1
|
Kornberg MD, Calabresi PA. Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. Cold Spring Harb Perspect Biol 2025; 17:a041374. [PMID: 38806240 PMCID: PMC11875095 DOI: 10.1101/cshperspect.a041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
2
|
Tozlu C, Jamison K, Kang Y, Rua SH, Kaunzner UW, Nguyen T, Kuceyeski A, Gauthier SA. TSPO-PET Reveals Higher Inflammation in White Matter Disrupted by Paramagnetic Rim Lesions in Multiple Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.627857. [PMID: 39803549 PMCID: PMC11722250 DOI: 10.1101/2025.01.03.627857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Objective To explore whether the inflammatory activity is higher in white matter (WM) tracts disrupted by paramagnetic rim lesions (PRLs) and if inflammation in PRL-disrupted WM tracts is associated with disability in people with multiple sclerosis (MS). Methods Forty-four MS patients and 16 healthy controls were included. 18 kDa-translocator protein positron emission tomography (TSPO-PET) with the 11C-PK11195 radioligand was used to measure the neuroinflammatory activity. The Network Modification Tool was used to identify WM tracts disrupted by PRLs and non-PRLs that were delineated on MRI. The Expanded Disability Status Scale was used to measure disability. Results MS patients had higher inflammatory activity in whole brain WM compared to healthy controls (p=0.001). Compared to patients without PRLs, patients with PRLs exhibited higher levels of inflammatory activity in the WM tracts disrupted by any type of lesions (p=0.02) or PRLs (p=0.004). In patients with at least one PRL, inflammatory activity was higher in WM tracts highly disrupted by PRLs compared to WM tracts highly disrupted by non-PRLs (p=0.009). Elevated inflammatory activity in highly disrupted WM tracts was associated with increased disability in patients with PRL (p=0.03), but not in patients without PRL (p=0.2). Interpretation This study suggests that patients with PRLs may exhibit more diffuse WM inflammation in addition to higher inflammation along WM tracts disrupted by PRLs compared to non-PRLs, which could contribute to larger lesion volumes and faster disability progression. Imaging PRLs may serve to identify patients with both focal and diffuse inflammation, guiding therapeutic interventions aimed at reducing inflammation and preventing progressive disability in MS.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington DC, USA
| | - Sandra Hurtado Rua
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, USA
| | - Ulrike W. Kaunzner
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Susan A. Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
3
|
Ezzat D, Haest S, Hertogs S, Kalemkus E, Leroi-Werelds S, Hellings N. The perspectives of neurologists on positron emission tomography utility in multiple sclerosis: A qualitative study. Mult Scler Relat Disord 2024; 92:106177. [PMID: 39580894 DOI: 10.1016/j.msard.2024.106177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is the gold standard for imaging disease activity in multiple sclerosis (MS) patients. However, recent studies indicate that positron emission tomography (PET) may provide added value in visualizing MS disease in the future. OBJECTIVE This study aims to investigate the barriers to implementing PET for MS patients and its potential added value in the context of MS. METHODS 11 semi-structured in-depth interviews with neurologists specialized in MS were conducted. The neurologists were selectively recruited from six medical centers in Belgium and the Netherlands. Inductive thematic analysis was used to analyze the data. RESULTS The interviews revealed several hurdles that play a role in using PET for MS, including financial and scientific considerations. Potential clinical applications of PET were also identified, such as understanding unexplained symptoms, making a more accurate prognosis, evaluating the nature and seriousness of a lesion, and assessing disease activity. In addition, research applications were highlighted, including unraveling the pathophysiology of MS and developing new treatment options for MS. CONCLUSION Using PET is advancing our understanding of MS and can accelerate the development of novel therapies to combat its progression. However, its integration into routine clinical practice for MS remains a future prospect, contingent upon further technological advancements and supportive healthcare frameworks.
Collapse
Affiliation(s)
- Daniel Ezzat
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Sion Haest
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Seger Hertogs
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Eren Kalemkus
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sara Leroi-Werelds
- Department of Marketing and Strategy, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
4
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
5
|
Cagol A, Tsagkas C, Granziera C. Advanced Brain Imaging in Central Nervous System Demyelinating Diseases. Neuroimaging Clin N Am 2024; 34:335-357. [PMID: 38942520 DOI: 10.1016/j.nic.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In recent decades, advances in neuroimaging have profoundly transformed our comprehension of central nervous system demyelinating diseases. Remarkable technological progress has enabled the integration of cutting-edge acquisition and postprocessing techniques, proving instrumental in characterizing subtle focal changes, diffuse microstructural alterations, and macroscopic pathologic processes. This review delves into state-of-the-art modalities applied to multiple sclerosis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody-associated disease. Furthermore, it explores how this dynamic landscape holds significant promise for the development of effective and personalized clinical management strategies, encompassing support for differential diagnosis, prognosis, monitoring treatment response, and patient stratification.
Collapse
Affiliation(s)
- Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland; Department of Health Sciences, University of Genova, Via A. Pastore, 1 16132 Genova, Italy. https://twitter.com/CagolAlessandr0
| | - Charidimos Tsagkas
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland.
| |
Collapse
|
6
|
Herranz E, Treaba CA, Barletta VT, Mehndiratta A, Ouellette R, Sloane JA, Ionete C, Babu S, Mastantuono M, Magon S, Loggia ML, Makary MM, Hooker JM, Catana C, Kinkel RP, Nicholas R, Klawiter EC, Magliozzi R, Mainero C. Characterization of cortico-meningeal translocator protein expression in multiple sclerosis. Brain 2024; 147:2566-2578. [PMID: 38289855 PMCID: PMC11224595 DOI: 10.1093/brain/awae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Compartmentalized meningeal inflammation is thought to represent one of the key players in the pathogenesis of cortical demyelination in multiple sclerosis. PET targeting the 18 kDa mitochondrial translocator protein (TSPO) is a molecular-specific approach to quantifying immune cell-mediated density in the cortico-meningeal tissue compartment in vivo. This study aimed to characterize cortical and meningeal TSPO expression in a heterogeneous cohort of multiple sclerosis cases using in vivo simultaneous MR-PET with 11C-PBR28, a second-generation TSPO radioligand, and ex vivo immunohistochemistry. Forty-nine multiple sclerosis patients (21 with secondary progressive and 28 with relapsing-remitting multiple sclerosis) with mixed or high affinity binding for 11C-PBR28 underwent 90-min 11C-PBR28 simultaneous MR-PET. Tracer binding was measured using 60-90 min normalized standardized uptake value ratios sampled at mid-cortical depth and ∼3 mm above the pial surface. Data in multiple sclerosis patients were compared to 21 age-matched healthy controls. To characterize the nature of 11C-PBR28 PET uptake, the meningeal and cortical lesion cellular expression of TSPO was further described in post-mortem brain tissue from 20 cases with secondary progressive multiple sclerosis and five age-matched healthy donors. Relative to healthy controls, patients with multiple sclerosis exhibited abnormally increased TSPO signal in the cortex and meningeal tissue, diffusively in progressive disease and more localized in relapsing-remitting multiple sclerosis. In multiple sclerosis, increased meningeal TSPO levels were associated with increased Expanded Disability Status Scale scores (P = 0.007, by linear regression). Immunohistochemistry, validated using in situ sequencing analysis, revealed increased TSPO expression in the meninges and adjacent subpial cortical lesions of post-mortem secondary progressive multiple sclerosis cases relative to control tissue. In these cases, increased TSPO expression was related to meningeal inflammation. Translocator protein immunostaining was detected on meningeal MHC-class II+ macrophages and cortical-activated MHC-class II+ TMEM119+ microglia. In vivo arterial blood data and neuropathology showed that endothelial binding did not significantly account for increased TSPO cortico-meningeal expression in multiple sclerosis. Our findings support the use of TSPO-PET in multiple sclerosis for imaging in vivo inflammation in the cortico-meningeal brain tissue compartment and provide in vivo evidence implicating meningeal inflammation in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Clinical Neuroscience, Karolinska Institutet, 141 86 Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Carolina Ionete
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Suma Babu
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marina Mastantuono
- Neurology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 53593, Italy
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel 4058, Switzerland
| | - Stefano Magon
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel 4058, Switzerland
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Meena M Makary
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Revere P Kinkel
- University of California San Diego, Department of Neuroscience, San Diego, CA 92093, USA
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Eric C Klawiter
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roberta Magliozzi
- Neurology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 53593, Italy
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
8
|
Singhal T, Cicero S, Rissanen E, Ficke J, Kukreja P, Vaquerano S, Glanz B, Dubey S, Sticka W, Seaver K, Kijewski M, Callen AM, Chu R, Carter K, Silbersweig D, Chitnis T, Bakshi R, Weiner HL. Glial Activity Load on PET Reveals Persistent "Smoldering" Inflammation in MS Despite Disease-Modifying Treatment: 18 F-PBR06 Study. Clin Nucl Med 2024; 49:491-499. [PMID: 38630948 DOI: 10.1097/rlu.0000000000005201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
PURPOSE OF THE REPORT 18 F-PBR06-PET targeting 18-kDa translocator protein can detect abnormal microglial activation (MA) in multiple sclerosis (MS). The objectives of this study are to develop individualized mapping of MA using 18 F-PBR06, to determine the effect of disease-modifying treatment (DMT) efficacy on reducing MA, and to determine its clinical, radiological, and serological correlates in MS patients. PATIENTS AND METHODS Thirty 18 F-PBR06-PET scans were performed in 22 MS patients (mean age, 46 ± 13 years; 16 females) and 8 healthy controls (HCs). Logarithmically transformed "glial activity load on PET" scores (calculated as the sum of voxel-by-voxel z -scores ≥4), "lnGALP," were compared between MS and HC and between MS subjects on high-efficacy DMTs (H-DMT, n = 13) and those on no or lower-efficacy treatment, and correlated with clinical measures, serum biomarkers, and cortical thickness. RESULTS Cortical gray matter (CoGM) and white matter (WM) lnGALP scores were higher in MS versus HC (+33% and +48%, P < 0.001). In H-DMT group, CoGM and WM lnGALP scores were significantly lower than lower-efficacy treatment ( P < 0.01) but remained abnormally higher than in HC group ( P = 0.006). Within H-DMT patients, CoGM lnGALP scores correlated positively with physical disability, fatigue and serum glial fibrillary acid protein levels ( r = 0.65-0.79, all P 's < 0.05), and inversely with cortical thickness ( r = -0.66, P < 0.05). CONCLUSIONS High-efficacy DMTs decrease, but do not normalize, CoGM and WM MA in MS patients. Such "residual" MA in CoGM is associated with clinical disability, serum biomarkers, and cortical degeneration. Individualized mapping of translocator protein PET using 18 F-PBR06 is clinically feasible and can potentially serve as an imaging biomarker for evaluating "smoldering" inflammation in MS patients.
