1
|
Wurm R, Klotz S, Erber A, Gruber F, Leitner S, Reichardt B, Stögmann E, Schernhammer E, Gelpi E, Cetin H. Mood Alterations in the Prodromal Phase of Sporadic Creutzfeldt-Jakob Disease. JAMA Neurol 2024:2828525. [PMID: 39786417 DOI: 10.1001/jamaneurol.2024.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Importance Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare, rapidly progressive and fatal neurodegenerative disease. Definite sCJD diagnosis can only be made post mortem, and little is known about the prodromal phase of the disease. Objective To compare drug prescription patterns before the clinical onset of sCJD between patients and matched controls for exploration of potential risk factors and to assess correlations between drug exposure and sCJD survival. Design, Setting, and Participants This retrospective analysis was designed as a case-control study, with data collected from January 2013 to December 2020 and analyzed in 2023. Follow-up was available until December 2020. Cases were collected from the Austrian Reference Centre for Human Prion Diseases, which receives all suspected cases at a national level in Austria. The analyses were conducted at a single center. Patients with autopsy-confirmed sCJD were linked with insurance claims data, and a minimum of 10 control individuals were matched by sex, age at onset, and area of residence for each patient with sCJD. Exposure Medication prescribed to 10% or more of the cohort with sCJD up to 5 years before symptom onset or the matching date in the control cohort. Main Outcomes and Measures Drug prescription before symptom onset or the matching date was compared between patients with sCJD and controls using conditional regression, and prescriptions in the cohort with sCJD were assessed for correlation with survival using Cox proportional hazard models. Results A total of 129 patients with sCJD (median [IQR] age, 68.9 [62.4-75.5] years; 67 female [51.9%]) and 1350 controls (median [IQR] age, 69.0 [62.2-75.3] years; 700 female [51.9%]) were included. As compared with controls, patients with sCJD were found to have significantly higher odds of being prescribed selective serotonin reuptake inhibitors (SSRIs) in the year preceding disease onset (odds ratio, 2.86; 95% CI, 1.63-4.95; P < .001). SSRI prescription rates started to increase 3 years before symptom onset in the cohort with sCJD. Conclusions and Relevance Results of this case-control study provide evidence for prodromal mood alterations as early as 3 years before symptom onset in patients with sCJD. Although sCJD remains an extremely rare cause of mood alterations, increased vigilance for neurodegenerative diseases in this setting could eventually help to extend the diagnostic window.
Collapse
Affiliation(s)
- Raphael Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Sigrid Klotz
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Astrid Erber
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Felix Gruber
- Main Association of Austrian Social Security Institutions, Austria
| | - Stefan Leitner
- Main Association of Austrian Social Security Institutions, Austria
| | - Berthold Reichardt
- Austrian Social Health Insurance Fund, Österreichische Gesundheitskasse, Eisenstadt, Austria
| | - Elisabeth Stögmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Eva Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Ellen Gelpi
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Noor H, Baqai MH, Naveed H, Naveed T, Rehman SS, Aslam MS, Lakdawala FM, Memon WA, Rani S, Khan H, Imran A, Farooqui SK. Creutzfeldt-Jakob disease: A comprehensive review of current understanding and research. J Neurol Sci 2024; 467:123293. [PMID: 39546829 DOI: 10.1016/j.jns.2024.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Creutzfeldt-Jakob Disease (CJD) is one of the sample prion diseases that have characteristic features of rapidly progressive neurodegenerative disease manifested by psychomotor changes, some of which include cognitive dysfunction, motor disorder, and behavioral abnormalities. In general, this brief review will assist in elucidating the clinical features and onset, causes, diagnostic challenges, and therapeutic possibilities of CJD. It is classified into sporadic, hereditary, and acquired forms, and affection is identified as linked to the different prion varieties and genetic profiles. The disease process of CJD consists of the deposition of misfolded prions in the brain that causes apoptosis and the subsequent morphological features in the form of spongiform changes. Diagnostic strategies have changed; presently, one can see imaging methods, diagnosis through CSF biomarkers, and genetic-based diagnosis. At this time, there is no cure for CJD; therefore, management and treatment aim at supporting the patient and alleviating the signs and symptoms of the disease. As per our discussion, this review sought to accustom the readers with recent studies conducted, diagnostic advancements, and probable therapeutic approaches, pointing to the general index that more research is needed to fight CJD.
Collapse
|
3
|
Corridon TL, O’Moore J, Lian Y, Laversenne V, Noble B, Kamath NG, Serack FE, Shaikh AB, Erickson B, Braun C, Lenz K, Howard M, Chan N, Reidenbach AG, Cabin DE, Vallabh SM, Grindeland A, Oberbeck N, Zhao HT, Minikel EV. PrP turnover in vivo and the time to effect of prion disease therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623215. [PMID: 39605733 PMCID: PMC11601496 DOI: 10.1101/2024.11.12.623215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PrP lowering is effective against prion disease in animal models and is being tested clinically. Therapies in the current pipeline lower PrP production, leaving pre-existing PrP to be cleared according to its own half-life. We hypothesized that PrP's half-life may be a rate-limiting factor for the time to effect of PrP-lowering drugs, and one reason why late treatment of prion-infected mice is not as effective as early treatment. Using isotopically labeled chow with targeted mass spectrometry, as well as antisense oligonucleotide treatment followed by timed PrP measurement, we estimate a half-life of 5-6 days for PrP in the brain. PrP turnover is not affected by over- or under-expression. Mouse PrP and human PrP have similar turnover rates measured in wild-type or humanized knock-in mice. CSF PrP appears to mirror brain PrP in real time in rats. PrP is more readily quantifiable in colon than in other peripheral organs, and appears to have a shorter half-life in colon than in brain. Our data may inform the design of both preclinical and clinical studies of PrP-lowering drugs.
Collapse
Affiliation(s)
- Taylor L Corridon
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jill O’Moore
- Weissman Hood Institute, Great Falls, MT, 59405, USA
| | - Yuan Lian
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Vanessa Laversenne
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Nikita G Kamath
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fiona E Serack
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | | | | | - Kenney Lenz
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Howard
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Nathan Chan
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew G Reidenbach
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Sonia M Vallabh
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Prion Alliance, Cambridge, MA, 02139, USA
| | | | | | - Hien T Zhao
- Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Eric Vallabh Minikel
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Prion Alliance, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Jurcau MC, Jurcau A, Diaconu RG, Hogea VO, Nunkoo VS. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol Int 2024; 16:1039-1065. [PMID: 39311352 PMCID: PMC11417857 DOI: 10.3390/neurolint16050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
Creutzfeldt-Jakob disease is a rare neurodegenerative and invariably fatal disease with a fulminant course once the first clinical symptoms emerge. Its incidence appears to be rising, although the increasing figures may be related to the improved diagnostic tools. Due to the highly variable clinical picture at onset, many specialty physicians should be aware of this disease and refer the patient to a neurologist for complete evaluation. The diagnostic criteria have been changed based on the considerable progress made in research on the pathogenesis and on the identification of reliable biomarkers. Moreover, accumulated knowledge on pathogenesis led to the identification of a series of possible therapeutic targets, although, given the low incidence and very rapid course, the evaluation of safety and efficacy of these therapeutic strategies is challenging.
Collapse
Affiliation(s)
- Maria Carolina Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Razvan Gabriel Diaconu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vharoon Sharma Nunkoo
- Neurorehabilitation Ward, Clinical Emergency County Hospital Bihor, 410169 Oradea, Romania
| |
Collapse
|
5
|
Pritzkow S, Schauer I, Tupaki-Sreepurna A, Morales R, Soto C. Screening of Anti-Prion Compounds Using the Protein Misfolding Cyclic Amplification Technology. Biomolecules 2024; 14:1113. [PMID: 39334879 PMCID: PMC11430292 DOI: 10.3390/biom14091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Prion diseases are 100% fatal infectious neurodegenerative diseases affecting the brains of humans and other mammals. The disease is caused by the formation and replication of prions, composed exclusively of the misfolded prion protein (PrPSc). We invented and developed the protein misfolding cyclic amplification (PMCA) technology for in vitro prion replication, which allow us to replicate the infectious agent and it is commonly used for ultra-sensitive prion detection in biological fluids, tissues and environmental samples. In this article, we studied whether PMCA can be used to screen for chemical compounds that block prion replication. A small set of compounds previously shown to have anti-prion activity in various systems, mostly using cells infected with murine prions, was evaluated for their ability to prevent the replication of prions. Studies were conducted simultaneously with prions derived from 4 species, including human, cattle, cervid and mouse. Our results show that only one of these compounds (methylene blue) was able to completely inhibit prion replication in all species. Estimation of the IC50 for methylene blue inhibition of human prions causing variant Creutzfeldt-Jakob disease (vCJD) was 7.7 μM. Finally, we showed that PMCA can be used for structure-activity relationship studies of anti-prion compounds. Interestingly, some of the less efficient prion inhibitors altered the replication of prions in some species and not others, suggesting that PMCA is useful for studying the differential selectivity of potential drugs.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Isaac Schauer
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Ananya Tupaki-Sreepurna
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| | - Rodrigo Morales
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA (R.M.)
| |
Collapse
|
6
|
Medd MM, Cao Q. Perspectives on CRISPR Genome Editing to Prevent Prion Diseases in High-Risk Individuals. Biomedicines 2024; 12:1725. [PMID: 39200190 PMCID: PMC11352000 DOI: 10.3390/biomedicines12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Prion diseases are neurodegenerative disorders caused by misfolded prion proteins. Although rare, the said diseases are always fatal; they commonly cause death within months of developing clinical symptoms, and their diagnosis is exceptionally difficult pre-mortem. There are no known cures or treatments other than symptomatic care. Given the aggressiveness of prion diseases on onset, therapies after disease onset could be challenging. Prevention to reduce the incidence or to delay the disease onset has been suggested to be a more feasible approach. In this perspective article, we summarize our current understandings of the origin, risk factors, and clinical manifestations of prion diseases. We propose a PCR testing of the blood to identify PRNP gene polymorphisms at codons 129 and 127 in individuals with familial PRNP mutations to assess the risk. We further present the CRISPR/Cas9 gene editing strategy as a perspective preventative approach for these high-risk individuals to induce a polymorphic change at codon 127 of the PRNP gene, granting immunity to prion diseases in selected high-risk individuals, in particular, in individuals with familial PRNP mutations.
