1
|
Vacher E, Rodriguez Ruiz M, Rees JH. Management of brain tumour related epilepsy (BTRE): a narrative review and therapy recommendations. Br J Neurosurg 2025; 39:4-11. [PMID: 36694327 DOI: 10.1080/02688697.2023.2170326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Brain Tumour Related Epilepsy (BTRE) has a significant impact on Quality of Life with implications for driving, employment, and social activities. Management of BTRE is complex due to the higher incidence of drug resistance and the potential for interaction between anti-cancer therapy and anti-seizure medications (ASMs). Neurologists, neurosurgeons, oncologists, palliative care physicians and clinical nurse specialists treating these patients would benefit from up-to-date clinical guidelines. We aim to review the current literature and to outline specific recommendations for the optimal treatment of BTRE, encompassing both Primary Brain Tumours (PBT) and Brain Metastases (BM). A comprehensive search of the literature since 1995 on BTRE was carried out in PubMed, MEDLINE and EMCARE. A broad search strategy was used, and the evidence evaluated and graded based on the Oxford Centre for Evidence-Based Medicine Levels of Evidence. Seizure frequency varies between 10 and 40% in patients with Brain Metastases (BM) and from 30% (high-grade gliomas) to 90% (low-grade gliomas) in patients with PBT. In patients with BM, risk factors include number of BM and melanoma histology. In patients with PBT, BTRE is more common in patients with lower grade histology, frontal and temporal tumours, presence of an IDH mutation and cortical infiltration. All patients with BTRE should be treated with ASMs. Non-enzyme inducing ASMs are recommended as first line treatment for BTRE, but up to 50% of patients with BTRE due to PBT remain resistant. There is no proven benefit for the use of prophylactic ASMs, although there are no randomised trials testing newer agents. Surgical and oncological treatments i.e. radiotherapy and chemotherapy improve BTRE. Vagus Nerve Stimulation has been used with partial success. The review highlights the relative dearth of high-quality evidence for the management of BTRE and provides a framework for further studies aiming to improve seizure control, quality of life, and indications for ASMs.
Collapse
Affiliation(s)
- Elizabeth Vacher
- UCL Medical School, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | | | - Jeremy H Rees
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
2
|
Khalili BF, Walbert T, Horbinski C, Dixit K, Gururangan K, Thio H, Tate MC, Stupp R, Lukas RV, Templer JW. Levetiracetam and valproic acid in glioma: antiseizure and potential antineoplastic effects. Future Oncol 2025:1-9. [PMID: 39786974 DOI: 10.1080/14796694.2025.2450215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Seizures are a frequent complication in glioma. Incidence of brain tumor-related epilepsy (BTRE) in high-grade glioma (HGG) is an estimated > 25% and in low-grade glioma (LGG) is approximately 72%. Two first-line antiseizure medications (ASMs) for BTRE include levetiracetam (LEV) and valproic acid (VPA). Use of VPA has decreased because of a broader side effect profile, potential interaction with chemotherapeutic drugs, and availability of newer generation agents. In refractory BTRE, LEV and VPA may be prescribed together to enhance seizure control. VPA and LEV have gained attention for their purported antineoplastic effects and synergistic role with temozolomide. VPA is suggested to modulate anticancer activity in vitro through multiple mechanisms. In addition, retrospective studies indicate increased overall survival in patients with epileptogenic HGGs who are managed with LEV or VPA rather than other ASMs. However, these studies have numerous limitations. It is also reported that patients with glioma and a seizure history have a longer survival. This extended survival, if one exists, may be only observed in certain gliomas with corresponding patient characteristics. We provide a brief overview of the management of BTRE, VPA and LEV as anticonvulsants and antineoplastics, and the factors that may be associated with survival in epileptogenic glioma.
Collapse
Affiliation(s)
| | - Tobias Walbert
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| | - Karan Dixit
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kapil Gururangan
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Helen Thio
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Matthew C Tate
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Section of Hematology & Oncology, Northwestern University, Chicago, IL, USA
| | - Rimas V Lukas
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Jessica W Templer
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Lee PY, Wei YT, Chao KSC, Chu CN, Chung WH, Wang TH. Anti-epileptic drug use during adjuvant chemo-radiotherapy is associated with poorer survival in patients with glioblastoma: A nationwide population-based cohort study. J Cancer Res Ther 2024; 20:555-562. [PMID: 38687925 DOI: 10.4103/jcrt.jcrt_750_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/31/2022] [Indexed: 05/02/2024]
Abstract
INTRODUCTION There are emerging but inconsistent evidences about anti-epileptic drugs (AEDs) as radio- or chemo-sensitizers to improve survival in glioblastoma patients. We conducted a nationwide population-based study to evaluate the impact of concurrent AED during post-operative chemo-radiotherapy on outcome. MATERIAL AND METHODS A total of 1057 glioblastoma patients were identified by National Health Insurance Research Database and Cancer Registry in 2008-2015. Eligible criteria included those receiving surgery, adjuvant radiotherapy and temozolomide, and without other cancer diagnoses. Survival between patients taking concurrent AED for 14 days or more during chemo-radiotherapy (AED group) and those who did not (non-AED group) were compared, and subgroup analyses for those with valproic acid (VPA), levetiracetam (LEV), or phenytoin were performed. Multivariate analyses were used to adjust for confounding factors. RESULTS There were 642 patients in the AED group, whereas 415 in the non-AED group. The demographic data was balanced except trend of more patients in the AED group had previous drug history of AEDs (22.6% vs. 18%, P 0.078). Overall, the AED group had significantly increased risk of mortality (HR = 1.18, P 0.016) compared to the non-AED group. Besides, an adverse dose-dependent relationship on survival was also demonstrated in the AED group (HR = 1.118, P 0.0003). In subgroup analyses, the significant detrimental effect was demonstrated in VPA group (HR = 1.29,P 0.0002), but not in LEV (HR = 1.18, P 0.079) and phenytoin (HR = 0.98, P 0.862). CONCLUSIONS Improved survival was not observed in patients with concurrent AEDs during chemo-radiotherapy. Our real-world data did not support prophylactic use of AEDs for glioblastoma patients.
Collapse
Affiliation(s)
- Peng-Yi Lee
- Department of Radiation Oncology, Show-Chwan Memorial Hospital, No. 542, Section 1 CHUNG-SHAN Road, Changhua, Taiwan
- Department of Radiation Oncology, Lin Shin Hospital, No. 36, Section 3 Huizhong Road, Taichung, Taiwan
- Department of Radiation Oncology, China Medical University Beigang Hospital, Yunlin, Taiwan
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Ting Wei
- Division of Family Medicine, Department of Community Medicine, China Medical University Hospital, Taichung, Taiwan
- Division of Occupational Medicine, Department of Community Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | - Chin-Nan Chu
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
| | - Wen-Hui Chung
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ti-Hao Wang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Avila EK, Tobochnik S, Inati SK, Koekkoek JAF, McKhann GM, Riviello JJ, Rudà R, Schiff D, Tatum WO, Templer JW, Weller M, Wen PY. Brain tumor-related epilepsy management: A Society for Neuro-oncology (SNO) consensus review on current management. Neuro Oncol 2024; 26:7-24. [PMID: 37699031 PMCID: PMC10768995 DOI: 10.1093/neuonc/noad154] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Tumor-related epilepsy (TRE) is a frequent and major consequence of brain tumors. Management of TRE is required throughout the course of disease and a deep understanding of diagnosis and treatment is key to improving quality of life. Gross total resection is favored from both an oncologic and epilepsy perspective. Shared mechanisms of tumor growth and epilepsy exist, and emerging data will provide better targeted therapy options. Initial treatment with antiseizure medications (ASM) in conjunction with surgery and/or chemoradiotherapy is typical. The first choice of ASM is critical to optimize seizure control and tolerability considering the effects of the tumor itself. These agents carry a potential for drug-drug interactions and therefore knowledge of mechanisms of action and interactions is needed. A review of adverse effects is necessary to guide ASM adjustments and decision-making. This review highlights the essential aspects of diagnosis and treatment of TRE with ASMs, surgery, chemotherapy, and radiotherapy while indicating areas of uncertainty. Future studies should consider the use of a standardized method of seizure tracking and incorporating seizure outcomes as a primary endpoint of tumor treatment trials.
Collapse
Affiliation(s)
- Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Guy M McKhann
- Department of Neurosurgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - James J Riviello
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Italy
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Center, and Division of Neuro-Oncology, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Joghataei MT, Bakhtiarzadeh F, Dehghan S, Ketabforoush AHME, Golab F, Zarbakhsh S, Ahmadirad N. The role of neurotransmitters in glioblastoma multiforme-associated seizures. Int J Dev Neurosci 2023; 83:677-690. [PMID: 37563091 DOI: 10.1002/jdn.10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
GBM, or glioblastoma multiforme, is a brain tumor that poses a great threat to both children and adults, being the primary cause of death related to brain tumors. GBM is often associated with epilepsy, which can be debilitating. Seizures and the development of epilepsy are the primary symptoms that have a severe impact on the quality of life for GBM patients. It is increasingly apparent that the nervous system plays an essential role in the tumor microenvironment for all cancer types, including GBM. In recent years, there has been a growing understanding of how neurotransmitters control the progression of gliomas. Evidence suggests that neurotransmitters and neuromodulators found in the tumor microenvironment play crucial roles in the excitability, proliferation, quiescence, and differentiation of neurons, glial cells, and neural stem cells. The involvement of neurotransmitters appears to play a significant role in various stages of GBM. In this review, the focus is on presenting updated knowledge and emerging ideas regarding the interplay between neurotransmitters and neuromodulators, such as glutamate, GABA, norepinephrine, dopamine, serotonin, adenosine, and their relationship with GBM and the seizures induced by this condition. The review aims to explore the current understanding and provide new insights into the complex interactions between these neurotransmitters and neuromodulators in the context of GBM-related seizures.
Collapse
Affiliation(s)
| | - Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Krauze AV, Zhao Y, Li MC, Shih J, Jiang W, Tasci E, Cooley Zgela T, Sproull M, Mackey M, Shankavaram U, Tofilon P, Camphausen K. Revisiting Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients with Glioblastoma-Proteomic Alteration and Comparison Analysis with the Standard-of-Care Chemoirradiation. Biomolecules 2023; 13:1499. [PMID: 37892181 PMCID: PMC10604983 DOI: 10.3390/biom13101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). PURPOSE The primary goal of this study was to examine if the differential alteration in proteomic expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting. MATERIALS AND METHODS Serum obtained pre- and post-CRT was analyzed using an aptamer-based SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in protein expression changes between radiation therapy (RT) with or without VPA were conducted for individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment for age, sex, and other clinical covariates and hierarchical clustering of significant differentially expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual protein expression changes for an association with survival. The lasso Cox regression method and 10-fold cross-validation were employed to test the combinations of expression changes of proteins that could predict survival. Predictiveness curves were plotted for significant proteins for VPA response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles. RESULTS A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors did not confound the results, and distinct proteomic clustering in the VPA-treated population was identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and 6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical factors, and the combination of protein expression and clinical factors, respectively, indicating that the proteome can provide additional survival risk discrimination to that already provided by the standard clinical factors with a greater impact on PFS. Several proteins of interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and 0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS. The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic alteration observed with the administration of VPA aligned with known signal transduction pathways of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial-mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling. CONCLUSIONS Differential alteration in proteomic expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data, potentially predictive proteins were identified. The protein signals and hallmark gene sets associated with the alteration in the proteome identified between patients who received VPA and those who did not, align with known biological mechanisms of action of VPA and may allow for the identification of novel biomarkers associated with outcomes that can help advance the study of VPA in future prospective trials.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Yingdong Zhao
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Ming-Chung Li
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Joanna Shih
- Computational and Systems Biology Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA; (Y.Z.); (M.-C.L.); (J.S.)
| | - Will Jiang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Erdal Tasci
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Theresa Cooley Zgela
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Megan Mackey
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Philip Tofilon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA (T.C.Z.); (U.S.); (P.T.)
| |
Collapse
|
8
|
Guidi M, Giunti L, Buccoliero AM, Fonte C, Scoccianti S, Censullo ML, Caporalini C, Tellini M, Di Nicola M, Castelli B, Greto D, Giordano F, Genitori L, Sardi I. Brief report: pediatric high-grade gliomas treated with vinorelbine and valproic acid added to temozolomide. Am J Cancer Res 2023; 13:3668-3678. [PMID: 37693163 PMCID: PMC10492125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 09/12/2023] Open
Abstract
Children and young adult with high grade gliomas (HGG) have dismal prognoses and treatment options remain limited. We present 19 patients diagnosed with anaplastic astrocytoma (AA) or glioblastoma (GBM) treated with concomitant and adjuvant 20-30 mg/m2/dose of vinorelbine and 30 mg/kg/day valproic acid (VA) in combination to consolidated TMZ and focal RT after maximal surgery. We evaluated the feasibility of treating children diagnosed with HGG. The median follow-up time was 51.4 months (range, 6.2-106.6 months). The 5-year OS was 57.9% (CI 95%, 33.2-76.3) and the 5-year PFS was 57.9% (CI 95%, 33.2-76.3). Eight patients (42.1%) have progressed so far, with a median time to progression of 9 months from diagnosis (range, 4.6-34.7 months). All of them died for disease progression. At time of analysis, 11 patients were still alive with no evidence of disease. It is notable that all events occurred within 35 months from the start of therapy. All 19 treated patients reported low-grade drug-related adverse events (AEs). The treatment was well tolerated in our limited cohort of patients without significant toxicity. Further studies of the efficacy and safety of combination of vinorelbine/VA to consolidated RT/TMZ therapy in children with HGG are underway in a clinical trial setting.