Collapse
Affiliation(s)
| | - Steven Cicero
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Eero Rissanen
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - John Ficke
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Preksha Kukreja
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Steven Vaquerano
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Bonnie Glanz
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Shipra Dubey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - William Sticka
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - Kyle Seaver
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - Marie Kijewski
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - Alexis M Callen
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Renxin Chu
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Kelsey Carter
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - David Silbersweig
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tanuja Chitnis
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Rohit Bakshi
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Howard L Weiner
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| |
Collapse
|
9
|
Mantovani DBA, Pitombeira MS, Schuck PN, de Araújo AS, Buchpiguel CA, de Paula Faria D, M da Silva AM. Evaluation of Non-Invasive Methods for (R)-[ 11C]PK11195 PET Image Quantification in Multiple Sclerosis. J Imaging 2024; 10:39. [PMID: 38392087 PMCID: PMC10889702 DOI: 10.3390/jimaging10020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
This study aims to evaluate non-invasive PET quantification methods for (R)-[11C]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[11C]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[11C]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.
Collapse
Affiliation(s)
| | - Milena S Pitombeira
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | | | - Adriel S de Araújo
- Graduate Program in Computer Science, Pontificia Universidade Catolica do Rio Grande do Sul PUCRS, Porto Alegre 90619-900, Brazil
| | - Carlos Alberto Buchpiguel
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Daniele de Paula Faria
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Ana Maria M da Silva
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| |
Collapse
|
10
|
Etebar F, Harkin DG, White AR, Dando SJ. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases. Front Cell Neurosci 2024; 18:1355557. [PMID: 38348116 PMCID: PMC10859418 DOI: 10.3389/fncel.2024.1355557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Microglia play crucial roles in immune responses and contribute to fundamental biological processes within the central nervous system (CNS). In neurodegenerative diseases, microglia undergo functional changes and can have both protective and pathogenic roles. Microglia in the retina, as an extension of the CNS, have also been shown to be affected in many neurological diseases. While our understanding of how microglia contribute to pathological conditions is incomplete, non-invasive in vivo imaging of brain and retinal microglia in living subjects could provide valuable insights into their role in the neurodegenerative diseases and open new avenues for diagnostic biomarkers. This mini-review provides an overview of the current brain and retinal imaging tools for studying microglia in vivo. We focus on microglia targets, the advantages and limitations of in vivo microglia imaging approaches, and applications for evaluating the pathogenesis of neurological conditions, such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Damien G. Harkin
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Anthony R. White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Samantha J. Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
11
|
Hammond BP, Panda SP, Kaushik DK, Plemel JR. Microglia and Multiple Sclerosis. ADVANCES IN NEUROBIOLOGY 2024; 37:445-456. [PMID: 39207707 DOI: 10.1007/978-3-031-55529-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a devastating autoimmune disease that leads to profound disability. This disability arises from the stochastic, regional loss of myelin-the insulating sheath surrounding neurons-in the central nervous system (CNS). The demyelinated regions are dominated by the brain's resident macrophages: microglia. Microglia perform a variety of functions in MS and are thought to initiate and perpetuate demyelination through their interactions with peripheral immune cells that traffic into the brain. However, microglia are also likely essential for recruiting and promoting the differentiation of cells that can restore lost myelin in a process known as remyelination. Given these seemingly opposing functions, an overarching beneficial or detrimental role is yet to be ascribed to these immune cells. In this chapter, we will discuss microglia dynamics throughout the MS disease course and probe the apparent dichotomy of microglia as the drivers of both demyelination and remyelination.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sharmistha P Panda
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Deepak K Kaushik
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Statsenko Y, Smetanina D, Arora T, Östlundh L, Habuza T, Simiyu GL, Meribout S, Talako T, King FC, Makhnevych I, Gelovani JG, Das KM, Gorkom KNV, Almansoori TM, Al Zahmi F, Szólics M, Ismail F, Ljubisavljevic M. Multimodal diagnostics in multiple sclerosis: predicting disability and conversion from relapsing-remitting to secondary progressive disease course - protocol for systematic review and meta-analysis. BMJ Open 2023; 13:e068608. [PMID: 37451729 PMCID: PMC10351237 DOI: 10.1136/bmjopen-2022-068608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The number of patients diagnosed with multiple sclerosis (MS) has increased significantly over the last decade. The challenge is to identify the transition from relapsing-remitting to secondary progressive MS. Since available methods to examine patients with MS are limited, both the diagnostics and prognostication of disease progression would benefit from the multimodal approach. The latter combines the evidence obtained from disparate radiologic modalities, neurophysiological evaluation, cognitive assessment and molecular diagnostics. In this systematic review we will analyse the advantages of multimodal studies in predicting the risk of conversion to secondary progressive MS. METHODS AND ANALYSIS We will use peer-reviewed publications available in Web of Science, Medline/PubMed, Scopus, Embase and CINAHL databases. In vivo studies reporting the predictive value of diagnostic methods will be considered. Selected publications will be processed through Covidence software for automatic deduplication and blind screening. Two reviewers will use a predefined template to extract the data from eligible studies. We will analyse the performance metrics (1) for the classification models reflecting the risk of secondary progression: sensitivity, specificity, accuracy, area under the receiver operating characteristic curve, positive and negative predictive values; (2) for the regression models forecasting disability scores: the ratio of mean absolute error to the range of values. Then, we will create ranking charts representing performance of the algorithms for calculating disability level and MS progression. Finally, we will compare the predictive power of radiological and radiomical correlates of clinical disability and cognitive impairment in patients with MS. ETHICS AND DISSEMINATION The study does not require ethical approval because we will analyse publicly available literature. The project results will be published in a peer-review journal and presented at scientific conferences. PROSPERO REGISTRATION NUMBER CRD42022354179.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
- Big Data Analytics Center, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
| | - Darya Smetanina
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
| | - Teresa Arora
- Psychology Department, College of Natural and Health Sciences, Zayed University, Abu Dhabi, Abu Dhabi Emirate, UAE
| | - Linda Östlundh
- National Medical Library, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
- Library, Örebro University, Örebro, Sweden
| | - Tetiana Habuza
- Big Data Analytics Center, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
- Department of Computer Science, College of Information Technology, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
| | - Gillian Lylian Simiyu
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
| | - Sarah Meribout
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Medical Imaging Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
- Internal Medicine Department, Maimonides Medical Center, New York, New York, USA
| | - Tatsiana Talako
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Department of Oncohematology, Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology, Minsk, Belarus
| | - Fransina Christina King
- Physiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Neuroscience Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
| | - Iryna Makhnevych
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
| | - Juri George Gelovani
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Biomedical Engineering Department, Wayne State University, College of Engineering, Detroit, Michigan, USA
- Radiology Department, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand
- Provost Office, United Arab Emirates University, Al Ain, Abu Dhabi Emirate, UAE
| | - Karuna M Das
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
| | - Klaus Neidl-Van Gorkom
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
| | - Taleb M Almansoori
- Radiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
| | - Fatmah Al Zahmi
- Neurology Department, Mediclinic Parkview Hospital, Dubai, Dubai Emirate, UAE
- Neurology Department, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, Dubai Emirate, UAE
| | - Miklós Szólics
- Internal Medicine Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Division of Neurology, Department of Medicine, Tawam Hospital, Al Ain, Abu Dhabi Emirate, UAE
| | - Fatima Ismail
- Pediatrics Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Milos Ljubisavljevic
- Physiology Department, United Arab Emirates University, College of Medicine and Health Sciences, Al Ain, Abu Dhabi Emirate, UAE
- Neuroscience Platform, ASPIRE Precision Medicine Research Institute Abu Dhabi, Al Ain, Abu Dhabi Emirate, UAE
| |
Collapse
|
13
|
Laaksonen S, Saraste M, Sucksdorff M, Nylund M, Vuorimaa A, Matilainen M, Heikkinen J, Airas L. Early prognosticators of later TSPO-PET-measurable microglial activation in multiple sclerosis. Mult Scler Relat Disord 2023; 75:104755. [PMID: 37216883 DOI: 10.1016/j.msard.2023.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Factors driving increased innate immune cell activation in multiple sclerosis (MS) brain are not well understood. As higher prevalence of microglial/macrophage activation in association with chronic lesions and diffusely in the normal appearing white matter predict more rapid accumulation of clinical disability, it is of high importance to understand processes behind this. Objective of the study was to explore demographic, clinical and paraclinical variables associating with later positron emission tomography (PET)-measurable innate immune cell activation. METHODS PET-imaging using a TSPO-binding [11C]PK11195 was performed to evaluate microglial activation in patients with relapsing-remitting MS aged 40-55 years with a minimum disease duration of five years (n = 37). Medical records and diagnostic MR images were reviewed for relevant early MS disease-related clinical and paraclinical parameters. RESULTS More prominent microglial activation was associated with higher number of T2 lesions in the diagnostic MRI, a higher immunoglobulin G (IgG) index in the diagnostic CSF and Expanded Disability Status Scale (EDSS) ≥ 2.0 five years after diagnosis. CONCLUSION The number of T2 lesions in MRI, and CSF immunoglobulin content measured by IgG index at the time of MS diagnosis associated with later TSPO-PET-measurable innate immune cell activation. This suggests that both focal and diffuse early inflammatory phenomena impact the development of later progression-related pathology.
Collapse
Affiliation(s)
- S Laaksonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland.
| | - M Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| | - M Sucksdorff
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| | - M Nylund
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| | - A Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| | - M Matilainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - J Heikkinen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - L Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter Turku, University Hospital, Turku, Finland
| |
Collapse
|
14
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
15
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Kim J, Kim YK. Molecular Imaging of Neuroinflammation in Alzheimer's Disease and Mild Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:301-326. [PMID: 36949316 DOI: 10.1007/978-981-19-7376-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
17
|
Lus G, Bassano MA, Brescia Morra V, Bonavita S, Gallo A, Maimone D, Malerba L, Maniscalco GT, Saccà F, Salemi G, Turrini R, Cottone S, Sessa E, Buccafusca M, Grimaldi LME. Unmet needs and gaps in the identification of secondary progression in multiple sclerosis: a Southern Italy healthcare professionals' perspective. Neurol Sci 2023; 44:45-58. [PMID: 36114980 PMCID: PMC9483292 DOI: 10.1007/s10072-022-06402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a chronic disease with different clinical courses and a tendency to worsening. The relapsing-remitting MS presents acute onset and relapses of neurological symptoms, followed by their remission. This form can convert to secondary progressive MS (SPMS) with irreversible neurological worsening and disability. The identification of signs, symptoms, markers of progression, and strategies to manage MS patients is mandatory to allow early identification of those at higher risk of conversion to SPMS, for prompt intervention to cope with the progression of the disease. METHODS A panel of Italian experts from Southern Italy have reviewed the current knowledge on MS and its management and identified the crucial tools for SPMS recognition. RESULTS More effective communication between patients and clinicians should be established, with the support of digital tools. Moreover, the improvement in the clinical use of biomarkers for progression (cellular structures and tissue organization, such as neurofilaments and chitinase 3-like 1, axonal and neurons density) and of instrumental analyses for recognition of whole-brain atrophy, chronic active lesions, spinal cord lesions and atrophy, and the improvement the combination of the Expanded Disability Status Scale and the evaluation of cognitive dysfunction are discussed. CONCLUSION Given the availability of a pharmacological option, adequate education both for patients, regarding the evolution of the disease and the specific treatment, and for professionals, to allow more effective and sensitive communication and the best use of diagnostic and management tools, could represent a strategy to improve patient management and their quality of life.