Collapse
Affiliation(s)
- Milan M. Medd
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qi Cao
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Risen SJ, Boland SW, Sharma S, Weisman GM, Shirley PM, Latham AS, Hay AJD, Gilberto VS, Hines AD, Brindley S, Brown JM, McGrath S, Chatterjee A, Nagpal P, Moreno JA. Targeting Neuroinflammation by Pharmacologic Downregulation of Inflammatory Pathways Is Neuroprotective in Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:1533-1547. [PMID: 38507813 DOI: 10.1021/acschemneuro.3c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Sydney J Risen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sean W Boland
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sadhana Sharma
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Grace M Weisman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Payton M Shirley
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Amanda S Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Arielle J D Hay
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vincenzo S Gilberto
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Amelia D Hines
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen Brindley
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephanie McGrath
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anushree Chatterjee
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
Liu F, Lü W, Liu L. New implications for prion diseases therapy and prophylaxis. Front Mol Neurosci 2024; 17:1324702. [PMID: 38500676 PMCID: PMC10944861 DOI: 10.3389/fnmol.2024.1324702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Prion diseases are rare, fatal, progressive neurodegenerative disorders that affect both animal and human. Human prion diseases mainly present as Creutzfeldt-Jakob disease (CJD). However, there are no curable therapies, and animal prion diseases may negatively affect the ecosystem and human society. Over the past five decades, scientists are devoting to finding available therapeutic or prophylactic agents for prion diseases. Numerous chemical compounds have been shown to be effective in experimental research on prion diseases, but with the limitations of toxicity, poor efficacy, and low pharmacokinetics. The earliest clinical treatments of CJD were almost carried out with anti-infectious agents that had little amelioration of the course. With the discovery of pathogenic misfolding prion protein (PrPSc) and increasing insights into prion biology, amounts of novel technologies have attempted to eliminate PrPSc. This review presents new perspectives on clinical and experimental prion diseases, including immunotherapy, gene therapy, small-molecule drug, and stem cell therapy. It further explores the prospects and challenge associated with these emerging therapeutic approaches for prion diseases.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqi Lü
- Department of Psychiatry and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zerr I, Ladogana A, Mead S, Hermann P, Forloni G, Appleby BS. Creutzfeldt-Jakob disease and other prion diseases. Nat Rev Dis Primers 2024; 10:14. [PMID: 38424082 DOI: 10.1038/s41572-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Inga Zerr
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany.
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Peter Hermann
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Brian S Appleby
- Departments of Neurology, Psychiatry and Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Ardakani R, Jia L, Matthews E, Thakur KT. Therapeutic advances in neuroinfectious diseases. Ther Adv Infect Dis 2024; 11:20499361241274246. [PMID: 39314743 PMCID: PMC11418331 DOI: 10.1177/20499361241274246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/05/2024] [Indexed: 09/25/2024] Open
Abstract
There have been several major advances in therapeutic options for the treatment of neurological infections over the past two decades. These advances encompass both the development of new antimicrobial therapies and the repurposing of existing agents for new indications. In addition, advances in our understanding of the host immune response have allowed for the development of new immunomodulatory strategies in the treatment of neurological infections. This review focuses on the key advances in the treatment of neurological infections, including viral, bacterial, fungal, and prion diseases, with a particular focus on immunomodulatory treatment options. This review also highlights the process by which clinicians can request access to therapeutic agents on a compassionate or emergency basis when they may not be commercially available. While many therapeutic advances have been achieved in the past several years, there remains a pressing need for the continued development of additional therapeutic agents in the treatment of neurological infections.
Collapse
Affiliation(s)
- Rumyar Ardakani
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lucy Jia
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth Matthews
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kiran T. Thakur
- Department of Neurology, Columbia University Irving Medical Center, 177 Fort Washington Avenue, Milstein Hospital, 8GS-300, New York, NY 10032, USA
- Program in Neuroinfectious Diseases, Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital
| |
Collapse
|
11
|
Williams K, Foliaki ST, Race B, Smith A, Thomas T, Groveman BR, Haigh CL. Neural cell engraftment therapy for sporadic Creutzfeldt-Jakob disease restores neuroelectrophysiological parameters in a cerebral organoid model. Stem Cell Res Ther 2023; 14:348. [PMID: 38049877 PMCID: PMC10696693 DOI: 10.1186/s13287-023-03591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is a fatal neurodegenerative disease with currently no treatment options. Stem cell therapy for neurodegenerative diseases is emerging as a possible treatment option. However, while there are a few clinical trials for other neurodegenerative disorders such as Parkinson's disease, prion disease cell therapy research has so far been confined to animal models. METHODS Here, we use a novel approach to study cell therapies in sCJD using a human cerebral organoid model. Cerebral organoids can be infected with sCJD prions allowing us to assess how neural precursor cell (NPC) therapy impacts the progression of sCJD. After 90 days of sCJD or mock infection, organoids were either seeded with NPCs or left unseeded and monitored for cellular composition changes, prion infection parameters and neuroelectrophysiological function at 180 days post-infection. RESULTS Our results showed NPCs integrated into organoids leading to an increase in neuronal markers and changes in cell signaling irrespective of sCJD infection. Although a small, but significant, decrease in protease-resistant PrP deposition was observed in the CJD-infected organoids that received the NPCs, other disease-associated parameters showed minimal changes. However, the NPCs had a beneficial impact on organoid function following infection. sCJD infection caused reduction in neuronal spike rate and mean burst spike rate, indicative of reduced action potentials. NPC seeding restored these electrophysiological parameters to the uninfected control level. CONCLUSIONS Together with the previous animal studies, our results support that cell therapy may have some functional benefit for the treatment of human prion diseases.
Collapse
Affiliation(s)
- Katie Williams
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Simote T Foliaki
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Anna Smith
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Bradley R Groveman
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
12
|
Mohi-Ud-Din R, Chawla A, Sharma P, Mir PA, Potoo FH, Reiner Ž, Reiner I, Ateşşahin DA, Sharifi-Rad J, Mir RH, Calina D. Repurposing approved non-oncology drugs for cancer therapy: a comprehensive review of mechanisms, efficacy, and clinical prospects. Eur J Med Res 2023; 28:345. [PMID: 37710280 PMCID: PMC10500791 DOI: 10.1186/s40001-023-01275-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer poses a significant global health challenge, with predictions of increasing prevalence in the coming years due to limited prevention, late diagnosis, and inadequate success with current therapies. In addition, the high cost of new anti-cancer drugs creates barriers in meeting the medical needs of cancer patients, especially in developing countries. The lengthy and costly process of developing novel drugs further hinders drug discovery and clinical implementation. Therefore, there has been a growing interest in repurposing approved drugs for other diseases to address the urgent need for effective cancer treatments. The aim of this comprehensive review is to provide an overview of the potential of approved non-oncology drugs as therapeutic options for cancer treatment. These drugs come from various chemotherapeutic classes, including antimalarials, antibiotics, antivirals, anti-inflammatory drugs, and antifungals, and have demonstrated significant antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties. A systematic review of the literature was conducted to identify relevant studies on the repurposing of approved non-oncology drugs for cancer therapy. Various electronic databases, such as PubMed, Scopus, and Google Scholar, were searched using appropriate keywords. Studies focusing on the therapeutic potential, mechanisms of action, efficacy, and clinical prospects of repurposed drugs in cancer treatment were included in the analysis. The review highlights the promising outcomes of repurposing approved non-oncology drugs for cancer therapy. Drugs belonging to different therapeutic classes have demonstrated notable antitumor effects, including inhibiting cell proliferation, promoting apoptosis, modulating the immune response, and suppressing metastasis. These findings suggest the potential of these repurposed drugs as effective therapeutic approaches in cancer treatment. Repurposing approved non-oncology drugs provides a promising strategy for addressing the urgent need for effective and accessible cancer treatments. The diverse classes of repurposed drugs, with their demonstrated antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties, offer new avenues for cancer therapy. Further research and clinical trials are warranted to explore the full potential of these repurposed drugs and optimize their use in treating various cancer types. Repurposing approved drugs can significantly expedite the process of identifying effective treatments and improve patient outcomes in a cost-effective manner.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, 190001, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Pooja Sharma
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Faheem Hyder Potoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 1982, 31441, Dammam, Saudi Arabia
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Reiner
- Department of Nursing Sciences, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | | | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
13
|
Baiardi S, Mammana A, Capellari S, Parchi P. Human prion disease: molecular pathogenesis, and possible therapeutic targets and strategies. Expert Opin Ther Targets 2023; 27:1271-1284. [PMID: 37334903 DOI: 10.1080/14728222.2023.2199923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Human prion diseases are heterogeneous, and often rapidly progressive, transmissible neurodegenerative disorders associated with misfolded prion protein (PrP) aggregation and self-propagation. Despite their rarity, prion diseases comprise a broad spectrum of phenotypic variants determined at the molecular level by different conformers of misfolded PrP and host genotype variability. Moreover, they uniquely occur in idiopathic, genetically determined, and acquired forms with distinct etiologies. AREA COVERED This review provides an up-to-date overview of potential therapeutic targets in prion diseases and the main results obtained in cell and animal models and human trials. The open issues and challenges associated with developing effective therapies and informative clinical trials are also discussed. EXPERT OPINION Currently tested therapeutic strategies target the cellular PrP to prevent the formation of misfolded PrP or to favor its elimination. Among them, passive immunization and gene therapy with antisense oligonucleotides against prion protein mRNA are the most promising. However, the disease's rarity, heterogeneity, and rapid progression profoundly frustrate the successful undertaking of well-powered therapeutic trials and patient identification in the asymptomatic or early stage before the development of significant brain damage. Thus, the most promising therapeutic goal to date is preventing or delaying phenoconversion in carriers of pathogenic mutations by lowering prion protein expression.
Collapse
Affiliation(s)
- Simone Baiardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Angela Mammana
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Sideman AB, Gilissen J, Harrison KL, Garrett SB, Terranova MJ, Ritchie CS, Geschwind MD. Caregiver Experiences Navigating the Diagnostic Journey in a Rapidly Progressing Dementia. J Geriatr Psychiatry Neurol 2023; 36:282-294. [PMID: 36412170 PMCID: PMC10265278 DOI: 10.1177/08919887221135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION People with suspected Alzheimer's disease and related dementias (ADRD) and their families experience a burdensome process while seeking a diagnosis. These challenges are problematic in the most common dementia syndromes, but they can be even more distressing in rarer, atypical syndromes such as rapidly progressive dementias (RPDs), which can be fatal within months from onset. This study is an examination of the diagnostic journey experience from the perspective of caregivers of people who died from the prototypic RPD, sporadic Creutzfeldt-Jakob Disease (sCJD). METHODS eIn this mixed-methods study, qualitative data were drawn from interviews with former caregivers of 12 people who died from sCJD. Chart review data were drawn from research and clinical chart data about the person with sCJD. Data were analyzed by a multidisciplinary research team using qualitative and descriptive statistical analysis. RESULTS We identified 4 overarching themes that characterized the experience of the diagnostic journey in sCJD: clinician knowledge, clinician communication, experiences of uncertainty, and the caregiver as advocate. We also identified 4 phases along the diagnostic journey: recognition, the diagnostic workup, diagnosis, and post-diagnosis. Sub-themes within each phase include struggles to recognize what is wrong, complex processes of testing and referrals, delay and disclosure of diagnosis, and access to resources post-diagnosis. CONCLUSIONS Findings suggest that more work is needed to improve clinician diagnostic knowledge and communication practices. Furthermore, caregivers need better support during the diagnostic journey. What we learn from studying sCJD and other RPDs is likely applicable to other more common dementias.
