone, Marseille, France
| |
Collapse
|
7
|
Mariot V, Dumonceaux J. Gene Editing to Tackle Facioscapulohumeral Muscular Dystrophy. Front Genome Ed 2022; 4:937879. [PMID: 35910413 PMCID: PMC9334676 DOI: 10.3389/fgeed.2022.937879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is a skeletal muscle disease caused by the aberrant expression of the DUX4 gene in the muscle tissue. To date, different therapeutic approaches have been proposed, targeting DUX4 at the DNA, RNA or protein levels. The recent development of the clustered regularly interspaced short-palindromic repeat (CRISPR) based technology opened new avenues of research, and FSHD is no exception. For the first time, a cure for genetic muscular diseases can be considered. Here, we describe CRISPR-based strategies that are currently being investigated for FSHD. The different approaches include the epigenome editing targeting the DUX4 gene and its promoter, gene editing targeting the polyadenylation of DUX4 using TALEN, CRISPR/cas9 or adenine base editing and the CRISPR-Cas9 genome editing for SMCHD1. We also discuss challenges facing the development of these gene editing based therapeutics.
Collapse
Affiliation(s)
- Virginie Mariot
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, University College London, London, United Kingdom
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, University College London, London, United Kingdom
| |
Collapse
|
8
|
Kakouri AC, Koutalianos D, Koutsoulidou A, Oulas A, Tomazou M, Nikolenko N, Turner C, Roos A, Lusakowska A, Janiszewska K, Papadimas GK, Papadopoulos C, Kararizou E, Papanicolaou EZ, Gorman G, Lochmüller H, Spyrou GM, Phylactou LA. Circulating small RNA signatures differentiate accurately the subtypes of muscular dystrophies: small-RNA next-generation sequencing analytics and functional insights. RNA Biol 2022; 19:507-518. [PMID: 35388741 PMCID: PMC8993092 DOI: 10.1080/15476286.2022.2058817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscular dystrophies are a group of rare and severe inherited disorders mainly affecting the muscle tissue. Duchene Muscular Dystrophy, Myotonic Dystrophy types 1 and 2, Limb Girdle Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy are some of the members of this family of disorders. In addition to the current diagnostic tools, there is an increasing interest for the development of novel non-invasive biomarkers for the diagnosis and monitoring of these diseases. miRNAs are small RNA molecules characterized by high stability in blood thus making them ideal biomarker candidates for various diseases. In this study, we present the first genome-wide next-generation small RNA sequencing in serum samples of five different types of muscular dystrophy patients and healthy individuals. We identified many small RNAs including miRNAs, lncRNAs, tRNAs, snoRNAs and snRNAs, that differentially discriminate the muscular dystrophy patients from the healthy individuals. Further analysis of the identified miRNAs showed that some miRNAs can distinguish the muscular dystrophy patients from controls and other miRNAs are specific to the type of muscular dystrophy. Bioinformatics analysis of the target genes for the most significant miRNAs and the biological role of these genes revealed different pathways that the dysregulated miRNAs are involved in each type of muscular dystrophy investigated. In conclusion, this study shows unique signatures of small RNAs circulating in five types of muscular dystrophy patients and provides a useful resource for future studies for the development of miRNA biomarkers in muscular dystrophies and for their involvement in the pathogenesis of the disorders.
Collapse
Affiliation(s)
- Andrea C Kakouri
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Demetris Koutalianos
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anastasis Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany.,Division of Neurology, Department of Medicine, Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - George K Papadimas
- Department of Neurology, Eginitio hospital, Medical School of Athens, Athens, Greece
| | | | - Evangelia Kararizou
- Department of Neurology, Eginitio hospital, Medical School of Athens, Athens, Greece
| | | | - Grainne Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Centro Nacional de AnálisisGenómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (Bist), Barcelona, Spain
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
9
|
Teeselink S, Vincenten SCC, Voermans NC, Groothuis JT, Doorduin J, Wijkstra PJ, Horlings CGC, van Engelen BGM, Mul K. Long-term follow-up of respiratory function in facioscapulohumeral muscular dystrophy. J Neurol 2022; 269:3682-3689. [PMID: 35147730 PMCID: PMC8831680 DOI: 10.1007/s00415-022-10990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/25/2022]
Abstract
Objective To evaluate the 5-year change in respiratory function in patients with facioscapulohumeral muscular dystrophy (FSHD). Methods Genetically confirmed patients with FSHD aged ≥ 18 years were examined twice over five years. Forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were measured using hand-held spirometry with a face mask. Several clinical outcome measures were correlated to respiratory function. Results Ninety-two patients were included (57% male, age 18–75 years). At baseline, the spirometry outcomes of 41 patients showed a restrictive ventilatory pattern (FVC < 80% and FEV1/FVC ≥ 70% of predicted) and of 48 patients at follow-up. The mean FVC decreased from baseline to follow-up from 79.0 to 76.7% predicted (p = 0.021). This decrease was driven by a subgroup of 15 patients who had a deterioration of FVC of > 10% predicted. The subgroup of 15 patients was more severely affected at baseline (p = 0.002 for FSHD clinical score and 0.007 for Ricci score). They developed more frequently spinal and thorax deformities (p < 0.001 for kyphoscoliosis and 0.012 for pectus excavatum) and had a larger decline in axial muscle function (p = 0.020). Only weak correlations were found between the change in FVC% predicted and the change in clinical scores between baseline and follow-up. Interpretation Respiratory function remained stable in most patients with FSHD, but a subgroup of patients showed a pronounced deterioration. They showed more severe muscle weakness including the leg muscles at baseline (Ricci score ≥ 6), had spinal and thorax deformities and a relatively fast decline in axial muscle function at follow-up.
Collapse
Affiliation(s)
- Sjan Teeselink
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4 (910), PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Sanne C C Vincenten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4 (910), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4 (910), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jan T Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4 (910), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Peter J Wijkstra
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4 (910), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4 (910), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Mohassel P, Chang N, Inoue K, Delaney A, Hu Y, Donkervoort S, Saade D, Billioux BJ, Meader B, Volochayev R, Konersman CG, Kaindl AM, Cho CH, Russell B, Rodriguez A, Foster KW, Foley AR, Moore SA, Jones PL, Bonnemann CG, Jones T, Shaw ND. Cross-sectional, Neuromuscular Phenotyping Study of Arhinia Patients With SMCHD1 Variants. Neurology 2022; 98:e1384-e1396. [PMID: 35121673 PMCID: PMC8967428 DOI: 10.1212/wnl.0000000000200032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Facioscapulohumeral muscular dystrophy type 2 (FSHD2) and arhinia are two distinct disorders caused by pathogenic variants in the same gene, SMCHD1. The mechanism underlying this phenotypic divergence remains unclear. In this study, we characterize the neuromuscular phenotype of individuals with arhinia caused by SMCHD1 variants and analyze their complex genetic and epigenetic criteria to assess their risk for FSHD2. METHODS Eleven individuals with congenital nasal anomalies, including arhinia, nasal hypoplasia, or anosmia, underwent a neuromuscular exam, genetic testing, muscle ultrasound, and muscle MRI. Risk for FSHD2 was determined by combined genetic and epigenetic analysis of 4q35 haplotype, D4Z4 repeat length and methylation profile. We also compared expression levels of pathogenic DUX4 mRNA in primary myoblasts or dermal fibroblasts (upon myogenic differentiation or epigenetic transdifferentiation, respectively) in these individuals to those with confirmed FSHD2. RESULTS Among the eleven individuals with rare, pathogenic, heterozygous missense variants in exons 3-11 of SMCHD1, only a subset (n=3/11; 1 male, 2 females; age 25-51 years) met the strict genetic and epigenetic criteria for FSHD2 (D4Z4 repeat unit length <21 in cis with a 4qA haplotype, and D4Z4 methylation <30%). None of the 3 individuals had typical clinical manifestations or muscle imaging findings consistent with FSHD2. However, the arhinia patients meeting the permissive genetic and epigenetic criteria for FSHD2 displayed some DUX4 expression in dermal fibroblasts under the epigenetic de-repression by drug treatment and in the primary myoblasts undergoing myogenic differentiation. DISCUSSION In this cross-sectional study, we identified arhinia patients who meet the full genetic and epigenetic criteria for FSHD2 and display the molecular hallmark of FSHD, that is DUX4 de-repression and expression in vitro, but who do not manifest with the typical clinicopathologic phenotype of FSHD2. The distinct dichotomy between FSHD2 and arhinia phenotypes despite an otherwise poised DUX4 locus implies the presence of novel disease-modifying factors that seem to operate as a "switch", resulting in one phenotype and not the other. Identification and further understanding of these disease-modifying factors will likely provide valuable insight with therapeutic implications for both diseases.
Collapse
Affiliation(s)
- Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ning Chang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Kaoru Inoue
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, NC
| | - Angela Delaney
- National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dimah Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - B Jeanne Billioux
- International Neuroinfectious Diseases Unit, Division of Neuroimmunology and Neurovirology, National institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Brooke Meader
- National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD
| | - Rita Volochayev
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD
| | | | - Angela M Kaindl
- Charitè-Universitätsmedizin Berlin, Department of Pediatric Neurology, Center for Chronically Sick Children and Institute of Cell Biology and Neurobiology, Berlin, Germany
| | - Chie-Hee Cho
- Institute for diagnostic and interventional Radiology, University Clinic, Jena, Germany
| | - Bianca Russell
- Division of Pediatric Genetics, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA
| | | | - K Wade Foster
- Florida Dermatology and Skin Cancer Centers, Winter Haven, FL
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Steven A Moore
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Takako Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Natalie D Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, NC
| |
Collapse
|
11
|
Distrofia muscolare facio-scapolo-omerale. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Jia FF, Drew AP, Nicholson GA, Corbett A, Kumar KR. Facioscapulohumeral muscular dystrophy type 2: an update on the clinical, genetic, and molecular findings. Neuromuscul Disord 2021; 31:1101-1112. [PMID: 34711481 DOI: 10.1016/j.nmd.2021.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common genetic disease of the skeletal muscle with a characteristic pattern of weakness. Facioscapulohumeral muscular dystrophy type 2 (FSHD2) accounts for approximately 5% of all cases of FSHD and describes patients without a D4Z4 repeat contraction on chromosome 4. Phenotypically FSHD2 shows virtually no difference from FSHD1 and both forms of FSHD arise via a common downstream mechanism of epigenetic derepression of the transcription factor DUX4 in skeletal muscle cells. This results in expression of DUX4 and target genes leading to skeletal muscle toxicity. Over the past decade, major progress has been made in our understanding of the genetic and epigenetic architecture that underlies FSHD2 pathogenesis, as well as the clinical manifestations and disease progression. These include the finding that FSHD2 is a digenic disease and that mutations in the genes SMCHD1, DNMT3B, and more recently LRIF1, can cause FSHD2. FSHD2 is complex and it is important that clinicians keep abreast of recent developments; this review aims to serve as an update of the clinical, genetic, and molecular research into this condition.
Collapse
Affiliation(s)
- Fangzhi Frank Jia
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia.