Collapse
Affiliation(s)
- Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, II Division of Neurology, Multiple Sclerosis Center, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Vincenzo Brescia Morra
- Department of Neurosciences Reproductive Sciences and Odontostomatology, Multiple Sclerosis Center, Federico II University, Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, Università Della Campania Luigi Vanvitelli, Naples, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, Università Della Campania Luigi Vanvitelli, Naples, Italy
| | - Davide Maimone
- Unità Operativa Complessa Neurology, Multiple Sclerosis Center, ARNAS Garibaldi, Catania, Italy
| | | | | | - Francesco Saccà
- Department of Neurosciences Reproductive Sciences and Odontostomatology, Multiple Sclerosis Center, Federico II University, Naples, Italy
| | - Giuseppe Salemi
- UOC of Neurology and Multiple Sclerosis Center, DAI of Diagnostic and Interventistic Radiology and Stroke, AOIP "P. Giaccone", Palermo, Italy
| | | | - Salvatore Cottone
- Neurology and Stroke Unit, Multiple Sclerosis Center, ARNAS CIVICO, Palermo, Italy
| | - Edoardo Sessa
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Maria Buccafusca
- Neurology and Neuromuscular Unit, Multiple Sclerosis Centre, "G. Martino" University Hospital, Messina, Italy
| | - Luigi Maria Edoardo Grimaldi
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute "G. Giglio", Cefalù, PA, Italy
| |
Collapse
|
18
|
Keeling G, Man F. Nuclear Imaging of Inflammation. PROGRESS IN INFLAMMATION RESEARCH 2023:23-90. [DOI: 10.1007/978-3-031-23661-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Carnero Contentti E, Correale J. Current Perspectives: Evidence to Date on BTK Inhibitors in the Management of Multiple Sclerosis. Drug Des Devel Ther 2022; 16:3473-3490. [PMID: 36238195 PMCID: PMC9553159 DOI: 10.2147/dddt.s348129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system leading to demyelination and neurodegeneration. Basic and translational studies have shown that B cells and myeloid cells are critical players for the development and course of the disease. Bruton's tyrosine kinase (BTK) is essential for B cell receptor-mediated B cell activation and for normal B cell development and maturation. In addition to its role in B cells, BTK is also involved in several functions of myeloid cells. Although significant number of disease-modifying treatments (DMTs) have been approved for clinical use in MS patients, novel targeted therapies should be studied in refractory patients and patients with progressive forms of the disease. On the basis of its role in B cells and myeloid cells, BTK inhibitors can provide attractive therapeutic benefits for MS. In this article, we review the main effects of BTK inhibitors on different cell types involved in the pathogenesis of MS and summarise recent advances in the development of BTK inhibitors as novel therapeutic approaches in different MS clinical trials. Available data regarding the efficacy and safety of these drugs are described.
Collapse
Affiliation(s)
| | - Jorge Correale
- Department of Neurology, Fleni, Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquimíca Biológicas (IQUIFIB), Buenos Aires, Argentina
| |
Collapse
|
20
|
Pitombeira MS, Koole M, Campanholo KR, Souza AM, Duran FLS, Solla DJF, Mendes MF, Pereira SLA, Rimkus CM, Busatto GF, Callegaro D, Buchpiguel CA, de Paula Faria D. Innate immune cells and myelin profile in multiple sclerosis: a multi-tracer PET/MR study. Eur J Nucl Med Mol Imaging 2022; 49:4551-4566. [PMID: 35838758 DOI: 10.1007/s00259-022-05899-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Neuropathological studies have demonstrated distinct profiles of microglia activation and myelin injury among different multiple sclerosis (MS) phenotypes and disability stages. PET imaging using specific tracers may uncover the in vivo molecular pathology and broaden the understanding of the disease heterogeneity. METHODS We used the 18-kDa translocator protein (TSPO) tracer (R)-[11C]PK11195 and [11C]PIB PET images acquired in a hybrid PET/MR 3 T system to characterize, respectively, the profile of innate immune cells and myelin content in 47 patients with MS compared to 18 healthy controls (HC). For the volume of interest (VOI)-based analysis of the dynamic data, (R)-[11C]PK11195 distribution volume (VT) was determined for each subject using a metabolite-corrected arterial plasma input function while [11C]PIB distribution volume ratio (DVR) was estimated using a reference region extracted by a supervised clustering algorithm. A voxel-based analysis was also performed using Statistical Parametric Mapping. Functional disability was evaluated by the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Symbol Digit Modality Test (SDMT). RESULTS In the VOI-based analysis, [11C]PIB DVR differed between patients and HC in the corpus callosum (P = 0.019) while no differences in (R)-[11C]PK11195 VT were observed in patients relative to HC. Furthermore, no correlations or associations were observed between both tracers within the VOI analyzed. In the voxel-based analysis, high (R)-[11C]PK11195 uptake was observed diffusively in the white matter (WM) when comparing the progressive phenotype and HC, and lower [11C]PIB uptake was observed in certain WM regions when comparing the relapsing-remitting phenotype and HC. None of the tracers were able to differentiate phenotypes at voxel or VOI level in our cohort. Linear regression models adjusted for age, sex, and phenotype demonstrated that higher EDSS was associated with an increased (R)-[11C]PK11195 VT and lower [11C]PIB DVR in corpus callosum (P = 0.001; P = 0.023), caudate (P = 0.015; P = 0.008), and total T2 lesion (P = 0.007; P = 0.012), while better cognitive scores in SDMT were associated with higher [11C]PIB DVR in the corpus callosum (P = 0.001), and lower (R)-[11C]PK11195 VT (P = 0.013). CONCLUSIONS Widespread innate immune cells profile and marked loss of myelin in T2 lesions and regions close to the ventricles may occur independently and are associated with disability, in both WM and GM structures.
Collapse
Affiliation(s)
- Milena Sales Pitombeira
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michel Koole
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Flanders, Belgium
| | - Kenia R Campanholo
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aline M Souza
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Davi J Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria F Mendes
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Carolina M Rimkus
- Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Geraldo Filho Busatto
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos A Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Misin O, Matilainen M, Nylund M, Honkonen E, Rissanen E, Sucksdorff M, Airas L. Innate Immune Cell–Related Pathology in the Thalamus Signals a Risk for Disability Progression in Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/4/e1182. [PMID: 35581004 PMCID: PMC9128041 DOI: 10.1212/nxi.0000000000001182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives Our aim was to investigate whether 18-kDa translocator protein (TSPO) radioligand binding in gray matter (GM) predicts later disability progression in multiple sclerosis (MS). Methods In this prospective imaging study, innate immune cells were investigated in the MS patient brain using PET imaging. The distribution volume ratio (DVR) of the TSPO-binding radioligand [11C]PK11195 was determined in 5 GM regions: thalamus, caudate, putamen, pallidum, and cortical GM. Volumetric brain MRI parameters were obtained for comparison. The Expanded Disability Status Scale (EDSS) score was assessed at baseline and after follow-up of 3.0 ± 0.3 (mean ± SD) years. Disability progression was defined as an EDSS score increase of 1.0 point or 0.5 point if the baseline EDSS score was ≥6.0. A forward-type stepwise logistic regression model was constructed to compare multiple imaging and clinical variables in their ability to predict later disability progression. Results The cohort consisted of 66 patients with MS and 18 healthy controls. Patients with later disability progression (n = 17) had more advanced atrophy in the thalamus, caudate, and putamen at baseline compared with patients with no subsequent worsening. TSPO binding was significantly higher in the thalamus among the patients with later worsening. The thalamic DVR was the only measured imaging variable that remained a significant predictor of disability progression in the regression model. The final model predicted disability progression with 52.9% sensitivity and 93.9% specificity with an area under the curve value of 0.82 (receiver operating characteristic curve). Discussion Increased TSPO radioligand binding in the thalamus has potential in predicting short-term disability progression in MS and seems to be more sensitive for this than GM atrophy measures.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Microglia normally protects the central nervous system (CNS) against insults. However, their persistent activation in multiple sclerosis (MS) contributes to injury. Here, we review microglia activation in MS and their detection using positron emission tomography (PET). RECENT FINDINGS During lesion evolution and the progression of MS, microglia activity may contribute to neurotoxicity through the release of pro-inflammatory cytokines, reactive oxidative species, proteases and glutamate. A means to detect and monitor microglia activation in individuals living with MS is provided by positron emission tomography (PET) imaging using the mitochondrial 18-kDa translocator protein (TSPO) ligand. TSPO PET imaging shows increased microglial activation within the normal appearing white matter that precedes radiological signs of neurodegeneration measured by T2 lesion enlargement. PET-detected microglia activation increases with progression of MS. These findings demand the use of CNS penetrant inhibitors that affect microglia. Such therapies may include hydroxychloroquine that is recently reported in a small study to reduce the expected progression in primary progressive MS, and Bruton's tyrosine kinase inhibitors for which there are now eleven Phase 3 registered trials in MS. SUMMARY Microglial activation drives injury in MS. PET imaging with microglia-specific ligands offer new insights into progression of MS and as a monitor for treatment responses.
