1
|
Akkulak A, Yeşilören E, Yalcin A, Donmez Yalcin G. Kainic Acid-Induced Excitotoxicity Leads to the Activation of Heat Shock Response. Mol Neurobiol 2023; 60:6248-6263. [PMID: 37439958 DOI: 10.1007/s12035-023-03471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Heat shock response (HSR) which is regulated by heat shock factor 1 (HSF1) is the most important mechanism and the major regulator that prevents protein aggregation in neurodegenerative diseases. Excitotoxicity, which is the accumulation of excess glutamate in synaptic cleft, is observed in age-dependent neurodegenerative diseases and also in stroke, epilepsy, and brain trauma. Only a few studies in the literature show the link between excitotoxicity and HSR. In this study, we aimed to show the molecular mechanism underlying this link. We applied heat shock (HS) treatment and induced excitotoxicity with kainic acid (KA) in neuroblastoma (SHSY-5Y) and glia (immortalized human astrocytes (IHA)) cells. We observed that, only in SHSY-5Y cells, heat shock preconditioning increases cell survival after KA treatment. GLT-1 mRNA expression is increased as a result of KA treatment and HS due to the elevation of HSF1 binding to GLT-1 promoter which was induced by HSF1 phosphorylation and sumolation in SHSY-5Y cells. Additionally, glutamine synthetase and glutaminase expressions are increased after HS preconditioning in SHSY-5Y cells indicating that HS activates glutamate metabolism modulators and accelerates the glutamate cycle. In glia cells, we did not observe the effect of HS preconditioning. In summary, heat shock preconditioning might be protective against excitotoxicity-related cell death and degeneration.
Collapse
Affiliation(s)
- Ayşenur Akkulak
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Emre Yeşilören
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Abdullah Yalcin
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Gizem Donmez Yalcin
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
| |
Collapse
|
2
|
Diaz A, Woo Y, Martin-Jimenez C, Merino P, Torre E, Yepes M. Tissue-type plasminogen activator induces TNF-α-mediated preconditioning of the blood-brain barrier. J Cereb Blood Flow Metab 2022; 42:667-682. [PMID: 34796748 PMCID: PMC9051146 DOI: 10.1177/0271678x211060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
Ischemic tolerance is a phenomenon whereby transient exposure to a non-injurious preconditioning stimulus triggers resistance to a subsequent lethal ischemic insult. Despite the fact that not only neurons but also astrocytes and endothelial cells have a unique response to preconditioning stimuli, current research has been focused mostly on the effect of preconditioning on neuronal death. Thus, it is unclear if the blood-brain barrier (BBB) can be preconditioned independently of an effect on neuronal survival. The release of tissue-type plasminogen activator (tPA) from perivascular astrocytes in response to an ischemic insult increases the permeability of the BBB. In line with these observations, treatment with recombinant tPA increases the permeability of the BBB and genetic deficiency of tPA attenuates the development of post-ischemic edema. Here we show that tPA induces ischemic tolerance in the BBB independently of an effect on neuronal survival. We found that tPA renders the BBB resistant to an ischemic injury by inducing TNF-α-mediated astrocytic activation and increasing the abundance of aquaporin-4-immunoreactive astrocytic end-feet processes in the neurovascular unit. This is a new role for tPA, that does not require plasmin generation, and with potential therapeutic implications for patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
- Department of Neurology & Center for Neurodegenerative
Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center,
Atlanta, GA, USA
| |
Collapse
|
3
|
Burda J, Burda R. Ischemic tolerance - blessing or curse. Physiol Res 2021; 70:661-670. [PMID: 34505532 DOI: 10.33549/physiolres.934644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Application of knowledge about ischemic tolerance to clinic requires the solid understanding of mechanism of creation of this phenomenon. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research. The main emphasis is devoted to the possibility of preparing full tolerance in the donor's body and its transfer to the patient in the form of activated blood plasma. Such plasma could be administered as soon as the patient is transported to the hospital and would take effect immediately after administration to the patient's bloodstream. One chapter is also devoted to anticonditioning, i.e. the possibility of preventing the activation of tolerance. Anticonditioning could be used to treat oncologic patients. We expect that this method could increase effectiveness of cancer treatment. Cross-tolerance with a wide range of diverse stressors gives us the courage to assume that activated plasma can significantly help with a wide range of pathological events.