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | - Garth Alexander Nicholson
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Alastair Corbett
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Kishore Raj Kumar
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| |
Collapse
|
13
|
Precise Epigenetic Analysis Using Targeted Bisulfite Genomic Sequencing Distinguishes FSHD1, FSHD2, and Healthy Subjects. Diagnostics (Basel) 2021; 11:diagnostics11081469. [PMID: 34441403 PMCID: PMC8393475 DOI: 10.3390/diagnostics11081469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
The true prevalence of facioscapulohumeral muscular dystrophy (FSHD) is unknown due to difficulties with accurate clinical evaluation and the complexities of current genetic diagnostics. Interestingly, all forms of FSHD are linked to epigenetic changes in the chromosome 4q35 D4Z4 macrosatellite, suggesting that epigenetic analysis could provide an avenue for sequence-based FSHD diagnostics. However, studies assessing DNA methylation at the FSHD locus have produced conflicting results; thus, the utility of this technique as an FSHD diagnostic remains controversial. Here, we critically compared two protocols for epigenetic analysis of the FSHD region using bisulfite genomic sequencing: Jones et al., that contends to be individually diagnostic for FSHD1 and FSHD2, and Gaillard et al., that can identify some changes in DNA methylation levels between groups of clinically affected FSHD and healthy subjects, but is not individually diagnostic for any form of FSHD. We performed both sets of assays on the same genetically confirmed samples and showed that this discrepancy was due strictly to differences in amplicon specificity. We propose that the epigenetic status of the FSHD-associated D4Z4 arrays, when accurately assessed, is a diagnostic for genetic FSHD and can readily distinguish between healthy, FSHD1 and FSHD2. Thus, epigenetic diagnosis of FSHD, which can be performed on saliva DNA, will greatly increase accessibility to FSHD diagnostics for populations around the world.
Collapse
|
14
|
Lim KRQ, Yokota T. Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Front Pharmacol 2021; 12:642858. [PMID: 33776777 PMCID: PMC7996372 DOI: 10.3389/fphar.2021.642858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive, asymmetric muscle weakness at the face, shoulders, and upper limbs, which spreads to the lower body with age. It is the third most common inherited muscular disorder worldwide. Around 20% of patients are wheelchair-bound, and some present with extramuscular manifestations. FSHD is caused by aberrant expression of the double homeobox protein 4 (DUX4) gene in muscle. DUX4 codes for a transcription factor which, in skeletal muscle, dysregulates numerous signaling activities that culminate in cytotoxicity. Potential treatments for FSHD therefore aim to reduce the expression of DUX4 or the activity of its toxic protein product. In this article, we review how genetic approaches such as those based on oligonucleotide and genome editing technologies have been developed to achieve these goals. We also outline the challenges these therapies are facing on the road to translation, and discuss possible solutions and future directions.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
15
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies. Over the last decade, a consensus was reached regarding the underlying cause of FSHD allowing—for the first time—a targeted approach to treatment. FSHD is the result of a toxic gain-of-function from de-repression of the DUX4 gene, a gene not normally expressed in skeletal muscle. With a clear therapeutic target, there is increasing interest in drug development for FSHD, an interest buoyed by the recent therapeutic successes in other neuromuscular diseases. Herein, we review the underlying disease mechanism, potential therapeutic approaches as well as the state of trial readiness in the planning and execution of future clinical trials in FSHD.
Collapse
Affiliation(s)
- Leo H Wang
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
16
|
Chau J, Kong X, Viet Nguyen N, Williams K, Ball M, Tawil R, Kiyono T, Mortazavi A, Yokomori K. Relationship of DUX4 and target gene expression in FSHD myocytes. Hum Mutat 2021; 42:421-433. [PMID: 33502067 DOI: 10.1002/humu.24171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/11/2020] [Accepted: 01/23/2021] [Indexed: 12/27/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is associated with the upregulation of the DUX4 transcription factor and its target genes. However, low-frequency DUX4 upregulation in patient myocytes is difficult to detect and examining the relationship and dynamics of DUX4 and target gene expression has been challenging. Using RNAScope in situ hybridization with highly specific probes, we detect the endogenous DUX4 and target gene transcripts in situ in patient skeletal myotubes during 13-day differentiation in vitro. We found that the endogenous DUX4 transcripts primarily localize as foci in one or two nuclei as compared with the accumulation of the recombinant DUX4 transcripts in the cytoplasm. We also found the continuous increase of DUX4 and target gene-positive myotubes after Day 3, arguing against its expected immediate cytotoxicity. Interestingly, DUX4 and target gene expression become discordant later in differentiation with the increase of DUX4-positive/target gene-negative as well as DUX4-negative/target gene-positive myotubes. Depletion of DUX4-activated transcription factors, DUXA and LEUTX, specifically repressed a DUX4-target gene, KDM4E, later in differentiation, suggesting that after the initial activation by DUX4, target genes themselves contribute to the maintenance of downstream gene expression. Together, the study provides important new insights into the dynamics of the DUX4 transcriptional network in FSHD patient myocytes.
Collapse
Affiliation(s)
- Jonathan Chau
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Nam Viet Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Katherine Williams
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California, USA
| | - Miya Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Rabi Tawil
- Department of Neurology, Neuromuscular Disease Unit, University of Rochester Medical Center, Rochester, New York, USA
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Chiba, Japan
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
17
|
Pain Management of Scapulothoracic Fusion Using Continuous Interscalene Brachial Plexus and Erector Spinae Plane Catheters: A Case Report. A A Pract 2021; 15:e01374. [PMID: 33512904 DOI: 10.1213/xaa.0000000000001374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Perioperative pain management in patients undergoing major surgery with restrictive lung disease can be a challenge. Facioscapulohumeral muscular dystrophy, a rare genetic disorder, causes progressive proximal weakness resulting in chronic pain. We describe a patient undergoing elective scapulothoracic fusion to improve chronic pain. We demonstrated the use of 2 continuous regional catheters for perioperative analgesia to reduce opioid consumption. We used interscalene brachial plexus and erector spinae plane block with catheter insertion using continuous local anesthetic infusion. The aim was to reduce potential respiratory complications in a patient with severe restrictive lung disease and reduce hospital stay.
Collapse
|
18
|
Vercelli L, Mele F, Ruggiero L, Sera F, Tripodi S, Ricci G, Vallarola A, Villa L, Govi M, Maranda L, Di Muzio A, Scarlato M, Bucci E, Maggi L, Rodolico C, Moggio M, Filosto M, Antonini G, Previtali S, Angelini C, Berardinelli A, Pegoraro E, Siciliano G, Tomelleri G, Santoro L, Mongini T, Tupler R. A 5-year clinical follow-up study from the Italian National Registry for FSHD. J Neurol 2021; 268:356-366. [PMID: 32813049 PMCID: PMC7815626 DOI: 10.1007/s00415-020-10144-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The natural history of facioscapulohumeral muscular dystrophy (FSHD) is undefined. METHODS An observational cohort study was conducted in 246 FSHD1 patients. We split the analysis between index cases and carrier relatives and we classified all patients using the Comprehensive Clinical Evaluation Form (CCEF). The disease progression was measured as a variation of the FSHD score performed at baseline and at the end of 5-year follow-up (ΔFSHD score). FINDINGS Disease worsened in 79.4% (112/141) of index cases versus 38.1% (40/105) of carrier relatives and advanced more rapidly in index cases (ΔFSHD score 2.3 versus 1.2). The 79.1% (38/48) of asymptomatic carriers remained asymptomatic. The highest ΔFSHD score (1.7) was found in subject with facial and scapular weakness at baseline (category A), whereas in subjects with incomplete phenotype (facial or scapular weakness, category B) had lower ΔFSHD score (0.6) p < 0.0001. CONCLUSIONS The progression of disease is different between index cases and carrier relatives and the assessment of the CCEF categories has strong prognostic effect in FSHD1 patients.
Collapse
Affiliation(s)
- Liliana Vercelli
- Department of Neurosciences "Rita Levi Montalcini", Center for Neuromuscular Diseases, University of Turin, Turin, Italy
| | - Fabiano Mele
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Francesco Sera
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Silvia Tripodi
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Giulia Ricci
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Antonio Vallarola
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Luisa Villa
- Neuromuscular Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Monica Govi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Louise Maranda
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, USA
| | - Antonio Di Muzio
- Center for Neuromuscular Disease, CeSI, University "G. D'Annunzio", Chieti, Italy
| | - Marina Scarlato
- INSPE and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Bucci
- Department of Neuroscience, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome "La Sapienza", Rome, Italy
| | - Lorenzo Maggi
- IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - Carmelo Rodolico
- Department of Neurosciences, Policlinico "G. Martino", University of Messina, Messina, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, University of Milan, Milan, Italy
| | | | - Giovanni Antonini
- Department of Neuroscience, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome "La Sapienza", Rome, Italy
| | - Stefano Previtali
- INSPE and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Angela Berardinelli
- Unit of Child Neurology and Psychiatry, IRCCS "C. Mondino" Foundation, Pavia, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Giuliano Tomelleri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Tiziana Mongini
- Department of Neurosciences "Rita Levi Montalcini", Center for Neuromuscular Diseases, University of Turin, Turin, Italy.
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, USA.
- Li Weibo Institute for Rare Diseases Research at the University of Massachusetts Medical School, Worcester, USA.
| |
Collapse
|
19
|
DeSimone AM, Cohen J, Lek M, Lek A. Cellular and animal models for facioscapulohumeral muscular dystrophy. Dis Model Mech 2020; 13:dmm046904. [PMID: 33174531 PMCID: PMC7648604 DOI: 10.1242/dmm.046904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common forms of muscular dystrophy and presents with weakness of the facial, scapular and humeral muscles, which frequently progresses to the lower limbs and truncal areas, causing profound disability. Myopathy results from epigenetic de-repression of the D4Z4 microsatellite repeat array on chromosome 4, which allows misexpression of the developmentally regulated DUX4 gene. DUX4 is toxic when misexpressed in skeletal muscle and disrupts several cellular pathways, including myogenic differentiation and fusion, which likely underpins pathology. DUX4 and the D4Z4 array are strongly conserved only in primates, making FSHD modeling in non-primate animals difficult. Additionally, its cytotoxicity and unusual mosaic expression pattern further complicate the generation of in vitro and in vivo models of FSHD. However, the pressing need to develop systems to test therapeutic approaches has led to the creation of multiple engineered FSHD models. Owing to the complex genetic, epigenetic and molecular factors underlying FSHD, it is difficult to engineer a system that accurately recapitulates every aspect of the human disease. Nevertheless, the past several years have seen the development of many new disease models, each with their own associated strengths that emphasize different aspects of the disease. Here, we review the wide range of FSHD models, including several in vitro cellular models, and an array of transgenic and xenograft in vivo models, with particular attention to newly developed systems and how they are being used to deepen our understanding of FSHD pathology and to test the efficacy of drug candidates.