Collapse
|
23
|
Kamma E, Lasisi W, Libner C, Ng HS, Plemel JR. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J Neuroinflammation 2022; 19:45. [PMID: 35144628 PMCID: PMC8830034 DOI: 10.1186/s12974-022-02408-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing–remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood. The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood–brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Emily Kamma
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Lasisi
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| | - Cole Libner
- Department of Health Sciences and the Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huah Shin Ng
- Division of Neurology and the Djavad Mowafaghian Centre for Brain Health, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada. .,University of Alberta, 5-64 Heritage Medical Research Centre, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
24
|
Saraste M, Matilainen M, Rajda C, Galla Z, Sucksdorff M, Vécsei L, Airas L. Association between microglial activation and serum kynurenine pathway metabolites in multiple sclerosis patients. Mult Scler Relat Disord 2022; 59:103667. [DOI: 10.1016/j.msard.2022.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
25
|
Nylund M, Sucksdorff M, Matilainen M, Polvinen E, Tuisku J, Airas L. Phenotyping of multiple sclerosis lesions according to innate immune cell activation using 18 kDa translocator protein-PET. Brain Commun 2022; 4:fcab301. [PMID: 34993478 PMCID: PMC8727984 DOI: 10.1093/braincomms/fcab301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic active lesions are promotors of neurodegeneration and disease progression in multiple sclerosis. They harbour a dense rim of activated innate immune cells at the lesion edge, which promotes lesion growth and thereby induces damage. Conventional MRI is of limited help in identifying the chronic active lesions, so alternative imaging modalities are needed. Objectives were to develop a PET-based automated analysis method for phenotyping of chronic lesions based on lesion-associated innate immune cell activation and to comprehensively evaluate the prevalence of these lesions in the various clinical subtypes of multiple sclerosis, and their association with disability. In this work, we use 18 kDa translocator protein-PET imaging for phenotyping chronic multiple sclerosis lesions at a large scale. For this, we identified 1510 white matter T1-hypointense lesions from 91 multiple sclerosis patients (67 relapsing–remitting patients and 24 secondary progressive patients). Innate immune cell activation at the lesion rim was measured using PET imaging and the 18 kDa translocator protein-binding radioligand 11C-PK11195. A T1-hypointense lesion was classified as rim-active if the distribution volume ratio of 11C-PK11195-binding was low in the plaque core and considerably higher at the plaque edge. If no significant ligand binding was observed, the lesion was classified as inactive. Plaques that had considerable ligand binding both in the core and at the rim were classified as overall-active. Conventional MRI and disability assessment using the Expanded Disability Status Scale were performed at the time of PET imaging. In the secondary progressive cohort, an average of 19% (median, interquartile range: 11–26) of T1 lesions were rim-active in each individual patient, compared to 10% (interquartile range: 0–20) among relapsing–remitting patients (P = 0.009). Secondary progressive patients had a median of 3 (range: 0–11) rim-active lesions, versus 1 (range: 0–18) among relapsing–remitting patients (P = 0.029). Among those patients who had rim-active lesions (n = 63), the average number of active voxels at the rim was higher among secondary progressive compared to relapsing–remitting patients (median 158 versus 74; P = 0.022). The number of active voxels at the rim correlated significantly with the Expanded Disability Status Scale (R = 0.43, P < 0.001), and the volume of the rim-active lesions similarly correlated with the Expanded Disability Status Scale (R = 0.45, P < 0.001). Our study is the first to report in vivo phenotyping of chronic lesions at large scale, based on 18 kDa translocator protein-PET. Patients with higher disability displayed a higher proportion of rim-active lesions. The in vivo lesion phenotyping methodology offers a new tool for individual assessment of smouldering (rim-active) lesion burden.
Collapse
Affiliation(s)
- Marjo Nylund
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Eero Polvinen
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | | | - Laura Airas
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
26
|
The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010474. [PMID: 35008899 PMCID: PMC8745199 DOI: 10.3390/ijms23010474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of new disease-modifying therapies in multiple sclerosis (MS) has revolutionized our ability to fight inflammatory relapses and has immensely improved patients’ quality of life. Although remarkable, this achievement has not carried over into reducing long-term disability. In MS, clinical disability progression can continue relentlessly irrespective of acute inflammation. This “silent” disease progression is the main contributor to long-term clinical disability in MS and results from chronic inflammation, neurodegeneration, and repair failure. Investigating silent disease progression and its underlying mechanisms is a challenge. Standard MRI excels in depicting acute inflammation but lacks the pathophysiological lens required for a more targeted exploration of molecular-based processes. Novel modalities that utilize nuclear magnetic resonance’s ability to display in vivo information on imaging look to bridge this gap. Displaying the CNS through a molecular prism is becoming an undeniable reality. This review will focus on “molecular imaging biomarkers” of disease progression, modalities that can harmoniously depict anatomy and pathophysiology, making them attractive candidates to become the first valid biomarkers of neuroprotection and remyelination.
Collapse
|
27
|
Targeting PKC in microglia to promote remyelination and repair in the CNS. Curr Opin Pharmacol 2021; 62:103-108. [PMID: 34965482 DOI: 10.1016/j.coph.2021.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023]
Abstract
Microglia and CNS-infiltrating macrophages play significant roles in the pathogenesis of neuroinflammatory and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Prolonged and dysregulated inflammatory responses by these innate immune cells can have deleterious effects on the surrounding CNS microenvironment, which can worsen neurodegeneration and demyelination. However, although chronic activation of pro-inflammatory microglia is maladaptive, other functional microglial subtypes play beneficial roles during CNS repair and regeneration. Therefore, there is a tremendous interest in understanding the underlying mechanism of the activation of these reparative/regenerative microglia. In this review, we focus on the potential role of PKC, a downstream signaling molecule of TREM2 and PLCγ2, and PKC modulators in promoting the activation of reparative/regenerative microglial subtypes as a novel therapy for neuroinflammatory and neurodegenerative diseases.
Collapse
|
28
|
Chauveau F, Becker G, Boutin H. Have (R)-[ 11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging 2021; 49:201-220. [PMID: 34387719 PMCID: PMC8712292 DOI: 10.1007/s00259-021-05425-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE The prototypical TSPO radiotracer (R)-[11C]PK11195 has been used in humans for more than thirty years to visualize neuroinflammation in several pathologies. Alternative radiotracers have been developed to improve signal-to-noise ratio and started to be tested clinically in 2008. Here we examined the scientific value of these "(R)-[11C]PK11195 challengers" in clinical research to determine if they could supersede (R)-[11C]PK11195. METHODS A systematic MEDLINE (PubMed) search was performed (up to end of year 2020) to extract publications reporting TSPO PET in patients with identified pathologies, excluding studies in healthy subjects and methodological studies. RESULTS Of the 288 publications selected, 152 used 13 challengers, and 142 used (R)-[11C]PK11195. Over the last 20 years, the number of (R)-[11C]PK11195 studies remained stable (6 ± 3 per year), but was surpassed by the total number of challenger studies for the last 6 years. In total, 3914 patients underwent a TSPO PET scan, and 47% (1851 patients) received (R)-[11C]PK11195. The 2 main challengers were [11C]PBR28 (24%-938 patients) and [18F]FEPPA (11%-429 patients). Only one-in-ten patients (11%-447) underwent 2 TSPO scans, among whom 40 (1%) were scanned with 2 different TSPO radiotracers. CONCLUSIONS Generally, challengers confirmed disease-specific initial (R)-[11C]PK11195 findings. However, while their better signal-to-noise ratio seems particularly useful in diseases with moderate and widespread neuroinflammation, most challengers present an allelic-dependent (Ala147Thr polymorphism) TSPO binding and genetic stratification is hindering their clinical implementation. As new challengers, insensitive to TSPO human polymorphism, are about to enter clinical evaluation, we propose this systematic review to be regularly updated (living review).
Collapse
Affiliation(s)
- Fabien Chauveau
- University of Lyon, Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, University Lyon 1, Lyon, France.
| | - Guillaume Becker
- GIGA - CRC In Vivo Imaging, University Liege, Liege, Belgium
- University of Lyon, CarMeN Laboratory, INSERM U1060, University Lyon 1, Hospices Civils Lyon, Lyon, France
| | - Hervé Boutin
- Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
29
|
Wimberley C, Lavisse S, Hillmer A, Hinz R, Turkheimer F, Zanotti-Fregonara P. Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain. Eur J Nucl Med Mol Imaging 2021; 49:246-256. [PMID: 33693967 PMCID: PMC8712306 DOI: 10.1007/s00259-021-05248-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. METHODS This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. RESULTS AND CONCLUSIONS Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.
Collapse
Affiliation(s)
| | - Sonia Lavisse
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M20 3LJ, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, King's College London, De Crespigny Park, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Positron emission tomography in multiple sclerosis - straight to the target. Nat Rev Neurol 2021; 17:663-675. [PMID: 34545219 DOI: 10.1038/s41582-021-00537-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Following the impressive progress in the treatment of relapsing-remitting multiple sclerosis (MS), the major challenge ahead is the development of treatments to prevent or delay the irreversible accumulation of clinical disability in progressive forms of the disease. The substrate of clinical progression is neuro-axonal degeneration, and a deep understanding of the mechanisms that underlie this process is a precondition for the development of therapies for progressive MS. PET imaging involves the use of radiolabelled compounds that bind to specific cellular and metabolic targets, thereby enabling direct in vivo measurement of several pathological processes. This approach can provide key insights into the clinical relevance of these processes and their chronological sequence during the disease course. In this Review, we focus on the contribution that PET is making to our understanding of extraneuronal and intraneuronal mechanisms that are involved in the pathogenesis of irreversible neuro-axonal damage in MS. We consider the major challenges with the use of PET in MS and the steps necessary to realize clinical benefits of the technique. In addition, we discuss the potential of emerging PET tracers and future applications of existing compounds to facilitate the identification of effective neuroprotective treatments for patients with MS.
Collapse
|
31
|
Treaba CA, Conti A, Klawiter EC, Barletta VT, Herranz E, Mehndiratta A, Russo AW, Sloane JA, Kinkel RP, Toschi N, Mainero C. Cortical and phase rim lesions on 7 T MRI as markers of multiple sclerosis disease progression. Brain Commun 2021; 3:fcab134. [PMID: 34704024 DOI: 10.1093/braincomms/fcab134] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 11/14/2022] Open
Abstract
In multiple sclerosis, individual lesion-type patterns on magnetic resonance imaging might be valuable for predicting clinical outcome and monitoring treatment effects. Neuropathological and imaging studies consistently show that cortical lesions contribute to disease progression. The presence of chronic active white matter lesions harbouring a paramagnetic rim on susceptibility-weighted magnetic resonance imaging has also been associated with an aggressive form of multiple sclerosis. It is, however, still uncertain how these two types of lesions relate to each other, or which one plays a greater role in disability progression. In this prospective, longitudinal study in 100 multiple sclerosis patients (74 relapsing-remitting, 26 secondary progressive), we used ultra-high field 7-T susceptibility imaging to characterize cortical and rim lesion presence and evolution. Clinical evaluations were obtained over a mean period of 3.2 years in 71 patients, 46 of which had a follow-up magnetic resonance imaging. At baseline, cortical and rim lesions were identified in 96% and 63% of patients, respectively. Rim lesion prevalence was similar across disease stages. Patients with rim lesions had higher cortical and overall white matter lesion load than subjects without rim lesions (P = 0.018-0.05). Altogether, cortical lesions increased by both count and volume (P = 0.004) over time, while rim lesions expanded their volume (P = 0.023) whilst lacking new rim lesions; rimless white matter lesions increased their count but decreased their volume (P = 0.016). We used a modern machine learning algorithm based on extreme gradient boosting techniques to assess the cumulative power as well as the individual importance of cortical and rim lesion types in predicting disease stage and disability progression, alongside with more traditional imaging markers. The most influential imaging features that discriminated between multiple sclerosis stages (area under the curve±standard deviation = 0.82 ± 0.08) included, as expected, the normalized white matter and thalamic volume, white matter lesion volume, but also leukocortical lesion volume. Subarachnoid cerebrospinal fluid and leukocortical lesion volumes, along with rim lesion volume were the most important predictors of Expanded Disability Status Scale progression (area under the curve±standard deviation = 0.69 ± 0.12). Taken together, these results indicate that while cortical lesions are extremely frequent in multiple sclerosis, rim lesion development occurs only in a subset of patients. Both, however, persist over time and relate to disease progression. Their combined assessment is needed to improve the ability of identifying multiple sclerosis patients at risk of progressing disease.