Collapse
Affiliation(s)
- J Burda
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic. Faculty of Medicine, Clinic of Trauma Surgery, P. J. Šafárik University, Košice, Slovak Republic.
| | | |
Collapse
|
4
|
Kim JM, Kim YJ, Park KH. Thermal Injury Induces Small Heat Shock Protein in the Optic Nerve Head In vivo. ACTA ACUST UNITED AC 2021; 35:460-466. [PMID: 34634865 PMCID: PMC8666256 DOI: 10.3341/kjo.2021.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
Purpose To investigate the induction pattern of various heat shock protein (HSP) in the optic nerve head after thermal stress using transpupillary thermotherapy (TTT) and to determine the dose-response relationship of thermal stress on the induction of various HSP. Methods The 810 nm diode laser with 50 um spot size was aimed to the center of optic nerve head of right eye of Norway brown rats. First, the various exposure powers (100, 120, 140mW) were used with the same exposure duration, 60 seconds, to investigate power dosing effect. Second, the various exposure durations (1, 2, 3, and 5 minutes) were applied under constant 100mW laser power to investigate time dosing effect. Left eyes were served as controls. To quantify HSP expression, enucleation was performed at 24 hours after TTT. HSP 27 and αB-crystallin inductions in optic nerve head were examined with Western blot. Results All type of HSP was observed in normal state. After thermal injury, the expression of HSP 27 were increased, and the αB-crystallin were decreased. Conclusions Induction pattern of each HSP in the optic nerve head were different after thermal injury. Some HSPs were induced or exhausted. Further research is needed on the characteristic functions and induction conditions of each HSP.
Collapse
Affiliation(s)
- Joon Mo Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yu Jeong Kim
- Department of ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Ho Park
- Department of ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Hao Y, Xin M, Feng L, Wang X, Wang X, Ma D, Feng J. Review Cerebral Ischemic Tolerance and Preconditioning: Methods, Mechanisms, Clinical Applications, and Challenges. Front Neurol 2020; 11:812. [PMID: 33071923 PMCID: PMC7530891 DOI: 10.3389/fneur.2020.00812] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide, and it is increasing in prevalence. The limited therapeutic window and potential severe side effects prevent the widespread clinical application of the venous injection of thrombolytic tissue plasminogen activator and thrombectomy, which are regarded as the only approved treatments for acute ischemic stroke. Triggered by various types of mild stressors or stimuli, ischemic preconditioning (IPreC) induces adaptive endogenous tolerance to ischemia/reperfusion (I/R) injury by activating a multitude cascade of biomolecules, for example, proteins, enzymes, receptors, transcription factors, and others, which eventually lead to transcriptional regulation and epigenetic and genomic reprogramming. During the past 30 years, IPreC has been widely studied to confirm its neuroprotection against subsequent I/R injury, mainly including local ischemic preconditioning (LIPreC), remote ischemic preconditioning (RIPreC), and cross preconditioning. Although LIPreC has a strong neuroprotective effect, the clinical application of IPreC for subsequent cerebral ischemia is difficult. There are two main reasons for the above result: Cerebral ischemia is unpredictable, and LIPreC is also capable of inducing unexpected injury with only minor differences to durations or intensity. RIPreC and pharmacological preconditioning, an easy-to-use and non-invasive therapy, can be performed in a variety of clinical settings and appear to be more suitable for the clinical management of ischemic stroke. Hoping to advance our understanding of IPreC, this review mainly focuses on recent advances in IPreC in stroke management, its challenges, and the potential study directions.
Collapse
Affiliation(s)
| | | | | | | | | | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Puri BK, Ijeh C, Monro JA. Removal of DNA adducts. Med Hypotheses 2019; 127:11-14. [PMID: 31088632 DOI: 10.1016/j.mehy.2019.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/24/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
DNA adducts are associated with a number of diseases, including cancer. Based on a recent report by our group, the aim of this study was to test the hypothesis that DNA adducts can be removed by means of one or more of the following three intervention programmes: intermittent whole-body hyperthermia; detoxification; and cell repair. The number of DNA adducts and total DNA adduct concentrations were measured in 104 patients who underwent one or more of the three intervention programmes. DNA adduct assessments were carried out on extracted genomic DNA by gas-liquid chromatography, with any DNA adducts found being localised using DNA microarrays. The baseline median number of DNA adducts was 2. The follow-up median number of adducts was highly significantly lower at 0 (p < 0.000000000000003). The mean total DNA adduct concentration at baseline was 9.308 ng/mL, and highly significantly lower at follow-up at 1.553 ng/mL (p < 0.000000000000006). Of the three intervention programmes, only the intermittent whole-body hyperthermia was associated with a significant reduction in DNA adducts. This study offers support for the hypothesis that DNA adducts can be removed by intermittent whole-body hyperthermia. The intermittent hyperthermia used involved infrared-A (wavelength 700-1400 nm, or, equivalently, a frequency of 215-430 THz) being preferentially delivered to the whole body, apart from the head, for up to one hour per session, with gradual core body temperature elevation usually occurring during the first 20-30 min. These results may offer an explanation at the molecular level for other reported clinical benefits of intermittent whole-body hyperthermia.