Collapse
Affiliation(s)
- Alissa Bernstein Sideman
- Institute for Health Policy Studies, University of California, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, CA, USA
- Department of Humanities and Social Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Joni Gilissen
- Global Brain Health Institute, University of California, San Francisco, CA, USA
- Department Family Medicine & Chronic Care, Vrije Universiteit Brussel(VUB), Belgium
| | - Krista L Harrison
- Institute for Health Policy Studies, University of California, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, CA, USA
- Division of Geriatrics, University of California, San Francisco, CA, USA
| | - Sarah B Garrett
- Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Michael J Terranova
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christine S Ritchie
- Global Brain Health Institute, University of California, San Francisco, CA, USA
- The Mongan Institute and the Division of Palliative Care and Geriatric Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael D Geschwind
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Kong Y, Chen Z, Zhang J, Wu L. Neutrophil to High-density Lipoprotein ratio (NHR) as a potential predictor of disease severity and survival time in Creutzfeldt-Jakob disease. BMC Neurol 2023; 23:34. [PMID: 36690949 PMCID: PMC9869630 DOI: 10.1186/s12883-023-03076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Creutzfeldt-Jakob disease (CJD) is a fatal and irreversible neurodegenerative disease. Identification of inexpensive and easy-to-implement biomarkers of CJD which could predict disease severity and patient survival is important for improving disease management. The aim of this study was to assess the predictive value of peripheral neutrophil to lymphocyte ratio (NLR), high-density lipoprotein (HDL), monocyte to HDL ratio (MHR) and neutrophil to HDL ratio (NHR) for CJD. METHODS Patients with definite or probable CJD admitted to the Neurology Department of Xuanwu Hospital from 2014 to 2021 were enrolled and followed up until April 2022. Clinical information including sex, age, Barth Index, survival time and results of auxiliary examination were collected, and NLR, HDL, NHR and MHR were measured for all enrolled patients. The associations between NLR, HDL, NHR and MHR, and disease severity (evaluated by Barth Index), survival time and auxiliary examinations were evaluated. RESULTS A total of 88 CJD patients were enrolled and all were deceased. NLR (r = -0.341, p = 0.001), NHR (r = -0.346, p = 0.001) and MHR (r = -0.327, p = 0.002) were significantly associated with disease severity. Higher NHR (HR = 2.344, 95% CI = 1.277-4.303 p = 0.006) and lower HDL (HR = 0.567, 95% CI = 0.346-0.930, p = 0.025) were associated with shorter survival time in the CJD patients. CONCLUSIONS Peripheral inflammatory biomarkers, especially NHR, were associated with disease severity and survival duration. These findings provide new insights into the mechanisms and treatment strategies of CJD.
Collapse
Affiliation(s)
- Yu Kong
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhongyun Chen
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
The Effect of Curcuma phaeocaulis Valeton (Zingiberaceae) Extract on Prion Propagation in Cell-Based and Animal Models. Int J Mol Sci 2022; 24:ijms24010182. [PMID: 36613636 PMCID: PMC9820341 DOI: 10.3390/ijms24010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.
Collapse
|
17
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
18
|
Thellung S, Corsaro A, Dellacasagrande I, Nizzari M, Zambito M, Florio T. Proteostasis unbalance in prion diseases: Mechanisms of neurodegeneration and therapeutic targets. Front Neurosci 2022; 16:966019. [PMID: 36148145 PMCID: PMC9485628 DOI: 10.3389/fnins.2022.966019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/05/2022] [Indexed: 01/18/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are progressive neurodegenerative disorders of the central nervous system that affect humans and animals as sporadic, inherited, and infectious forms. Similarly to Alzheimer's disease and other neurodegenerative disorders, any attempt to reduce TSEs' lethality or increase the life expectancy of affected individuals has been unsuccessful. Typically, the onset of symptoms anticipates the fatal outcome of less than 1 year, although it is believed to be the consequence of a decades-long process of neuronal death. The duration of the symptoms-free period represents by itself a major obstacle to carry out effective neuroprotective therapies. Prions, the infectious entities of TSEs, are composed of a protease-resistant protein named prion protein scrapie (PrPSc) from the prototypical TSE form that afflicts ovines. PrPSc misfolding from its physiological counterpart, cellular prion protein (PrPC), is the unifying pathogenic trait of all TSEs. PrPSc is resistant to intracellular turnover and undergoes amyloid-like fibrillation passing through the formation of soluble dimers and oligomers, which are likely the effective neurotoxic entities. The failure of PrPSc removal is a key pathogenic event that defines TSEs as proteopathies, likewise other neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, characterized by alteration of proteostasis. Under physiological conditions, protein quality control, led by the ubiquitin-proteasome system, and macroautophagy clears cytoplasm from improperly folded, redundant, or aggregation-prone proteins. There is evidence that both of these crucial homeostatic pathways are impaired during the development of TSEs, although it is still unclear whether proteostasis alteration facilitates prion protein misfolding or, rather, PrPSc protease resistance hampers cytoplasmic protein quality control. This review is aimed to critically analyze the most recent advancements in the cause-effect correlation between PrPC misfolding and proteostasis alterations and to discuss the possibility that pharmacological restoring of ubiquitin-proteasomal competence and stimulation of autophagy could reduce the intracellular burden of PrPSc and ameliorate the severity of prion-associated neurodegeneration.
Collapse
Affiliation(s)
- Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Irene Dellacasagrande
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Martina Zambito
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- *Correspondence: Tullio Florio
| |
Collapse
|
19
|
Nikolić L, Ferracin C, Legname G. Recent advances in cellular models for discovering prion disease therapeutics. Expert Opin Drug Discov 2022; 17:985-996. [PMID: 35983689 DOI: 10.1080/17460441.2022.2113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Prion diseases are a group of rare and lethal rapidly progressive neurodegenerative diseases arising due to conversion of the physiological cellular prion protein into its pathological counterparts, denoted as "prions". These agents are resistant to inactivation by standard decontamination procedures and can be transmitted between individuals, consequently driving the irreversible brain damage typical of the diseases. AREAS COVERED Since its infancy, prion research has mainly depended on animal models for untangling the pathogenesis of the disease as well as for the drug development studies. With the advent of prion-infected cell lines, relevant animal models have been complemented by a variety of cell-based models presenting a much faster, ethically acceptable alternative. EXPERT OPINION To date, there are still either no effective prophylactic regimens or therapies for human prion diseases. Therefore, there is an urgent need for more relevant cellular models that best approximate in vivo models. Each cellular model presented and discussed in detail in this review has its own benefits and limitations. Once embarking in a drug screening campaign for the identification of molecules that could interfere with prion conversion and replication, one should carefully consider the ideal cellular model.
Collapse
Affiliation(s)
- Lea Nikolić
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy,
| | - Chiara Ferracin
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- D.Phil., Full Professor of Biochemistry, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
20
|
Miranda LHL, Oliveira AFPDH, Carvalho DMD, Souza GMF, Magalhães JGM, Júnior JAC, Lima PTMBDQ, Júnior RMA, Filho SPL, Melo HMDA. Systematic review of pharmacological management in Creutzfeldt-Jakob disease: no options so far? ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:837-844. [PMID: 36252593 PMCID: PMC9703894 DOI: 10.1055/s-0042-1755341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/31/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND The Creutzfeldt-Jakob disease (CJD) is a spongiform encephalopathy that manifests as a rapidly progressive dementia syndrome. Currently, CJD has no cure, and many patients die within the first year, but some drugs are being studied as options for managing this condition. OBJECTIVE To evaluate the effectiveness of pharmacological treatments offered to patients with CJD as a means to increase survival and reduce cognitive deterioration. METHODS A systematic review of the literature was performed using 4 independent reviewers and 1 extra reviewer to resolve possible divergences in the search and analysis of papers indexed in MedLINE (PubMed), SciELO and Lilacs databases. The Medical Subject Heading (MeSH) terms used were: prion diseases, Creutzfeldt-Jakob disease, pharmacologic therapy, therapeutics, quinacrine, doxycycline, flupirtine, and pentosan polysulfate, with the Boolean operators AND and OR. This search included controlled clinical trials, uncontrolled clinical trials, and case series published from the year 2000 onwards, in the English language. RESULTS A total of 85 papers were found using the descriptors used. At the end of the selection analyses, 9 articles remained, which were analyzed fully and individually. CONCLUSIONS None of the drugs evaluated proved significantly effective in increasing survival in patients with CJD. Flupirtine appears to have a beneficial effect in reducing cognitive deterioration in patients with CJD. However, additional studies are needed to establish better evidence and therapeutic options for the management of patients with CJD.
Collapse
Affiliation(s)
- Luiz Henrique Lélis Miranda
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Departamento de Clínica Médica, Recife PE, Brazil
| | | | - Davi Mariano de Carvalho
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Departamento de Clínica Médica, Recife PE, Brazil
| | | | | | | | | | - Renato Melo Aguiar Júnior
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Departamento de Clínica Médica, Recife PE, Brazil
| | - Sérgio Pereira Lins Filho
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Departamento de Clínica Médica, Recife PE, Brazil
| | | |
Collapse
|
21
|
Nihat A, Mok TH, Odd H, Thompson AGB, Caine D, McNiven K, O'Donnell V, Tesfamichael S, Rudge P, Collinge J, Mead S. Development of novel clinical examination scales for the measurement of disease severity in Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 2022; 93:404-412. [PMID: 35022318 PMCID: PMC8921594 DOI: 10.1136/jnnp-2021-327722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To use a robust statistical methodology to develop and validate clinical rating scales quantifying longitudinal motor and cognitive dysfunction in sporadic Creutzfeldt-Jakob disease (sCJD) at the bedside. METHODS Rasch analysis was used to iteratively construct interval scales measuring composite cognitive and motor dysfunction from pooled bedside neurocognitive examinations collected as part of the prospective National Prion Monitoring Cohort study, October 2008-December 2016.A longitudinal clinical examination dataset constructed from 528 patients with sCJD, comprising 1030 Motor Scale and 757 Cognitive Scale scores over 130 patient-years of study, was used to demonstrate scale utility. RESULTS The Rasch-derived Motor Scale consists of 8 items, including assessments reliant on pyramidal, extrapyramidal and cerebellar systems. The Cognitive Scale comprises 6 items, and includes measures of executive function, language, visual perception and memory. Both scales are unidimensional, perform independently of age or gender and have excellent inter-rater reliability. They can be completed in minutes at the bedside, as part of a normal neurocognitive examination. A composite Examination Scale can be derived by averaging both scores. Several scale uses, in measuring longitudinal change, prognosis and phenotypic heterogeneity are illustrated. CONCLUSIONS These two novel sCJD Motor and Cognitive Scales and the composite Examination Scale should prove useful to objectively measure phenotypic and clinical change in future clinical trials and for patient stratification. This statistical approach can help to overcome obstacles to assessing clinical change in rapidly progressive, multisystem conditions with limited longitudinal follow-up.