Collapse
Affiliation(s)
- Constantina A Treaba
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Valeria T Barletta
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Elena Herranz
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Ambica Mehndiratta
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Nicola Toschi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Kang Y, Rúa SMH, Kaunzner UW, Perumal J, Nealon N, Qu W, Kothari PJ, Vartanian T, Kuceyeski A, Gauthier SA. A Multi-Ligand Imaging Study Exploring GABAergic Receptor Expression and Inflammation in Multiple Sclerosis. Mol Imaging Biol 2021; 22:1600-1608. [PMID: 32394283 DOI: 10.1007/s11307-020-01501-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter and essential for normal brain function. The GABAergic system has been shown to have immunomodulatory effects and respond adaptively to excitatory toxicity. The association of the GABAergic system and inflammation in patients with multiple sclerosis (MS) remains unknown. In this pilot study, the in vivo relationship between GABAA binding and the innate immune response is explored using positron emission tomography (PET) with [11C] flumazenil (FMZ) and [11C]-PK11195 PET (PK-PET), a measure of activated microglia/macrophages. PROCEDURES Sixteen MS patients had dynamic FMZ-PET and PK-PET imaging. Ten age-matched healthy controls (HC) had a single FMZ-PET. GABAA receptor binding was calculated using Logan reference model with the pons as reference. Distribution of volume ratio (VTr) for PK-PET was calculated using image-derived input function. A hierarchical linear model was fitted to assess the linear association between PK-PET and FMZ-PET among six cortical regions of interest. RESULTS GABAA receptor binding was higher throughout the cortex in MS patients (5.72 ± 0.91) as compared with HC (4.70 ± 0.41) (p = 0.002). A significant correlation was found between FMZ binding and PK-PET within the cortex (r = 0.61, p < 0.001) and among the occipital (r = 0.61, p = 0.012), parietal (r = 0.49, p = 0.041), and cingulate (r = 0.32, p = 0.006) regions. CONCLUSIONS A higher GABAA receptor density in MS subjects compared with HC was observed and correlated with innate immune activity. Our observations demonstrate that immune-driven GABAergic abnormalities may be present in MS.
Collapse
Affiliation(s)
- Yeona Kang
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Mathematics, Howard University, Washington, D.C, 20059, USA
| | - Sandra Milena Hurtado Rúa
- Department of Mathematics and Statistics, College of Science and Health Professions, Cleveland State University, Cleveland, OH, 44115, USA
| | - Ulrike W Kaunzner
- Department of Neurology, Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jai Perumal
- Department of Neurology, Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nancy Nealon
- Department of Neurology, Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wenchao Qu
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Paresh J Kothari
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Timothy Vartanian
- Department of Neurology, Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York, NY, 10021, USA.,Feil Family Brain and Mind Institute, Weill Cornell, New York, NY, 10021, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA.,Feil Family Brain and Mind Institute, Weill Cornell, New York, NY, 10021, USA
| | - Susan A Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA. .,Department of Neurology, Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York, NY, 10021, USA. .,Feil Family Brain and Mind Institute, Weill Cornell, New York, NY, 10021, USA.
| |
Collapse
|
33
|
Kang Y, Pandya S, Zinger N, Michaelson N, Gauthier SA. Longitudinal change in TSPO PET imaging in progressive multiple sclerosis. Ann Clin Transl Neurol 2021; 8:1755-1759. [PMID: 34310086 PMCID: PMC8351399 DOI: 10.1002/acn3.51431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 11/06/2022] Open
Abstract
The objective of this pilot study was to assess a 2-year change in innate immune burden in 15 progressive multiple sclerosis (MS) patients using PK11195-PET. Sixteen age-matched healthy controls (HC) were included for baseline comparison. PK11195 uptake was higher in MS patients compared to HC within normal-appearing white matter (NAWM) and multiple gray matter regions. In patients, PK11195 uptake increased in NAWM (p = 0.01), cortex (p = 0.04), thalamus (p = 0.04), and putamen (p = 0.02) at 12 months. Among patients remaining at 24 months, there was no further increase in PK11195. Our data suggest that innate immune activity may increase over time in patients with progressive MS.
Collapse
Affiliation(s)
- Yeona Kang
- Department of Mathematics, Howard University, Washington, District of Columbia, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Nicole Zinger
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Nara Michaelson
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Susan A Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Department of Neurology, Weill Cornell Medicine, New York, New York, USA.,Feil Brain and Mind Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
34
|
Jewells VL, Yuan H, Merrill JR, Frank JE, Patel A, Cohen SM, Giglio B, Feinberg NN, Matsushima GK, Li Z. Assessment of 18F-PBR-111 in the Cuprizone Mouse Model of Multiple Sclerosis. Diagnostics (Basel) 2021; 11:diagnostics11050786. [PMID: 33925560 PMCID: PMC8145256 DOI: 10.3390/diagnostics11050786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
The study aims to assess site assessment of the performance of 18F-PBR-111 as a neuroinflammation marker in the cuprizone mouse model of multiple sclerosis (MS). 18F-PBR-111 PET imaging has not been well evaluated in multiple sclerosis applications both in preclinical and clinical research. This study will help establish the potential utility of 18F-PBR-111 PET in preclinical MS research and future animal and future human applications. 18F-PBR-111 PET/CT was conducted at 3.5 weeks (n = 7) and 5.0 weeks (n = 7) after cuprizone treatment or sham control (n = 3) in the mouse model. A subgroup of mice underwent autoradiography with cryosectioned brain tissue. T2 weighted MRI was performed to obtain the brain structural data of each mouse. 18F-PBR-111 uptake was assessed in multiple brain regions with PET and autoradiography images. The correlation between autoradiography and immunofluorescence staining of neuroinflammation (F4/80 and CD11b) was measured. Compared to control mice, significant 18F-PBR-111 uptake in the corpus callosum (p < 0.001), striatum (caudate and internal capsule, p < 0.001), and hippocampus (p < 0.05) was identified with PET images at both 3.5 weeks and 5.0 weeks, and validated with autoradiography. No significant uptake differences were detected between 3.5 weeks and 5.0 weeks assessing these regions as a whole, although there was a trend of increased uptake at 5.0 weeks compared to 3.5 weeks in the CC. High 18F-PBR-111 uptake regions correlated with microglial/macrophage locations by immunofluorescence staining with F4/80 and CD11b antibodies. 18F-PBR-111 uptake in anatomic locations correlated with activated microglia at histology in the cuprizone mouse model of MS suggests that 18F-PBR-111 has potential for in vivo evaluation of therapy response and potential for use in MS patients and animal studies.
Collapse
Affiliation(s)
- Valerie L. Jewells
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (H.Y.); (Z.L.)
- Correspondence: ; Fax: +1-(919)-966-1994
| | - Hong Yuan
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (H.Y.); (Z.L.)
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| | - Joseph R. Merrill
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| | - Jonathan E. Frank
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| | - Akhil Patel
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.P.); (G.K.M.)
| | - Stephanie M. Cohen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.M.C.); (N.N.F.)
| | - Ben Giglio
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| | - Nana Nikolaishvili Feinberg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.M.C.); (N.N.F.)
| | - Glenn K. Matsushima
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.P.); (G.K.M.)
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (H.Y.); (Z.L.)
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| |
Collapse
|
35
|
Aryanpour R, Zibara K, Pasbakhsh P, Jame'ei SB, Namjoo Z, Ghanbari A, Mahmoudi R, Amani S, Kashani IR. 17β-Estradiol Reduces Demyelination in Cuprizone-fed Mice by Promoting M2 Microglia Polarity and Regulating NLRP3 Inflammasome. Neuroscience 2021; 463:116-127. [PMID: 33794337 DOI: 10.1016/j.neuroscience.2021.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
Estrogen produces a beneficial role in animal models of multiple sclerosis (MS). The effect of 17β-estradiol therapy on microglia polarization and neuroinflammation in the corpus callosum of the cuprizone-induced demyelination model has not been elucidated. In this study, mice were given 0.2% cuprizone (CPZ) for 5 weeks to induce demyelination during which they received 50 ng of 17β-estradiol (EST), injected subcutaneously in the neck region, twice weekly. Data revealed that treatment with 17β-estradiol therapy (CPZ+EST) improved neurological behavioral deficits, displayed by a significant reduction in escape latencies, in comparison to untreated CPZ mice. Also, administration of 17β-estradiol caused a decrease in demyelination levels and axonal injury, as demonstrated by staining with Luxol fast blue, immunofluorescence to myelin basic protein, and transmission electron microscopy analysis. In addition, at the transcriptional level in the brain, mice treated with 17β-estradiol (CPZ+EST) showed a decrease in the levels of M1-assosicted microglia markers (CD86, iNOS and MHC-II) whereas M2-associated genes (Arg-1, CD206 and Trem-2) were increased, compared to CPZ mice. Moreover, administration of 17β-estradiol resulted in a significant reduction (∼3-fold) in transcript levels of NLRP3 inflammasome and its downstream product IL-18, compared to controls. In summary, this study demonstrated for the first time that exogenous 17β-estradiol therapy robustly leads to the reduction of M1 phenotype, stimulation of polarized M2 microglia, and repression of NLRP3 inflammasome in the corpus callosum of CPZ demyelination model of MS. The positive effects of 17β-estradiol on microglia and inflammasome seems to facilitate and accelerate the remyelination process.