Collapse
Affiliation(s)
- B K Puri
- Department of Medicine, Imperial College London, UK.
| | - C Ijeh
- London Clinic of Nutrition, London, UK
| | - J A Monro
- Breakspear Medical Group, Hemel Hempstead, Hertfordshire, UK
| |
Collapse
|
7
|
Vinciguerra A, Cuomo O, Cepparulo P, Anzilotti S, Brancaccio P, Sirabella R, Guida N, Annunziato L, Pignataro G. Models and methods for conditioning the ischemic brain. J Neurosci Methods 2018; 310:63-74. [PMID: 30287283 DOI: 10.1016/j.jneumeth.2018.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.
Collapse
Affiliation(s)
- Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
8
|
Koizumi S, Hirayama Y, Morizawa YM. New roles of reactive astrocytes in the brain; an organizer of cerebral ischemia. Neurochem Int 2018; 119:107-114. [PMID: 29360494 DOI: 10.1016/j.neuint.2018.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 01/16/2023]
Abstract
The brain consists of neurons and much higher number of glial cells. They communicate each other, by which they control brain functions. The brain is highly vulnerable to several insults such as ischemia, but has a self-protective and self-repairing mechanisms against these. Ischemic tolerance or preconditioning is an endogenous neuroprotective phenomenon, where a mild non-lethal ischemic episode can induce resistance to a subsequent severe ischemic injury in the brain. Because of its neuroprotective effects against cerebral ischemia or stroke, ischemic tolerance has been widely studied. However, almost all studies have been performed from the viewpoint of neurons. Glial cells are structurally in close association with synapses. Recent studies have uncovered the active roles of astrocytes in modulating synaptic connectivity, such as synapse formation, elimination and maturation, during development or pathology. However, glia-mediated ischemic tolerance and/or neuronal repairing have received only limited attention. We and others have demonstrated that glial cells, especially astrocytes, play a pivotal role in regulation of induction of ischemic tolerance as well as repairing/remodeling of neuronal networks by phagocytosis. Here, we review our current understanding of (1) glial-mediated ischemic tolerance and (2) glia-mediated repairing/remodeling of the penumbra neuronal networks, and highlight their mechanisms as well as their potential benefits, problems, and therapeutic application.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Yosuke M Morizawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
9
|
Astrocytes and ischemic tolerance. Neurosci Res 2017; 126:53-59. [PMID: 29225139 DOI: 10.1016/j.neures.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/22/2022]
Abstract
A mild non-lethal ischemic episode can induce resistance to a subsequent severe ischemic injury in the brain. This phenomenon is termed ischemic tolerance or ischemic preconditioning, and is an endogenous mechanism that can provide robust neuroprotection. Because of its neuroprotective effects against cerebral ischemia or stroke, ischemic tolerance has been widely studied. However, almost all studies have been performed from the viewpoint of neurons. Accumulating evidence suggests that glial cells have various roles in regulation of brain function, including modulation of synaptic transmission, neuronal excitation, and neuronal structure. In addition, astrocytes are closely related to homeostasis, stability of brain function, and protection of neurons. However, glial cells have received only limited attention with regard to ischemic tolerance. Cross-ischemic preconditioning is a phenomenon whereby non-ischemic preconditioning such as mechanical, thermal, and chemical treatment can induce ischemic tolerance. Of these, chemical treatments that affect the immune system can strongly induce ischemic tolerance, suggesting that glial cells may have important roles in this process. Indeed, we and others have demonstrated that glial cells, especially astrocytes, play a pivotal role in the induction of ischemic tolerance. This glial-mediated ischemic tolerance provides a robust and long-lasting neuroprotection against ischemic injury. In this review, we discuss the mechanisms underlying glial-mediated ischemic tolerance, as well as its potential benefits, problems, and therapeutic application.