Collapse
Affiliation(s)
- Akin Nihat
- UCL Institute of Prion Diseases, MRC Prion Unit at UCL, London, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - Tze How Mok
- UCL Institute of Prion Diseases, MRC Prion Unit at UCL, London, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - Hans Odd
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - Andrew Geoffrey Bourne Thompson
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - Diana Caine
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - Kirsty McNiven
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - Veronica O'Donnell
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - Selam Tesfamichael
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - Peter Rudge
- UCL Institute of Prion Diseases, MRC Prion Unit at UCL, London, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - John Collinge
- UCL Institute of Prion Diseases, MRC Prion Unit at UCL, London, UK.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| | - Simon Mead
- UCL Institute of Prion Diseases, MRC Prion Unit at UCL, London, UK .,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, National Prion Clinic, London, UK
| |
Collapse
|
22
|
Zerr I. Investigating new treatments for Creutzfeldt–Jakob disease. Lancet Neurol 2022; 21:299-300. [DOI: 10.1016/s1474-4422(22)00083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
|
23
|
Mead S, Khalili-Shirazi A, Potter C, Mok T, Nihat A, Hyare H, Canning S, Schmidt C, Campbell T, Darwent L, Muirhead N, Ebsworth N, Hextall P, Wakeling M, Linehan J, Libri V, Williams B, Jaunmuktane Z, Brandner S, Rudge P, Collinge J. Prion protein monoclonal antibody (PRN100) therapy for Creutzfeldt-Jakob disease: evaluation of a first-in-human treatment programme. Lancet Neurol 2022; 21:342-354. [PMID: 35305340 DOI: 10.1016/s1474-4422(22)00082-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Human prion diseases, including Creutzfeldt-Jakob disease (CJD), are rapidly progressive, invariably fatal neurodegenerative conditions with no effective therapies. Their pathogenesis involves the obligate recruitment of cellular prion protein (PrPC) into self-propagating multimeric assemblies or prions. Preclinical studies have firmly validated the targeting of PrPC as a therapeutic strategy. We aimed to evaluate a first-in-human treatment programme using an anti-PrPC monoclonal antibody under a Specials Licence. METHODS We generated a fully humanised anti-PrPC monoclonal antibody (an IgG4κ isotype; PRN100) for human use. We offered treatment with PRN100 to six patients with a clinical diagnosis of probable CJD who were not in the terminal disease stages at the point of first assessment and who were able to readily travel to the University College London Hospital (UCLH) Clinical Research Facility, London, UK, for treatment. After titration (1 mg/kg and 10 mg/kg at 48-h intervals), patients were treated with 80-120 mg/kg of intravenous PRN100 every 2 weeks until death or withdrawal from the programme, or until the supply of PRN100 was exhausted, and closely monitored for evidence of adverse effects. Disease progression was assessed by use of the Medical Research Council (MRC) Prion Disease Rating Scale, Motor Scale, and Cognitive Scale, and compared with that of untreated natural history controls (matched for disease severity, subtype, and PRNP codon 129 genotype) recruited between Oct 1, 2008, and July 31, 2018, from the National Prion Monitoring Cohort study. Autopsies were done in two patients and findings were compared with those from untreated natural history controls. FINDINGS We treated six patients (two men; four women) with CJD for 7-260 days at UCLH between Oct 9, 2018, and July 31, 2019. Repeated intravenous dosing of PRN100 was well tolerated and reached the target CSF drug concentration (50 nM) in four patients after 22-70 days; no clinically significant adverse reactions were seen. All patients showed progressive neurological decline on serial assessments with the MRC Scales. Neuropathological examination was done in two patients (patients 2 and 3) and showed no evidence of cytotoxicity. Patient 2, who was treated for 140 days, had the longest clinical duration we have yet documented for iatrogenic CJD and showed patterns of disease-associated PrP that differed from untreated patients with CJD, consistent with drug effects. Patient 3, who had sporadic CJD and only received one therapeutic dose of 80 mg/kg, had weak PrP synaptic labelling in the periventricular regions, which was not a feature of untreated patients with sporadic CJD. Brain tissue-bound drug concentrations across multiple regions in patient 2 ranged from 9·9 μg per g of tissue (SD 0·3) in the thalamus to 27·4 μg per g of tissue (1·5) in the basal ganglia (equivalent to 66-182 nM). INTERPRETATION Our academic-led programme delivered what is, to our knowledge, the first rationally designed experimental treatment for human prion disease to a small number of patients with CJD. The treatment appeared to be safe and reached encouraging CSF and brain tissue concentrations. These findings justify the need for formal efficacy trials in patients with CJD at the earliest possible clinical stages and as prophylaxis in those at risk of prion disease due to PRNP mutations or prion exposure. FUNDING The Cure CJD Campaign, the National Institute for Health Research UCLH Biomedical Research Centre, the Jon Moulton Charitable Trust, and the UK MRC.
Collapse
Affiliation(s)
- Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Azadeh Khalili-Shirazi
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Caroline Potter
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Tzehow Mok
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Akin Nihat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Harpreet Hyare
- Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Stephanie Canning
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Christian Schmidt
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Tracy Campbell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Lee Darwent
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Nicola Muirhead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Nicolette Ebsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Patrick Hextall
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Madeleine Wakeling
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Jacqueline Linehan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK
| | - Vincenzo Libri
- NIHR, Biomedical Research Centre, University College London Hospitals, London, UK; Clinical Research Facility, University College London Hospitals, London, UK
| | - Bryan Williams
- NIHR, Biomedical Research Centre, University College London Hospitals, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
24
|
Kong Y, Chen Z, Zhang J, Wu L. Erythrocyte Indices in Creutzfeldt-Jakob Disease Predict Survival Time. Front Neurol 2022; 13:839081. [PMID: 35237232 PMCID: PMC8884143 DOI: 10.3389/fneur.2022.839081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background Creutzfeldt–Jakob disease (CJD) is a devastating neurodegenerative disease caused by propagation of abnormally folded prion proteins (PrPSc). Some fluid biomarkers have been reported to be associated with disease duration in CJD. Based on studies which have found that prion protein (PrPC) played a role in erythrocytic hematopoiesis, we evaluated the association between peripheral red blood cell indices and survival time in CJD. Methods We retrospectively collected data on peripheral red blood cell indices, including red blood cell (RBC) count, hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and red cell distribution width (RDW), from 125 CJD patients. Cox proportional hazard models were generated to determine whether red cell indices correlated with survival time of patients with CJD. Results Of the 125 included participants, 70 (56%) were male, and the mean age at diagnosis (SD) was 60.3 (9.5) years. Hemoglobin levels (hazard ratio 1.710, 95% CI 1.124–2.600, p = 0.012) and HCT (hazard ratio 1.689, 95% CI 1.112–2.565, p=0.014) were significantly associated with survival time after controlling for sex, age, and Barthel Index. Red blood cell count, MCV, MCH, MCHC, and RDW were not associated with survival time before or after adjusting for covariates. Conclusions Our study found that Hb and HCT were significantly associated with survival time in patients with CJD. These results may inform evaluation of the mechanisms of interaction between prion disease and hematopoiesis, and indicate that Hb and HCT may be potential prognostic biomarkers.
Collapse
Affiliation(s)
- Yu Kong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Bizat N, Parrales V, Laoues S, Normant S, Levavasseur E, Roussel J, Privat N, Gougerot A, Ravassard P, Beaudry P, Brandel JP, Laplanche JL, Haïk S. An in vivo Caenorhabditis elegans model for therapeutic research in human prion diseases. Brain 2021; 144:2745-2758. [PMID: 34687213 DOI: 10.1093/brain/awab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 11/12/2022] Open
Abstract
Human prion diseases are fatal neurodegenerative disorders that include sporadic, infectious and genetic forms. Inherited Creutzfeldt-Jakob disease due to the E200K mutation of the prion protein-coding gene is the most common form of genetic prion disease. The phenotype resembles that of sporadic Creutzfeldt-Jakob disease at both the clinical and pathological levels, with a median disease duration of 4 months. To date, there is no available treatment for delaying the occurrence or slowing the progression of human prion diseases. Existing in vivo models do not allow high-throughput approaches that may facilitate the discovery of compounds targeting pathological assemblies of human prion protein or their effects on neuronal survival. Here, we generated a genetic model in the nematode Caenorhabditis elegans, which is devoid of any homologue of the prion protein, by expressing human prion protein with the E200K mutation in the mechanosensitive neuronal system. Expression of E200K prion protein induced a specific behavioural pattern and neurodegeneration of green fluorescent protein-expressing mechanosensitive neurons, in addition to the formation of intraneuronal inclusions associated with the accumulation of a protease-resistant form of the prion protein. We demonstrated that this experimental system is a powerful tool for investigating the efficacy of anti-prion compounds on both prion-induced neurodegeneration and prion protein misfolding, as well as in the context of human prion protein. Within a library of 320 compounds that have been approved for human use and cross the blood-brain barrier, we identified five molecules that were active against the aggregation of the E200K prion protein and the neurodegeneration it induced in transgenic animals. This model breaks a technological limitation in prion therapeutic research and provides a key tool to study the deleterious effects of misfolded prion protein in a well-described neuronal system.