Collapse
Affiliation(s)
- Alec M DeSimone
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Justin Cohen
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Monkol Lek
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Angela Lek
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| |
Collapse
|
20
|
Bouwman LF, den Hamer B, Verveer EP, Lerink LJS, Krom YD, van der Maarel SM, de Greef JC. Dnmt3b regulates DUX4 expression in a tissue-dependent manner in transgenic D4Z4 mice. Skelet Muscle 2020; 10:27. [PMID: 33004076 PMCID: PMC7528343 DOI: 10.1186/s13395-020-00247-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/10/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is a skeletal muscle disorder that is caused by derepression of the transcription factor DUX4 in skeletal muscle cells. Apart from SMCHD1, DNMT3B was recently identified as a disease gene and disease modifier in FSHD. However, the exact role of DNMT3B at the D4Z4 repeat array remains unknown. METHODS To determine the role of Dnmt3b on DUX4 repression, hemizygous mice with a FSHD-sized D4Z4 repeat array (D4Z4-2.5 mice) were cross-bred with mice carrying an in-frame exon skipping mutation in Dnmt3b (Dnmt3bMommeD14 mice). Additionally, siRNA knockdowns of Dnmt3b were performed in mouse embryonic stem cells (mESCs) derived from the D4Z4-2.5 mouse model. RESULTS In mESCs derived from D4Z4-2.5 mice, Dnmt3b was enriched at the D4Z4 repeat array and DUX4 transcript levels were upregulated after a knockdown of Dnmt3b. In D4Z4-2.5/Dnmt3bMommeD14 mice, Dnmt3b protein levels were reduced; however, DUX4 RNA levels in skeletal muscles were not enhanced and no pathology was observed. Interestingly, D4Z4-2.5/Dnmt3bMommeD14 mice showed a loss of DNA methylation at the D4Z4 repeat array and significantly higher DUX4 transcript levels in secondary lymphoid organs. As these lymphoid organs seem to be more sensitive to epigenetic modifiers of the D4Z4 repeat array, different immune cell populations were quantified in the spleen and inguinal lymph nodes of D4Z4-2.5 mice crossed with Dnmt3bMommeD14 mice or Smchd1MommeD1 mice. Only in D4Z4-2.5/Smchd1MommeD1 mice the immune cell populations were disturbed. CONCLUSIONS Our data demonstrates that loss of Dnmt3b results in derepression of DUX4 in lymphoid tissues and mESCs but not in myogenic cells of D4Z4-2.5/Dnmt3bMommeD14 mice. In addition, the Smchd1MommeD1 variant seems to have a more potent role in DUX4 derepression. Our studies suggest that the immune system is particularly but differentially sensitive to D4Z4 chromatin modifiers which may provide a molecular basis for the yet underexplored immune involvement in FSHD.
Collapse
Affiliation(s)
- Linde F Bouwman
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Elwin P Verveer
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Lente J S Lerink
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Yvonne D Krom
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
21
|
Bouwman LF, van der Maarel SM, de Greef JC. The prospects of targeting DUX4 in facioscapulohumeral muscular dystrophy. Curr Opin Neurol 2020; 33:635-640. [PMID: 32796277 PMCID: PMC7735392 DOI: 10.1097/wco.0000000000000849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder, which is caused by incomplete repression of the transcription factor double homeobox 4 (DUX4) in skeletal muscle. To date, there is no DUX4-targeting treatment to prevent or delay disease progression. In the present review, we summarize developments in therapeutic strategies with the focus on inhibiting DUX4 and DUX4 target gene expression. RECENT FINDINGS Different studies show that DUX4 and its target genes can be repressed with genetic therapies using diverse strategies. Additionally, different small compounds can reduce DUX4 and its target genes in vitro and in vivo. SUMMARY Most studies that show DUX4 repression by genetic therapies have only been tested in vitro. More efforts should be made to test them in vivo for clinical translation. Several compounds have been shown to prevent DUX4 and target gene expression in vitro and in vivo. However, their efficiency and specificity has not yet been shown. With emerging clinical trials, the clinical benefit from DUX4 repression in FSHD will likely soon become apparent.
Collapse
Affiliation(s)
- Linde F Bouwman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
22
|
Cochlear Dysfunction Is a Frequent Feature of Facioscapulohumeral Muscular Dystrophy Type 1 (FSHD1). Otol Neurotol 2020; 42:18-23. [PMID: 32976345 DOI: 10.1097/mao.0000000000002877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Facioscapulohumeral muscular dystrophy type 1 (FSHD) represents one of the most common forms of muscular hereditary diseases and it is characterized by a great clinical variability with the typical muscular symptoms and other clinical features, including hearing impairment. However, etiopathogenetic mechanisms of auditory dysfunction are still not completely understood and it has been suggested that it could be assigned to a cochlear alteration that is present even in those subjects with a normal pure tonal audiometry (PTA) examination. METHODS We found out the cochlear function in 26 patients with molecular diagnosis of FSHD1 and in healthy controls. All patients underwent complete neurological and audiological examinations, including FSHD clinical score, pure-tone audiometry (PTA), and otoacoustic emissions (OAEs), in particular transient evoked otoacoustic emissions (TEOAEs) and distortion product evoked otoacoustic emissions (DPOAEs). RESULTS All FSHD1 patients showed significantly reduced DPOAEs and TEOAEs, bilaterally and at all frequencies, even when considering only subjects with a normal PTA or a mild muscular involvement (FSHD score ≤ 2). No correlation between OAEs and FSHD clinical score was found. DISCUSSION Cochlear echoes represent a sensitive tool in detecting subclinical cochlear dysfunction in FSHD1 even in subjects with normal hearing and/or subtle muscle involvement. Our study is focused on the importance of evaluating the cochlear alteration through OAEs and, in particular, by performing TEOAEs and DPOAEs sequentially, to evaluate more frequent specificities of cochlear dysfunction with a wider spectrum of analysis.
Collapse
|
23
|
Giacomucci G, Monforte M, Diaz-Manera J, Mul K, Fernandez Torrón R, Maggi L, Marini Bettolo C, Dahlqvist JR, Haberlova J, Camaño P, Gros M, Tartaglione T, Cristiano L, Gerevini S, Calandra P, Deidda G, Giardina E, Sacconi S, Straub V, Vissing J, Van Engelen B, Ricci E, Tasca G. Deep phenotyping of facioscapulohumeral muscular dystrophy type 2 by magnetic resonance imaging. Eur J Neurol 2020; 27:2604-2615. [PMID: 32697863 DOI: 10.1111/ene.14446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE The aim was to define the radiological picture of facioscapulohumeral muscular dystrophy 2 (FSHD2) in comparison with FSHD1 and to explore correlations between imaging and clinical/molecular data. METHODS Upper girdle and/or lower limb muscle magnetic resonance imaging scans of 34 molecularly confirmed FSHD2 patients from nine European neuromuscular centres were analysed. T1-weighted and short-tau inversion recovery (STIR) sequences were used to evaluate the global pattern and to assess the extent of fatty replacement and muscle oedema. RESULTS The most frequently affected muscles were obliquus and transversus abdominis, semimembranosus, soleus and gluteus minimus in the lower limbs; trapezius, serratus anterior, latissimus dorsi and pectoralis major in the upper girdle. Iliopsoas, popliteus, obturator internus and tibialis posterior in the lower limbs and subscapularis, spinati, sternocleidomastoid and levator scapulae in the upper girdle were the most spared. Asymmetry and STIR hyperintensities were consistent features. The pattern of muscle involvement was similar to that of FSHD1, and the combined involvement of trapezius, abdominal and hamstring muscles, together with complete sparing of iliopsoas and subscapularis, was detected in 91% of patients. Peculiar differences were identified in a rostro-caudal gradient, a predominant involvement of lower limb muscles compared to the upper girdle, and in the higher percentage of STIR hyperintensities in FSHD2. CONCLUSION This multicentre study defines the pattern of muscle involvement in FSHD2, providing useful information for diagnostics and clinical trial design. Both similarities and differences between FSHD1 and FSHD2 were detected, which is also relevant to better understand the pathogenic mechanisms underlying the FSHD-related disease spectrum.
Collapse
Affiliation(s)
- G Giacomucci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - M Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - J Diaz-Manera
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - K Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Fernandez Torrón
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Neurology Department, Biodonostia Health Research Institute, Neuromuscular Area, Hospital Donostia, Basque Health Service, Doctor Begiristain, Donostia-San Sebastian, Spain
| | - L Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - C Marini Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J R Dahlqvist
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J Haberlova
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - P Camaño
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases; Biodonostia-Osakidetza Basque Health Service, Molecular Diagnostics Platform, San Sebastian, Spain
| | - M Gros
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - T Tartaglione
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - L Cristiano
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - S Gerevini
- Neuroradiology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - P Calandra
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - G Deidda
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - E Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation IRCSS-University of Rome 'Tor Vergata', Rome, Italy
| | - S Sacconi
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - V Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - B Van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E Ricci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy.,Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - G Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
24
|
Lim KRQ, Maruyama R, Echigoya Y, Nguyen Q, Zhang A, Khawaja H, Sen Chandra S, Jones T, Jones P, Chen YW, Yokota T. Inhibition of DUX4 expression with antisense LNA gapmers as a therapy for facioscapulohumeral muscular dystrophy. Proc Natl Acad Sci U S A 2020; 117:16509-16515. [PMID: 32601200 PMCID: PMC7368245 DOI: 10.1073/pnas.1909649117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), characterized by progressive muscle weakness and deterioration, is genetically linked to aberrant expression of DUX4 in muscle. DUX4, in its full-length form, is cytotoxic in nongermline tissues. Here, we designed locked nucleic acid (LNA) gapmer antisense oligonucleotides (AOs) to knock down DUX4 in immortalized FSHD myoblasts and the FLExDUX4 FSHD mouse model. Using a screening method capable of reliably evaluating the knockdown efficiency of LNA gapmers against endogenous DUX4 messenger RNA in vitro, we demonstrate that several designed LNA gapmers selectively and effectively reduced DUX4 expression with nearly complete knockdown. We also found potential functional benefits of AOs on muscle fusion and structure in vitro. Finally, we show that one of the LNA gapmers was taken up and induced effective silencing of DUX4 upon local treatment in vivo. The LNA gapmers developed here will help facilitate the development of FSHD therapies.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010
- Department of Integrative Systems Biology, George Washington University, Washington, DC 20052
| | - Hunain Khawaja
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010
- Department of Integrative Systems Biology, George Washington University, Washington, DC 20052
| | - Sreetama Sen Chandra
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010
- Department of Integrative Systems Biology, George Washington University, Washington, DC 20052
| | - Takako Jones
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, NV 89557-0318
| | - Peter Jones
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, NV 89557-0318
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010;
- Department of Genomics and Precision Medicine, School of Medicine and Health Science, George Washington University, Washington, DC 20052
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
25
|
Karpukhina A, Vassetzky Y. DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420030078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Jesuthasan A, Shah S, Morrow JM. Use of muscle MRI in an atypical presentation of FSHD2. BMJ Case Rep 2020; 13:13/6/e236444. [PMID: 32532898 DOI: 10.1136/bcr-2020-236444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Aaron Jesuthasan
- University College Hospital, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Jasper M Morrow
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK
| |
Collapse
|
27
|