Collapse
Affiliation(s)
- Milena Guidi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital IRCCSFlorence, Italy
| | - Laura Giunti
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital IRCCSFlorence, Italy
| | | | - Carla Fonte
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital IRCCSFlorence, Italy
| | - Silvia Scoccianti
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, University of FirenzeFirenze, Italy
| | - Maria Luigia Censullo
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital IRCCSFlorence, Italy
| | | | - Marco Tellini
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital IRCCSFlorence, Italy
| | - Marco Di Nicola
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital IRCCSFlorence, Italy
| | - Barbara Castelli
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital IRCCSFlorence, Italy
| | - Daniela Greto
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, University of FirenzeFirenze, Italy
| | - Flavio Giordano
- Neurosurgery Unit, Meyer Children’s Hospital IRCCSFlorence, Italy
| | - Lorenzo Genitori
- Neurosurgery Unit, Meyer Children’s Hospital IRCCSFlorence, Italy
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital IRCCSFlorence, Italy
| |
Collapse
|
9
|
Garrett MC, Albano R, Carnwath T, Elahi L, Behrmann CA, Pemberton M, Woo D, O'Brien E, VanCauwenbergh B, Perentesis J, Shah S, Hagan M, Kendler A, Zhao C, Paranjpe A, Roskin K, Kornblum H, Plas DR, Lu QR. HDAC1 and HDAC6 are essential for driving growth in IDH1 mutant glioma. Sci Rep 2023; 13:12433. [PMID: 37528157 PMCID: PMC10394035 DOI: 10.1038/s41598-023-33889-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/20/2023] [Indexed: 08/03/2023] Open
Abstract
Low-grade and secondary high-grade gliomas frequently contain mutations in the IDH1 or IDH2 metabolic enzymes that are hypothesized to drive tumorigenesis by inhibiting many of the chromatin-regulating enzymes that regulate DNA structure. Histone deacetylase inhibitors are promising anti-cancer agents and have already been used in clinical trials. However, a clear understanding of their mechanism or gene targets is lacking. In this study, the authors genetically dissect patient-derived IDH1 mutant cultures to determine which HDAC enzymes drive growth in IDH1 mutant gliomas. A panel of patient-derived gliomasphere cell lines (2 IDH1 mutant lines, 3 IDH1 wildtype lines) were subjected to a drug-screen of epigenetic modifying drugs from different epigenetic classes. The effect of LBH (panobinostat) on gene expression and chromatin structure was tested on patient-derived IDH1 mutant lines. The role of each of the highly expressed HDAC enzymes was molecularly dissected using lentiviral RNA interference knock-down vectors and a patient-derived IDH1 mutant in vitro model of glioblastoma (HK252). These results were then confirmed in an in vivo xenotransplant model (BT-142). The IDH1 mutation leads to gene down-regulation, DNA hypermethylation, increased DNA accessibility and H3K27 hypo-acetylation in two distinct IDH1 mutant over-expression models. The drug screen identified histone deacetylase inhibitors (HDACi) and panobinostat (LBH) more specifically as the most selective compounds to inhibit growth in IDH1 mutant glioma lines. Of the eleven annotated HDAC enzymes (HDAC1-11) only six are expressed in IDH1 mutant glioma tissue samples and patient-derived gliomasphere lines (HDAC1-4, HDAC6, and HDAC9). Lentiviral knock-down experiments revealed that HDAC1 and HDAC6 are the most consistently essential for growth both in vitro and in vivo and target very different gene modules. Knock-down of HDAC1 or HDAC6 in vivo led to a more circumscribed less invasive tumor. The gene dysregulation induced by the IDH1 mutation is wide-spread and only partially reversible by direct IDH1 inhibition. This study identifies HDAC1 and HDAC6 as important and drug-targetable enzymes that are necessary for growth and invasiveness in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Matthew C Garrett
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Rebecca Albano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Troy Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lubayna Elahi
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine A Behrmann
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Merissa Pemberton
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Daniel Woo
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Eric O'Brien
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brett VanCauwenbergh
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Perentesis
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew Hagan
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Bioinformatics Collaborative Services, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Krishna Roskin
- Bioinformatics Collaborative Services, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Harley Kornblum
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Weller M, Le Rhun E, Van den Bent M, Chang SM, Cloughesy TF, Goldbrunner R, Hong YK, Jalali R, Jenkinson MD, Minniti G, Nagane M, Razis E, Roth P, Rudà R, Tabatabai G, Wen PY, Short SC, Preusser M. Diagnosis and management of complications from the treatment of primary central nervous system tumors in adults. Neuro Oncol 2023; 25:1200-1224. [PMID: 36843451 PMCID: PMC10326495 DOI: 10.1093/neuonc/noad038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 02/28/2023] Open
Abstract
Central nervous system (CNS) tumor patients commonly undergo multimodality treatment in the course of their disease. Adverse effects and complications from these interventions have not been systematically studied, but pose significant challenges in clinical practice and impact function and quality of life, especially in the management of long-term brain tumor survivors. Here, the European Association of Neuro-Oncology (EANO) has developed recommendations to prevent, diagnose, and manage adverse effects and complications in the adult primary brain CNS tumor (except lymphomas) patient population with a specific focus on surgery, radiotherapy, and pharmacotherapy. Specifically, we also provide recommendations for dose adaptations, interruptions, and reexposure for pharmacotherapy that may serve as a reference for the management of standard of care in clinical trials. We also summarize which interventions are unnecessary, inactive or contraindicated. This consensus paper should serve as a reference for the conduct of standard therapy within and outside of clinical trials.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Emilie Le Rhun
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martin Van den Bent
- The Brain Tumour Center at the Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Yong-Kil Hong
- Brain Tumor Center, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Rakesh Jalali
- Neuro Oncology Cancer Management Team, Apollo Proton Cancer Centre, Chennai, India
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust & University of Liverpool, Liverpool, UK
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Evangelia Razis
- Third Department of Medical Oncology, Hygeia Hospital, Marousi, Athens, Greece
| | - Patrick Roth
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, City of Health and Science and University of Turin, Turin, Italy
| | - Ghazaleh Tabatabai
- Department of Neurology & Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neurooncology, Comprehensive Cancer Center, German Cancer Consortium (DKTK), Partner site Tübingen, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Patrick Y Wen
- Center for Neuro-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan C Short
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine 1, Medical University, Vienna, Austria
| |
Collapse
|
11
|
Dao Trong P, Jungwirth G, Unterberg A, Herold-Mende C, Warta R. The Antiepileptic Drug Oxcarbazepine Inhibits the Growth of Patient-Derived Isocitrate Dehydrogenase Mutant Glioma Stem-like Cells. Cells 2023; 12:cells12081200. [PMID: 37190109 DOI: 10.3390/cells12081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Patients diagnosed with isocitrate dehydrogenase mutant (IDHmut) gliomas suffer frequently from seizures. Although the clinical course is less aggressive than that of its IDH wildtype counterpart, recent discoveries have shown that epileptic activity can promote tumor proliferation. However, it is not known if antiepileptic drugs confer additional value by inhibiting tumor growth. In this study, the antineoplastic properties of 20 FDA-approved antiepileptic drugs (AEDs) were tested in six patient-derived IDHmut glioma stem-like cells (GSCs). Cell proliferation was assessed using the CellTiterGlo-3D assay. Two of the screened drugs (oxcarbazepine and perampanel) demonstrated an antiproliferative effect. A subsequent eight-point dose-response curve proved the dose-dependent growth inhibition for both drugs, but only oxcarbazepine reached an IC50 value below 100 µM in 5/6 GSCs (mean 44.7 µM; range 17.4-98.0 µM), approximating the possible cmax for oxcarbazepine in patient serums. Furthermore, the treated GSC spheroids were 82% smaller (mean volume 1.6 nL vs. 8.7 nL; p = 0.01 (live/deadTM fluorescence staining)), and the apoptotic events increased by more than 50% (caspase-3/7 activity; p = 0.006). Taken together, this drug screen of a large series of antiepileptic drugs identified oxcarbazepine as a potent proapoptotic drug in IDHmut GSCs, which combines antiepileptic and antineoplastic properties to treat this seizure-prone patient population.
Collapse
Affiliation(s)
- Philip Dao Trong
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Aronica E, Ciusani E, Coppola A, Costa C, Russo E, Salmaggi A, Perversi F, Maschio M. Epilepsy and brain tumors: Two sides of the same coin. J Neurol Sci 2023; 446:120584. [PMID: 36842341 DOI: 10.1016/j.jns.2023.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Epilepsy is the most common symptom in patients with brain tumors. The shared genetic, molecular, and cellular mechanisms between tumorigenesis and epileptogenesis represent 'two sides of the same coin'. These include augmented neuronal excitatory transmission, impaired inhibitory transmission, genetic mutations in the BRAF, IDH, and PIK3CA genes, inflammation, hemodynamic impairments, and astrocyte dysfunction, which are still largely unknown. Low-grade developmental brain tumors are those most commonly associated with epilepsy. Given this strict relationship, drugs able to target both seizures and tumors would be of extreme clinical usefulness. In this regard, anti-seizure medications (ASMs) are optimal candidates as they have well-characterized effects and safety profiles, do not increase the risk of developing cancer, and already offer well-defined seizure control. The most important ASMs showing preclinical and clinical efficacy are brivaracetam, lacosamide, perampanel, and especially valproic acid and levetiracetam. However, the data quality is low or limited to preclinical studies, and results are sometimes conflicting. Future trials with a prospective, randomized, and controlled design accounting for different prognostic factors will help clarify the role of these ASMs and the clinical setting in which they might be used. In conclusion, brain tumor-related epilepsies are clear examples of how close, multidisciplinary collaborations among investigators with different expertise are warranted for pursuing scientific knowledge and, more importantly, for the well-being of patients needing targeted and effective therapies.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC location the University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Emilio Ciusani
- Department of Research and Technology, Fondazione IRCCS Istituto Neurologico C. Besta Milan, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Emilio Russo
- Science of Health Department, Magna Grecia University, Catanzaro, Italy
| | - Andrea Salmaggi
- Department of Neurosciences, Unit of Neurology, Presidio A. Manzoni, ASST Lecco, Italy
| | | | - Marta Maschio
- Center for tumor-related epilepsy, UOSD Neurooncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
13
|
Natale G, Fini E, Calabrò PF, Carli M, Scarselli M, Bocci G. Valproate and lithium: Old drugs for new pharmacological approaches in brain tumors? Cancer Lett 2023; 560:216125. [PMID: 36914086 DOI: 10.1016/j.canlet.2023.216125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Beyond its use as an antiepileptic drug, over time valproate has been increasingly used for several other therapeutic applications. Among these, the antineoplastic effects of valproate have been assessed in several in vitro and in vivo preclinical studies, suggesting that this agent significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. During the last years various clinical trials have tried to find out if valproate co-administration could enhance the antineoplastic activity of chemotherapy in glioblastoma patients and in patients suffering from brain metastases, demonstrating that the inclusion of valproate in the therapeutic schedule causes an improved median overall survival in some studies, but not in others. Thus, the effects of the use of concomitant valproate in brain cancer patients are still controversial. Similarly, lithium has been tested as an anticancer drug in several preclinical studies mainly using the unregistered formulation of lithium chloride salts. Although, there are no data showing that the anticancer effects of lithium chloride are superimposable to the registered lithium carbonate, this formulation has shown preclinical activity in glioblastoma and hepatocellular cancers. However, few but interesting clinical trials have been performed with lithium carbonate on a very small number of cancer patients. Based on published data, valproate could represent a potential complementary therapeutic approach to enhance the anticancer activity of brain cancer standard chemotherapy. Same advantageous characteristics are less convincing for lithium carbonate. Therefore, the planning of specific phase III studies is necessary to validate the repositioning of these drugs in present and future oncological research.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy; Museum of Human Anatomy "Filippo Civinini", University of Pisa, Italy
| | - Elisabetta Fini
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
14
|
Antitumor Potential of Antiepileptic Drugs in Human Glioblastoma: Pharmacological Targets and Clinical Benefits. Biomedicines 2023; 11:biomedicines11020582. [PMID: 36831117 PMCID: PMC9953000 DOI: 10.3390/biomedicines11020582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients' quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. The present review summarizes emerging cooperative mechanisms in oncogenesis and epileptogenesis, focusing on the neuron-to-glioma interface. The main effects and efficacy of selected AEDs used in the management of GRE are discussed in this paper, as well as their potential beneficial activity as antitumor treatment. Overall, although still many unclear processes overlapping in GBM growth and seizure onset need to be elucidated, this review focuses on the intriguing targeting of GBM-neuron mutual interactions to improve the outcome of the so challenging to treat GBM.