Collapse
Affiliation(s)
- Nicolas Bizat
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France.,Faculté de Pharmacie de Paris, Paris University, Paris F-75006, France
| | - Valeria Parrales
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Sofian Laoues
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Sébastien Normant
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Etienne Levavasseur
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Julian Roussel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Nicolas Privat
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Alexianne Gougerot
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Philippe Ravassard
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Patrice Beaudry
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France
| | - Jean-Philippe Brandel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris F-75013, France
| | - Jean-Louis Laplanche
- Faculté de Pharmacie de Paris, Paris University, Paris F-75006, France.,Inserm, UMR-S 1144, Paris F-75006, France
| | - Stéphane Haïk
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Hospital Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris F-75013, France
| |
Collapse
|
26
|
Thompson AGB, Anastasiadis P, Druyeh R, Whitworth I, Nayak A, Nihat A, Mok TH, Rudge P, Wadsworth JDF, Rohrer J, Schott JM, Heslegrave A, Zetterberg H, Collinge J, Jackson GS, Mead S. Evaluation of plasma tau and neurofilament light chain biomarkers in a 12-year clinical cohort of human prion diseases. Mol Psychiatry 2021; 26:5955-5966. [PMID: 33674752 PMCID: PMC8758487 DOI: 10.1038/s41380-021-01045-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 11/09/2022]
Abstract
Prion diseases are fatal neurodegenerative conditions with highly accurate CSF and imaging diagnostic tests, but major unmet needs for blood biomarkers. Using ultrasensitive immuno-assays, we measured tau and neurofilament light chain (NfL) protein concentrations in 709 plasma samples taken from 377 individuals with prion disease during a 12 year prospective clinical study, alongside healthy and neurological control groups. This provides an unprecedented opportunity to evaluate their potential as biomarkers. Plasma tau and NfL were increased across all prion disease types. For distinguishing sCJD from control groups including clinically-relevant "CJD mimics", both show considerable diagnostic value. In sCJD, NfL was substantially elevated in every sample tested, including during early disease with minimal functional impairment and in all follow-up samples. Plasma tau was independently associated with rate of clinical progression in sCJD, while plasma NfL showed independent association with severity of functional impairment. In asymptomatic PRNP mutation carriers, plasma NfL was higher on average in samples taken within 2 years of symptom onset than in samples taken earlier. We present biomarker trajectories for nine mutation carriers healthy at enrolment who developed symptoms during follow-up. NfL started to rise as early as 2 years before onset in those with mutations typically associated with more slowly progressive clinical disease. This shows potential for plasma NfL as a "proximity marker", but further work is needed to establish predictive value on an individual basis, and how this varies across different PRNP mutations. We conclude that plasma tau and NfL have potential to fill key unmet needs for biomarkers in prion disease: as a secondary outcome for clinical trials (NfL and tau); for predicting onset in at-risk individuals (NfL); and as an accessible test for earlier identification of patients that may have CJD and require more definitive tests (NfL). Further studies should evaluate their performance directly in these specific roles.
Collapse
Affiliation(s)
| | | | - Ronald Druyeh
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Ines Whitworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Annapurna Nayak
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Akin Nihat
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - Tze How Mok
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | | | - Jonathan Rohrer
- Dementia Research Centre, Department of Neurodegeneration, University College London (UCL) Institute of Neurology, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegeneration, University College London (UCL) Institute of Neurology, London, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute at University College London (UCL), London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London (UCL), London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | | | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK.
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK.
| |
Collapse
|
27
|
Brandel JP. [Prion diseases or transmissible spongiform encephalopathies]. Rev Med Interne 2021; 43:106-115. [PMID: 34148672 DOI: 10.1016/j.revmed.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are human and animal diseases naturally or experimentally transmissible with a long incubation period and a fatal course without remission. The nature of the transmissible agent remains debated but the absence of a structure evoking a conventional microorganism led Stanley B. Prusiner to hypothesize that it could be an infectious protein (proteinaceous infectious particle or prion). The prion would be the abnormal form of a normal protein, cellular PrP (PrPc) which will change its spatial conformation and be converted into scrapie prion protein (PrPsc) with properties of partial resistance to proteases, aggregation and insolubility in detergents. No inflammatory or immune response are detected in TSEs which are characterized by brain damage combining spongiosis, neuronal loss, astrocytic gliosis, and deposits of PrPsc that may appear as amyloid plaques. Although the link between the accumulation of PrPsc and the appearance of lesions remains debated, the presence of PrPsc is constant during TSE and necessary for a definitive diagnosis. Even if they remain rare diseases (2 cases per million), the identification of kuru, at the end of the 1950s, of iatrogenic cases in the course of the 1970s and of the variant of Creutzfeldt-Jakob disease (CJD) in the mid-1990s explain the interest in these diseases but also the fears they can raise for public health. They remain an exciting research model because they belong both to the group of neurodegenerative diseases with protein accumulation (sporadic CJD), to the group of communicable diseases (iatrogenic CJD, variant of CJD) but also to the group of genetic diseases with a transmission Mendelian dominant (genetic CJD, Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia).
Collapse
Affiliation(s)
- J-P Brandel
- Cellule nationale de référence des maladies de Creutzfeldt-Jakob, Groupe hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm U1127/Institut du cerveau et de la moelle épinière (ICM), Groupe hospitalier Pitié-Salpêtrière, Centre national de référence des agents transmissibles non conventionnels, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| |
Collapse
|
28
|
Chen C, Dong X. Therapeutic implications of prion diseases. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Watson N, Brandel JP, Green A, Hermann P, Ladogana A, Lindsay T, Mackenzie J, Pocchiari M, Smith C, Zerr I, Pal S. The importance of ongoing international surveillance for Creutzfeldt-Jakob disease. Nat Rev Neurol 2021; 17:362-379. [PMID: 33972773 PMCID: PMC8109225 DOI: 10.1038/s41582-021-00488-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/04/2023]
Abstract
Creutzfeldt-Jakob disease (CJD) is a rapidly progressive, fatal and transmissible neurodegenerative disease associated with the accumulation of misfolded prion protein in the CNS. International CJD surveillance programmes have been active since the emergence, in the mid-1990s, of variant CJD (vCJD), a disease linked to bovine spongiform encephalopathy. Control measures have now successfully contained bovine spongiform encephalopathy and the incidence of vCJD has declined, leading to questions about the requirement for ongoing surveillance. However, several lines of evidence have raised concerns that further cases of vCJD could emerge as a result of prolonged incubation and/or secondary transmission. Emerging evidence from peripheral tissue distribution studies employing high-sensitivity assays suggests that all forms of human prion disease carry a theoretical risk of iatrogenic transmission. Finally, emerging diseases, such as chronic wasting disease and camel prion disease, pose further risks to public health. In this Review, we provide an up-to-date overview of the transmission of prion diseases in human populations and argue that CJD surveillance remains vital both from a public health perspective and to support essential research into disease pathophysiology, enhanced diagnostic tests and much-needed treatments.
Collapse
Affiliation(s)
- Neil Watson
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean-Philippe Brandel
- grid.411439.a0000 0001 2150 9058Cellule Nationale de référence des MCJ, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Alison Green
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Hermann
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Anna Ladogana
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Terri Lindsay
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Janet Mackenzie
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Maurizio Pocchiari
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Colin Smith
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Inga Zerr
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Suvankar Pal
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Sacco S, Paoletti M, Staffaroni AM, Kang H, Rojas J, Marx G, Goh SY, Luisa Mandelli M, Allen IE, Kramer JH, Bastianello S, Henry RG, Rosen H, Caverzasi E, Geschwind MD. Multimodal MRI staging for tracking progression and clinical-imaging correlation in sporadic Creutzfeldt-Jakob disease. Neuroimage Clin 2020; 30:102523. [PMID: 33636540 PMCID: PMC7906895 DOI: 10.1016/j.nicl.2020.102523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
Diffusion imaging is very useful for the diagnosis of sporadic Creutzfeldt-Jakob disease, but it has limitations in tracking disease progression as mean diffusivity changes non-linearly across the disease course. We previously showed that mean diffusivity changes across the disease course follow a quasi J-shaped curve, characterized by decreased values in earlier phases and increasing values later in the disease course. Understanding how MRI metrics change over-time, as well as their correlations with clinical deficits are crucial steps in developing radiological biomarkers for trials. Specifically, as mean diffusivity does not change linearly and atrophy mainly occurs in later stages, neither alone is likely to be a sufficient biomarker throughout the disease course. We therefore developed a model combining mean diffusivity and Volume loss (MRI Disease-Staging) to take into account mean diffusivity's non-linearity. We then assessed the associations between clinical outcomes and mean diffusivity alone, Volume alone and finally MRI Disease-Staging. In 37 sporadic Creutzfeldt-Jakob disease subjects and 30 age- and sex-matched healthy controls, high angular resolution diffusion and high-resolution T1 imaging was performed cross-sectionally to compute z-scores for mean diffusivity (MD) and Volume. Average MD and Volume were extracted from 41 GM volume of interest (VOI) per hemisphere, within the images registered to the Montreal Neurological Institute (MNI) space. Each subject's volume of interest was classified as either "involved" or "not involved" using a statistical threshold of ± 2 standard deviation (SD) for mean diffusivity changes and/or -2 SD for Volume. Volumes of interest were MRI Disease-Staged as: 0 = no abnormalities; 1 = decreased mean diffusivity only; 2 = decreased mean diffusivity and Volume; 3 = normal ("pseudo-normalized") mean diffusivity, reduced Volume; 4 = increased mean diffusivity, reduced Volume. We correlated Volume, MD and MRI Disease-Staging with several clinical outcomes (scales, score and symptoms) using 4 major regions of interest (Total, Cortical, Subcortical and Cerebellar gray matter) or smaller regions pre-specified based on known neuroanatomical correlates. Volume and MD z-scores correlated inversely with each other in all four major ROIs (cortical, subcortical, cerebellar and total) highlighting that ROIs with lower Volumes had higher MD and vice-versa. Regarding correlations with symptoms and scores, higher MD correlated with worse Mini-Mental State Examination and Barthel scores in cortical and cerebellar gray matter, but subjects with cortical sensory deficits showed lower MD in the primary sensory cortex. Volume loss correlated with lower Mini-Mental State Examination, Barthel scores and pyramidal signs. Interestingly, for both Volume and MD, changes within the cerebellar ROI showed strong correlations with both MMSE and Barthel. Supporting using a combination of MD and Volume to track sCJD progression, MRI Disease-Staging showed correlations with more clinical outcomes than Volume or MD alone, specifically with Mini-Mental State Examination, Barthel score, pyramidal signs, higher cortical sensory deficits, as well as executive and visual-spatial deficits. Additionally, when subjects in the cohort were subdivided into tertiles based on their Barthel scores and their percentile of disease duration/course ("Time-Ratio"), subjects in the lowest (most impaired) Barthel tertile showed a much greater proportion of more advanced MRI Disease-Stages than the those in the highest tertile. Similarly, subjects in the last Time-Ratio tertile (last tertile of disease) showed a much greater proportion of more advanced MRI Disease-Stages than the earliest tertile. Therefore, in later disease stages, as measured by time or Barthel, there is overall more Volume loss and increasing MD. A combined multiparametric quantitative MRI Disease-Staging is a useful tool to track sporadic Creutzfeldt-Jakob- disease progression radiologically.