Strafella C, Caputo V, Galota RM, Campoli G, Bax C, Colantoni L, Minozzi G, Orsini C, Politano L, Tasca G, Novelli G, Ricci E, Giardina E, Cascella R. The variability of SMCHD1 gene in FSHD patients: evidence of new mutations. Hum Mol Genet 2020; 28:3912-3920. [PMID: 31600781 PMCID: PMC6969370 DOI: 10.1093/hmg/ddz239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the sequence of (Structural Maintenance of Chromosomes flexible Hinge Domain containing 1) SMCHD1 gene in a cohort of clinically defined FSHD (facioscapulohumeral muscular dystrophy) patients in order to assess the distribution of SMCHD1 variants, considering the D4Z4 fragment size in terms of repeated units (RUs; short fragment: 1–7 RU, borderline: 8-10RU and normal fragment: >11RU). The analysis of SMCHD1 revealed the presence of 82 variants scattered throughout the introns, exons and 3’untranslated region (3′UTR) of the gene. Among them, 64 were classified as benign polymorphisms and 6 as VUS (variants of uncertain significance). Interestingly, seven pathogenic/likely pathogenic variants were identified in patients carrying a borderline or normal D4Z4 fragment size, namely c.182_183dupGT (p.Q62Vfs*48), c.2129dupC (p.A711Cfs*11), c.3469G>T (p.G1157*), c.5150_5151delAA (p.K1717Rfs*16) and c.1131+2_1131+5delTAAG, c.3010A>T (p.K1004*), c.853G>C (p.G285R). All of them were predicted to disrupt the structure and conformation of SMCHD1, resulting in the loss of GHKL-ATPase and SMC hinge essential domains. These results are consistent with the FSHD symptomatology and the Clinical Severity Score (CSS) of patients. In addition, five variants (c.*1376A>C, rs7238459; c.*1579G>A, rs559994; c.*1397A>G, rs150573037; c.*1631C>T, rs193227855; c.*1889G>C, rs149259359) were identified in the 3′UTR region of SMCHD1, suggesting a possible miRNA-dependent regulatory effect on FSHD-related pathways. The present study highlights the clinical utility of next-generation sequencing (NGS) platforms for the molecular diagnosis of FSHD and the importance of integrating molecular findings and clinical data in order to improve the accuracy of genotype–phenotype correlations.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy
| | | | - Giulia Campoli
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy
| | - Cristina Bax
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy
| | - Giulietta Minozzi
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, 20100, Italy
| | - Chiara Orsini
- vCardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, 80131, Italy
| | - Luisa Politano
- vCardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, 80131, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, 00168, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy.,Neuromed Institute IRCCS, Pozzilli, 86077, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, 00168, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation, Rome, 00142, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy
| | - Raffaella Cascella
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, 00133, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, 1000, Albania
| |
Collapse
|
28
|
Ruggiero L, Mele F, Manganelli F, Bruzzese D, Ricci G, Vercelli L, Govi M, Vallarola A, Tripodi S, Villa L, Di Muzio A, Scarlato M, Bucci E, Antonini G, Maggi L, Rodolico C, Tomelleri G, Filosto M, Previtali S, Angelini C, Berardinelli A, Pegoraro E, Moggio M, Mongini T, Siciliano G, Santoro L, Tupler R. Phenotypic Variability Among Patients With D4Z4 Reduced Allele Facioscapulohumeral Muscular Dystrophy. JAMA Netw Open 2020; 3:e204040. [PMID: 32356886 PMCID: PMC7195625 DOI: 10.1001/jamanetworkopen.2020.4040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IMPORTANCE Facioscapulohumeral muscular dystrophy (FSHD) is considered an autosomal dominant disorder, associated with the deletion of tandemly arrayed D4Z4 repetitive elements. The extensive use of molecular analysis of the D4Z4 locus for FSHD diagnosis has revealed wide clinical variability, suggesting that subgroups of patients exist among carriers of the D4Z4 reduced allele (DRA). OBJECTIVE To investigate the clinical expression of FSHD in the genetic subgroup of carriers of a DRA with 7 to 8 repeat units (RUs). DESIGN, SETTING, AND PARTICIPANTS This multicenter cross-sectional study included 422 carriers of DRA with 7 to 8 RUs (187 unrelated probands and 235 relatives) from a consecutive sample of 280 probands and 306 relatives from the Italian National Registry for FSHD collected between 2008 and 2016. Participants were evaluated by the Italian Clinical Network for FSHD, and all clinical and molecular data were collected in the Italian National Registry for FSHD database. Data analysis was conducted from January 2017 to June 2018. MAIN OUTCOMES AND MEASURES The phenotypic classification of probands and relatives was obtained by applying the Comprehensive Clinical Evaluation Form which classifies patients in the 4 following categories: (1) participants presenting facial and scapular girdle muscle weakness typical of FSHD (category A, subcategories A1-A3), (2) participants with muscle weakness limited to scapular girdle or facial muscles (category B, subcategories B1 and B2), (3) asymptomatic or healthy participants (category C, subcategories C1 and C2), and (4) participants with myopathic phenotypes presenting clinical features not consistent with FSHD canonical phenotype (category D, subcategories D1 and D2). RESULTS A total of 187 probands (mean [SD] age at last neurological examination, 53.5 [15.2] years; 103 [55.1%] men) and 235 relatives (mean [SD] age at last neurologic examination, 45.1 [17.0] years; 104 [44.7%] men) with a DRA with 7 to 8 RUs and a molecular diagnosis of FSHD were evaluated. Of 187 probands, 99 (52.9%; 95% CI, 45.7%-60.1%) displayed the classic FSHD phenotype, whereas 86 (47.1%; 95% CI, 39.8%-54.3%) presented incomplete or atypical phenotypes. Of 235 carrier relatives from 106 unrelated families, 124 (52.8%; 95% CI, 46.4%-59.7%) had no motor impairment, whereas a small number (38 [16.2%; 95% CI, 9.8%-23.1%]) displayed the classic FSHD phenotype, and 73 (31.0%; 95% CI, 24.7%-38.0%) presented with incomplete or atypical phenotypes. In 37 of 106 families (34.9%; 95% CI, 25.9%-44.8%), the proband was the only participant presenting with a myopathic phenotype, while only 20 families (18.9%; 95% CI, 11.9%-27.6%) had a member with autosomal dominant FSHD. CONCLUSIONS AND RELEVANCE This study found large phenotypic variability associated with individuals carrying a DRA with 7 to 8 RUs, in contrast to the indication that a positive molecular test is the only determining aspect for FSHD diagnosis. These findings suggest that carriers of a DRA with 7 to 8 RUs constitute a genetic subgroup different from classic FSHD. Based on these results, it is recommended that clinicians use the Comprehensive Clinical Evaluation Form for clinical classification and, whenever possible, study the extended family to provide the most adequate clinical management and genetic counseling.
Collapse
Affiliation(s)
- Lucia Ruggiero
- Department of Neurosciences, Reproductive, and Odontostomatological Sciences, University Federico II, Naples, Italy
| | - Fabiano Mele
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive, and Odontostomatological Sciences, University Federico II, Naples, Italy
| | - Dario Bruzzese
- Department of Preventive Medical Sciences, Federico II University, Naples, Italy
| | - Giulia Ricci
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurological Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Liliana Vercelli
- Center for Neuromuscular Diseases, Department of Neurosciences, University of Turin, Turin, Italy
| | - Monica Govi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Vallarola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Tripodi
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Luisa Villa
- Neuromuscular Unit, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Antonio Di Muzio
- Center for Neuromuscular Disease, Center for Excellence on Aging, Gabrile D’Annunzio University Foundation, Chieti, Italy
| | - Marina Scarlato
- Neuromuscular Repair Unit, Inspe and Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Bucci
- Department of Neuroscience, Mental Health, and Sensory Organs, S. Andrea Hospital, University of Rome Sapienza, Rome, Italy
| | - Giovanni Antonini
- Department of Neuroscience, Mental Health, and Sensory Organs, S. Andrea Hospital, University of Rome Sapienza, Rome, Italy
| | - Lorenzo Maggi
- IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuliano Tomelleri
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Stefano Previtali
- Neuromuscular Repair Unit, Inspe and Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | | | - Angela Berardinelli
- Child Neurology and Psychiatry Unit, IRCCS, Casimiro Mondino Foundation, Pavia, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Tiziana Mongini
- Center for Neuromuscular Diseases, Department of Neurosciences, University of Turin, Turin, Italy
| | - Gabriele Siciliano
- Neurological Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive, and Odontostomatological Sciences, University Federico II, Naples, Italy
| | - Rossella Tupler
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester
- Li Weibo Institute for Rare Diseases Research at the University of Massachusetts Medical School, Worcester
| |
Collapse
|
29
|
Nikolic A, Jones TI, Govi M, Mele F, Maranda L, Sera F, Ricci G, Ruggiero L, Vercelli L, Portaro S, Villa L, Fiorillo C, Maggi L, Santoro L, Antonini G, Filosto M, Moggio M, Angelini C, Pegoraro E, Berardinelli A, Maioli MA, D’Angelo G, Di Muzio A, Siciliano G, Tomelleri G, D’Esposito M, Della Ragione F, Brancaccio A, Piras R, Rodolico C, Mongini T, Magdinier F, Salsi V, Jones PL, Tupler R. Interpretation of the Epigenetic Signature of Facioscapulohumeral Muscular Dystrophy in Light of Genotype-Phenotype Studies. Int J Mol Sci 2020; 21:ijms21072635. [PMID: 32290091 PMCID: PMC7178248 DOI: 10.3390/ijms21072635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 01/03/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by incomplete penetrance and intra-familial clinical variability. The disease has been associated with the genetic and epigenetic features of the D4Z4 repetitive elements at 4q35. Recently, D4Z4 hypomethylation has been proposed as a reliable marker in the FSHD diagnosis. We exploited the Italian Registry for FSHD, in which FSHD families are classified using the Clinical Comprehensive Evaluation Form (CCEF). A total of 122 index cases showing a classical FSHD phenotype (CCEF, category A) and 110 relatives were selected to test with the receiver operating characteristic (ROC) curve, the diagnostic and predictive value of D4Z4 methylation. Moreover, we performed DNA methylation analysis in selected large families with reduced penetrance characterized by the co-presence of subjects carriers of one D4Z4 reduced allele with no signs of disease or presenting the classic FSHD clinical phenotype. We observed a wide variability in the D4Z4 methylation levels among index cases revealing no association with clinical manifestation or disease severity. By extending the analysis to family members, we revealed the low predictive value of D4Z4 methylation in detecting the affected condition. In view of the variability in D4Z4 methylation profiles observed in our large cohort, we conclude that D4Z4 methylation does not mirror the clinical expression of FSHD. We recommend that measurement of this epigenetic mark must be interpreted with caution in clinical practice.
Collapse
Affiliation(s)
- Ana Nikolic
- Department of Science of Life, Institute of Biology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.N.); (M.G.); (V.S.)
| | - Takako I Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (T.I.J.); (P.L.J.)
| | - Monica Govi
- Department of Science of Life, Institute of Biology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.N.); (M.G.); (V.S.)
| | - Fabiano Mele
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Louise Maranda
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Francesco Sera
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, 56126 Pisa, Italy; (G.R.); (G.S.)
| | - Lucia Ruggiero
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, 80137 Naples, Italy; (L.R.); (L.S.)
| | - Liliana Vercelli
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy; (L.V.); (T.M.)
| | - Simona Portaro
- Department of Neuroscience, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy; (S.P.); (G.A.)
| | - Luisa Villa
- Department of Neuroscience, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.V.); (M.M.)
| | - Chiara Fiorillo
- Pediatric Neurology and Neuromuscular Disorders Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy;
| | - Lorenzo Maggi
- IRCCS Foundation, C. Besta Neurological Institute, 20133 Milan, Italy;
| | - Lucio Santoro
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, 80137 Naples, Italy; (L.R.); (L.S.)
| | - Giovanni Antonini
- Department of Neuroscience, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy; (S.P.); (G.A.)
| | | | - Maurizio Moggio
- Department of Neuroscience, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.V.); (M.M.)
| | - Corrado Angelini
- Ospedale S.Camillo IRCCS, Lido di Venezia, 20126 Venezia, Italy;
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, 35128 Padua, Italy;
| | - Angela Berardinelli
- Neurology and Psychiatry, IRCCS Institute ‘C.Mondino’ Foundation, 27100 Pavia, Italy;
| | | | - Grazia D’Angelo
- Department of Neurorehabilitation, IRCCS Institute Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Antonino Di Muzio
- Center for Neuromuscular Disease, CeSI, University ‘‘G. D’Annunzio’’, 66100 Chieti, Italy;
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, 56126 Pisa, Italy; (G.R.); (G.S.)
| | - Giuliano Tomelleri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics, A. Buzzati Traverso, IGB, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; (M.D.); (F.D.R.); (A.B.)