Collapse
|
15
|
Sullivan JK, Fahey PP, Agho KE, Hurley SP, Feng Z, Day RO, Lim D. Valproic acid as a radio-sensitizer in glioma: A systematic review and meta-analysis. Neurooncol Pract 2023; 10:13-23. [PMID: 36659976 PMCID: PMC9837785 DOI: 10.1093/nop/npac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Histone deacetylase inhibitors (HDACi) including valproic acid (VPA) have the potential to improve radiotherapy (RT) efficacy and reduce treatment adverse events (AE) via epigenetic modification and radio-sensitization of neoplastic cells. This systematic review and meta-analysis aimed to assess the efficacy and AE associated with HDACi used as radio-sensitizers in adult solid organ malignancy patients. Methods A systematic review utilized electronic searches of MEDLINE(Ovid), Embase(Ovid), The Cochrane Library, and the International Clinical Trials Registry Platform to identify studies examining the efficacy and AEs associated with HDACi treatment in solid organ malignancy patients undergoing RT. Meta-analysis was performed with overall survival (OS) reported as hazard ratios (HR) as the primary outcome measure. OS reported as median survival difference, and AEs were secondary outcome measures. Results Ten studies reporting on the efficacy and/or AEs of HDACi in RT-treated solid organ malignancy patients met inclusion criteria. All included studies focused on HDACi valproic acid (VPA) in high-grade glioma patients, of which 9 studies (n = 6138) evaluated OS and 5 studies (n = 1055) examined AEs. The addition of VPA to RT treatment protocols resulted in improved OS (HR = 0.80, 95% CI 0.67-0.96). No studies focusing on non-glioma solid organ malignancy patients, or non-VPA HDACi met the inclusion criteria for this review. Conclusions This review suggests that glioma patients undergoing RT may experience prolonged survival due to HDACi VPA administration. Further randomized controlled trials are required to validate these findings. Additionally, more research into the use of HDACi radio-adjuvant treatment in non-glioma solid organ malignancies is warranted.
Collapse
Affiliation(s)
| | - Paul P Fahey
- School of Health Sciences, Western Sydney University, New South Wales, Australia
| | - Kinglsey E Agho
- School of Health Sciences, Western Sydney University, New South Wales, Australia
| | - Simon P Hurley
- School of Medicine, Flinders University, South Australia, Australia
| | - Zhihui Feng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Richard O Day
- St Vincent’s Clinical Campus, University of New South Wales, New South Wales, Australia
| | - David Lim
- School of Medicine, Flinders University, South Australia, Australia
- School of Health Sciences, Western Sydney University, New South Wales, Australia
- Centre for Remote Health: A JBI Affiliated Centre, Alice Springs, Australia
| |
Collapse
|
16
|
Fairclough S, Goodden J, Chumas P, Mathew R, Maguire M. Levetiracetam as a first-line antiseizure medication in WHO grade 2 glioma: Time to seizure freedom and rates of treatment failure. Epilepsia 2023; 64:857-865. [PMID: 36636895 DOI: 10.1111/epi.17508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The high seizure burden seen in World Health Association (WHO) grade 2 gliomas is well documented. This study aims to identify factors that influence the probability of seizure freedom (12 months of seizure remission) and treatment failure (antiseizure medication [ASM] cessation or introduction of an alternative) in patients with WHO grade 2 glioma. METHODS This is a retrospective observational analysis of patients from a regional UK neurosurgical center with histologically proven (n = 146) WHO grade 2 glioma and brain tumor related epilepsy. Statistical analyses using both Kaplan-Meier and Cox proportional hazards models were undertaken, with a particular focus on treatment outcomes when the commonly prescribed ASM levetiracetam (n = 101) is used as first line. RESULTS Treatment with levetiracetam as a first-line ASM resulted in a significant increase in the probability of seizure freedom (p < .05) at 2 years compared with treatment with an alternative ASM. Individuals presenting with focal seizures without bilateral tonic-clonic progression were between 39% and 42% significantly less likely to reach seizure freedom within 10 years (p < .05) and 132% more likely to fail treatment by 5 years (p < .01) when compared to individuals who had seizures with progression to bilateral tonic-clonic activity. ASM choice did not significantly affect treatment failure rates. SIGNIFICANCE More than two-thirds of patients with WHO grade 2 glioma related epilepsy treated with levetiracetam first line achieve seizure freedom within 2 years and it is a reasonable first-choice agent. Experiencing mainly focal seizures without progression infers a significant long-term reduction in the chance of seizure freedom. Further studies are needed to inform ASM selection.
Collapse
Affiliation(s)
- Sam Fairclough
- Adult Neurology, Leeds Teaching Hospitals, Leeds, UK.,Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - John Goodden
- Neurosurgery Department, Leeds Teaching Hospitals, Leeds, UK
| | - Paul Chumas
- Neurosurgery Department, Leeds Teaching Hospitals, Leeds, UK
| | - Ryan Mathew
- Faculty of Medicine and Health, University of Leeds, Leeds, UK.,Neurosurgery Department, Leeds Teaching Hospitals, Leeds, UK
| | - Melissa Maguire
- Adult Neurology, Leeds Teaching Hospitals, Leeds, UK.,Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
17
|
Sharshar T, Porcher R, Asfar P, Grimaldi L, Jabot J, Argaud L, Lebert C, Bollaert PE, Harlay ML, Chillet P, Maury E, Santoli F, Blanc P, Sonneville R, Vu DC, Rohaut B, Mazeraud A, Alvarez JC, Navarro V, Clair B, Outin H, Azabou E, Beloncle F, Ben-Hadj O, Blanc P, Bollaert PE, Bolgert F, Bouadma L, Chillet P, Clair B, Corne P, Clere-Jehl R, Cour M, Crespel A, Déiler V, Dellamonica J, Demeret S, Harley ML, Henry-Lagarrigue M, Jabot J, Heming N, Hernu R, Kouatchet A, Lebert C, Lerolle N, Maury E, Letrou S, Mazeraud A, Mercat A, Mortaza S, Mourvillier B, Outin H, Paugham-Burtz C, Pierrot M, Provent M, Rohaut B, De La Salle S, Santoli F, Schenk M, Siami S, Souday V, Sharshar T, Sonneville R, Timsit JF, Thuong M, Weiss N. Valproic acid as adjuvant treatment for convulsive status epilepticus: a randomised clinical trial. Crit Care 2023; 27:8. [PMID: 36624526 PMCID: PMC9830759 DOI: 10.1186/s13054-022-04292-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Generalised convulsive status epilepticus (GCSE) is a medical emergency. Guidelines recommend a stepwise strategy of benzodiazepines followed by a second-line anti-seizure medicine (ASM). However, GCSE is uncontrolled in 20-40% patients and is associated with protracted hospitalisation, disability, and mortality. The objective was to determine whether valproic acid (VPA) as complementary treatment to the stepwise strategy improves the outcomes of patients with de novo established GCSE. METHODS This was a multicentre, double-blind, randomised controlled trial in 244 adults admitted to intensive care units for GCSE in 16 French hospitals between 2013 and 2018. Patients received standard care of benzodiazepine and a second-line ASM (except VPA). Intervention patients received a 30 mg/kg VPA loading dose, then a 1 mg/kg/h 12 h infusion, whilst the placebo group received an identical intravenous administration of 0.9% saline as a bolus and continuous infusion. Primary outcome was proportion of patients discharged from hospital by day 15. The secondary outcomes were seizure control, adverse events, and cognition at day 90. RESULTS A total of 126 (52%) and 118 (48%) patients were included in the VPA and placebo groups. 224 (93%) and 227 (93%) received a first-line and a second-line ASM before VPA or placebo infusion. There was no between-group difference for patients hospital-discharged at day 15 [VPA, 77 (61%) versus placebo, 72 (61%), adjusted relative risk 1.04; 95% confidence interval (0.89-1.19); p = 0.58]. There were no between-group differences for secondary outcomes. CONCLUSIONS VPA added to the recommended strategy for adult GCSE is well tolerated but did not increase the proportion of patients hospital-discharged by day 15. TRIAL REGISTRATION NO NCT01791868 (ClinicalTrials.gov registry), registered: 15 February 2012.
Collapse
Affiliation(s)
- Tarek Sharshar
- grid.508487.60000 0004 7885 7602Neuro-Intensive Care Medicine, Anaesthesiology and ICU Department, GHU-Psychiatry and Neurosciences, Pole Neuro, Sainte-Anne Hospital, Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université Paris Cité, Paris, France
| | - Raphaël Porcher
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France ,grid.411394.a0000 0001 2191 1995Centre d’Epidémiologie Clinique, AP-HP, Hôpital Hôtel Dieu, F-75004 Paris, France
| | - Pierre Asfar
- grid.411147.60000 0004 0472 0283Department of Medical Intensive Care, University Hospital, Angers, France
| | - Lamiae Grimaldi
- grid.50550.350000 0001 2175 4109Clinical Research Unit, Assistance Publique - Hôpitaux de Paris University Paris-Saclay. Faculty of medicine, University of Versailles Saint-Quentin en Yvelines. Inserm U1018 Team Anti-infective evasion and pharmacoepidemiology, Boulogne-Billancourt, France
| | - Julien Jabot
- Medical-Surgical Intensive Care Unit, CHU Felix-Guyon, Saint-Denis, La Réunion, France
| | - Laurent Argaud
- grid.412180.e0000 0001 2198 4166Service de Médecine Intensive-Réanimation, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Christine Lebert
- grid.477015.00000 0004 1772 6836Médecine Intensive Réanimation, Centre Hospitalier Départemental de Vendée, La Roche-sur-Yon, France
| | - Pierre-Edouard Bollaert
- grid.29172.3f0000 0001 2194 6418CHRU-Nancy, Service de Médecine Intensive Réanimation, Université de Lorraine, 54000 Nancy, France
| | - Marie Line Harlay
- grid.412201.40000 0004 0593 6932Médecine Intensive Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Patrick Chillet
- Service de Médecine Intensive - Réanimation, Centre hospitalier Léon Bourgeois, Châlons en Champagne, France
| | - Eric Maury
- grid.462844.80000 0001 2308 1657Service de Médecine Intensive et Réanimation Hôpital Saint-Antoine, Paris-Sorbonne Université, Paris, France
| | - Francois Santoli
- grid.414308.a0000 0004 0594 0368Médecine Intensive—Réanimation, Centre Hospitalier Robert Ballanger, Aulnay sous Bois, France
| | - Pascal Blanc
- grid.440383.80000 0004 1765 1969Réanimation Médico Chirurgicale, Centre Hospitalier René Dubos, Pontoise, France
| | - Romain Sonneville
- Université de Paris Cité, INSERM UMR1137, Paris, France ,grid.411119.d0000 0000 8588 831XAPHP Nord, Médecine Intensive – Réanimation, Hôpital Bichat—Claude Bernard, Paris, France
| | - Dinh Chuyen Vu
- General Intensive Care Unit, Sud-Essonne Hospital, Etampes, France
| | - Benjamin Rohaut
- grid.462844.80000 0001 2308 1657Department of Neurology, Neuro-ICU & Brain institute - ICM, Pitié-Salpêtrière Hospital APHP, Sorbonne Université, Paris, France
| | - Aurelien Mazeraud
- grid.508487.60000 0004 7885 7602Anaesthesiology and ICU Department, GHU-Psychiatry and Neurosciences, Pole Neuro, Sainte-Anne Hospital, Perception and Memory Unit, Neurosciences Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean-Claude Alvarez
- grid.12832.3a0000 0001 2323 0229Department of Pharmacology and Toxicology, Inserm U-1173, Raymond Poincare Hospital, AP-HP, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, 104 Boulevard Raymond Poincare, 92380 Garches, France
| | - Vincent Navarro
- grid.425274.20000 0004 0620 5939AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, Sorbonne Université, and Paris Brain Institute, Paris, France
| | - Bernard Clair
- grid.12832.3a0000 0001 2323 0229General Intensive Care Unit, APHP, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, Garches, France
| | - Hervé Outin
- grid.418056.e0000 0004 1765 2558Intensive Care Unit Centre Hospitalier Intercommunal, Poissy/Saint-Germain-en-Laye, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hu R, Hameed UFS, Sun X, Moorthy BS, Zhang W, Jeffrey PD, Zhou L, Ma X, Chen F, Pei J, Giri PK, Mou Y, Swaminathan K, Yuan P. A NR2E1-interacting peptide of LSD1 inhibits the proliferation of brain tumour initiating cells. Cell Prolif 2023; 56:e13350. [PMID: 36321378 DOI: 10.1111/cpr.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Elimination of brain tumour initiating cells (BTICs) is important for the good prognosis of malignant brain tumour treatment. To develop a novel strategy targeting BTICs, we studied NR2E1(TLX) involved self-renewal mechanism of BTICs and explored the intervention means. MATERIALS AND METHODS NR2E1 and its interacting protein-LSD1 in BTICs were studied by gene interference combined with cell growth, tumour sphere formation, co-immunoprecipitation and chromatin immunoprecipitation assays. NR2E1 interacting peptide of LSD1 was identified by Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) and analysed by in vitro functional assays. The in vivo function of the peptide was examined with intracranial mouse model by transplanting patient-derived BTICs. RESULTS We found NR2E1 recruits LSD1, a lysine demethylase, to demethylate mono- and di-methylated histone 3 Lys4 (H3K4me/me2) at the Pten promoter and repress its expression, thereby promoting BTIC proliferation. Using Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) method, we identified four LSD1 peptides that may interact with NR2E1. One of the peptides, LSD1-197-211 that locates at the LSD1 SWIRM domain, strongly inhibited BTIC proliferation by promoting Pten expression through interfering NR2E1 and LSD1 function. Furthermore, overexpression of this peptide in human BTICs can inhibit intracranial tumour formation. CONCLUSION Peptide LSD1-197-211 can repress BTICs by interfering the synergistic function of NR2E1 and LSD1 and may be a promising lead peptide for brain tumour therapy in future.