Collapse
Affiliation(s)
- Roya Aryanpour
- Department of Anatomy, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zeinab Namjoo
- Department of Anatomical Science, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ghanbari
- Cell and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cell and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Showan Amani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Poirion E, Tonietto M, Lejeune FX, Ricigliano VAG, Boudot de la Motte M, Benoit C, Bera G, Kuhnast B, Bottlaender M, Bodini B, Stankoff B. Structural and Clinical Correlates of a Periventricular Gradient of Neuroinflammation in Multiple Sclerosis. Neurology 2021; 96:e1865-e1875. [PMID: 33737372 PMCID: PMC8105971 DOI: 10.1212/wnl.0000000000011700] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022] Open
Abstract
Objectives To explore in vivo innate immune cell activation as a function of the distance from ventricular CSF in patients with multiple sclerosis (MS) using [18F]-DPA714 PET and to investigate its relationship with periventricular microstructural damage, evaluated by magnetization transfer ratio (MTR), and with trajectories of disability worsening. Methods Thirty-seven patients with MS and 19 healthy controls underwent MRI and [18F]-DPA714 TSPO dynamic PET, from which individual maps of voxels characterized by innate immune cell activation (DPA+) were generated. White matter (WM) was divided in 3-mm-thick concentric rings radiating from the ventricular surface toward the cortex, and the percentage of DPA+ voxels and mean MTR were extracted from each ring. Two-year trajectories of disability worsening were collected to identify patients with and without recent disability worsening. Results The percentage of DPA+ voxels was higher in patients compared to controls in the periventricular WM (p = 6.10e-6) and declined with increasing distance from ventricular surface, with a steeper gradient in patients compared to controls (p = 0.001). This gradient was found in both periventricular lesions and normal-appearing WM. In the total WM, it correlated with a gradient of microstructural tissue damage measured by MTR (rs = −0.65, p = 1.0e-3). Compared to clinically stable patients, patients with disability worsening were characterized by a higher percentage of DPA+ voxels in the periventricular normal-appearing WM (p = 0.025). Conclusions Our results demonstrate that in MS the innate immune cell activation predominates in periventricular regions and is associated with microstructural damage and disability worsening. This could result from the diffusion of proinflammatory CSF-derived factors into surrounding tissues.
Collapse
Affiliation(s)
- Emilie Poirion
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Matteo Tonietto
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - François-Xavier Lejeune
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Vito A G Ricigliano
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Marine Boudot de la Motte
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Charline Benoit
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Géraldine Bera
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Bertrand Kuhnast
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Michel Bottlaender
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Benedetta Bodini
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France
| | - Bruno Stankoff
- From the Sorbonne University (E.P., M.T., F.-X.L., V.A.G.R., M.B.d.l.M., C.B., G.B., B.B., B.S.), Paris Brain Institute; Imaging Department (E.P.), Foundation A. de Rothschild Hospital, Paris; Paris-Saclay University (M.T., B.K., M.B.), CEA, Orsay; and Assistance Publique des Hôpitaux de Paris (B.B., B.S.), France.
| |
Collapse
|
37
|
Petracca M, Pontillo G, Moccia M, Carotenuto A, Cocozza S, Lanzillo R, Brunetti A, Brescia Morra V. Neuroimaging Correlates of Cognitive Dysfunction in Adults with Multiple Sclerosis. Brain Sci 2021; 11:346. [PMID: 33803287 PMCID: PMC8000635 DOI: 10.3390/brainsci11030346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a frequent and meaningful symptom in multiple sclerosis (MS), caused by the accrual of brain structural damage only partially counteracted by effective functional reorganization. As both these aspects can be successfully investigated through the application of advanced neuroimaging, here, we offer an up-to-date overview of the latest findings on structural, functional and metabolic correlates of cognitive impairment in adults with MS, focusing on the mechanisms sustaining damage accrual and on the identification of useful imaging markers of cognitive decline.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
- Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, 80125 Naples, Italy
| | - Marcello Moccia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| |
Collapse
|
38
|
Sucksdorff M, Matilainen M, Tuisku J, Polvinen E, Vuorimaa A, Rokka J, Nylund M, Rissanen E, Airas L. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 2021; 143:3318-3330. [PMID: 33006604 PMCID: PMC7719021 DOI: 10.1093/brain/awaa275] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022] Open
Abstract
Overactivation of microglia is associated with most neurodegenerative diseases. In this study we examined whether PET-measurable innate immune cell activation predicts multiple sclerosis disease progression. Activation of microglia/macrophages was measured using the 18-kDa translocator protein (TSPO)-binding radioligand 11C-PK11195 and PET imaging in 69 patients with multiple sclerosis and 18 age- and sex-matched healthy controls. Radioligand binding was evaluated as the distribution volume ratio from dynamic PET images. Conventional MRI and disability measurements using the Expanded Disability Status Scale were performed for patients at baseline and 4.1 ± 1.9 (mean ± standard deviation) years later. Fifty-one (74%) of the patients were free of relapses during the follow-up period. Patients had increased activation of innate immune cells in the normal-appearing white matter and in the thalamus compared to the healthy control group (P = 0.033 and P = 0.003, respectively, Wilcoxon). Forward-type stepwise logistic regression was used to assess the best variables predicting disease progression. Baseline innate immune cell activation in the normal-appearing white matter was a significant predictor of later progression when the entire multiple sclerosis cohort was assessed [odds ratio (OR) = 4.26; P = 0.048]. In the patient subgroup free of relapses there was an association between macrophage/microglia activation in the perilesional normal-appearing white matter and disease progression (OR = 4.57; P = 0.013). None of the conventional MRI parameters measured at baseline associated with later progression. Our results strongly suggest that innate immune cell activation contributes to the diffuse neural damage leading to multiple sclerosis disease progression independent of relapses.
Collapse
Affiliation(s)
- Marcus Sucksdorff
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Polvinen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| | - Johanna Rokka
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Marjo Nylund
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| |
Collapse
|
39
|
Filippi M, Preziosa P, Barkhof F, Chard D, De Stefano N, Fox RJ, Gasperini C, Kappos L, Montalban X, Moraal B, Reich DS, Rovira À, Toosy AT, Traboulsee A, Weinshenker BG, Zeydan B, Banwell B, Rocca MA. Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective: A Review. JAMA Neurol 2021; 78:351-364. [PMID: 33315071 PMCID: PMC11382596 DOI: 10.1001/jamaneurol.2020.4689] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Although magnetic resonance imaging (MRI) is useful for monitoring disease dissemination in space and over time and excluding multiple sclerosis (MS) mimics, there has been less application of MRI to progressive MS, including diagnosing primary progressive (PP) MS and identifying patients with relapsing-remitting (RR) MS who are at risk of developing secondary progressive (SP) MS. This review addresses clinical application of MRI for both diagnosis and prognosis of progressive MS. Observations Although nonspecific, some spinal cord imaging features (diffuse abnormalities and lesions involving gray matter [GM] and ≥2 white matter columns) are typical of PPMS. In patients with PPMS and those with relapse-onset MS, location of lesions in critical central nervous system regions (spinal cord, infratentorial regions, and GM) and MRI-detected high inflammatory activity in the first years after diagnosis are risk factors for long-term disability and future progressive disease course. These measures are evaluable in clinical practice. In patients with established MS, GM involvement and neurodegeneration are associated with accelerated clinical worsening. Subpial demyelination and slowly expanding lesions are novel indicators of progressive MS. Conclusions and Relevance Diagnosis of PPMS is more challenging than diagnosis of RRMS. No qualitative clinical, immunological, histopathological, or neuroimaging features differentiate PPMS and SPMS; both are characterized by imaging findings reflecting neurodegeneration and are also impacted by aging and comorbidities. Unmet diagnostic needs include identification of MRI markers capable of distinguishing PPMS from RRMS and predicting the evolution of RRMS to SPMS. Integration of multiple parameters will likely be essential to achieve these aims.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, MS Center Amsterdam, Amsterdam, Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Declan Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Institute of Neurology, London, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Robert J. Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | - Claudio Gasperini
- Department of Neurology, San Camillo-Forlanini Hospital, Roma, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Xavier Montalban
- Department of Neurology, Cemcat, Hospital Vall d’Hebron, Autonomous University of Barcelona, Barcelona, Spain
- Division of Neurology, St Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, MS Center Amsterdam, Amsterdam, Netherlands
| | - Daniel S. Reich
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology (IDI), Vall d’Hebron University Hospital and Research Institute (VHIR), Autonomous University Barcelona, Spain
| | - Ahmed T. Toosy
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London Institute of Neurology, London, UK
| | - Anthony Traboulsee
- MS/MRI Research Group, Djavad Mowafaghian Centre for Brain Health, and Vancouver, British Columbia, Canada
- Faculty of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Burcu Zeydan
- Department of Neurology and Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Brenda Banwell
- Division of Child Neurology, The Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania
| | - Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
Tondo G, Boccalini C, Caminiti SP, Presotto L, Filippi M, Magnani G, Frisoni GB, Iannaccone S, Perani D. Brain Metabolism and Microglia Activation in Mild Cognitive Impairment: A Combined [18F]FDG and [11C]-(R)-PK11195 PET Study. J Alzheimers Dis 2021; 80:433-445. [PMID: 33579848 DOI: 10.3233/jad-201351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a transitional condition between normal cognition and dementia. [18F]FDG-PET reveals brain hypometabolism patterns reflecting neuronal/synaptic dysfunction, already in the prodromal MCI phase. Activated microglia is part of the pathogenetic processes leading to neurodegeneration. OBJECTIVE Using [11C]-(R)-PK11195 and [18F]FDG-PET, we aimed to in vivo investigate the presence of microglial activation, and the relationship with brain glucose metabolism, in single MCI subjects. METHODS Eight MCI subjects underwent both [18F]FDG-PET and [11C]-(R)-PK11195 PET. We used validated quantification methods to obtain brain hypometabolism maps and microglia activation peaks in single subjects. We investigated both the spatial overlap and the relationship between brain glucose hypometabolism and microglia activation, by means of Dice similarity coefficient and using Pearson's correlation at single subject level. RESULTS Each MCI showed a specific brain hypometabolism pattern indicative of different possible etiologies, as expected in MCI population (i.e., Alzheimer's disease-like, frontotemporal dementia-like, hippocampal-type, normal aging type). [11C]-(R)-PK11195 PET analysis revealed a spatial concordance with regional hypometabolism in all subjects with several clusters of significant microglia activation showing an inverse correlation with the regional metabolism. This was proportional to the strength of between-signals correlation coefficient (β = -0.804; p = 0.016). CONCLUSION Microglia activation is present in the prodromal MCI phase of different underlying etiologies, showing spatial concordance and inverse correlation with brain glucose metabolism at single-subject level. These findings suggest a possible contribution of activated microglia to neurodegeneration, showing important implications for local immune activity in the early neurodegenerative processes.