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics, A. Buzzati Traverso, IGB, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; (M.D.); (F.D.R.); (A.B.)
| | - Arianna Brancaccio
- Institute of Genetics and Biophysics, A. Buzzati Traverso, IGB, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; (M.D.); (F.D.R.); (A.B.)
| | - Rachele Piras
- ASL8, Centro Sclerosi Multipla, 09126 Cagliari, Italy; (M.A.M.); (R.P.)
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Tiziana Mongini
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy; (L.V.); (T.M.)
| | | | - Valentina Salsi
- Department of Science of Life, Institute of Biology, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.N.); (M.G.); (V.S.)
| | - Peter L. Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (T.I.J.); (P.L.J.)
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research at the University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence: ; Tel.: +39-059-2055414
| |
Collapse
|
30
|
Salsi V, Magdinier F, Tupler R. Does DNA Methylation Matter in FSHD? Genes (Basel) 2020; 11:E258. [PMID: 32121044 PMCID: PMC7140823 DOI: 10.3390/genes11030258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) has been associated with the genetic and epigenetic molecular features of the CpG-rich D4Z4 repeat tandem array at 4q35. Reduced DNA methylation of D4Z4 repeats is considered part of the FSHD mechanism and has been proposed as a reliable marker in the FSHD diagnostic procedure. We considered the assessment of D4Z4 DNA methylation status conducted on distinct cohorts using different methodologies. On the basis of the reported results we conclude that the percentage of DNA methylation detected at D4Z4 does not correlate with the disease status. Overall, data suggest that in the case of FSHD1, D4Z4 hypomethylation is a consequence of the chromatin structure present in the contracted allele, rather than a proxy of its function. Besides, CpG methylation at D4Z4 DNA is reduced in patients presenting diseases unrelated to muscle progressive wasting, like Bosma Arhinia and Microphthalmia syndrome, a developmental disorder, as well as ICF syndrome. Consistent with these observations, the analysis of epigenetic reprogramming at the D4Z4 locus in human embryonic and induced pluripotent stem cells indicate that other mechanisms, independent from the repeat number, are involved in the control of the epigenetic structure at D4Z4.
Collapse
Affiliation(s)
- Valentina Salsi
- Department of Life Sciences, University of Modena and Reggio Emilia, 4, 41121 Modena, Italy;
| | | | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 4, 41121 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 4, 41121 Modena, Italy
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01003, USA
- Li Weibo Institute for Rare Diseases Research at the University of Massachusetts Medical School, Worcester, MA 01003, USA
| |
Collapse
|
31
|
Lim KRQ, Nguyen Q, Yokota T. DUX4 Signalling in the Pathogenesis of Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci 2020; 21:E729. [PMID: 31979100 PMCID: PMC7037115 DOI: 10.3390/ijms21030729] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a disabling inherited muscular disorder characterized by asymmetric, progressive muscle weakness and degeneration. Patients display widely variable disease onset and severity, and sometimes present with extra-muscular symptoms. There is a consensus that FSHD is caused by the aberrant production of the double homeobox protein 4 (DUX4) transcription factor in skeletal muscle. DUX4 is normally expressed during early embryonic development, and is then effectively silenced in all tissues except the testis and thymus. Its reactivation in skeletal muscle disrupts numerous signalling pathways that mostly converge on cell death. Here, we review studies on DUX4-affected pathways in skeletal muscle and provide insights into how understanding these could help explain the unique pathogenesis of FSHD.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
32
|
Abstract
There is increasing evidence of central nervous system involvement in numerous neuromuscular disorders primarily considered diseases of skeletal muscle. Our knowledge on cerebral affection in myopathies is expanding continuously due to a better understanding of the genetic background and underlying pathophysiological mechanisms. Intriguingly, there is a remarkable overlap of brain pathology in muscular diseases with pathomechanisms involved in neurodegenerative or neurodevelopmental disorders. A rapid progress in advanced neuroimaging techniques results in further detailed insight into structural and functional cerebral abnormalities. The spectrum of clinical manifestations is broad and includes movement disorders, neurovascular complications, paroxysmal neurological symptoms like migraine and epileptic seizures, but also behavioural abnormalities and cognitive dysfunction. Cerebral involvement implies a high socio-economic and personal burden in adult patients sometimes exceeding the everyday challenges associated with muscle weakness. It is especially important to clarify the nature and natural history of brain affection against the background of upcoming specific treatment regimen in hereditary myopathies that should address the brain as a secondary target. This review aims to highlight the character and extent of central nervous system involvement in patients with hereditary myopathies manifesting in adulthood, however also includes some childhood-onset diseases with brain abnormalities that transfer into adult neurological care.
Collapse
Affiliation(s)
- Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| |
Collapse
|
33
|
Goossens R, van den Boogaard ML, Lemmers RJLF, Balog J, van der Vliet PJ, Willemsen IM, Schouten J, Maggio I, van der Stoep N, Hoeben RC, Tapscott SJ, Geijsen N, Gonçalves MAFV, Sacconi S, Tawil R, van der Maarel SM. Intronic SMCHD1 variants in FSHD: testing the potential for CRISPR-Cas9 genome editing. J Med Genet 2019; 56:828-837. [PMID: 31676591 PMCID: PMC11578682 DOI: 10.1136/jmedgenet-2019-106402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/04/2019] [Accepted: 09/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Facioscapulohumeral dystrophy (FSHD) is associated with partial chromatin relaxation of the DUX4 retrogene containing D4Z4 macrosatellite repeats on chromosome 4, and transcriptional de-repression of DUX4 in skeletal muscle. The common form of FSHD, FSHD1, is caused by a D4Z4 repeat array contraction. The less common form, FSHD2, is generally caused by heterozygous variants in SMCHD1. METHODS We employed whole exome sequencing combined with Sanger sequencing to screen uncharacterised FSHD2 patients for extra-exonic SMCHD1 mutations. We also used CRISPR-Cas9 genome editing to repair a pathogenic intronic SMCHD1 variant from patient myoblasts. RESULTS We identified intronic SMCHD1 variants in two FSHD families. In the first family, an intronic variant resulted in partial intron retention and inclusion of the distal 14 nucleotides of intron 13 into the transcript. In the second family, a deep intronic variant in intron 34 resulted in exonisation of 53 nucleotides of intron 34. In both families, the aberrant transcripts are predicted to be non-functional. Deleting the pseudo-exon by CRISPR-Cas9 mediated genome editing in primary and immortalised myoblasts from the index case of the second family restored wild-type SMCHD1 expression to a level that resulted in efficient suppression of DUX4. CONCLUSIONS The estimated intronic mutation frequency of almost 2% in FSHD2, as exemplified by the two novel intronic SMCHD1 variants identified here, emphasises the importance of screening for intronic variants in SMCHD1. Furthermore, the efficient suppression of DUX4 after restoring SMCHD1 levels by genome editing of the mutant allele provides further guidance for therapeutic strategies.
Collapse
Affiliation(s)
- Remko Goossens
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Judit Balog
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Iris M Willemsen
- Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Julie Schouten
- Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
- Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Ignazio Maggio
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke van der Stoep
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Niels Geijsen
- Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
- Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS Department, Université Côte d'Azur, Nice, France
- Institute for Research on Cancer and Aging of Nice, Faculty of Medicine, Université Côte d'Azur, Nice, France
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
34
|
Roche S, Dion C, Broucqsault N, Laberthonnière C, Gaillard MC, Robin JD, Lagarde A, Puppo F, Vovan C, Chaix C, Campana ES, Attarian S, Bartoli M, Bernard R, Nguyen K, Magdinier F. Methylation hotspots evidenced by deep sequencing in patients with facioscapulohumeral dystrophy and mosaicism. NEUROLOGY-GENETICS 2019; 5:e372. [PMID: 31872053 PMCID: PMC6878839 DOI: 10.1212/nxg.0000000000000372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/04/2019] [Indexed: 11/15/2022]
Abstract
Objective To investigate the distribution of cytosine-guanine dinucleotide (CpG) sites with a variable level of DNA methylation of the D4Z4 macrosatellite element in patients with facioscapulohumeral dystrophy (FSHD). Methods By adapting bisulfite modification to deep sequencing, we performed a comprehensive analysis of D4Z4 methylation across D4Z4 repeats and adjacent 4qA sequence in DNA from patients with FSHD1, FSHD2, or mosaicism and controls. Results Using hierarchical clustering, we identified clusters with different levels of methylation and separated, thereby the different groups of samples (controls, FSHD1, and FSHD2) based on their respective level of methylation. We further show that deep sequencing-based methylation analysis discriminates mosaic cases for which methylation changes have never been evaluated previously. Conclusions Altogether, our approach offers a new high throughput tool for estimation of the D4Z4 methylation level in the different subcategories of patients having FSHD. This methodology allows for a comprehensive and discriminative analysis of different regions along the macrosatellite repeat and identification of focal regions or CpG sites differentially methylated in patients with FSHD1 and FSHD2 but also complex cases such as those presenting mosaicism.
Collapse
Affiliation(s)
- Stéphane Roche
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Camille Dion
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Natacha Broucqsault
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Camille Laberthonnière
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Marie-Cécile Gaillard
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Jérôme D Robin
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Arnaud Lagarde
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Francesca Puppo
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Catherine Vovan
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Charlene Chaix
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Emmanuelle Salort Campana
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Shahram Attarian
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Marc Bartoli
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Karine Nguyen
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| | - Frédérique Magdinier
- Aix Marseille University, INSERM, MMG (S.R., C.D., N.B., C.L., M.-C.G., J.D.R., A.L., F.P., E.S.C., S.A., M.B., R.B., K.N., F.M.); Département de Génétique Médicale (A.L., C.V., C.C., R.B., K.N.), AP-HM, Hôpital de la Timone enfants, Marseille; and Centre de référence pour les maladies neuromusculaires et la SLA (E.S.C., S.A.), AP-HM, Hôpital de la Timone, Marseille, France
| |
Collapse
|
35
|
Dion C, Roche S, Laberthonnière C, Broucqsault N, Mariot V, Xue S, Gurzau AD, Nowak A, Gordon CT, Gaillard MC, El-Yazidi C, Thomas M, Schlupp-Robaglia A, Missirian C, Malan V, Ratbi L, Sefiani A, Wollnik B, Binetruy B, Salort Campana E, Attarian S, Bernard R, Nguyen K, Amiel J, Dumonceaux J, Murphy JM, Déjardin J, Blewitt ME, Reversade B, Robin JD, Magdinier F. SMCHD1 is involved in de novo methylation of the DUX4-encoding D4Z4 macrosatellite. Nucleic Acids Res 2019; 47:2822-2839. [PMID: 30698748 PMCID: PMC6451109 DOI: 10.1093/nar/gkz005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.