Collapse
Affiliation(s)
- Rong Hu
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Xiang Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | | | - Wen Zhang
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Li Zhou
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin Ma
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fangjin Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Pankaj K Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - Ping Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Patel MA, Bimali M, Li C, Kesaria A, Xia F. The effect of anticonvulsants on survival among patients with GBM brain tumors undergoing radiation: A SEER-Medicare analysis. J Clin Neurosci 2022; 106:32-36. [PMID: 36265362 PMCID: PMC9896587 DOI: 10.1016/j.jocn.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Patients with glioblastoma multiforme (GBM) who undergo radiation often require anticonvulsants during treatment. The aim of this study was to determine the effects of anticonvulsants on GBM clinical outcomes. METHODS A retrospective analysis was performed using the SEER-Medicare database. All patients with GBM who were treated with radiation and concurrently taking an anticonvulsant were included in final analysis. Each class of medication was further subdivided by mechanism of action. Descriptive statistics were performed for all variables. Kaplan Meier survival curves were generated for each class of medication and Cox regression analysis was performed to assess the effect of each individual variable on survival. RESULTS There were 1561 patients available for final analysis. On multivariate Cox regression analysis, GBM patients taking sodium/calcium (Na/Ca) channel blocker anticonvulsants during radiation therapy demonstrated both improved overall survival (OS) (HR, 0.799; 95% CI [0.716, 0.891]; P < 0.001) and cancer specific survival (CSS) (HR, 0.814; 95% CI [0.727, 0.911]; P < 0.001). CONCLUSION OS was significantly better in patients taking NA/Ca channel blockers among patients with GBM who were concurrently undergoing radiation therapy.
Collapse
Affiliation(s)
- Mausam A. Patel
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States of America
| | - Milan Bimali
- Department of Biostatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States of America
| | - Chenghui Li
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States of America
| | - Anam Kesaria
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States of America
| | - Fen Xia
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States of America
| |
Collapse
|
20
|
Sánchez-Villalobos JM, Aledo-Serrano Á, Villegas-Martínez I, Shaikh MF, Alcaraz M. Epilepsy treatment in neuro-oncology: A rationale for drug choice in common clinical scenarios. Front Pharmacol 2022; 13:991244. [PMID: 36278161 PMCID: PMC9583251 DOI: 10.3389/fphar.2022.991244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy represents a challenge in the management of patients with brain tumors. Epileptic seizures are one of the most frequent comorbidities in neuro-oncology and may be the debut symptom of a brain tumor or a complication during its evolution. Epileptogenic mechanisms of brain tumors are not yet fully elucidated, although new factors related to the underlying pathophysiological process with possible treatment implications have been described. In recent years, the development of new anti-seizure medications (ASM), with better pharmacokinetic profiles and fewer side effects, has become a paradigm shift in many clinical scenarios in neuro-oncology, being able, for instance, to adapt epilepsy treatment to specific features of each patient. This is crucial in several situations, such as patients with cognitive/psychiatric comorbidity, pregnancy, or advanced age, among others. In this narrative review, we provide a rationale for decision-making in ASM choice for neuro-oncologic patients, highlighting the strengths and weaknesses of each drug. In addition, according to current literature evidence, we try to answer some of the most frequent questions that arise in daily clinical practice in patients with epilepsy related to brain tumors, such as, which patients are the best candidates for ASM and when to start it, what is the best treatment option for each patient, and what are the major pitfalls to be aware of during follow-up.
Collapse
Affiliation(s)
- José Manuel Sánchez-Villalobos
- Department of Neurology, University Hospital Complex of Cartagena, Murcia, Spain
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence, “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Ángel Aledo-Serrano
- Epilepsy Program, Department of Neurology, Ruber International Hospital, Madrid, Spain
- *Correspondence: Ángel Aledo-Serrano,
| | | | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Miguel Alcaraz
- Department of Radiology and Physical Medicine, School of Medicine, Regional Campus of International Excellence, “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| |
Collapse
|
21
|
Abstract
Glioblastoma is the most aggressive primary brain tumor with a poor prognosis. The 2021 WHO CNS5 classification has further stressed the importance of molecular signatures in diagnosis although therapeutic breakthroughs are still lacking. In this review article, updates on the current and novel therapies in IDH-wildtype GBM will be discussed.
Collapse
Affiliation(s)
- Jawad M Melhem
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - James R Perry
- Division of Neurology, Department of Medicine, Faculty of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
22
|
Seidel S, Wehner T, Miller D, Wellmer J, Schlegel U, Grönheit W. Brain tumor related epilepsy: pathophysiological approaches and rational management of antiseizure medication. Neurol Res Pract 2022; 4:45. [PMID: 36059029 PMCID: PMC9442934 DOI: 10.1186/s42466-022-00205-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Brain tumor related epilepsy (BTRE) is a common complication of cerebral tumors and its incidence is highly dependent on the type of tumor, ranging from 10–15% in brain metastases to > 80% in low grade gliomas. Clinical management is challenging and has to take into account aspects beyond the treatment of non-tumoral epilepsy. Main body Increasing knowledge about the pathophysiology of BTRE, particularly on glutamatergic mechanisms of oncogenesis and epileptogenesis, might influence management of anti-tumor and BTRE treatment in the future. The first seizure implies the diagnosis of epilepsy in patients with brain tumors. Due to the lack of prospective randomized trials in BTRE, general recommendations for focal epilepsies currently apply concerning the initiation of antiseizure medication (ASM). Non-enzyme inducing ASM is preferable. Prospective trials are needed to evaluate, if AMPA inhibitors like perampanel possess anti-tumor effects. ASM withdrawal has to be weighed very carefully against the risk of seizure recurrence, but can be achievable in selected patients. Permission to drive is possible for some patients with BTRE under well-defined conditions, but requires thorough neurological, radiological, ophthalmological and neuropsychological examination.
Conclusion An evolving knowledge on pathophysiology of BTRE might influence future therapy. Randomized trials on ASM in BTRE with reliable endpoints are needed. Management of withdrawal of ASMs and permission to drive demands thorough diagnostic as well as neurooncological and epileptological expertise.
Collapse
|
23
|
Huang W, Hao Z, Mao F, Guo D. Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Front Oncol 2022; 12:911876. [PMID: 35785151 PMCID: PMC9247310 DOI: 10.3389/fonc.2022.911876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary malignant tumor in the brain and has a dismal prognosis despite patients accepting standard therapies. Alternation of genes and deregulation of proteins, such as receptor tyrosine kinase, PI3K/Akt, PKC, Ras/Raf/MEK, histone deacetylases, poly (ADP-ribose) polymerase (PARP), CDK4/6, branched-chain amino acid transaminase 1 (BCAT1), and Isocitrate dehydrogenase (IDH), play pivotal roles in the pathogenesis and progression of glioma. Simultaneously, the abnormalities change the cellular biological behavior and microenvironment of tumor cells. The differences between tumor cells and normal tissue become the vulnerability of tumor, which can be taken advantage of using targeted therapies. Small molecule inhibitors, as an important part of modern treatment for cancers, have shown significant efficacy in hematologic cancers and some solid tumors. To date, in glioblastoma, there have been more than 200 clinical trials completed or ongoing in which trial designers used small molecules as monotherapy or combination regimens to correct the abnormalities. In this review, we summarize the dysfunctional molecular mechanisms and highlight the outcomes of relevant clinical trials associated with small-molecule targeted therapies. Based on the outcomes, the main findings were that small-molecule inhibitors did not bring more benefit to newly diagnosed glioblastoma, but the clinical studies involving progressive glioblastoma usually claimed “noninferiority” compared with historical results. However, as to the clinical inferiority trial, similar dosing regimens should be avoided in future clinical trials.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| |
Collapse
|
24
|
Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery-A Comprehensive Review of the Literature. Biomolecules 2021; 11:biom11121870. [PMID: 34944514 PMCID: PMC8699739 DOI: 10.3390/biom11121870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with an extremely poor prognosis. There is a dire need to develop effective therapeutics to overcome the intrinsic and acquired resistance of GBM to current therapies. The process of developing novel anti-neoplastic drugs from bench to bedside can incur significant time and cost implications. Drug repurposing may help overcome that obstacle. A wide range of drugs that are already approved for clinical use for the treatment of other diseases have been found to target GBM-associated signaling pathways and are being repurposed for the treatment of GBM. While many of these drugs are undergoing pre-clinical testing, others are in the clinical trial phase. Since GBM stem cells (GSCs) have been found to be a main source of tumor recurrence after surgery, recent studies have also investigated whether repurposed drugs that target these pathways can be used to counteract tumor recurrence. While several repurposed drugs have shown significant efficacy against GBM cell lines, the blood–brain barrier (BBB) can limit the ability of many of these drugs to reach intratumoral therapeutic concentrations. Localized intracranial delivery may help to achieve therapeutic drug concentration at the site of tumor resection while simultaneously minimizing toxicity and side effects. These strategies can be considered while repurposing drugs for GBM.
Collapse
|
25
|
Hwang K, Kim J, Kang SG, Jung TY, Kim JH, Kim SH, Kang SH, Hong YK, Kim TM, Kim YJ, Choi BS, Chang JH, Kim CY. Levetiracetam as a sensitizer of concurrent chemoradiotherapy in newly diagnosed glioblastoma: An open-label phase 2 study. Cancer Med 2021; 11:371-379. [PMID: 34845868 PMCID: PMC8729048 DOI: 10.1002/cam4.4454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND An open-label single-arm phase 2 study was conducted to evaluate the role of levetiracetam as a sensitizer of concurrent chemoradiotherapy (CCRT) for patients with newly diagnosed glioblastoma. This study aimed to determine the survival benefit of levetiracetam in conjunction with the standard treatment for glioblastoma. METHODS Major eligibility requirements included histologically proven glioblastoma in the supratentorial region, patients 18 years or older, and Eastern Cooperative Oncology Group (ECOG) performance status of 0-2. Levetiracetam was given at 1,000-2,000 mg daily in two divided doses during CCRT and adjuvant chemotherapy thereafter. The primary and the secondary endpoints were 6-month progression-free survival (6mo-PFS) and 24-month overall survival (24mo-OS), respectively. Outcomes of the study group were compared to those of an external control group. RESULTS Between July 2016 and January 2019, 76 patients were enrolled, and 73 patients were included in the final analysis. The primary and secondary outcomes were improved in the study population compared to the external control (6mo-PFS, 84.9% vs. 72.3%, p = 0.038; 24mo-OS, 58.0% vs. 39.9%, p = 0.018), but the differences were less prominent in a propensity score-matched analysis (6mo-PFS, 88.0% vs. 76.9%, p = 0.071; 24mo-OS, 57.1% vs. 38.8%, p = 0.054). In exploratory subgroup analyses, some results suggested that patients with ages under 65 years or unmethylated MGMT promoter might have a greater survival benefit from the use of levetiracetam. CONCLUSIONS The use of levetiracetam during CCRT in patients with newly diagnosed glioblastoma may result in improved outcomes, but further investigations are warranted.