Collapse
Affiliation(s)
- Simone Sacco
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Adam M. Staffaroni
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Huicong Kang
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
- Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Julio Rojas
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Gabe Marx
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Sheng-yang Goh
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Maria Luisa Mandelli
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Isabel E. Allen
- Department of Epidemiology and Biostatistics, University of California San Francisco San Francisco (UCSF), San Francisco, CA, USA
| | - Joel H. Kramer
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Stefano Bastianello
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Roland G. Henry
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Howie.J. Rosen
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Eduardo Caverzasi
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Michael D. Geschwind
- UCSF Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
31
|
Abstract
Prions were initially discovered in studies of scrapie, a transmissible neurodegenerative disease (ND) of sheep and goats thought to be caused by slow viruses. Once scrapie was transmitted to rodents, it was discovered that the scrapie pathogen resisted inactivation by procedures that modify nucleic acids. Eventually, this novel pathogen proved to be a protein of 209 amino acids, which is encoded by a chromosomal gene. After the absence of a nucleic acid within the scrapie agent was established, the mechanism of infectivity posed a conundrum and eliminated a hypothetical virus. Subsequently, the infectious scrapie prion protein (PrPSc) enriched for β-sheet was found to be generated from the cellular prion protein (PrPC) that is predominantly α-helical. The post-translational process that features in nascent prion formation involves a templated conformational change in PrPC that results in an infectious copy of PrPSc. Thus, prions are proteins that adopt alternative conformations, which are self-propagating and found in organisms ranging from yeast to humans. Prions have been found in both Alzheimer's (AD) and Parkinson's (PD) diseases. Mutations in APP and α-synuclein genes have been shown to cause familial AD and PD. Recently, AD was found to be a double prion disorder: both Aβ and tau prions feature in this ND. Increasing evidence argues for α-synuclein prions as the cause of PD, multiple system atrophy, and Lewy body dementia.
Collapse
|
32
|
Kotkowski E, Cabot JH, Lacci JV, Payne DH, Cavazos JE, Romero RS, Seifi A. Creutzfeldt-Jakob Disease: In-hospital demographics report of national data in the United States from 2016 and review of a rapidly-progressive case. Clin Neurol Neurosurg 2020; 197:106103. [PMID: 32717558 PMCID: PMC7703375 DOI: 10.1016/j.clineuro.2020.106103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND This report highlights a rapidly progressive case of Creutzfeldt-Jakob Disease (CJD) whose time from symptom onset to death spanned less than two months. We also explore the most recently available in-patient demographics data for discharges with CJD in the United States. METHODS We reviewed a CJD case and systematically analyzed a retrospective cohort of CJD discharges using the Healthcare Cost and Utilization Project (HCUP) to evaluate the existing national data on the status of CJD demographics and dispositions in the United States in 2016. RESULTS An estimated total of 710 hospital discharges with a diagnosis of CJD were seen across the United States in 2016. According to HCUP, the average age of patients was 66.15 ± 11.54 years with 48.6 % female. Average time to intubation from admission to hospital was 4.71 ± 7.32 days with a rate of intubation of 6.34 %. The mean hospital cost was $19,901.25 ± $18,743.48. The rate of in-hospital mortality was 8.45 %. No significant geographical differences were noted (p = 0.49). No significant differences were seen among incidence in specific ethnic groups (p = 0.33) or income quartiles (p = 0.90). CONCLUSIONS Our data shows that the incidence of CJD in 2016 appears to be equally distributed among individuals in the United States by demographic categories. Additionally, our case-study from 2019 illustrates an important example for diagnosing a rapidly-progressing case of CJD.
Collapse
Affiliation(s)
- Eithan Kotkowski
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; University of Texas Health Science Center at San Antonio Long School of Medicine, San Antonio, TX, USA
| | - John H Cabot
- University of Texas Health Science Center at San Antonio Long School of Medicine, San Antonio, TX, USA
| | - John V Lacci
- University of Texas Health Science Center at San Antonio Long School of Medicine, San Antonio, TX, USA
| | - Davis H Payne
- University of Texas Health Science Center at San Antonio Long School of Medicine, San Antonio, TX, USA
| | - Jose E Cavazos
- University of Texas Health Science Center at San Antonio Long School of Medicine, San Antonio, TX, USA; University of Texas Health Science Center at San Antonio Department of Neurology, San Antonio, TX, USA
| | - Rebecca S Romero
- University of Texas Health Science Center at San Antonio Long School of Medicine, San Antonio, TX, USA; University of Texas Health Science Center at San Antonio Department of Neurology, San Antonio, TX, USA; Comprehensive Multiple Sclerosis Clinic at the University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ali Seifi
- University of Texas Health Science Center at San Antonio Long School of Medicine, San Antonio, TX, USA; Department of Neurosurgery, Neurology, and Anesthesiology at University Health System, San Antonio, TX, USA.
| |
Collapse
|
33
|
Sundaram SE, Staffaroni AM, Walker NC, Casaletto KB, Casey M, Golubjatnikov A, Metcalf S, O’Leary K, Wong K, Benisano K, Forner S, Gonzalez Catalan M, Allen IE, Rosen HJ, Kramer JH, Geschwind MD. Baseline neuropsychological profiles in prion disease predict survival time. Ann Clin Transl Neurol 2020; 7:1535-1545. [PMID: 33314770 PMCID: PMC7480924 DOI: 10.1002/acn3.51115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Few studies have captured the neuropsychological profile of sporadic Creutzfeldt-Jakob disease (sCJD) with neuropsychological testing, and little is known about cognitive predictors of survival. We characterized baseline neuropsychological performance in sCJD and investigated associations with survival. METHODS sCJD participants who completed the MMSE (n = 118), 61 sCJD of whom also completed a neuropsychological battery at baseline, and 135 age-matched healthy controls, were included. Composite scores of global cognition, memory, executive functions, visuospatial, and language were derived. Cox proportional hazard models estimated survival time, controlling for age and education. Additional models adjusted for Barthel Index and PRNP codon 129 polymorphism. RESULTS sCJD participants performed significantly worse than controls on all cognitive tasks and composites with most showing very large effect sizes. The three tests showing the largest group differences were delayed verbal recall (Hedges'g = 4.08, P < 0.0001), Stroop Inhibition (Hedges'g = 3.14, P < 0.0001), and Modified Trails (Hedges'g = 2.94, P < 0.0001). Memory (95%) and executive functioning (87%) composites were most commonly impaired. Poorer global (HR = 0.65, P < 0.0001), visuospatial (HR = 0.82, P < 0.0001), and memory (HR = 0.82, P = 0.01) composites predicted shorter survival. Visuospatial cognition remained a significant predictor even after adjusting for all other cognitive composites; each standard deviation decrease in visuospatial cognition was associated with an 18% higher chance of death (HR = 0.82, P < 0.003). Global (HR = 0.68, P = 0.03) and visuospatial (HR = 0.82, P = 0.001) composites remained significant predictors after controlling for Barthel Index and codon 129. INTERPRETATION sCJD participants exhibit a broad range of cognitive impairments, with memory and executive functioning deficits in the vast majority. Neuropsychological assessment, particularly of visuospatial abilities, informs prognostication in sCJD.
Collapse
Affiliation(s)
- Saranya E. Sundaram
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
- Department of PsychologyPalo Alto UniversityPalo AltoCalifornia
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Nicole C. Walker
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
- Department of PsychologyCalifornia School of Professional PsychologyAlliant International UniversitySan FranciscoCalifornia
| | - Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Megan Casey
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Aili Golubjatnikov
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Stacy Metcalf
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Kelly O’Leary
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Katherine Wong
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Kendra Benisano
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Sven Forner
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Marta Gonzalez Catalan
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
- Department of PsychologyPalo Alto UniversityPalo AltoCalifornia
| | - Isabel E. Allen
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCalifornia
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| | - Michael D. Geschwind
- Department of Neurology, Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
34
|
Colini Baldeschi A, Vanni S, Zattoni M, Legname G. Novel regulators of PrP C expression as potential therapeutic targets in prion diseases. Expert Opin Ther Targets 2020; 24:759-776. [PMID: 32631090 DOI: 10.1080/14728222.2020.1782384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prion diseases are rare and fatal neurodegenerative disorders. The key molecular event in these disorders is the misfolding of the physiological form of the cellular prion protein, PrPC, leading to the accumulation of a pathological isoform, PrPSc, with unique features. Both isoforms share the same primary sequence, lacking detectable differences in posttranslational modification, a major hurdle for their biochemical or biophysical independent characterization. The mechanism underlying the conversion of PrPC to PrPSc is not completely understood, so finding an effective therapy to cure prion disorders is extremely challenging. AREAS COVERED This review discusses the strategies for decreasing prion replication and throws a spotlight on the relevance of PrPC in the prion accumulation process. EXPERT OPINION PrPC is the key substrate for prion pathology; hence, the most promising therapeutic approach appears to be the targeting of PrPC to block the production of the infectious isoform. The use of RNA interference and antisense oligonucleotide technologies may offer opportunities for treatment because of their success in clinical trials for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio E La Cura Dei Tumori (IRST) IRCCS , Meldola, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
35
|
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, Huang C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 2020; 5:113. [PMID: 32616710 PMCID: PMC7331117 DOI: 10.1038/s41392-020-00213-8] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ever present hurdles for the discovery of new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the development of old drugs for new therapeutic purposes. This strategy with a cost-effective way offers a rare opportunity for the treatment of human neoplastic disease, facilitating rapid clinical translation. With an increased understanding of the hallmarks of cancer and the development of various data-driven approaches, drug repurposing further promotes the holistic productivity of drug discovery and reasonably focuses on target-defined antineoplastic compounds. The "treasure trove" of non-oncology drugs should not be ignored since they could target not only known but also hitherto unknown vulnerabilities of cancer. Indeed, different from targeted drugs, these old generic drugs, usually used in a multi-target strategy may bring benefit to patients. In this review, aiming to demonstrate the full potential of drug repurposing, we present various promising repurposed non-oncology drugs for clinical cancer management and classify these candidates into their proposed administration for either mono- or drug combination therapy. We also summarize approaches used for drug repurposing and discuss the main barriers to its uptake.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tao Zhang
- The School of Biological Science and Technology, Chengdu Medical College, 610083, Chengdu, China.
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan, China.
| | - Yongping Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, and Cancer Institute, Shenzhen Bay Laboratory Shenzhen, 518035, Shenzhen, China.