Collapse
Affiliation(s)
- Camille Dion
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Stéphane Roche
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | | | - Natacha Broucqsault
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - Shifeng Xue
- Institute of Molecular and Cell Biology, A*STAR, Singapore. Institute of Medical Biology, A*STAR, Singapore
| | - Alexandra D Gurzau
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Agnieszka Nowak
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier. France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | | | - Claire El-Yazidi
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Morgane Thomas
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Andrée Schlupp-Robaglia
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France.,Centre de ressources biologiques, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Chantal Missirian
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Valérie Malan
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Liham Ratbi
- Centre de Génomique Humaine et Genopath, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine et Genopath, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Campus Göttingen, 37073 Göttingen, Germany
| | - Bernard Binetruy
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Emmanuelle Salort Campana
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Centre de références pour les maladies neuromusculaires et la SLA, AP-HM, Hôpital de la Timone, Marseille, France
| | - Shahram Attarian
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Centre de références pour les maladies neuromusculaires et la SLA, AP-HM, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Karine Nguyen
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Jérôme Déjardin
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier. France
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Bruno Reversade
- Institute of Molecular and Cell Biology, A*STAR, Singapore. Institute of Medical Biology, A*STAR, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore.,Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey.,Reproductive Biology Laboratory, Academic Medical Center (AMC), Amsterdam-Zuidoost, The Netherlands
| | - Jérôme D Robin
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | | |
Collapse
|
36
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, provides a powerful model of the complex interplay between genetic and epigenetic mechanisms of chromatin regulation. FSHD is caused by dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, aberrant expression of the DUX4 gene in skeletal muscle. DUX4 is a pioneer transcription factor that activates a program of gene expression during early human development, after which its expression is silenced in most somatic cells. When misexpressed in FSHD skeletal muscle, the DUX4 program leads to accumulated muscle pathology. Epigenetic regulators of the disease locus represent particularly attractive therapeutic targets for FSHD, as many are not global modifiers of the genome, and altering their expression or activity should allow correction of the underlying defect.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Chromatin/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Human, Pair 4
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Gene Editing
- Genetic Loci
- Genome, Human
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/classification
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Mutation
- Severity of Illness Index
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| | - Peter L Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| |
Collapse
|
37
|
Wang LH, Friedman SD, Shaw D, Snider L, Wong CJ, Budech CB, Poliachik SL, Gove NE, Lewis LM, Campbell AE, Lemmers RJFL, Maarel SM, Tapscott SJ, Tawil RN. MRI-informed muscle biopsies correlate MRI with pathology and DUX4 target gene expression in FSHD. Hum Mol Genet 2019; 28:476-486. [PMID: 30312408 DOI: 10.1093/hmg/ddy364] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/09/2018] [Indexed: 02/01/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common, dominantly inherited disease caused by the epigenetic de-repression of the DUX4 gene, a transcription factor normally repressed in skeletal muscle. As targeted therapies are now possible in FSHD, a better understanding of the relationship between DUX4 activity, muscle pathology and muscle magnetic resonance imaging (MRI) changes is crucial both to understand disease mechanisms and for the design of future clinical trials. Here, we performed MRIs of the lower extremities in 36 individuals with FSHD, followed by needle muscle biopsies in safely accessible muscles. We examined the correlation between MRI characteristics, muscle pathology and expression of DUX4 target genes. Results show that the presence of elevated MRI short tau inversion recovery signal has substantial predictive value in identifying muscles with active disease as determined by histopathology and DUX4 target gene expression. In addition, DUX4 target gene expression was detected only in FSHD-affected muscles and not in control muscles. These results support the use of MRI to identify FSHD muscles most likely to have active disease and higher levels of DUX4 target gene expression and might be useful in early phase therapeutic trials to demonstrate target engagement in therapies aiming to suppress DUX4 expression.
Collapse
Affiliation(s)
- Leo H Wang
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Seth D Friedman
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Dennis Shaw
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA.,Department of Radiology, University of Washington, Seattle, WA, USA
| | - Lauren Snider
- Human Biology Division, Fred Hutchinson Research Center, Seattle, WA, USA
| | - Chao-Jen Wong
- Human Biology Division, Fred Hutchinson Research Center, Seattle, WA, USA
| | - Chris B Budech
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | | | - Nancy E Gove
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Leann M Lewis
- Neuromuscular Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Amy E Campbell
- Human Biology Division, Fred Hutchinson Research Center, Seattle, WA, USA
| | - Richard J F L Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Silvère M Maarel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Research Center, Seattle, WA, USA
| | - Rabi N Tawil
- Neuromuscular Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
38
|
Lemmers RJLF, van der Vliet PJ, Vreijling JP, Henderson D, van der Stoep N, Voermans N, van Engelen B, Baas F, Sacconi S, Tawil R, van der Maarel SM. Cis D4Z4 repeat duplications associated with facioscapulohumeral muscular dystrophy type 2. Hum Mol Genet 2019; 27:3488-3497. [PMID: 30281091 DOI: 10.1093/hmg/ddy236] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy, known in genetic forms FSHD1 and FSHD2, is associated with D4Z4 repeat array chromatin relaxation and somatic derepression of DUX4 located in D4Z4. A complete copy of DUX4 is present on 4qA chromosomes, but not on the D4Z4-like repeats of chromosomes 4qB or 10. Normally, the D4Z4 repeat varies between 8 and 100 units, while in FSHD1 it is only 1-10 units. In the rare genetic form FSHD2, a combination of a 4qA allele with a D4Z4 repeat size of 8-20 units and heterozygous pathogenic variants in the chromatin modifier SMCHD1 causes DUX4 derepression and disease. In this study, we identified 11/79 (14%) FSHD2 patients with unusually large 4qA alleles of 21-70 D4Z4 units. By a combination of Southern blotting and molecular combing, we show that 8/11 (73%) of these unusually large 4qA alleles represent duplication alleles in which the long D4Z4 repeat arrays are followed by a small FSHD-sized D4Z4 repeat array duplication. We also show that these duplication alleles are associated with DUX4 expression. This duplication allele frequency is significantly higher than in controls (2.9%), FSHD1 patients (1.4%) and in FSHD2 patients with typical 4qA alleles of 8-20 D4Z4 units (1.5%). Segregation analysis shows that, similar to typical 8-20 units FSHD2 alleles, duplication alleles only cause FSHD in combination with a pathogenic variant in SMCHD1. We conclude that cis duplications of D4Z4 repeats explain DUX4 expression and disease presentation in FSHD2 families with unusual long D4Z4 repeats on 4qA chromosomes.
Collapse
Affiliation(s)
| | | | - Jeroen P Vreijling
- Laboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, RC, Netherlands
| | - Don Henderson
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nienke van der Stoep
- Laboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, RC, Netherlands
| | - Nicol Voermans
- Neuromuscular Centre Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, HB, Netherlands
| | - Baziel van Engelen
- Neuromuscular Centre Nijmegen, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, HB, Netherlands
| | - Frank Baas
- Laboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, RC, Netherlands
| | - Sabrina Sacconi
- Centre de Référence des Maladies Neuromusculaires and CNRS UMR6543, Nice University Hospital, Nice, France
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
39
|
Sacconi S, Briand-Suleau A, Gros M, Baudoin C, Lemmers RJLF, Rondeau S, Lagha N, Nigumann P, Cambieri C, Puma A, Chapon F, Stojkovic T, Vial C, Bouhour F, Cao M, Pegoraro E, Petiot P, Behin A, Marc B, Eymard B, Echaniz-Laguna A, Laforet P, Salviati L, Jeanpierre M, Cristofari G, van der Maarel SM. FSHD1 and FSHD2 form a disease continuum. Neurology 2019; 92:e2273-e2285. [PMID: 30979860 DOI: 10.1212/wnl.0000000000007456] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/11/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare the clinical features of patients showing a classical phenotype of facioscapulohumeral muscular dystrophy (FSHD) with genetic and epigenetic characteristics of the FSHD1 and FSHD2 loci D4Z4 and SMCHD1. METHODS This is a national multicenter cohort study. We measured motor strength, motor function, and disease severity by manual muscle testing sumscore, Brooke and Vignos scores, clinical severity score (CSS), and age-corrected CSS, respectively. We correlated these scores with genetic (D4Z4 repeat size and haplotype; SMCHD1 variant status) and epigenetic (D4Z4 methylation) parameters. RESULTS We included 103 patients: 54 men and 49 women. Among them, we identified 64 patients with FSHD1 and 20 patients with FSHD2. Seven patients had genetic and epigenetic characteristics of FSHD1 and FSHD2, all carrying repeats of 9-10 D4Z4 repeat units (RU) and a pathogenic SMCHD1 variant. In the remaining patients, FSHD was genetically excluded or remained unconfirmed. All clinically affected SMCHD1 mutation carriers had a D4Z4 repeat of 9-16 RU on a disease permissive 4qA haplotype. These patients are significantly more severely affected by all clinical scales when compared to patients with FSHD1 with upper-sized FSHD1 alleles (8-10 RU). CONCLUSION The overlap between FSHD1 and FSHD2 patients in the 9-10 D4Z4 RU range suggests that FSHD1 and FSHD2 form a disease continuum. The previously established repeat size threshold for FSHD1 (1-10 RU) and FSHD2 (11-20 RU) needs to be reconsidered. CLINICALTRIALSGOV IDENTIFIER NCT01970735.