Collapse
Affiliation(s)
- Kihwan Hwang
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Junhyung Kim
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University College of Medicine, Hwasun, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Jung Kim
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Byung Se Choi
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
26
|
Cucchiara F, Ferraro S, Luci G, Bocci G. Relevant pharmacological interactions between alkylating agents and antiepileptic drugs: Preclinical and clinical data. Pharmacol Res 2021; 175:105976. [PMID: 34785318 DOI: 10.1016/j.phrs.2021.105976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 01/01/2023]
Abstract
Seizures are relatively common in cancer patients, and co-administration of chemotherapeutic and antiepileptic drugs (AEDs) is highly probable and necessary in many cases. Nonetheless, clinically relevant interactions between chemotherapeutic drugs and AEDs are rarely summarized and pharmacologically described. These interactions can cause insufficient tumor and seizure control or lead to unforeseen toxicity. This review focused on pharmacokinetic and pharmacodynamic interactions between alkylating agents and AEDs, helping readers to make a rational choice of treatment optimization, and thus improving patients' quality of life. As an example, phenobarbital, phenytoin, and carbamazepine, by increasing the hepatic metabolism of cyclophosphamide, ifosfamide and busulfan, yield smaller peak concentrations and a reduced area under the plasma concentration-time curve (AUC) of the prodrugs; alongside, the maximum concentration and AUC of their active products were increased with the possible onset of severe adverse drug reactions. On the other side, valproic acid, acting as histone deacetylase inhibitor, showed synergistic effects with temozolomide when tested in glioblastoma. The present review is aimed at providing evidence that may offer useful suggestions for rational pharmacological strategies in patients with seizures symptoms undertaking alkylating agents. Firstly, clinicians should avoid the use of enzyme-inducing AEDs in combination with alkylating agents and prefer the use of AEDs, such as levetiracetam, that have a low or no impact on hepatic metabolism. Secondly, a careful therapeutic drug monitoring of both alkylating agents and AEDs (and their active metabolites) is necessary to maintain therapeutic ranges and to avoid serious adverse reactions.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy
| | - Sara Ferraro
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Luci
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy.
| |
Collapse
|
27
|
Pallud J, Huberfeld G, Dezamis E, Peeters S, Moiraghi A, Gavaret M, Guinard E, Dhermain F, Varlet P, Oppenheim C, Chrétien F, Roux A, Zanello M. Effect of Levetiracetam Use Duration on Overall Survival of Isocitrate Dehydrogenase Wildtype Glioblastoma in Adults: An Observational Study. Neurology 2021; 98:e125-e140. [PMID: 34675100 DOI: 10.1212/wnl.0000000000013005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/15/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The association between Levetiracetam and survival of Isocitrate Dehydrogenase (IDH) wildtype glioblastomas is controversial. We investigated whether the duration of Levetiracetam use during the standard chemoradiation protocol impacts overall survival of IDH-wildtype glioblastoma patients. METHODS Observational single-institution cohort study (2010-2018). Inclusion criteria were: 1) patients ≥18 years old; 2) newly diagnosed supratentorial tumor; 3) histomolecular diagnosis of IDH-wildtype glioblastoma; 4) standard chemoradiation protocol. To assess the survival benefit of Levetiracetam use during the standard chemoradiation protocol (whole duration, part time, and never subgroups), a Cox proportional hazard model was constructed. We performed a case-matched analysis (1:1) between patients with Levetiracetam use during the whole duration of the standard chemoradiation protocol and patients with Levetiracetam use part time or never according to the following criteria: sex, age, epileptic seizures at diagnosis, RTOG-RPA class, tumor location, preoperative volume, extent of resection, and O6-Methylguanine-DNA methyltransferase promoter methylation status. Patients with unavailable O6-Methylguanine-DNA methyltransferase promoter methylation status (48.5%) were excluded. RESULTS 460 patients were included. The median overall survival was longer in the 116 patients with Levetiracetam use during the whole duration of the standard chemoradiation protocol (21.0 months; 95%CI, 17.2-24.0) than in the 126 patients with part time Levetiracetam use (16.8 months; 95%CI, 12.4-19.0], and in the 218 patients who never received Levetiracetam (16.0 months; 95%CI, 15.5-19.4; p=0.027). Levetiracetam use during the whole duration of the standard chemoradiation protocol (adjusted Hazard Ratio (aHR) 0.69; 95%CI, 0.52-0.93; p=0.014), O6-Methylguanine-DNA methyltransferase promoter methylation (aHR 0.53; 95%CI, 0.39-0.71; p<0.001), and gross total tumor resection (aHR 0.57; 95%CI, 0.44-0.74; p<0.001) were independent predictors of a longer overall survival. After case matching (n=54 per group), a longer overall survival was found for Levetiracetam use during the whole duration of the standard chemoradiation protocol (HR=0.63; 95%CI, 0.42-0.94, p=0.023). DISCUSSION Levetiracetam use during the whole standard chemoradiation protocol possibly improves overall survival of IDH-wildtype glioblastoma patients. It should be considered in the anti-tumor strategy of future multicentric trials. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that in individuals with IDH-wildtype glioblastoma, levetiracetam use throughout the duration of standard chemotherapy is associated with longer median overall survival.
Collapse
Affiliation(s)
- Johan Pallud
- Department of Neurosurgery, GHU Paris - Sainte-Anne Hospital, Paris, France .,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Gilles Huberfeld
- Neurology Department, Hopital Fondation Adolphe de Rothschild, 29 rue Main, 75019 Paris, France.,Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL Paris, France
| | - Edouard Dezamis
- Department of Neurosurgery, GHU Paris - Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Sophie Peeters
- Department of Neurosurgery, University of California, Los Angeles - Los Angeles, CA, USA
| | - Alessandro Moiraghi
- Department of Neurosurgery, GHU Paris - Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Martine Gavaret
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Department of Neurophysiology, GHU Paris - Sainte-Anne Hospital, Paris, France
| | - Eléonore Guinard
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Department of Neurophysiology, GHU Paris - Sainte-Anne Hospital, Paris, France
| | - Frédéric Dhermain
- Department of Radiotherapy, Gustave Roussy University Hospital, Villejuif, France
| | - Pascale Varlet
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Department of Neuropathology, GHU Paris - Sainte-Anne Hospital, Paris, France
| | - Catherine Oppenheim
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Department of Neuroradiology, GHU Paris - Sainte-Anne Hospital, Paris, France
| | - Fabrice Chrétien
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Department of Neuropathology, GHU Paris - Sainte-Anne Hospital, Paris, France
| | - Alexandre Roux
- Department of Neurosurgery, GHU Paris - Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Marc Zanello
- Department of Neurosurgery, GHU Paris - Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| |
Collapse
|
28
|
IDH1 mutant glioma is preferentially sensitive to the HDAC inhibitor panobinostat. J Neurooncol 2021; 154:159-170. [PMID: 34424450 PMCID: PMC8437887 DOI: 10.1007/s11060-021-03829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 11/12/2022]
Abstract
Introduction A large subset of diffusely infiltrative gliomas contains a gain-of-function mutation in isocitrate dehydrogenase 1 or 2 (IDH1/2mut) which produces 2-hydroxglutarate, an inhibitor of α-ketoglutarate-dependent DNA demethylases, thereby inducing widespread DNA and histone methylation. Because histone deacetylase (HDAC) enzymes are localized to methylated chromatin via methyl-binding domain proteins, IDH1/2mut gliomas may be more dependent on HDAC activity, and therefore may be more sensitive to HDAC inhibitors. Methods Six cultured patient-derived glioma cell lines, IDH1wt (n = 3) and IDH1mut (n = 3), were treated with an FDA-approved HDAC inhibitor, panobinostat. Cellular cytotoxicity and proliferation assays were conducted by flow cytometry. Histone modifications and cell signaling pathways were assessed using immunoblot and/or ELISA. Results IDH1mut gliomas exhibited marked upregulation of genes associated with the HDAC activity. Glioma cell cultures bearing IDH1mut were significantly more sensitive to the cytotoxic and antiproliferative effects of panobinostat, compared to IDH1wt glioma cells. Panobinostat caused a greater increase in acetylation of the histone residues H3K14, H3K18, and H3K27 in IDH1mut glioma cells. Another HDAC inhibitor, valproic acid, was also more effective against IDH1mut glioma cells. Conclusion These data suggest that IDH1mut gliomas may be preferentially sensitive to HDAC inhibitors. Further, IDH1mut glioma cultures showed enhanced accumulation of acetylated histone residues in response to panobinostat treatment, suggesting a direct epigenetic mechanism for this sensitivity. This provides a rationale for further exploration of HDAC inhibitors against IDH1mut gliomas. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03829-0.
Collapse
|
29
|
How about Levetiracetam in Glioblastoma? An Institutional Experience and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13153770. [PMID: 34359673 PMCID: PMC8345097 DOI: 10.3390/cancers13153770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary To date, there is a discrepancy regarding the role of antiepileptic drugs on glioblastoma survival. In the present study, based on large institutional cohort and enhanced with a meta-analysis of seven previously published studies, we show a robust association between the perioperative start of levetiracetam treatment with increased overall and progression-free survival in glioblastoma. Our results encourage the initiation of a prospective clinical trial to analyze the antitumor effect of levetiracetam in glioblastoma patients. Abstract Despite multimodal treatment, the prognosis of patients with glioblastoma (GBM) remains poor. Previous studies showed conflicting results on the effect of antiepileptic drugs (AED) on GBM survival. We investigated the associations of different AED with overall survival (OS) and progression-free survival (PFS) in a large institutional GBM cohort (n = 872) treated January 2006 and December 2018. In addition, we performed a meta-analysis of previously published studies, including this study, to summarize the evidence on the value of AED for GBM prognosis. Of all perioperatively administered AED, only the use of levetiracetam (LEV) was associated with longer OS (median: 12.8 vs. 8.77 months, p < 0.0001) and PFS (7 vs. 4.5 months, p = 0.001). In the multivariable analysis, LEV was independently associated with longer OS (aHR = 0.74, p = 0.017) and PFS (aHR = 0.68, p = 0.008). In the meta-analysis with 5614 patients from the present and seven previously published studies, outcome benefit for OS (HR = 0.83, p = 0.02) and PFS (HR = 0.77, p = 0.02) in GBM individuals with LEV was confirmed. Perioperative treatment with LEV might improve the prognosis of GBM patients. We recommend a prospective randomized controlled trial addressing the efficacy of LEV in GBM treatment.
Collapse
|
30
|
Walbert T, Harrison RA, Schiff D, Avila EK, Chen M, Kandula P, Lee JW, Le Rhun E, Stevens GHJ, Vogelbaum MA, Wick W, Weller M, Wen PY, Gerstner ER. SNO and EANO practice guideline update: Anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Neuro Oncol 2021; 23:1835-1844. [PMID: 34174071 DOI: 10.1093/neuonc/noab152] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To update the 2000 American Academy of Neurology (AAN) practice parameter on anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. METHODS Following the 2017 AAN methodologies, a systematic literature review utilizing PubMed, EMBASE, Cochrane, and Web of Science databases was performed. The studies were rated based on the AAN therapeutic or causation classification of evidence (Class I-IV). RESULTS Thirty-seven articles were selected for final analysis. There were limited high level, Class I studies and mostly Class II and III studies. The AAN affirmed the value of these guidelines. RECOMMENDATIONS In patients with newly diagnosed brain tumors who have not had a seizure, clinicians should not prescribe anti-epileptic drugs (AEDs) to reduce the risk of seizures (Level A). In brain tumor patients undergoing surgery, there is insufficient evidence to recommend prescribing AEDs to reduce the risk of seizures in the peri- or postoperative period (Level C). There is insufficient evidence to support prescribing valproic acid or levetiracetam with the intent to prolong progression-free or overall survival (Level C). Physicians may consider use of levetiracetam over older AEDs to reduce side effects (Level C). There is insufficient evidence to support using tumor location, histology, grade, molecular/imaging features, when deciding whether or not to prescribe prophylactic AEDs (Level U).