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
36
|
Vallabh SM, Minikel EV, Williams VJ, Carlyle BC, McManus AJ, Wennick CD, Bolling A, Trombetta BA, Urick D, Nobuhara CK, Gerber J, Duddy H, Lachmann I, Stehmann C, Collins SJ, Blennow K, Zetterberg H, Arnold SE. Cerebrospinal fluid and plasma biomarkers in individuals at risk for genetic prion disease. BMC Med 2020; 18:140. [PMID: 32552681 PMCID: PMC7302371 DOI: 10.1186/s12916-020-01608-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Prion disease is neurodegenerative disease that is typically fatal within months of first symptoms. Clinical trials in this rapidly declining symptomatic patient population have proven challenging. Individuals at high lifetime risk for genetic prion disease can be identified decades before symptom onset and provide an opportunity for early therapeutic intervention. However, randomizing pre-symptomatic carriers to a clinical endpoint is not numerically feasible. We therefore launched a cohort study in pre-symptomatic genetic prion disease mutation carriers and controls with the goal of evaluating biomarker endpoints that may enable informative trials in this population. METHODS We collected cerebrospinal fluid (CSF) and blood from pre-symptomatic individuals with prion protein gene (PRNP) mutations (N = 27) and matched controls (N = 16), in a cohort study at Massachusetts General Hospital. We quantified total prion protein (PrP) and real-time quaking-induced conversion (RT-QuIC) prion seeding activity in CSF and neuronal damage markers total tau (T-tau) and neurofilament light chain (NfL) in CSF and plasma. We compared these markers cross-sectionally, evaluated short-term test-retest reliability over 2-4 months, and conducted a pilot longitudinal study over 10-20 months. RESULTS CSF PrP levels were stable on test-retest with a mean coefficient of variation of 7% for both over 2-4 months in N = 29 participants and over 10-20 months in N = 10 participants. RT-QuIC was negative in 22/23 mutation carriers. The sole individual with positive RT-QuIC seeding activity at two study visits had steady CSF PrP levels and slightly increased tau and NfL concentrations compared with the others, though still within the normal range, and remained asymptomatic 1 year later. T-tau and NfL showed no significant differences between mutation carriers and controls in either CSF or plasma. CONCLUSIONS CSF PrP will be interpretable as a pharmacodynamic readout for PrP-lowering therapeutics in pre-symptomatic individuals and may serve as an informative surrogate biomarker in this population. In contrast, markers of prion seeding activity and neuronal damage do not reliably cross-sectionally distinguish mutation carriers from controls. Thus, as PrP-lowering therapeutics for prion disease advance, "secondary prevention" based on prodromal pathology may prove challenging; instead, "primary prevention" trials appear to offer a tractable paradigm for trials in pre-symptomatic individuals.
Collapse
Affiliation(s)
- Sonia M Vallabh
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA, 02142, USA.
- Prion Alliance, Cambridge, MA, 02139, USA.
| | - Eric Vallabh Minikel
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA, 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
| | - Victoria J Williams
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Becky C Carlyle
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Alison J McManus
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Chase D Wennick
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Anna Bolling
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bianca A Trombetta
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David Urick
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Chloe K Nobuhara
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jessica Gerber
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Holly Duddy
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Christiane Stehmann
- Australian National CJD Registry, University of Melbourne, Parkville, 3010, Australia
| | - Steven J Collins
- Australian National CJD Registry, University of Melbourne, Parkville, 3010, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- UK Dementia Research Institute, University College London, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Steven E Arnold
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
37
|
Zaccagnini L, Rossetti G, Tran TH, Salzano G, Gandini A, Colini Baldeschi A, Bolognesi ML, Carloni P, Legname G. In silico/in vitro screening and hit evaluation identified new phenothiazine anti-prion derivatives. Eur J Med Chem 2020; 196:112295. [DOI: 10.1016/j.ejmech.2020.112295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
|
38
|
Towards a treatment for genetic prion disease: trials and biomarkers. Lancet Neurol 2020; 19:361-368. [PMID: 32199098 DOI: 10.1016/s1474-4422(19)30403-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/19/2023]
Abstract
Prion disease is a rare, fatal, and exceptionally rapid neurodegenerative disease. Although incurable, prion disease follows a clear pathogenic mechanism, in which a single gene gives rise to a single prion protein (PrP) capable of converting into the sole causal disease agent, the misfolded prion. As efforts progress to leverage this mechanistic knowledge toward rational therapies, a principal challenge will be the design of clinical trials. Previous trials in prion disease have been done in symptomatic patients who are often profoundly debilitated at enrolment. About 15% of prion disease cases are genetic, creating an opportunity for early therapeutic intervention to delay or prevent disease. Highly variable age of onset and absence of established prodromal biomarkers might render infeasible existing models for testing drugs before disease onset. Advancement of near-term targeted therapeutics could crucially depend on thoughtful design of rigorous presymptomatic trials.
Collapse
|
39
|
Yadav K, Yadav A, Vashistha P, Pandey VP, Dwivedi UN. Protein Misfolding Diseases and Therapeutic Approaches. Curr Protein Pept Sci 2020; 20:1226-1245. [PMID: 31187709 DOI: 10.2174/1389203720666190610092840] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/01/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
Protein folding is the process by which a polypeptide chain acquires its functional, native 3D structure. Protein misfolding, on the other hand, is a process in which protein fails to fold into its native functional conformation. This misfolding of proteins may lead to precipitation of a number of serious diseases such as Cystic Fibrosis (CF), Alzheimer's Disease (AD), Parkinson's Disease (PD), and Amyotrophic Lateral Sclerosis (ALS) etc. Protein Quality-control (PQC) systems, consisting of molecular chaperones, proteases and regulatory factors, help in protein folding and prevent its aggregation. At the same time, PQC systems also do sorting and removal of improperly folded polypeptides. Among the major types of PQC systems involved in protein homeostasis are cytosolic, Endoplasmic Reticulum (ER) and mitochondrial ones. The cytosol PQC system includes a large number of component chaperones, such as Nascent-polypeptide-associated Complex (NAC), Hsp40, Hsp70, prefoldin and T Complex Protein-1 (TCP-1) Ring Complex (TRiC). Protein misfolding diseases caused due to defective cytosolic PQC system include diseases involving keratin/collagen proteins, cardiomyopathies, phenylketonuria, PD and ALS. The components of PQC system of Endoplasmic Reticulum (ER) include Binding immunoglobulin Protein (BiP), Calnexin (CNX), Calreticulin (CRT), Glucose-regulated Protein GRP94, the thiol-disulphide oxidoreductases, Protein Disulphide Isomerase (PDI) and ERp57. ER-linked misfolding diseases include CF and Familial Neurohypophyseal Diabetes Insipidus (FNDI). The components of mitochondrial PQC system include mitochondrial chaperones such as the Hsp70, the Hsp60/Hsp10 and a set of proteases having AAA+ domains similar to the proteasome that are situated in the matrix or the inner membrane. Protein misfolding diseases caused due to defective mitochondrial PQC system include medium-chain acyl-CoA dehydrogenase (MCAD)/Short-chain Acyl-CoA Dehydrogenase (SCAD) deficiency diseases, hereditary spastic paraplegia. Among therapeutic approaches towards the treatment of various protein misfolding diseases, chaperones have been suggested as potential therapeutic molecules for target based treatment. Chaperones have been advantageous because of their efficient entry and distribution inside the cells, including specific cellular compartments, in therapeutic concentrations. Based on the chemical nature of the chaperones used for therapeutic purposes, molecular, chemical and pharmacological classes of chaperones have been discussed.
Collapse
Affiliation(s)
- Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, U.P, India
| | - Anurag Yadav
- Department of Microbiology, College of Basic Sciences and Humanities, Sardar Krushinagar Dantiwada Agricultural University, Banaskantha, Gujarat, India
| | | | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, U.P, India
| | - Upendra N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, U.P, India.,Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, U.P., India
| |
Collapse
|
40
|
Genetic architecture of neurodegenerative dementias. Neuropharmacology 2020; 168:108014. [PMID: 32097768 DOI: 10.1016/j.neuropharm.2020.108014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
Molecular genetics has been an invaluable tool to help understand the molecular basis of neurodegenerative dementias. In this review, we provide an overview of the genetic architecture underlying some of the most prevalent causes of dementia, including Alzheimer's dementia, frontotemporal lobar degeneration, Lewy body dementia, and prion diseases. We also discuss the complexity of the human genome and how the novel technologies have revolutionized and accelerated the way we screen the variety of our DNA. Finally, we also provide some examples about how this genetic knowledge is being transferred into the clinic through personalized medicine. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
41
|
Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem 2020; 153:150-172. [PMID: 31943194 DOI: 10.1111/jnc.14956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.
Collapse
Affiliation(s)
- Saffire H Krance
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marc Shenouda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah J Colpitts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina Darwish
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maximilian Strauss
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Holec SA, Block AJ, Bartz JC. The role of prion strain diversity in the development of successful therapeutic treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:77-119. [PMID: 32958242 PMCID: PMC8939712 DOI: 10.1016/bs.pmbts.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.
Collapse
Affiliation(s)
- Sara A.M. Holec
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States,Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States,Corresponding author:
| |
Collapse
|
43
|
Ellett LJ, Revill ZT, Koo YQ, Lawson VA. Strain variation in treatment and prevention of human prion diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:121-145. [PMID: 32958230 DOI: 10.1016/bs.pmbts.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases describe a number of different human disorders that differ in their clinical phenotypes, which are nonetheless united by their transmissible nature and common pathology. Clinical variation in the absence of a conventional infectious agent is believed to be encoded by different conformations of the misfolded prion protein. This misfolded protein is the target of methods designed to prevent disease transmission in a surgical setting and reduction of the misfolded seed or preventing its continued propagation have been the focus of therapeutic strategies. It is therefore possible that strain variation may influence the efficacy of prevention and treatment approaches. Historically, an understanding of prion disease transmission and pathogenesis has been focused on research tools developed using agriculturally relevant strains of prion disease. However, an increased understanding of the molecular biology of human prion disorders has highlighted differences not only between different forms of the disease affecting humans and animals but also within diseases such as Creutzfeldt-Jakob Disease (CJD), which is represented by several sporadic CJD specific conformations and an additional conformation associated with variant CJD. In this chapter we will discuss whether prion strain variation can affect the efficacy of methods used to decontaminate prions and whether strain variation in pre-clinical models of prion disease can be used to identify therapeutic strategies that have the best possible chance of success in the clinic.