Collapse
Affiliation(s)
- Sabrina Sacconi
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy.
| | - Audrey Briand-Suleau
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Marilyn Gros
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Christian Baudoin
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Richard J L F Lemmers
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Sophie Rondeau
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Nadira Lagha
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Pilvi Nigumann
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Chiara Cambieri
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Angela Puma
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Françoise Chapon
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Tanya Stojkovic
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Christophe Vial
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Françoise Bouhour
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Michelangelo Cao
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Elena Pegoraro
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Philippe Petiot
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Anthony Behin
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Bras Marc
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Bruno Eymard
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Andoni Echaniz-Laguna
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Pascal Laforet
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Leonardo Salviati
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Marc Jeanpierre
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Gaël Cristofari
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| | - Silvère M van der Maarel
- From the Peripheral Nervous System (S.S., M.G., C.C., A.P.), Muscle & ALS Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, and Institute for Research on Cancer and Aging of Nice (S.S., C.B., N.L., P.N., G.C.), CNRS, INSERM, Université Côte d'Azur; Department of Genetics and Molecular Biology (A.B.-S., S.R., M.J.), Cochin Hospital, Paris, France; Department of Human Genetics (R.J.L.F.L., S.M.v.d.M.), Leiden University Medical Center, the Netherlands; Rare Neuromuscular Diseases Centre (C.C.), Department of Human Neuroscience, Sapienza University of Rome, Italy; Pathology Department (F.C.), CHRU of Caen, INSERM U1075, University of Caen, Normandy; Myology Institute (T.S., A.B., B.E.), Center of Research in Myology, APHP, Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Paris; Electromyography and Neuromuscular Department (C.V., F.B., P.P.), Neurologic Hospital, Lyon East Hospital Group, Lyon-Bron, France; Neuromuscular Center, Department of Neuroscience (M.C., E.P.), and Clinical Genetics Unit, Department of Women's and Children's Health (L.S.), University of Padova, Italy; Institut Imagine, Imagine Bioinfomatics Platform (M.B.), Paris Descartes University; Département de Neurologie (A.E.-L.), Hôpitaux Universitaires, Strasbourg; Nord/Est/Ile de France Neuromuscular Center (P.L.), Neurology Department, Raymond Poincaré Teaching Hospital, Garches; INSERM U1179 (P.L.), END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France; and IRP Città della Speranza (L.S.), Padova, Italy
| |
Collapse
|
40
|
Facioscapulohumeral muscular dystrophy (FSHD) molecular diagnosis: from traditional technology to the NGS era. Neurogenetics 2019; 20:57-64. [PMID: 30911870 DOI: 10.1007/s10048-019-00575-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/17/2019] [Indexed: 02/08/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a genetic neuromuscular disorder which mainly affects the muscles of the face, shoulder, and upper arms. FSHD is generally associated with the contraction of D4Z4 macrosatellite repeats on 4q35 chromosome or mutations in SMCHD1, which are responsible of the toxic expression of DUX4 in muscle tissue. Despite the recent application of NGS techniques in the clinical practice, the molecular diagnosis of FSHD is still performed with dated techniques such as Southern blotting. The diagnosis of FSHD requires therefore specific skills on both modern and less modern analytical protocols. Considering that clinical and molecular diagnosis of FSHD is challenging, it is not surprising that only few laboratories offer a comprehensive characterization of FSHD, which requires the education of professionals on traditional techniques even in the era of NGS. In conclusion, the study of FSHD provides an excellent example of using classical and modern molecular technologies which are equally necessary for the analysis of DNA repetitive traits associated with specific disorders.
Collapse
|
41
|
Sasaki-Honda M, Jonouchi T, Arai M, Hotta A, Mitsuhashi S, Nishino I, Matsuda R, Sakurai H. A patient-derived iPSC model revealed oxidative stress increases facioscapulohumeral muscular dystrophy-causative DUX4. Hum Mol Genet 2018; 27:4024-4035. [PMID: 30107443 PMCID: PMC6240734 DOI: 10.1093/hmg/ddy293] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022] Open
Abstract
Double homeobox 4 (DUX4), the causative gene of facioscapulohumeral muscular dystrophy (FSHD), is ectopically expressed in the skeletal muscle cells of FSHD patients because of chromatin relaxation at 4q35. The diminished heterochromatic state at 4q35 is caused by either large genome contractions [FSHD type 1 (FSHD1)] or mutations in genes encoding chromatin regulators, such as SMCHD1 [FSHD type 2 (FSHD2)]. However, the mechanism by which DUX4 expression is regulated remains largely unknown. Here, using a myocyte model developed from patient-derived induced pluripotent stem cells, we determined that DUX4 expression was increased by oxidative stress (OS), a common environmental stress in skeletal muscle, in both FSHD1 and FSHD2 myocytes. We generated FSHD2-derived isogenic control clones with SMCHD1 mutation corrected by clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated 9 (Cas9) and homologous recombination and found in the myocytes obtained from these clones that DUX4 basal expression and the OS-induced upregulation were markedly suppressed due to an increase in the heterochromatic state at 4q35. We further found that DNA damage response (DDR) was involved in OS-induced DUX4 increase and identified ataxia-telangiectasia mutated, a DDR regulator, as a mediator of this effect. Our results suggest that the relaxed chromatin state in FSHD muscle cells permits aberrant access of OS-induced DDR signaling, thus increasing DUX4 expression. These results suggest OS could represent an environmental risk factor that promotes FSHD progression.
Collapse
Affiliation(s)
- Mitsuru Sasaki-Honda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Tatsuya Jonouchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Meni Arai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Agricultural and Environmental Engineering, Faculty of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
42
|
Ohta Y, Tadokoro K, Sasaki R, Takahashi Y, Sato K, Takemoto M, Hishikawa N, Shang J, Yamashita T, Takehisa Y, Nishino I, Abe K. Different clinicopathological features between Japanese siblings with facioscapulohumeral muscular dystrophy 2 with a novel nonsense SMCHD1 mutation (Arg552 ∗). J Clin Neurosci 2018; 58:215-217. [PMID: 30327220 DOI: 10.1016/j.jocn.2018.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/05/2018] [Indexed: 11/27/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) 2 is caused by a combination of heterozygous structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) mutation plus DNA hypomethylation on D4Z4. Here we report two Japanese FSHD2 siblings (brother and sister) with a new SMCHD1 nonsense mutation (a heterogeneous c. 1654C > T substitution, leading to a stop codon Arg552∗). They showed the typical phenotype of FSHD2 such as asymmetric muscle weakness and atrophy in bilateral facial, scapular and humeral muscles, but different clinicopathological features between them. The brother and asymptomatic mother showed normal D4Z4 methylation plus the same SMCHD1 mutation, but the sister showed the SMCHD1 mutation plus D4Z4 hypomethylation, suggesting an interesting correlation of the new SMCHD1 nonsense mutation and D4Z4 hypomethylation.
Collapse
Affiliation(s)
- Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshiaki Takahashi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasushi Takehisa
- Department of Neurology, Japanese Red Cross Okayama Hospital, Okayama, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
43
|
Hamel J, Tawil R. Facioscapulohumeral Muscular Dystrophy: Update on Pathogenesis and Future Treatments. Neurotherapeutics 2018; 15:863-871. [PMID: 30361930 PMCID: PMC6277282 DOI: 10.1007/s13311-018-00675-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A reliable model of a disease pathomechanism is the first step to develop targeted treatment. In facioscapulohumeral muscular dystrophy (FSHD), the third most common muscular dystrophy, recent advances in understanding the complex genetics and epigenetics have led to the identification of a disease mechanism, moving the field towards targeted therapy development. FSHD is caused by expression of DUX4, a retrogene located on the D4Z4 macrosatellite repeat array on chromosome 4q35, a gene expressed in the germline but typically repressed in somatic tissue. DUX4 derepression results from opening of the chromatin structure either by contraction of the number of repeats (FSHD1) or by chromatin hypomethylation of the D4Z4 repeats resulting from mutations in SMCHD1, a gene involved in chromatin methylation (FSHD2). The resulting expression of DUX4, a transcriptional regulator, and its target genes is toxic to skeletal muscle. Efforts for targeted treatment currently focus on disrupting DUX4 expression or blocking 1 or more of several downstream effects of DUX4. This review article focuses on the underlying FSHD genetics, current understanding of the pathomechanism, and potential treatment strategies in FSHD. In addition, recent advances in the development of new clinical outcome measures as well as biomarkers, critical for the success of future clinical trials, are reviewed.
Collapse
Affiliation(s)
- Johanna Hamel
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, NY, 14642, USA.
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, NY, 14642, USA
| |
Collapse
|
44
|
Wohlgemuth M, Lemmers RJ, Jonker M, van der Kooi E, Horlings CG, van Engelen BG, van der Maarel SM, Padberg GW, Voermans NC. A family-based study into penetrance in facioscapulohumeral muscular dystrophy type 1. Neurology 2018; 91:e444-e454. [PMID: 29997197 PMCID: PMC6093768 DOI: 10.1212/wnl.0000000000005915] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/20/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE An observational cross-sectional study was conducted in a national facioscapulohumeral muscular dystrophy (FSHD) expertise center to estimate the penetrance of FSHD1 and to evaluate phenotype-genotype correlations. METHODS Ten FSHD1 probands carrying 4-9 D4Z4 unit alleles and 140 relatives were examined. All 150 participants were genetically characterized, including D4Z4 methylation levels in the mutation carriers. Mutation carriers were classified as (1) symptomatic: with symptoms of muscle weakness on history and muscle FSHD signs on examination; (2) asymptomatic: without symptoms of muscle weakness but with muscle FSHD signs on examination; and (3) nonpenetrant: without symptoms of muscle weakness on history and without muscle FSHD signs on examination. We assessed the relationship between age-corrected clinical severity score and repeat size, sex, and D4Z4 methylation levels. RESULTS The maximum likelihood estimates of symptomatic and those of symptomatic plus asymptomatic FSHD showed that penetrance depends on repeat size and increases until late adulthood. We observed many asymptomatic carriers with subtle facial weakness with or without mild shoulder girdle weakness (25% [17/69]). Nonpenetrance was observed less frequently than in recent population studies (17% [12/69]), and most asymptomatic patients reported some shoulder pain. D4Z4 methylation tended to be lower in moderately to severely affected mutation carriers with 7 or 9 repeats. DISCUSSION This family-based study detected a lower overall nonpenetrance than previously observed, probably due to many asymptomatic mutation carriers identified by careful examination of facial and shoulder muscles. The recognition of asymptomatic mutation carriers is essential for selection of participants for future trials, and the likelihood estimates are helpful in counseling.