Collapse
Affiliation(s)
- Tobias Walbert
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | | | - David Schiff
- University of Virginia Health System, Charlottesville, VA, USA
| | - Edward K Avila
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Merry Chen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmaja Kandula
- Division of Clinical Neurophysiology and Epilepsy, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York USA
| | | | - Emilie Le Rhun
- Departments of Neurology and Neurosurgery, Brain Tumor Center & Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Glen H J Stevens
- Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Wolfgang Wick
- Neurology Clinic and Neurooncology Program, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elizabeth R Gerstner
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Lange F, Hörnschemeyer J, Kirschstein T. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy. Cells 2021; 10:cells10051226. [PMID: 34067762 PMCID: PMC8156732 DOI: 10.3390/cells10051226] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The progression of glioblastomas is associated with a variety of neurological impairments, such as tumor-related epileptic seizures. Seizures are not only a common comorbidity of glioblastoma but often an initial clinical symptom of this cancer entity. Both, glioblastoma and tumor-associated epilepsy are closely linked to one another through several pathophysiological mechanisms, with the neurotransmitter glutamate playing a key role. Glutamate interacts with its ionotropic and metabotropic receptors to promote both tumor progression and excitotoxicity. In this review, based on its physiological functions, our current understanding of glutamate receptors and glutamatergic signaling will be discussed in detail. Furthermore, preclinical models to study glutamatergic interactions between glioma cells and the tumor-surrounding microenvironment will be presented. Finally, current studies addressing glutamate receptors in glioma and tumor-related epilepsy will be highlighted and future approaches to interfere with the glutamatergic network are discussed.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
- Correspondence: (F.L.); (T.K.)
| | - Julia Hörnschemeyer
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
- Correspondence: (F.L.); (T.K.)
| |
Collapse
|
32
|
Synergistic Effect of Perampanel and Temozolomide in Human Glioma Cell Lines. J Pers Med 2021; 11:jpm11050390. [PMID: 34068749 PMCID: PMC8150827 DOI: 10.3390/jpm11050390] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is characterized by a high proliferative rate and drug resistance. The standard of care includes maximal safe surgery, followed by radiotherapy and temozolomide chemotherapy. The expression of glutamate receptors has been previously reported in human glioma cell lines. The aim of this study was to examine the cellular effects of perampanel, a broad-spectrum antiepileptic drug acting as an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) glutamate receptor antagonist, alone or in combination with temozolomide. Four human glioma cell lines were exposed to different concentrations of perampanel and temozolomide, alone or in combination. The type of drug interaction was assessed using the Chou-Talalay method. Apoptosis, cell cycle perturbation, and glutamate receptors (GluRs) subunit expression were assessed by flow cytometry. Perampanel significantly inhibited the growth, inducing high levels of apoptosis. A strong synergistic effect of the combination of perampanel with temozolomide was detected in U87 and A172, but not in U138. Treatment with perampanel resulted in an increased GluR2/3 subunit expression in U87 and U138. Perampanel displays a pro-apoptotic effect on human glioblastoma cell lines when used alone, possibly due to increased GluR2/3 expression. The observed synergistic effect of the combination of temozolomide with perampanel suggests further investigation on the impact of this combination on oncologic outcomes in glioblastoma.
Collapse
|
33
|
Zoccarato M, Nardetto L, Basile AM, Giometto B, Zagonel V, Lombardi G. Seizures, Edema, Thrombosis, and Hemorrhages: An Update Review on the Medical Management of Gliomas. Front Oncol 2021; 11:617966. [PMID: 33828976 PMCID: PMC8019972 DOI: 10.3389/fonc.2021.617966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Patients affected with gliomas develop a complex set of clinical manifestations that deeply impact on quality of life and overall survival. Brain tumor-related epilepsy is frequently the first manifestation of gliomas or may occur during the course of disease; the underlying mechanisms have not been fully explained and depend on both patient and tumor factors. Novel treatment options derive from the growing use of third-generation antiepileptic drugs. Vasogenic edema and elevated intracranial pressure cause a considerable burden of symptoms, especially in high-grade glioma, requiring an adequate use of corticosteroids. Patients with gliomas present with an elevated risk of tumor-associated venous thromboembolism whose prophylaxis and treatment are challenging, considering also the availability of new oral anticoagulant drugs. Moreover, intracerebral hemorrhages can complicate the course of the illness both due to tumor-specific characteristics, patient comorbidities, and side effects of antithrombotic and antitumoral therapies. This paper aims to review recent advances in these clinical issues, discussing the medical management of gliomas through an updated literature review.
Collapse
Affiliation(s)
- Marco Zoccarato
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | - Lucia Nardetto
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | | | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| |
Collapse
|
34
|
Bivalent Genes Targeting of Glioma Heterogeneity and Plasticity. Int J Mol Sci 2021; 22:ijms22020540. [PMID: 33430434 PMCID: PMC7826605 DOI: 10.3390/ijms22020540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas account for most primary Central Nervous System (CNS) neoplasms, characterized by high aggressiveness and low survival rates. Despite the immense research efforts, there is a small improvement in glioma survival rates, mostly attributed to their heterogeneity and complex pathophysiology. Recent data indicate the delicate interplay of genetic and epigenetic mechanisms in regulating gene expression and cell differentiation, pointing towards the pivotal role of bivalent genes. Bivalency refers to a property of chromatin to acquire more than one histone marks during the cell cycle and rapidly transition gene expression from an active to a suppressed transcriptional state. Although first identified in embryonal stem cells, bivalent genes have now been associated with tumorigenesis and cancer progression. Emerging evidence indicates the implication of bivalent gene regulation in glioma heterogeneity and plasticity, mainly involving Homeobox genes, Wingless-Type MMTV Integration Site Family Members, Hedgehog protein, and Solute Carrier Family members. These genes control a wide variety of cellular functions, including cellular differentiation during early organism development, regulation of cell growth, invasion, migration, angiogenesis, therapy resistance, and apoptosis. In this review, we discuss the implication of bivalent genes in glioma pathogenesis and their potential therapeutic targeting options.
Collapse
|
35
|
Valiyaveettil D, Malik M, Joseph DM, Ahmed SF, Kothwal SA, Vijayasaradhi M. Effect of valproic acid on survival in glioblastoma: A prospective single-arm study. South Asian J Cancer 2020; 7:159-162. [PMID: 30112328 PMCID: PMC6069328 DOI: 10.4103/sajc.sajc_188_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Retrospective evidence suggests that valproic acid (VPA), an antiepileptic drug, is associated with improved outcomes in glioblastoma. The exact mechanism of interaction of VPA with radiation and temozolomide (TMZ) is still unclear. Laboratory studies show that VPA can enhance tumor cell kill while at the same time protect the normal neural tissue. The aim of this study was to prospectively evaluate the benefit of VPA on outcomes in glioblastoma. Materials and Methods: In this single-arm prospective study, patients of glioblastoma were started on seizure prophylaxis with VPA (15–20 mg/kg/day) following maximal safe resection. All patients were treated with chemoradiation to a dose of 60 Gy in 30 fractions with concurrent TMZ followed by adjuvant TMZ for 6 cycles. VPA was continued during adjuvant treatment and follow-up. Survival analysis was done using Kaplan–Meier analysis. Results: Twenty patients were enrolled in the study. Median age was 47 years. M:F ratio was 3:1. Treatment was well tolerated with no grade 3/4 adverse events. 8/20 patients experience seizure episodes during treatment and/or follow-up which needed additional antiepileptic drugs for control. Median progression-free survival (PFS) and overall survival (OS) were 10 months and 16 months, respectively. Younger patients (age ≤45 years) showed a significantly better OS (25 months) versus older patients (8 months) (P = 0.002). Conclusions: Incidence of seizures on VPA prophylaxis was 40%. Median PFS and OS were comparable to historical controls. There was no significant treatment-related toxicity. The results need validation in larger prospective randomized studies.
Collapse
Affiliation(s)
- Deepthi Valiyaveettil
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Monica Malik
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Deepa M Joseph
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Syed Fayaz Ahmed
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Syed Akram Kothwal
- Department of Radiation Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - M Vijayasaradhi
- Department of Neurosurgery, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Neurologic complications in patients with cancer can significantly impact morbidity and mortality. Although these complications can be seen in patients without cancer as well, the purpose of this review is to highlight how the presentation, etiology, and management of delirium, seizures, cerebrovascular disease, and central nervous system infections may be different in patients with cancer. RECENT FINDINGS Some of the newer anticancer therapies are associated with neurologic complications. Delirium and seizures have been described in patients receiving chimeric antigen receptor (CAR) T-cell therapy and other immune effector cell therapies. Angiogenesis inhibitors can increase the risk of bleeding and clotting, including intracranial hemorrhage and stroke. The risk of opportunistic fungal infections, including aspergillosis, is elevated with the Bruton tyrosine kinase inhibitor ibrutinib. SUMMARY Providers should familiarize themselves with neurologic complications in patients with cancer because early diagnosis and intervention can improve outcomes. The differential diagnosis should be broad, including conventional causes as seen in patients who do not have cancer, with special consideration of etiologies specific to patients with cancer.
Collapse
|
37
|
Ahmadipour Y, Rauschenbach L, Santos A, Darkwah Oppong M, Lazaridis L, Quesada CM, Junker A, Pierscianek D, Dammann P, Wrede KH, Scheffler B, Glas M, Stuschke M, Sure U, Jabbarli R. Preoperative and early postoperative seizures in patients with glioblastoma-two sides of the same coin? Neurooncol Adv 2020; 3:vdaa158. [PMID: 33506201 PMCID: PMC7813191 DOI: 10.1093/noajnl/vdaa158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Symptomatic epilepsy is a common symptom of glioblastoma, which may occur in different stages of disease. There are discrepant reports on association between early seizures and glioblastoma survival, even less is known about the background of these seizures. We aimed at analyzing the risk factors and clinical impact of perioperative seizures in glioblastoma. Methods All consecutive cases with de-novo glioblastoma treated at our institution between 01/2006 and 12/2018 were eligible for this study. Perioperative seizures were stratified into seizures at onset (SAO) and early postoperative seizures (EPS, ≤21days after surgery). Associations between patients characteristics and overall survival (OS) with SAO and EPS were addressed. Results In the final cohort (n = 867), SAO and EPS occurred in 236 (27.2%) and 67 (7.7%) patients, respectively. SAO were independently predicted by younger age (P = .009), higher KPS score (P = .002), tumor location (parietal lobe, P = .001), GFAP expression (≥35%, P = .045), and serum chloride at admission (>102 mmol/L, P = .004). In turn, EPS were independently associated with tumor location (frontal or temporal lobe, P = .013) and pathologic laboratory values at admission (hemoglobin < 12 g/dL, [P = .044], CRP > 1.0 mg/dL [P = 0.036], and GGT > 55 U/L [P = 0.025]). Finally, SAO were associated with gross-total resection (P = .006) and longer OS (P = .030), whereas EPS were related to incomplete resection (P = .005) and poorer OS (P = .009). Conclusions In glioblastoma patients, SAO and EPS seem to have quite different triggers and contrary impact on treatment success and OS. The clinical characteristics of SAO and EPS patients might contribute to the observed survival differences.
Collapse
Affiliation(s)
- Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Laurèl Rauschenbach
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.,DKFZ-Division Translational Neurooncology at the WTZ, German Cancer Research Center (DKFZ) Heidelberg and German Cancer Consortium (DKTK) Partner Site University Hospital Essen, Essen, Germany
| | - Alejandro Santos
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Lazaros Lazaridis
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.,Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, Essen, Germany.,Department for Neurology, University Hospital Essen, Essen, Germany
| | - Carlos M Quesada
- Department for Neurology, University Hospital Essen, Essen, Germany
| | - Andreas Junker
- Department of Neuropathology, University Hospital Essen, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.,DKFZ-Division Translational Neurooncology at the WTZ, German Cancer Research Center (DKFZ) Heidelberg and German Cancer Consortium (DKTK) Partner Site University Hospital Essen, Essen, Germany
| | - Martin Glas
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.,Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, Essen, Germany.,Department for Neurology, University Hospital Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany.,Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
38
|
Guery D, Rheims S. Is the mechanism of action of antiseizure drugs a key element in the choice of treatment? Fundam Clin Pharmacol 2020; 35:552-563. [PMID: 33090514 DOI: 10.1111/fcp.12614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
About 25 antiseizure drugs are available for the treatment of patients with epilepsy. The choice of the most suited drug for a specific patient is primarily based on the results of the pivotal randomized clinical trials and on the patient's characteristics and comorbidities. Whether or not the mechanism of action of the antiseizure drugs should be also taken into account to better predict the patient's response to the treatment remains a matter of debate. Despite the apparent complexity and diversity of antiseizure drug mechanisms of action, the reality unfortunately remains that they are very close, in particular with regard to their relationship with the pathophysiology of epilepsy. With the only exception of the association between lamotrigine and sodium valproate, there are no clinical data that formally support a synergistic association between certain antiseizure drugs in terms of efficacy. However, anticipating risk of adverse events by limiting as far as possible the combination of drugs, which share the same mechanisms of action, is undoubtedly an important driver of daily therapeutic decisions.