Collapse
Affiliation(s)
- Giacomo Tondo
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo human molecular and structural neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Boccalini
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo human molecular and structural neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo human molecular and structural neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Presotto
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Massimo Filippi
- Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology and INSPE, San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- Department of Neurology and INSPE, San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Battista Frisoni
- IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE- Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sandro Iannaccone
- Department of Rehabilitation and Functional Recovery, San Raffaele Hospital, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo human molecular and structural neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
41
|
Bagnato F, Gauthier SA, Laule C, Moore GRW, Bove R, Cai Z, Cohen-Adad J, Harrison DM, Klawiter EC, Morrow SA, Öz G, Rooney WD, Smith SA, Calabresi PA, Henry RG, Oh J, Ontaneda D, Pelletier D, Reich DS, Shinohara RT, Sicotte NL. Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. J Neuroimaging 2021; 30:251-266. [PMID: 32418324 DOI: 10.1111/jon.12700] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinicians involved with different aspects of the care of persons with multiple sclerosis (MS) and scientists with expertise on clinical and imaging techniques convened in Dallas, TX, USA on February 27, 2019 at a North American Imaging in Multiple Sclerosis Cooperative workshop meeting. The aim of the workshop was to discuss cardinal pathobiological mechanisms implicated in the progression of MS and novel imaging techniques, beyond brain atrophy, to unravel these pathologies. Indeed, although brain volume assessment demonstrates changes linked to disease progression, identifying the biological mechanisms leading up to that volume loss are key for understanding disease mechanisms. To this end, the workshop focused on the application of advanced magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging techniques to assess and measure disease progression in both the brain and the spinal cord. Clinical translation of quantitative MRI was recognized as of vital importance, although the need to maintain a relatively short acquisition time mandated by most radiology departments remains the major obstacle toward this effort. Regarding PET, the panel agreed upon its utility to identify ongoing pathological processes. However, due to costs, required expertise, and the use of ionizing radiation, PET was not considered to be a viable option for ongoing care of persons with MS. Collaborative efforts fostering robust study designs and imaging technique standardization across scanners and centers are needed to unravel disease mechanisms leading to progression and discovering medications halting neurodegeneration and/or promoting repair.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Department of Neurology, Feil Family Brain and Mind Institute, and Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Cornelia Laule
- Department of Radiology, Pathology, and Laboratory Medicine, Department of Physics and Astronomy, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - George R Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley Bove
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal and Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Eric C Klawiter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - William D Rooney
- Advanced Imaging Research Center, Departments of Biomedical Engineering, Neurology, and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Seth A Smith
- Radiology and Radiological Sciences and Vanderbilt University Imaging Institute, Vanderbilt University Medical Center, and Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roland G Henry
- Departments of Neurology, Radiology and Biomedical Imaging, and the UC San Francisco & Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA
| | - Jiwon Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | -
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
42
|
Barros C, Fernandes A. Linking Cognitive Impairment to Neuroinflammation in Multiple Sclerosis using neuroimaging tools. Mult Scler Relat Disord 2020; 47:102622. [PMID: 33227630 DOI: 10.1016/j.msard.2020.102622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is a complex chronic immune disease in the central nervous system, causing neurological disability among young and middle-aged adults. Impaired cognition is now emerging as a major clinical symptom being present in more than 50% of MS patients. Recent data support that neuroinflammation mediated by glial cells plays a key part in MS course and, particularly, microglia is responsible for the pruning of synapses possibly impacting on vital neural networks maintenance. However, the knowledge of microglia-mediated mechanisms underlying cognitive impairment in MS is poor and unfortunately, there are no medicines to overcome this "invisible" symptom. Interestingly, the use of powerful diagnostic imaging tools as structural and functional MRI as well as PET brought new insights into some biological mechanisms, but no link between the possibility to use early visible alterations to predict cognitive deficits was clarified yet. In this review, we focus on the interplay between MS-related cognitive structures and neuroinflammation, specifically the presence of microglia and their reactivity. Moreover, we also discuss new imaging tools to assess cognitive impairment and to track microglia activation. Understanding the role of microglia in cognitive impairment and how it can be prevented may be a promising contribution to innovative therapeutic strategies that culminate in the improvement of MS patients' life quality.
Collapse
Affiliation(s)
- Catarina Barros
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
43
|
Herranz E, Louapre C, Treaba CA, Govindarajan ST, Ouellette R, Mangeat G, Loggia ML, Cohen-Adad J, Klawiter EC, Sloane JA, Mainero C. Profiles of cortical inflammation in multiple sclerosis by 11C-PBR28 MR-PET and 7 Tesla imaging. Mult Scler 2020; 26:1497-1509. [PMID: 31368404 PMCID: PMC6994367 DOI: 10.1177/1352458519867320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuroinflammation with microglia activation is thought to be closely related to cortical multiple sclerosis (MS) lesion pathogenesis. OBJECTIVE Using 11C-PBR28 and 7 Tesla (7T) imaging, we assessed in 9 relapsing-remitting multiple sclerosis (RRMS) and 10 secondary progressive multiple sclerosis (SPMS) patients the following: (1) microglia activation in lesioned and normal-appearing cortex, (2) cortical lesion inflammatory profiles, and (3) the relationship between neuroinflammation and cortical integrity. METHODS Mean 11C-PBR28 uptake was measured in focal cortical lesions, cortical areas with 7T quantitative T2* (q-T2*) abnormalities, and normal-appearing cortex. The relative difference in cortical 11C-PBR28 uptake between patients and 14 controls was used to classify cortical lesions as either active or inactive. Disease burden was investigated according to cortical lesion inflammatory profiles. The relation between q-T2* and 11C-PBR28 uptake along the cortex was assessed. RESULTS 11C-PBR28 uptake was abnormally high in cortical lesions in RRMS and SPMS; in SPMS, tracer uptake was significantly increased also in normal-appearing cortex. 11C-PBR28 uptake and q-T2* correlated positively in many cortical areas, negatively in some regions. Patients with high cortical lesion inflammation had worse clinical outcome and higher intracortical lesion burden than patients with low inflammation. CONCLUSION 11C-PBR28 and 7T imaging reveal distinct profiles of cortical inflammation in MS, which are related to disease burden.
Collapse
Affiliation(s)
- Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Celine Louapre
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Constantina Andrada Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sindhuja T Govindarajan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
| | - Gabriel Mangeat
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Eric C. Klawiter
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacob A. Sloane
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, Breur M, van der Valk P, Matthews PM, Owen DR, Amor S. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 2020; 142:3440-3455. [PMID: 31578541 PMCID: PMC6821167 DOI: 10.1093/brain/awz287] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely considered to reflect activated pathogenic microglia, although quantitative neuropathological data to support this interpretation have not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting. Here we have studied the cellular expression of TSPO and specific binding of two TSPO targeting radioligands (3H-PK11195 and 3H-PBR28) in tissue sections from 42 multiple sclerosis cases and 12 age-matched controls. Markers of homeostatic and reactive microglia, astrocytes, and lymphocytes were used to investigate the phenotypes of cells expressing TSPO. There was an approximate 20-fold increase in cells double positive for TSPO and HLA-DR in active lesions and in the rim of chronic active lesion, relative to normal appearing white matter. TSPO was uniformly expressed across myeloid cells irrespective of their phenotype, rather than being preferentially associated with pro-inflammatory microglia or macrophages. TSPO+ astrocytes were increased up to 7-fold compared to normal-appearing white matter across all lesion subtypes and accounted for 25% of the TSPO+ cells in these lesions. To relate TSPO protein expression to ligand binding, specific binding of the TSPO ligands 3H-PK11195 and 3H-PBR28 was determined in the same lesions. TSPO radioligand binding was increased up to seven times for 3H-PBR28 and up to two times for 3H-PK11195 in active lesions and the centre of chronic active lesions and a strong correlation was found between the radioligand binding signal for both tracers and the number of TSPO+ cells across all of the tissues examined. In summary, in multiple sclerosis, TSPO expression arises from microglia of different phenotypes, rather than being restricted to microglia which express classical pro-inflammatory markers. While the majority of cells expressing TSPO in active lesions or chronic active rims are microglia/macrophages, our findings also emphasize the significant contribution of activated astrocytes, as well as smaller contributions from endothelial cells. These observations establish a quantitative framework for interpretation of TSPO in multiple sclerosis and highlight the need for neuropathological characterization of TSPO expression for the interpretation of TSPO PET in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Jodie A Stephenson
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Rianne P Gorter
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Joy de Bruin
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | | | | | - Marjolein Breur
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul van der Valk
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, UK.,UK Dementia Research Institute, Imperial College London, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, UK
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
45
|
Abstract
Emerging data point to important contributions of both autoimmune inflammation and progressive degeneration in the pathophysiology of multiple sclerosis (MS). Unfortunately, after decades of intensive investigation, the fundamental cause remains unknown. A large body of research on the immunobiology of MS has resulted in a variety of anti-inflammatory therapies that are highly effective at reducing brain inflammation and clinical/radiological relapses. However, despite potent suppression of inflammation, benefit in the more important and disabling progressive phase is extremely limited; thus, progressive MS has emerged as the greatest challenge for the MS research and clinical communities. Data obtained over the years point to a complex interplay between environment (e.g., the near-absolute requirement of Epstein-Barr virus exposure), immunogenetics (strong associations with a large number of immune genes), and an ever more convincing role of an underlying degenerative process resulting in demyelination (in both white and grey matter regions), axonal and neuro-synaptic injury, and a persistent innate inflammatory response with a seemingly diminishing role of T cell-mediated autoimmunity as the disease progresses. Together, these observations point toward a primary degenerative process, one whose cause remains unknown but one that entrains a nearly ubiquitous secondary autoimmune response, as a likely sequence of events underpinning this disease. Here, we briefly review what is known about the potential pathophysiological mechanisms, focus on progressive MS, and discuss the two main hypotheses of MS pathogenesis that are the topic of vigorous debate in the field: whether primary autoimmunity or degeneration lies at the foundation. Unravelling this controversy will be critically important for developing effective new therapies for the most disabling later phases of this disease.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Medicine University of Calgary, Calgary, Alberta, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Medicine University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