Collapse
Affiliation(s)
- Mariëlle Wohlgemuth
- From the Department of Neurology (M.W., C.G.H., B.G.v.E., G.W.P., N.C.V.), Donders Institute for Brain, Cognition and Behavior, and Radboud Institute for Health Sciences (M.J.), Radboud University Medical Center, Nijmegen; Department of Neurology (M.W.), ETZ, Tilburg; Department of Human Genetics (R.J.L., S.M.v.d.M.), Leiden University Medical Center; and Department of Neurology (E.v.d.K.), MCL, Leeuwarden, the Netherlands
| | - Richard J Lemmers
- From the Department of Neurology (M.W., C.G.H., B.G.v.E., G.W.P., N.C.V.), Donders Institute for Brain, Cognition and Behavior, and Radboud Institute for Health Sciences (M.J.), Radboud University Medical Center, Nijmegen; Department of Neurology (M.W.), ETZ, Tilburg; Department of Human Genetics (R.J.L., S.M.v.d.M.), Leiden University Medical Center; and Department of Neurology (E.v.d.K.), MCL, Leeuwarden, the Netherlands
| | - Marianne Jonker
- From the Department of Neurology (M.W., C.G.H., B.G.v.E., G.W.P., N.C.V.), Donders Institute for Brain, Cognition and Behavior, and Radboud Institute for Health Sciences (M.J.), Radboud University Medical Center, Nijmegen; Department of Neurology (M.W.), ETZ, Tilburg; Department of Human Genetics (R.J.L., S.M.v.d.M.), Leiden University Medical Center; and Department of Neurology (E.v.d.K.), MCL, Leeuwarden, the Netherlands
| | - Elly van der Kooi
- From the Department of Neurology (M.W., C.G.H., B.G.v.E., G.W.P., N.C.V.), Donders Institute for Brain, Cognition and Behavior, and Radboud Institute for Health Sciences (M.J.), Radboud University Medical Center, Nijmegen; Department of Neurology (M.W.), ETZ, Tilburg; Department of Human Genetics (R.J.L., S.M.v.d.M.), Leiden University Medical Center; and Department of Neurology (E.v.d.K.), MCL, Leeuwarden, the Netherlands
| | - Corinne G Horlings
- From the Department of Neurology (M.W., C.G.H., B.G.v.E., G.W.P., N.C.V.), Donders Institute for Brain, Cognition and Behavior, and Radboud Institute for Health Sciences (M.J.), Radboud University Medical Center, Nijmegen; Department of Neurology (M.W.), ETZ, Tilburg; Department of Human Genetics (R.J.L., S.M.v.d.M.), Leiden University Medical Center; and Department of Neurology (E.v.d.K.), MCL, Leeuwarden, the Netherlands
| | - Baziel G van Engelen
- From the Department of Neurology (M.W., C.G.H., B.G.v.E., G.W.P., N.C.V.), Donders Institute for Brain, Cognition and Behavior, and Radboud Institute for Health Sciences (M.J.), Radboud University Medical Center, Nijmegen; Department of Neurology (M.W.), ETZ, Tilburg; Department of Human Genetics (R.J.L., S.M.v.d.M.), Leiden University Medical Center; and Department of Neurology (E.v.d.K.), MCL, Leeuwarden, the Netherlands
| | - Silvere M van der Maarel
- From the Department of Neurology (M.W., C.G.H., B.G.v.E., G.W.P., N.C.V.), Donders Institute for Brain, Cognition and Behavior, and Radboud Institute for Health Sciences (M.J.), Radboud University Medical Center, Nijmegen; Department of Neurology (M.W.), ETZ, Tilburg; Department of Human Genetics (R.J.L., S.M.v.d.M.), Leiden University Medical Center; and Department of Neurology (E.v.d.K.), MCL, Leeuwarden, the Netherlands
| | - George W Padberg
- From the Department of Neurology (M.W., C.G.H., B.G.v.E., G.W.P., N.C.V.), Donders Institute for Brain, Cognition and Behavior, and Radboud Institute for Health Sciences (M.J.), Radboud University Medical Center, Nijmegen; Department of Neurology (M.W.), ETZ, Tilburg; Department of Human Genetics (R.J.L., S.M.v.d.M.), Leiden University Medical Center; and Department of Neurology (E.v.d.K.), MCL, Leeuwarden, the Netherlands
| | - Nicol C Voermans
- From the Department of Neurology (M.W., C.G.H., B.G.v.E., G.W.P., N.C.V.), Donders Institute for Brain, Cognition and Behavior, and Radboud Institute for Health Sciences (M.J.), Radboud University Medical Center, Nijmegen; Department of Neurology (M.W.), ETZ, Tilburg; Department of Human Genetics (R.J.L., S.M.v.d.M.), Leiden University Medical Center; and Department of Neurology (E.v.d.K.), MCL, Leeuwarden, the Netherlands.
| |
Collapse
|
45
|
Gurzau AD, Chen K, Xue S, Dai W, Lucet IS, Ly TTN, Reversade B, Blewitt ME, Murphy JM. FSHD2- and BAMS-associated mutations confer opposing effects on SMCHD1 function. J Biol Chem 2018; 293:9841-9853. [PMID: 29748383 DOI: 10.1074/jbc.ra118.003104] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/03/2018] [Indexed: 01/01/2023] Open
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing 1 (Smchd1) plays important roles in epigenetic silencing and normal mammalian development. Recently, heterozygous mutations in SMCHD1 have been reported in two disparate disorders: facioscapulohumeral muscular dystrophy type 2 (FSHD2) and Bosma arhinia microphthalmia syndrome (BAMS). FSHD2-associated mutations lead to loss of function; however, whether BAMS is associated with loss- or gain-of-function mutations in SMCHD1 is unclear. Here, we have assessed the effect of SMCHD1 missense mutations from FSHD2 and BAMS patients on ATP hydrolysis activity and protein conformation and the effect of BAMS mutations on craniofacial development in a Xenopus model. These data demonstrated that FSHD2 mutations only result in decreased ATP hydrolysis, whereas many BAMS mutations can result in elevated ATPase activity and decreased eye size in Xenopus Interestingly, a mutation reported in both an FSHD2 patient and a BAMS patient results in increased ATPase activity and a smaller Xenopus eye size. Mutations in the extended ATPase domain increased catalytic activity, suggesting critical regulatory intramolecular interactions and the possibility of targeting this region therapeutically to boost SMCHD1's activity to counter FSHD.
Collapse
Affiliation(s)
- Alexandra D Gurzau
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,the Departments of Medical Biology and
| | - Kelan Chen
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,the Departments of Medical Biology and
| | - Shifeng Xue
- the Institute of Molecular and Cell Biology and.,Human Genetics and Embryology Laboratory, Institute of Medical Biology, A*STAR, Singapore
| | - Weiwen Dai
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Isabelle S Lucet
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,the Departments of Medical Biology and
| | - Thanh Thao Nguyen Ly
- the Institute of Molecular and Cell Biology and.,Human Genetics and Embryology Laboratory, Institute of Medical Biology, A*STAR, Singapore
| | - Bruno Reversade
- the Institute of Molecular and Cell Biology and.,Human Genetics and Embryology Laboratory, Institute of Medical Biology, A*STAR, Singapore.,the Department of Medical Genetics, Koç University School of Medicine (KUSoM), 34450 Sarıyer/Istanbul, Turkey.,the Department of Paediatrics, School of Medicine, National University of Singapore, Singapore, and.,Amsterdam Reproduction and Development, Academic Medical Centre and VU University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Marnie E Blewitt
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, .,the Departments of Medical Biology and.,Genetics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James M Murphy
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, .,the Departments of Medical Biology and
| |
Collapse
|
46
|
Genotype and phenotype analysis of 43 Iranian facioscapulohumeral muscular dystrophy patients; Evidence for anticipation. Neuromuscul Disord 2018; 28:303-314. [PMID: 29402602 DOI: 10.1016/j.nmd.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/20/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is the third most common hereditary myopathy (prevalence 1/8300-1/20,000). It is typically characterized by progressive weakness of facial, scapular and humeral muscles. Pelvic, abdominal and lower limbs muscles may eventually be affected. FSHD is classified into two subgroups, FSHD1 and FSHD2. FSHD1 is due to a reduction in the copy number of D4Z4 macrosatellites on chromosome 4q35 (11-100 repeats in normal individuals and 1-10 repeats in patients), and FSHD2 is caused by mutations in SMCHD1 or DNMT3B. Here, we present clinical features and results of genetic analysis on 43 Iranian FSHD patients. Forty patients carried 2-7 D4Z4 repeats based on Southern blot analysis, thus confirming FSHD1 diagnosis in these patients. The number of patients with D4Z4 repeats in the range of 1-3, 4-6 and 7-9 were, respectively, 22, 17 and one. Patients with the lower number of D4Z4 repeats generally showed earlier onset and more severe disease presentations. Anticipation was observed in 14 multi-generational families. To the best of our knowledge, this is the first phenotype and genotype analysis of FSHD patients in the Iranian population. The results of this study will be beneficial for genetic counselling of FSHD patients and their families, and for the establishment of a simple affordable genetic test for Iranians as the majority of patients had 1-5 D4Z4 repeats.
Collapse
|
47
|
Integrating clinical and genetic observations in facioscapulohumeral muscular dystrophy. Curr Opin Neurol 2018; 29:606-13. [PMID: 27389814 DOI: 10.1097/wco.0000000000000360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW This review gives an overview of the currently known key clinical and (epi)genetic aspects of facioscapulohumeral muscular dystrophy (FSHD) and provides perspectives to facilitate future research. RECENT FINDINGS Clinically, imaging studies have contributed to a detailed characterization of the FSHD phenotype, and a model is proposed with five stages of disease progression. A number of clinical trials have been conducted regarding exercise and diet aiming to reduce symptoms. Genetically, at least two different mechanisms (FSHD1 and FSHD2) lead to double homeobox 4 (DUX4) expression in skeletal myocytes, which is expected to be necessary for the disease. Disease severity is most likely determined by a combination of the D4Z4 repeat size and its epigenetic state. SUMMARY FSHD is one of the most common muscular dystrophies and is characterized by a typical distribution of muscle weakness. Progress has been made on clinical as well as on (epi)genetic aspects of the disease. Currently, there is no cure available for FSHD. For successful development of new treatments targeting the disease process, integration of clinical and pathogenetic knowledge is essential. A clinical trial toolbox that consists of patient registries, biomarkers and clinical outcome measures will be required to effectively conduct future clinical trials.
Collapse
|
48
|
|
49
|
Lemmers RJ, van der Vliet PJ, Balog J, Goeman JJ, Arindrarto W, Krom YD, Straasheijm KR, Debipersad RD, Özel G, Sowden J, Snider L, Mul K, Sacconi S, van Engelen B, Tapscott SJ, Tawil R, van der Maarel SM. Deep characterization of a common D4Z4 variant identifies biallelic DUX4 expression as a modifier for disease penetrance in FSHD2. Eur J Hum Genet 2017; 26:94-106. [PMID: 29162933 DOI: 10.1038/s41431-017-0015-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/09/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy is caused by incomplete repression of the transcription factor DUX4 in skeletal muscle as a consequence of D4Z4 macrosatellite repeat contraction in chromosome 4q35 (FSHD1) or variants in genes encoding D4Z4 chromatin repressors (FSHD2). A clinical hallmark of FSHD is variability in onset and progression suggesting the presence of disease modifiers. A well-known cis modifier is the polymorphic DUX4 polyadenylation signal (PAS) that defines FSHD permissive alleles: D4Z4 chromatin relaxation on non-permissive alleles which lack the DUX4-PAS cannot cause disease in the absence of stable DUX4 mRNA. We have explored the nature and relevance of a common variant of the major FSHD haplotype 4A161, which is defined by 1.6 kb size difference of the most distal D4Z4 repeat unit. While the short variant (4A161S) has been extensively studied, we demonstrate that the long variant (4A161L) is relatively common in the European population, is capable of expressing DUX4, but that DUX4 mRNA processing differs from 4A161S. While we do not find evidence for a difference in disease severity between FSHD carriers of an 4A161S or 4A161L allele, our study does uncover biallelic DUX4 expression in FSHD2 patients. Compared to control individuals, we observed an increased frequency of FSHD2 patients homozygous for disease permissive alleles, and who are thus capable of biallelic DUX4 expression, while SMCHD1 variant carriers with only one permissive allele were significantly more often asymptomatic. This suggests that biallelic DUX4 expression lowers the threshold for disease presentation and is a modifier for disease severity in FSHD2.
Collapse
Affiliation(s)
- Richard Jlf Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.
| | | | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jelle J Goeman
- Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, Netherlands
| | - Wibowo Arindrarto
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Yvonne D Krom
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Rashmie D Debipersad
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Gizem Özel
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Janet Sowden
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren Snider
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Karlien Mul
- Neuromuscular Centre Nijmegen, Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Sabrina Sacconi
- Centre de référence des Maladies neuromusculaires and CNRS UMR6543, Nice University Hospital, Nice, France
| | - Baziel van Engelen
- Neuromuscular Centre Nijmegen, Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
50
|
DeSimone AM, Pakula A, Lek A, Emerson CP. Facioscapulohumeral Muscular Dystrophy. Compr Physiol 2017; 7:1229-1279. [PMID: 28915324 DOI: 10.1002/cphy.c160039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017.
Collapse
Affiliation(s)
- Alec M DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|