Collapse
Affiliation(s)
- Deborah Guery
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon's Neuroscience Research Center, INSERM U1028 / CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
39
|
Kuo YJ, Yang YH, Lee IY, Chen PC, Yang JT, Wang TC, Lin MHC, Yang WH, Cheng CY, Chen KT, Huang WC, Lee MH. Effect of valproic acid on overall survival in patients with high-grade gliomas undergoing temozolomide: A nationwide population-based cohort study in Taiwan. Medicine (Baltimore) 2020; 99:e21147. [PMID: 32664146 PMCID: PMC7360242 DOI: 10.1097/md.0000000000021147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-grade gliomas (HGGs) are a rapidly progressive and highly recurrent group of primary brain tumors. Despite aggressive surgical resection with chemoradiotherapy, prognoses remained poor. Valproic acid (VPA), a histone deacetylase inhibitor has shown the potential to inhibit glioma cell growth in vitro through several diverse mechanisms. However clinical studies regarding the effect of VPA on HGGs are limited. This study aimed to investigate whether using VPA in patients with HGGs under temozolomide (TMZ) would lead to a better overall survival (OS).We used the Taiwan National Health Insurance Research database to conduct this population-based cohort study. A total of 2379 patients with HGGs under TMZ treatment were included and were further classified into VPA (n = 1212, VPA ≥ 84 defined daily dose [DDD]) and non-VPA (n = 1167, VPA < 84 DDD) groups. Each patient was followed from 1998 to 2013 or until death. A Cox proportional hazard regression was performed to evaluate the effect of VPA and OS.The VPA group had a longer mean OS time compared with the non-VPA group (OS: 50.3 ± 41.0 vs 42.0 ± 37.2 months, P < .001). In patients between 18 and 40 years old, the difference is most significant (OS: 70.5 ± 48.7 vs 55.1 ± 46.0, P = .001). The adjusted hazard ratio is 0.81 (95% confidence interval, 0.72-0.91) for the VPA group relative to the non-VPA group.VPA at over 84 DDD improved OS in HGGs TMZ treatment.
Collapse
Affiliation(s)
| | - Yao-Hsu Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital
- Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - I-Yun Lee
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital
| | - Pau-Chung Chen
- Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei
| | - Jen-Tsung Yang
- Department of Neurosurgery
- Chang Gung University, College of Medicine, Taoyuan
| | | | | | | | | | | | | | - Ming-Hsueh Lee
- Department of Neurosurgery
- Chang Gung University of Science and Technology Chiayi Campus, Chiayi, Taiwan
| |
Collapse
|
40
|
Roh TH, Moon JH, Park HH, Kim EH, Hong CK, Kim SH, Kang SG, Chang JH. Association between survival and levetiracetam use in glioblastoma patients treated with temozolomide chemoradiotherapy. Sci Rep 2020; 10:10783. [PMID: 32612203 PMCID: PMC7330022 DOI: 10.1038/s41598-020-67697-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to assess whether levetiracetam (LEV) affects the survival of patients with glioblastoma (GBM) treated with concurrent temozolomide (TMZ) chemotherapy. To this end, from 2004 to 2016, 322 patients with surgically resected and pathologically confirmed isocitrate dehydrogenase (IDH)-wildtype GBM who received TMZ-based chemoradiotherapy were analysed. The patients were divided into two groups based on whether LEV was used as an anticonvulsant both at the time of surgery and the first visit thereafter. The median overall survival (OS) and progression-free survival (PFS) were compared between the groups. The OS was 21.1 and 17.5 months in the LEV (+) and LEV (−) groups, respectively (P = 0.003); the corresponding PFS was 12.3 and 11.2 months (P = 0.017). The other prognostic factors included age, extent of resection, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, and Karnofsky Performance Status (KPS) score. The multivariate analysis showed age (hazard ratio [HR], 1.02; P < 0.001), postoperative KPS score (HR 0.99; P = 0.002), complete tumour resection (HR 0.52; P < 0.001), MGMT promoter methylation (HR 0.75; P < 0.001), and LEV use (HR 0.72; P = 0.011) were significantly associated with OS. In conclusion, LEV use was associated with prolonged survival in patients with GBM treated with concurrent TMZ chemoradiotherapy.
Collapse
Affiliation(s)
- Tae Hoon Roh
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hun Ho Park
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Patients with brain tumors are susceptible to multiple complications that can affect their survival or quality of life. The scope of these complications is widening due to prolonged overall survival and improved therapies. In this review, we discuss the most common complications in this patient population focusing on the recent literature. We specifically concentrated on tumor-related epilepsy, vasogenic edema, infectious, vascular, chemotherapeutic, radiation, endocrine, and cognitive complications. RECENT FINDINGS Molecular biomarkers play a role in epileptogenicity in brain tumor patients, and anti-epileptic drugs may cause neuro-cognitive side effects independent of other factors. The pathophysiology of vasogenic edema remains complex and poorly understood. Limited data suggest that newer oral anticoagulants appear to be safe and effective in venous and arterial thromboembolic complications. Brain tumor patients are prone to a wide variety of complications, including some related to new therapies. Optimal management of these complications improves quality of life, and in some cases overall survival.
Collapse
|
42
|
Thakkar JP, Prabhu VC, Rouse S, Lukas RV. Acute Neurological Complications of Brain Tumors and Immune Therapies, a Guideline for the Neuro-hospitalist. Curr Neurol Neurosci Rep 2020; 20:32. [PMID: 32596758 DOI: 10.1007/s11910-020-01056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Patients with brain tumors presenting to the emergency room with acute neurologic complications may warrant urgent investigations and emergent management. As the neuro-hospitalist will likely encounter this complex patient population, an understanding of the acute neurologic issues will have value. RECENT FINDINGS We discuss updated information and management regarding various acute neurologic complications among neuro-oncology patients and neurologic complications of immunotherapy. Understanding of the acute neurologic complications associated with central nervous system tumors and with common contemporary cancer treatments will facilitate the neuro-hospitalist management of these patient populations. While there are aspects analogous to the diagnosis and management in the non-oncologic population, a number of unique features discussed in this review should be considered.
Collapse
Affiliation(s)
- Jigisha P Thakkar
- Department of Neurology, Stritch School of Medicine, Loyola University Medical Center, 2160 S. 1st Avenue, Bldg 105, Room 2700, Maywood, IL, 60153, USA. .,Department of Neurosurgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Bldg 105, Room 1900, Maywood, IL, 60153, USA.
| | - Vikram C Prabhu
- Department of Neurosurgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Bldg 105, Room 1900, Maywood, IL, 60153, USA
| | - Stasia Rouse
- Department of Neurology, Stritch School of Medicine, Loyola University Medical Center, 2160 S. 1st Avenue, Bldg 105, Room 2700, Maywood, IL, 60153, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, 710 N. Lake Shore Drive, Abbott Hall 1114, Chicago, IL, 60611, USA.,Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
43
|
Cucchiara F, Pasqualetti F, Giorgi FS, Danesi R, Bocci G. Epileptogenesis and oncogenesis: An antineoplastic role for antiepileptic drugs in brain tumours? Pharmacol Res 2020; 156:104786. [PMID: 32278037 DOI: 10.1016/j.phrs.2020.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The first description of epileptic seizures due to brain tumours occurred in 19th century. Nevertheless, after over one hundred years, scientific literature is still lacking on how epilepsy and its treatment can affect tumour burden, progression and clinical outcomes. In patients with brain tumours, epilepsy dramatically impacts their quality of life (QoL). Even antiepileptic therapy seems to affect tumor lesion development. Numerous studies suggest that certain actors involved in epileptogenesis (inflammatory changes, glutamate and its ionotropic and metabotropic receptors, GABA-A and its GABA-AR receptor, as well as certain ligand- and voltage-gated ion channel) may also contribute to tumorigenesis. Although some antiepileptic drugs (AEDs) are known operating on such mechanisms underlying epilepsy and tumor development, few preclinical and clinical studies have tried to investigate them as targets of pharmacological tools acting to control both phenomena. The primary aim of this review is to summarize known determinants and pathophysiological mechanisms of seizures, as well as of cell growth and spread, in patients with brain tumors. Therefore, a special focus will be provided on the anticancer effects of commonly prescribed AEDs (including levetiracetam, valproic acid, oxcarbazepine and others), with an overview of both preclinical and clinical data. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- U.O. Radioterapia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - Filippo Sean Giorgi
- U.O. Neurologia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Pisa, Italy; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Romano Danesi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
44
|
Pötschke R, Gielen G, Pietsch T, Kramm C, Klusmann JH, Hüttelmaier S, Kühnöl CD. Musashi1 enhances chemotherapy resistance of pediatric glioblastoma cells in vitro. Pediatr Res 2020; 87:669-676. [PMID: 31756732 DOI: 10.1038/s41390-019-0628-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive form of glioma in adults and children and is associated with very poor prognosis. Pediatric tumors are biologically distinct from adult GBM and differ in response to current GBM treatment protocols. Regarding pediatric GBM, new drug combinations and the molecular background of chemotherapy effects need to be investigated, in order to increase patient survival outcome. METHODS The expression of the RNA-binding protein Musashi1 (MSI1) in pediatric glioma samples of different WHO tumor grades was investigated on the protein (immunohistochemistry) and on the RNA level (publicly accessible RNA sequencing dataset). The impact of the chemotherapeutic temozolomide (TMZ) in combination with valproic acid (VPA) was tested in two pediatric glioblastoma-derived cell lines. The supportive effect of MSI1 expression against this treatment was investigated via transient knockdown and protein overexpression. RESULTS MSI1 expression correlates with pediatric high-grade glioma (HGG). The combination of TMZ with VPA significantly increases the impact of drug treatment on cell viability in vitro. MSI1 was found to promote drug resistance to the combined treatment with TMZ and VPA. CONCLUSION MSI1 expression is a potential marker for pediatric HGG and increases chemoresistance. Inhibition of MSI1 might lead to an improved patient outcome and therapy response.
Collapse
Affiliation(s)
- Rebecca Pötschke
- Molecular Cell Biology, Institute of Molecular Medicine, Martin-Luther-University, Halle (Saale), Germany.,Department of Pediatric Hematology/Oncology, University Hospital, Halle (Saale), Germany
| | - Gerrit Gielen
- Institute of Neuropathology, University Hospital, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University Hospital, Bonn, Germany
| | - Christof Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center, Göttingen, Germany
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology/Oncology, University Hospital, Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Molecular Cell Biology, Institute of Molecular Medicine, Martin-Luther-University, Halle (Saale), Germany.
| | - Caspar D Kühnöl
- Department of Pediatric Hematology/Oncology, University Hospital, Halle (Saale), Germany.
| |
Collapse
|
45
|
Abstract
More than one-third of patients with meningiomas will experience seizures at some point in their disease. Despite this, meningioma-associated epilepsy remains significantly understudied, as most investigations focus on tumor progression, extent of resection, and survival. Due to the impact of epilepsy on the patient's quality of life, identifying predictors of preoperative seizures and postoperative seizure freedom is critical. In this chapter, we review previously reported rates and predictors of seizures in meningioma and discuss surgical and medical treatment options. Preoperative epilepsy occurs in approximately 30% of meningioma patients with peritumoral edema on neuroimaging being one of the most significant predictor of seizures. Other associated factors include age <18, male gender, the absence of headache, and non-skull base tumor location. Following tumor resection, approximately 70% of individuals with preoperative epilepsy achieve seizure freedom. Variables associated with persistent seizures include a history of preoperative epilepsy, peritumoral edema, skull base tumor location, tumor progression, and epileptiform discharges on postoperative electroencephalogram. In addition, after surgery, approximately 10% of meningioma patients without preoperative epilepsy experience new seizures. Variables associated with new postoperative seizures include tumor progression, prior radiation exposure, and gross total tumor resection. Both pre- and postoperative meningioma-related seizures are often responsive to antiepileptic drugs (AEDs), although AED prophylaxis in the absence of seizures is not recommended. AED selection is based on current guidelines for treating focal seizures with additional considerations including efficacy in tumor-related epilepsy, toxicities, and potential drug-drug interactions. Continued investigation into medical and surgical strategies for preventing and alleviating epilepsy in meningioma is warranted.