Collapse
Affiliation(s)
- Laura J Ellett
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Zoe T Revill
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Yong Qian Koo
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Victoria A Lawson
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
44
|
Validation of Poly(Propylene Imine) Glycodendrimers Towards Their Anti-prion Conversion Efficiency. Mol Neurobiol 2019; 57:1863-1874. [PMID: 31848935 DOI: 10.1007/s12035-019-01837-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Prion diseases, such as the sporadic Creutzfeldt-Jakob disease (sCJD), are a class of fatal neurodegenerative disorders. Currently, there is no efficient treatment or therapy available. Hence, the search for molecules that may inhibit the conversion of the cellular prion protein (PrPC) into its pathological counterpart PrPScrapie (PrPSc) is of great urgency. Here, we report the generation- and dose-dependent biological action of dense-shell poly(propylene imine) (PPI) glycodendrimers by using scrapie-infected neuroblastoma (ScN2a) cells and the real-time quaking-induced conversion assay (RT-QuIC) for validation of anti-prion efficiencies. Whereas the 2nd and 3rd generation of PPI glycodendrimers exhibited anti-prion conversion efficiency in ScN2a cells validated by RT-QuIC analysis, we observed that the 4th generation of glycodendrimers had shown no significant effect. Translational RT-QuIC studies conducted with human prions derived from sCJD patients indicated an anti-prion conversion effect (not on PrPRes degradation) of PPI glycodendrimers against human prions with the highest inhibitory activity of the 4th generation of PPI glycodendrimers towards prion aggregation compared to the 2nd and 3rd generation. In conclusion, our study highlights the potential of PPI glycodendrimers as therapeutic compounds due to their anti-conversion activity on human prions in a PrPSc strain depending manner.
Collapse
|
45
|
Conceição RA, Ascari LM, Ferreira NC, Goes CF, Matos CO, Pinheiro AS, Alves MA, Souza AMT, Maia RC, Caughey B, Cordeiro Y, Barbosa MLC. Synthesis and in silico and in vitro evaluation of trimethoxy-benzamides designed as anti-prion derivatives. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Baral PK, Yin J, Aguzzi A, James MNG. Transition of the prion protein from a structured cellular form (PrP C ) to the infectious scrapie agent (PrP Sc ). Protein Sci 2019; 28:2055-2063. [PMID: 31583788 DOI: 10.1002/pro.3735] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/07/2022]
Abstract
Prion diseases in mammals are caused by a conformational transition of the cellular prion protein from its native conformation (PrPC ) to a pathological isoform called "prion protein scrapie" (PrPSc ). A molecular level of understanding of this conformational transition will be helpful in unveiling the disease etiology. Experimental structural biological techniques (NMR and X-ray crystallography) have been used to unravel the atomic level structural information for the prion and its binding partners. More than one hundred three-dimensional structures of the mammalian prions have been deposited in the protein databank. Structural studies on the prion protein and its structural transitions will deepen our understanding of the molecular basis of prion pathogenesis and will provide valuable guidance for future structure-based drug discovery endeavors.
Collapse
Affiliation(s)
- Pravas K Baral
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiang Yin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Michael N G James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Minikel EV, Vallabh SM, Orseth MC, Brandel JP, Haïk S, Laplanche JL, Zerr I, Parchi P, Capellari S, Safar J, Kenny J, Fong JC, Takada LT, Ponto C, Hermann P, Knipper T, Stehmann C, Kitamoto T, Ae R, Hamaguchi T, Sanjo N, Tsukamoto T, Mizusawa H, Collins SJ, Chiesa R, Roiter I, de Pedro-Cuesta J, Calero M, Geschwind MD, Yamada M, Nakamura Y, Mead S. Age at onset in genetic prion disease and the design of preventive clinical trials. Neurology 2019; 93:e125-e134. [PMID: 31171647 DOI: 10.1212/wnl.0000000000007745] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To determine whether preventive trials in genetic prion disease could be designed to follow presymptomatic mutation carriers to onset of disease. METHODS We assembled age at onset or death data from 1,094 individuals with high penetrance mutations in the prion protein gene (PRNP) in order to generate survival and hazard curves and test for genetic modifiers of age at onset. We used formulae and simulations to estimate statistical power for clinical trials. RESULTS Genetic prion disease age at onset varies over several decades for the most common mutations and neither sex, parent's age at onset, nor PRNP codon 129 genotype provided additional explanatory power to stratify trials. Randomized preventive trials would require hundreds or thousands of at-risk individuals in order to be statistically powered for an endpoint of clinical onset, posing prohibitive cost and delay and likely exceeding the number of individuals available for such trials. CONCLUSION The characterization of biomarkers suitable to serve as surrogate endpoints will be essential for the prevention of genetic prion disease. Parameters such as longer trial duration, increased enrollment, and the use of historical controls in a postmarketing study could provide opportunities for subsequent determination of clinical benefit.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK.
| | - Sonia M Vallabh
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Margaret C Orseth
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Jean-Philippe Brandel
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Stéphane Haïk
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Jean-Louis Laplanche
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Inga Zerr
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Piero Parchi
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Sabina Capellari
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Jiri Safar
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Janna Kenny
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Jamie C Fong
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Leonel T Takada
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Claudia Ponto
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Peter Hermann
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Tobias Knipper
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Christiane Stehmann
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Tetsuyuki Kitamoto
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Ryusuke Ae
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Tsuyoshi Hamaguchi
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Nobuo Sanjo
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Tadashi Tsukamoto
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Hidehiro Mizusawa
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Steven J Collins
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Roberto Chiesa
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Ignazio Roiter
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Jesús de Pedro-Cuesta
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Miguel Calero
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Michael D Geschwind
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Masahito Yamada
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Yosikazu Nakamura
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Simon Mead
- From Broad Institute of MIT and Harvard (E.V.M., S.M.V.), Cambridge; Analytical and Translational Genetics Unit (E.V.M.), Massachusetts General Hospital; Program in Biological and Biomedical Sciences (E.V.M., S.M.V.), Harvard Medical School, Boston; Prion Alliance (E.V.M., S.M.V.), Cambridge; Harvard Business School (M.C.O.), Boston, MA; Institut du Cerveau et de la Moelle Épinière (J.-P.B., S.H.), ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université; Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob (J.-P.B., S.H., J.-L.P.), Assistance Publique-Hôpitaux de Paris, France; National Reference Center for TSE (I.Z., C.P., P.H., T.K.), Georg-August University, Göttingen, Germany; IRCCS-Istituto delle Scienze Neurologiche di Bologna (P.P., S.C.); Departments of Experimental, Diagnostic and Specialty Medicine (P.P.) and Biomedical and Neuromotor Sciences (S.C.), University of Bologna, Italy; National Prion Disease Pathology Surveillance Center (J.S.), Case Western Reserve University, Cleveland, OH; MRC Prion Unit at UCL (J.K., S.M.), Institute of Prion Diseases, University College London, UK; Memory and Aging Center (J.C.F., L.T.T., M.D.G.), University of California San Francisco; Australian National CJD Registry (C.S., S.J.C.), University of Melbourne, Parkville, Australia; Department of Neurological Science (T.K.), Tohoku University Graduate School of Medicine, Sendai; Department of Public Health (R.A., Y.N.), Jichi Medical University, Shimotsuke; Department of Neurology and Neurobiology of Aging (T.H., M.Y.), Kanazawa University Graduate School of Medical Sciences, Kanazawa; Department of Neurology and Neurological Science (N.S.), Tokyo Medical and Dental University; National Center of Neurology and Psychiatry (T.T., H.M.), Kodaira, Japan; Laboratory of Prion Neurobiology (R.C.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan; AULSS2 Ca' Foncello Hospital (I.R.), Treviso, Italy; Spanish National Reference Center for CJD (J.d.P.-C., M.C.), Instituto de Salud Carlos III and CIBERNED, Madrid, Spain; and NHS National Prion Clinic (S.M.), National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| |
Collapse
|
48
|
Qin K, Zhao L, Solanki A, Busch C, Mastrianni J. Anle138b prevents PrP plaque accumulation in Tg(PrP-A116V) mice but does not mitigate clinical disease. J Gen Virol 2019; 100:1027-1037. [PMID: 31045489 DOI: 10.1099/jgv.0.001262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anle138b is an anti-aggregating compound previously shown to delay the onset of scrapie, a transmissible prion disease, although its in vivo efficacy against other prion disease subtypes has not been fully assessed. TgGSS mice that model Gerstmann-Sträussler-Scheinker disease (GSS) via expression of mouse PrPA116V accumulate PrP amyloid plaques in their brains and develop progressive ataxia leading to death in ~160 days. When allowed to feed on food pellets containing anle138b from weaning until death, the brains of TgGSS mice displayed significant reductions in PrP plaque burden, insoluble PrP, and proteinase K-resistant PrPSc at end stage, compared with TgGSS mice allowed to feed on placebo food pellets. Despite these effects on biological markers of disease, there was no difference in the onset of symptoms or the age at death between the two treatment groups. In contrast, scrapie-inoculated wild-type mice treated with anle138b survived nearly twice as long (254 days) as scrapie-inoculated mice fed placebo (~136 days). They also displayed greater reductions in insoluble and PK-resistant PrPSc than TgGSS mice. Although these results support an anti-aggregating effect of anle138b, the discordance in clinical efficacy noted between the two prion disease models tested underscores the pathophysiological differences between them and highlights the need to consider differences in susceptibilities among prion subtypes when assessing potential therapies for prion diseases.
Collapse
Affiliation(s)
- Kefeng Qin
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Lili Zhao
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Ani Solanki
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Crystal Busch
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - James Mastrianni
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| |
Collapse
|
49
|
Fonte M, Fagundes N, Gomes A, Ferraz R, Prudêncio C, Araújo MJ, Gomes P, Teixeira C. Development of a synthetic route towards N4,N9-disubstituted 4,9-diaminoacridines: On the way to multi-stage antimalarials. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Prion protein quantification in human cerebrospinal fluid as a tool for prion disease drug development. Proc Natl Acad Sci U S A 2019; 116:7793-7798. [PMID: 30936307 DOI: 10.1073/pnas.1901947116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reduction of native prion protein (PrP) levels in the brain is an attractive strategy for the treatment or prevention of human prion disease. Clinical development of any PrP-reducing therapeutic will require an appropriate pharmacodynamic biomarker: a practical and robust method for quantifying PrP, and reliably demonstrating its reduction in the central nervous system (CNS) of a living patient. Here we evaluate the potential of ELISA-based quantification of human PrP in human cerebrospinal fluid (CSF) to serve as a biomarker for PrP-reducing therapeutics. We show that CSF PrP is highly sensitive to plastic adsorption during handling and storage, but its loss can be minimized by the addition of detergent. We find that blood contamination does not affect CSF PrP levels, and that CSF PrP and hemoglobin are uncorrelated, together suggesting that CSF PrP is CNS derived, supporting its relevance for monitoring the tissue of interest and in keeping with high PrP abundance in brain relative to blood. In a cohort with controlled sample handling, CSF PrP exhibits good within-subject test-retest reliability (mean coefficient of variation, 13% in samples collected 8-11 wk apart), a sufficiently stable baseline to allow therapeutically meaningful reductions in brain PrP to be readily detected in CSF. Together, these findings supply a method for monitoring the effect of a PrP-reducing drug in the CNS, and will facilitate development of prion disease therapeutics with this mechanism of action.
Collapse
|