46
|
Van Schependom J, Guldolf K, D'hooghe MB, Nagels G, D'haeseleer M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl Neurodegener 2019; 8:37. [PMID: 31827784 PMCID: PMC6900860 DOI: 10.1186/s40035-019-0178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex chronic inflammatory and degenerative disorder of the central nervous system. Accelerated brain volume loss, or also termed atrophy, is currently emerging as a popular imaging marker of neurodegeneration in affected patients, but, unfortunately, can only be reliably interpreted at the time when irreversible tissue damage likely has already occurred. Timing of treatment decisions based on brain atrophy may therefore be viewed as suboptimal. Main body This Narrative Review focuses on alternative techniques with the potential of detecting neurodegenerative events in the brain of subjects with MS prior to the atrophic stage. First, metabolic and molecular imaging provide the opportunity to identify early subcellular changes associated with energy dysfunction, which is an assumed core mechanism of axonal degeneration in MS. Second, cerebral hypoperfusion has been observed throughout the entire clinical spectrum of the disorder but it remains an open question whether this serves as an alternative marker of reduced metabolic activity, or exists as an independent contributing process, mediated by endothelin-1 hyperexpression. Third, both metabolic and perfusion alterations may lead to repercussions at the level of network performance and structural connectivity, respectively assessable by functional and diffusion tensor imaging. Fourth and finally, elevated body fluid levels of neurofilaments are gaining interest as a biochemical mirror of axonal damage in a wide range of neurological conditions, with early rises in patients with MS appearing to be predictive of future brain atrophy. Conclusions Recent findings from the fields of advanced neuroradiology and neurochemistry provide the promising prospect of demonstrating degenerative brain pathology in patients with MS before atrophy has installed. Although the overall level of evidence on the presented topic is still preliminary, this Review may pave the way for further longitudinal and multimodal studies exploring the relationships between the abovementioned measures, possibly leading to novel insights in early disease mechanisms and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,2Radiology Department Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaat Guldolf
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Marie Béatrice D'hooghe
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Guy Nagels
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Miguel D'haeseleer
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| |
Collapse
|
47
|
Folate receptor-targeted positron emission tomography of experimental autoimmune encephalomyelitis in rats. J Neuroinflammation 2019; 16:252. [PMID: 31796042 PMCID: PMC6892159 DOI: 10.1186/s12974-019-1612-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Folate receptor-β (FR-β) is a cell surface receptor that is significantly upregulated on activated macrophages during inflammation and provides a potential target for folate-based therapeutic and diagnostic agents. FR-β expression in central nervous system inflammation remains relatively unexplored. Therefore, we used focally induced acute and chronic phases of experimental autoimmune encephalomyelitis (EAE) to study patterns of FR-β expression and evaluated its potential as an in vivo imaging target. METHODS Focal EAE was induced in rats using heat-killed Bacillus Calmette-Guérin followed by activation with complete Freund's adjuvant supplemented with Mycobacterium tuberculosis. The rats were assessed with magnetic resonance imaging and positron emission tomography/computed tomography (PET/CT) at acute (14 days) and chronic (90 days) phases of inflammation. The animals were finally sacrificed for ex vivo autoradiography of their brains. PET studies were performed using FR-β-targeting aluminum [18F]fluoride-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid conjugated folate ([18F]AlF-NOTA-folate, 18F-FOL) and 18 kDa translocator protein (TSPO)-targeting N-acetyl-N-(2-[11C]methoxybenzyl)-2-phenoxy-5-pyridinamine (11C-PBR28). Post-mortem immunohistochemistry was performed using anti-FR-β, anti-cluster of differentiation 68 (anti-CD68), anti-inducible nitric oxide synthase (anti-iNOS), and anti-mannose receptor C-type 1 (anti-MRC-1) antibodies. The specificity of 18F-FOL binding was verified using in vitro brain sections with folate glucosamine used as a blocking agent. RESULTS Immunohistochemical evaluation of focal EAE lesions demonstrated anti-FR-β positive cells at the lesion border in both acute and chronic phases of inflammation. We found that anti-FR-β correlated with anti-CD68 and anti-MRC-1 immunohistochemistry; for MRC-1, the correlation was most prominent in the chronic phase of inflammation. Both 18F-FOL and 11C-PBR28 radiotracers bound to the EAE lesions. Autoradiography studies verified that this binding took place in areas of anti-FR-β positivity. A blocking assay using folate glucosamine further verified the tracer's specificity. In the chronic phase of EAE, the lesion-to-background ratio of 18F-FOL was significantly higher than that of 11C-PBR28 (P = 0.016). CONCLUSION Our EAE results imply that FR-β may be a useful target for in vivo imaging of multiple sclerosis-related immunopathology. FR-β-targeted PET imaging with 18F-FOL may facilitate the monitoring of lesion development and complement the information obtained from TSPO imaging by bringing more specificity to the PET imaging armamentarium for neuroinflammation.
Collapse
|
48
|
Singhal T, O'Connor K, Dubey S, Pan H, Chu R, Hurwitz S, Cicero S, Tauhid S, Silbersweig D, Stern E, Kijewski M, DiCarli M, Weiner HL, Bakshi R. Gray matter microglial activation in relapsing vs progressive MS: A [F-18]PBR06-PET study. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e587. [PMID: 31355321 PMCID: PMC6624145 DOI: 10.1212/nxi.0000000000000587] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/15/2019] [Indexed: 11/15/2022]
Abstract
Objective To determine the value of [F-18]PBR06-PET for assessment of microglial activation in the cerebral gray matter in patients with MS. Methods Twelve patients with MS (7 relapsing-remitting and 5 secondary progressive [SP]) and 5 healthy controls (HCs) had standardized uptake value (SUV) PET maps coregistered to 3T MRI and segmented into cortical and subcortical gray matter regions. SUV ratios (SUVRs) were global brain normalized. Voxel-by-voxel analysis was performed using statistical parametric mapping (SPM). Normalized brain parenchymal volumes (BPVs) were determined from MRI using SIENAX. Results Cortical SUVRs were higher in the hippocampus, amygdala, midcingulate, posterior cingulate, and rolandic operculum and lower in the medial-superior frontal gyrus and cuneus in the MS vs HC group (all p < 0.05). Subcortical gray matter SUVR was higher in SPMS vs RRMS (+10.8%, p = 0.002) and HC (+11.3%, p = 0.055) groups. In the MS group, subcortical gray matter SUVR correlated with the Expanded Disability Status Scale (EDSS) score (r = 0.75, p = 0.005) and timed 25-foot walk (T25FW) (r = 0.70, p = 0.01). Thalamic SUVRs increased with increasing EDSS scores (r = 0.83, p = 0.0008) and T25FW (r = 0.65, p = 0.02) and with decreasing BPV (r = -0.63, p = 0.03). Putaminal SUVRs increased with increasing EDSS scores (0.71, p = 0.009) and with decreasing BPV (r = -0.67, p = 0.01). On SPM analysis, peak correlations of thalamic voxels with BPV were seen in the pulvinar and with the EDSS score and T25FW in the dorsomedial thalamic nuclei. Conclusions This study suggests that [F-18]PBR06-PET detects widespread abnormal microglial activation in the cerebral gray matter in MS. Increased translocator protein binding in subcortical gray matter regions is associated with brain atrophy and may link to progressive MS.
Collapse
Affiliation(s)
- Tarun Singhal
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kelsey O'Connor
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shipra Dubey
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hong Pan
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Renxin Chu
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shelley Hurwitz
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Steven Cicero
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shahamat Tauhid
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David Silbersweig
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Emily Stern
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marie Kijewski
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marcelo DiCarli
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Howard L Weiner
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rohit Bakshi
- Partners MS Center (T.S., K.O.C., R.C., S.C., S.T., H.L.W., R.B.), Laboratory for Neuroimaging Research, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School; Division of Nuclear Medicine and Molecular Imaging (S.D., M.K., M.D.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; Functional Neuroimaging Laboratory (H.P., D.S., E.S.), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School; Department of Medicine (S.H.) and Department of Radiology (E.S., R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog Neurobiol 2019; 182:101663. [PMID: 31374243 DOI: 10.1016/j.pneurobio.2019.101663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 07/17/2019] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) is the most important tool for diagnosing multiple sclerosis (MS). However, MRI is still unable to precisely quantify the specific pathophysiological processes that underlie imaging findings in MS. Because autopsy and biopsy samples of MS patients are rare and biased towards a chronic burnt-out end or fulminant acute early stage, the only available methods to identify human disease pathology are to apply MRI techniques in combination with subsequent histopathological examination to small animal models of MS and to transfer these insights to MS patients. This review summarizes the existing combined imaging and histopathological studies performed in MS mouse models and humans with MS (in vivo and ex vivo), to promote a better understanding of the pathophysiology that underlies conventional MRI, diffusion tensor and magnetization transfer imaging findings in MS patients. Moreover, it provides a critical view on imaging capabilities and results in MS patients and mouse models and for future studies recommends how to combine those particular MR sequences and parameters whose underlying pathophysiological basis could be partly clarified. Further combined longitudinal in vivo imaging and histopathological studies on rationally selected, appropriate mouse models are required.
Collapse
|
50
|
Sucksdorff M, Tuisku J, Matilainen M, Vuorimaa A, Smith S, Keitilä J, Rokka J, Parkkola R, Nylund M, Rinne J, Rissanen E, Airas L. Natalizumab treatment reduces microglial activation in the white matter of the MS brain. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e574. [PMID: 31355310 PMCID: PMC6624093 DOI: 10.1212/nxi.0000000000000574] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/02/2019] [Indexed: 01/31/2023]
Abstract
Objective To evaluate whether natalizumab treatment reduces microglial activation in MS. Methods We measured microglial activation using the 18-kDa translocator protein (TSPO)-binding radioligand [11C]PK11195 and PET imaging in 10 patients with MS before and after 1 year treatment with natalizumab. Microglial activation was evaluated as the distribution volume ratio (DVR) of the specifically bound radioligand in brain white and gray matter regions of interest. MRI and disability measurements were performed for comparison. Evaluation was performed identically with 11 age- and sex-matched patients with MS who had no MS therapy. Results Natalizumab treatment reduced microglial activation in the normal-appearing white matter (NAWM; baseline DVR vs DVR after 1 year of treatment 1.25 vs 1.22, p = 0.014, Wilcoxon) and at the rim of chronic lesions (baseline DVR vs DVR after 1 year of treatment 1.24 vs 1.18, p = 0.014). In patients with MS with no treatment, there was an increase in microglial activation at the rim of chronic lesions (1.23 vs 1.27, p = 0.045). No alteration was observed in microglial activation in gray matter areas. In the untreated patient group, higher microglial activation at baseline was associated with more rapid disability progression during an average of 4 years of follow-up. Conclusions TSPO-PET imaging can be used as a tool to assess longitudinal changes in microglial activation in the NAWM and in the perilesional areas in the MS brain in vivo. Natalizumab treatment reduces the diffuse compartmentalized CNS inflammation related to brain resident innate immune cells.
Collapse
Affiliation(s)
- Marcus Sucksdorff
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Markus Matilainen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Sarah Smith
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Joonas Keitilä
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Johanna Rokka
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Riitta Parkkola
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Marjo Nylund
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Juha Rinne
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Eero Rissanen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Laura Airas
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| |
Collapse
|