Collapse
Affiliation(s)
- Stephen C Harward
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, United States
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
46
|
Mathen P, Rowe L, Mackey M, Smart D, Tofilon P, Camphausen K. Radiosensitizers in the temozolomide era for newly diagnosed glioblastoma. Neurooncol Pract 2019; 7:268-276. [PMID: 32537176 DOI: 10.1093/nop/npz057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a challenging diagnosis with almost universally poor prognosis. Though the survival advantage of postoperative radiation (RT) is well established, around 90% of patients will fail in the RT field. The high likelihood of local failure suggests the efficacy of RT needs to be improved to improve clinical outcomes. Radiosensitizers are an established method of enhancing RT cell killing through the addition of a pharmaceutical agent. Though the majority of trials using radiosensitizers have historically been unsuccessful, there continues to be interest with a variety of approaches having been employed. Epidermal growth factor receptor inhibitors, histone deacetylase inhibitors, antiangiogenic agents, and a number of other molecularly targeted agents have all been investigated as potential methods of radiosensitization in the temozolomide era. Outcomes have varied both in terms of toxicity and survival, but some agents such as valproic acid and bortezomib have demonstrated promising results. However, reporting of results in phase 2 trials in newly diagnosed GBM have been inconsistent, with no standard in reporting progression-free survival and toxicity. There is a pressing need for investigation of new agents; however, nearly all phase 3 trials of GBM patients of the past 25 years have demonstrated no improvement in outcomes. One proposed explanation for this is the selection of agents lacking sufficient preclinical data and/or based on poorly designed phase 2 trials. Radiosensitization may represent a viable strategy for improving GBM outcomes in newly diagnosed patients, and further investigation using agents with promising phase 2 data is warranted.
Collapse
Affiliation(s)
- Peter Mathen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Lindsay Rowe
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Megan Mackey
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - DeeDee Smart
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Philip Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Peters K, Pratt D, Koschmann C, Leung D. Prolonged survival in a patient with a cervical spine H3K27M-mutant diffuse midline glioma. BMJ Case Rep 2019; 12:12/10/e231424. [PMID: 31628092 DOI: 10.1136/bcr-2019-231424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report a case of prolonged survival in a patient with known cervical intramedullary H3K27M-mutant diffuse midline glioma. A 39-year-old man presented for evaluation with several months of progressive upper extremity pain and weakness. MRI of the cervical spine revealed an intramedullary ring-enhancing lesion centred at C3-C4. Following subtotal surgical resection, a diagnosis of glioblastoma (GBM) was confirmed. Subsequent testing at a later date revealed an H3K27M mutation. He was initially treated with radiation and concomitant and adjuvant temozolomide. He had multiply recurrent disease and was treated with various regimens, including the histone deacetylase inhibitor valproic acid. The patient passed away 31 months (~2.5 years) after diagnosis. Our case is one of few reported adult spinal cord GBMs possessing the H3K27M mutation, and one with the longest reported overall survival in the literature to date.
Collapse
Affiliation(s)
- Kelsey Peters
- Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Drew Pratt
- Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Carl Koschmann
- Paediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Denise Leung
- Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, Reifenberger G, Weller M. Molecular targeted therapy of glioblastoma. Cancer Treat Rev 2019; 80:101896. [PMID: 31541850 DOI: 10.1016/j.ctrv.2019.101896] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 01/30/2023]
Abstract
Glioblastomas are intrinsic brain tumors thought to originate from neuroglial stem or progenitor cells. More than 90% of glioblastomas are isocitrate dehydrogenase (IDH)-wildtype tumors. Incidence increases with age, males are more often affected. Beyond rare instances of genetic predisposition and irradiation exposure, there are no known glioblastoma risk factors. Surgery as safely feasible followed by involved-field radiotherapy plus concomitant and maintenance temozolomide chemotherapy define the standard of care since 2005. Except for prolonged progression-free, but not overall survival afforded by the vascular endothelial growth factor antibody, bevacizumab, no pharmacological intervention has been demonstrated to alter the course of disease. Specifically, targeting cellular pathways frequently altered in glioblastoma, such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), the p53 and the retinoblastoma (RB) pathways, or epidermal growth factor receptor (EGFR) gene amplification or mutation, have failed to improve outcome, likely because of redundant compensatory mechanisms, insufficient target coverage related in part to the blood brain barrier, or poor tolerability and safety. Yet, uncommon glioblastoma subsets may exhibit specific vulnerabilities amenable to targeted interventions, including, but not limited to: high tumor mutational burden, BRAF mutation, neurotrophic tryrosine receptor kinase (NTRK) or fibroblast growth factor receptor (FGFR) gene fusions, and MET gene amplification or fusions. There is increasing interest in targeting not only the tumor cells, but also the microenvironment, including blood vessels, the monocyte/macrophage/microglia compartment, or T cells. Improved clinical trial designs using pharmacodynamic endpoints in enriched patient populations will be required to develop better treatments for glioblastoma.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland; Neuro-oncology, Department of Neurosurgery, University Hospital, Lille, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, and Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Patrick Roth
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - David A Reardon
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Martin van den Bent
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, Netherlands
| | - Patrick Wen
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Düsseldorf, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Maschio M, Aguglia U, Avanzini G, Banfi P, Buttinelli C, Capovilla G, Casazza MML, Colicchio G, Coppola A, Costa C, Dainese F, Daniele O, De Simone R, Eoli M, Gasparini S, Giallonardo AT, La Neve A, Maialetti A, Mecarelli O, Melis M, Michelucci R, Paladin F, Pauletto G, Piccioli M, Quadri S, Ranzato F, Rossi R, Salmaggi A, Terenzi R, Tisei P, Villani F, Vitali P, Vivalda LC, Zaccara G, Zarabla A, Beghi E. Management of epilepsy in brain tumors. Neurol Sci 2019; 40:2217-2234. [PMID: 31392641 DOI: 10.1007/s10072-019-04025-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/20/2019] [Indexed: 12/15/2022]
Abstract
Epilepsy in brain tumors (BTE) may require medical attention for a variety of unique concerns: epileptic seizures, possible serious adverse effects of antineoplastic and antiepileptic drugs (AEDs), physical disability, and/or neurocognitive disturbances correlated to tumor site. Guidelines for the management of tumor-related epilepsies are lacking. Treatment is not standardized, and overall management might differ according to different specialists. The aim of this document was to provide directives on the procedures to be adopted for a correct diagnostic-therapeutic path of the patient with BTE, evaluating indications, risks, and benefits. A board comprising neurologists, epileptologists, neurophysiologists, neuroradiologists, neurosurgeons, neuro-oncologists, neuropsychologists, and patients' representatives was formed. The board converted diagnostic and therapeutic problems into seventeen questions. A literature search was performed in September-October 2017, and a total of 7827 unique records were retrieved, of which 148 constituted the core literature. There is no evidence that histological type or localization of the brain tumor affects the response to an AED. The board recommended to avoid enzyme-inducing antiepileptic drugs because of their interference with antitumoral drugs and consider as first-choice newer generation drugs (among them, levetiracetam, lamotrigine, and topiramate). Valproic acid should also be considered. Both short-term and long-term prophylaxes are not recommended in primary and metastatic brain tumors. Management of seizures in patients with BTE should be multidisciplinary. The panel evidenced conflicting or lacking data regarding the role of EEG, the choice of therapeutic strategy, and timing to withdraw AEDs and recommended high-quality long-term studies to standardize BTE care.
Collapse
Affiliation(s)
- Marta Maschio
- Center for Brain Tumor-Related Epilepsy, UOSD Neuro-Oncology, I.R.C.C.S. Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giuliano Avanzini
- Department of Neurophysiology and Experimental Epileptology, Carlo Besta Neurological Institute, Milan, Italy
| | - Paola Banfi
- Neurology Unit, Department of Emergency, Medicine Epilepsy Center, Circolo Hospital, Varese, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Giuseppe Capovilla
- Department of Mental Health, Epilepsy Center, C. Poma Hospital, Mantua, Italy
| | | | - Gabriella Colicchio
- Institute of Neurosurgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Epilepsy Centre, University of Naples Federico II, Naples, Italy
| | - Cinzia Costa
- Neurological Clinic, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Filippo Dainese
- Epilepsy Centre, UOC Neurology, SS. Giovanni e Paolo Hospital, Venice, Italy
| | - Ornella Daniele
- Epilepsy Center-U.O.C. Neurology, Policlinico Paolo Giaccone, Experimental Biomedicine and Clinical Neuroscience Department (BioNeC), University of Palermo, Palermo, Italy
| | - Roberto De Simone
- Neurology and Stroke Unit, Epilepsy and Sleep Disorders Center, St. Eugenio Hospital, Rome, Italy
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Angela La Neve
- Department of Neurological and Psychiatric Sciences, Centre for Epilepsy, University of Bari, Bari, Italy
| | - Andrea Maialetti
- Center for Brain Tumor-Related Epilepsy, UOSD Neuro-Oncology, I.R.C.C.S. Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Oriano Mecarelli
- Neurology Unit, Human Neurosciences Department, Sapienza University, Umberto 1 Hospital, Rome, Italy
| | - Marta Melis
- Department of Medical Sciences and Public Health, Institute of Neurology, University of Cagliari, Monserrato, Cagliari, Italy
| | - Roberto Michelucci
- Unit of Neurology, Bellaria Hospital, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Paladin
- Epilepsy Center, UOC Neurology, Ospedale Santi Giovanni e Paolo, Venice, Italy
| | - Giada Pauletto
- Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Marta Piccioli
- UOC Neurology, PO San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Stefano Quadri
- USC Neurology, Epilepsy Center, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federica Ranzato
- Epilepsy Centre, Neuroscience Department, S. Bortolo Hospital, Vicenza, Italy
| | - Rosario Rossi
- Neurology and Stroke Unit, San Francesco Hospital, 08100, Nuoro, Italy
| | | | - Riccardo Terenzi
- Epilepsy Consultation Room, Neurology Unit, S. Pietro Fatebenefratelli Hospital, Rome, Italy
| | - Paolo Tisei
- Neurophysiology Unit, Department of Neurology-University "La Sapienza", S. Andrea Hospital, Rome, Italy
| | - Flavio Villani
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS, Istituto Neurologico C. Besta, Milan, Italy
| | - Paolo Vitali
- Neuroradiology and Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Gaetano Zaccara
- Regional Health Agency of Tuscany, Via P Dazzi 1, 50141, Florence, Italy
| | - Alessia Zarabla
- Center for Brain Tumor-Related Epilepsy, UOSD Neuro-Oncology, I.R.C.C.S. Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Ettore Beghi
- Department of Neurosciences, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | |
Collapse
|
50
|
Julie DAR, Ahmed Z, Karceski SC, Pannullo SC, Schwartz TH, Parashar B, Wernicke AG. An overview of anti-epileptic therapy management of patients with malignant tumors of the brain undergoing radiation therapy. Seizure 2019; 70:30-37. [PMID: 31247400 DOI: 10.1016/j.seizure.2019.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023] Open
Abstract
As our surgical, radiation, chemotherapeutic and supportive therapies for brain malignancies improve, and overall survival is prolonged, appropriate symptom management in this patient population becomes increasingly important. This review summarizes the published literature and current practice patterns regarding prophylactic and perioperative anti-epileptic drug use. As a wide range of anti-epileptic drugs is now available to providers, evidence guiding appropriate anticonvulsant choice is reviewed. A particular focus of this article is radiation therapy for brain malignancies. Toxicities and seizure risk associated with cranial irradiation will be discussed. Epilepsy management in patients undergoing radiation for gliomas, glioblastoma multiforme, and brain metastases will be addressed. An emerging but inconsistent body of evidence, reviewed here, indicates that anti-epileptic medications may increase radiosensitivity, and therefore improve clinical outcomes, specifically in glioblastoma multiforme patients.
Collapse
Affiliation(s)
- Diana A R Julie
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States
| | | | - Stephen C Karceski
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, United States
| | - Susan C Pannullo
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, NY, United States
| | - Theodore H Schwartz
- Department of Neurosurgery, Weill Medical College of Cornell University, New York, NY, United States
| | - Bhupesh Parashar
- Department of Radiation Oncology, Northwell Health, New Hyde Park, NY, United States
| | - A Gabriella Wernicke
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States; Department of Neurosurgery, Weill Medical College of Cornell University, New York, NY, United States.
| |
Collapse
|