Collapse
|
10
|
Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia. Neurochem Int 2017; 107:43-56. [DOI: 10.1016/j.neuint.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 02/07/2023]
|
11
|
Li H, Sun J, Zhang D, Omire-Mayor D, Lewin PA, Tong S. Low-intensity (400 mW/cm 2, 500 kHz) pulsed transcranial ultrasound preconditioning may mitigate focal cerebral ischemia in rats. Brain Stimul 2017; 10:695-702. [PMID: 28279642 DOI: 10.1016/j.brs.2017.02.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Preconditioning methods, which could increase tolerance of brain to subsequent ischemic injuries with a small dose of non-injury stimuli, have gained attention. Capitalizing on noninvasiveness and safety of ultrasound modality, the pulsed transcranial ultrasound stimulation (pTUS) approach may provide a novel treatment for patients with high risk of stroke. OBJECTIVE This study's goal was to investigate whether the risk of stroke could be minimized or eliminated by prior exposure to low-intensity, pulsed transcranial ultrasound stimulation (pTUS). METHODS Rats were randomly assigned to control (n = 12) and pTUS preconditioning (pTUS-PC) groups (n = 14). The animals in pTUS-PC group were exposed to transcranial ultrasound stimulation before the induction of photothrombotic stroke, whereas control animals were handled identically but without the ultrasound stimulation. Cerebral blood flow was monitored using laser speckle imaging in both groups during stroke induction, as well as 24 and 48 h after stroke, respectively. Also, infarct volumes and edema were measured at 48 h after stroke. RESULTS pTUS-PC rats had smaller ischemic areas during stroke induction, and 24 and 48 h after the stroke, and smaller infarct volume (1.770 ± 0.169%) than the controls (3.215 ± 0.401%) (p < 0.01). Moreover, the pTUS-PC group experienced lower volume of brain edema than the control group (pTUS-PC rats: 6.658 ± 1.183%; control rats: 12.48 ± 1.386%, p < 0.01). CONCLUSION These results support the hypothesis that transcranial ultrasound stimulation applied before photothrombosis could provide neuroprotection by increasing the brain's tolerance to subsequently induced focal ischemic injury.
Collapse
Affiliation(s)
- Hangdao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daqu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daryl Omire-Mayor
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA
| | - Peter A Lewin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA.
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Wang X, Kang K, Wang S, Yao J, Zhang X. Focal cerebral ischemic tolerance and change in blood-brain barrier permeability after repetitive pure oxygen exposure preconditioning in a rodent model. J Neurosurg 2016; 125:943-952. [DOI: 10.3171/2015.7.jns142220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE
The goal of this study was to demonstrate that repetitive pure oxygen exposure preconditioning (O2PC) for 8 hours per day for 3 or 7 days, a practicable preconditioning for clinical use, is able to induce cerebral ischemic tolerance (IT) and further clarify the accompanying changes in the blood-brain barrier (BBB) that may be involved.
METHODS
A total of 68 adult male Sprague-Dawley rats and eight 1-day-old rat pups were used in this study. The adult rats were exposed to pure O2 (38 rats) 8 hours a day for 3 or 7 days or to room air (in an identical setup) for 8 hours a day for 7 days as controls (30 rats). Arterial O2 tension (PaO2) was measured in 6 rats exposed to O2 and 3 controls. Focal cerebral ischemia was elicited by middle cerebral artery occlusion (MCAO) in 37 rats, of which 21 had been exposed to pure O2 for 3 or 7 days and 16 to room air for 7 days as controls. Neurological behavior was scored with the Garcia score in 15 MCAO rats, of which 10 had been exposed to pure O2 for 3 or 7 days and 5 to room air for 7 days as controls, and cerebral infarct volumes were assessed with TTC (2,3,5-triphenyltetrazolium chloride) staining in 10 rats (5 from each group) after 7 days of exposure. Formamide-extraction method was used to detect leakage of Evans blue (EB) dye in 7 rats exposed to pure O2 for 7 days and 7 exposed to room air for 7 days. Fluorescence microscopy was used to analyze the leaked EB in the nonischemic areas of 4 rats exposed to pure O2 for 7 days and 4 exposed to room air for 7 days before MCAO and the brain of the rats that had not been subjected to MCAO. Astrocyte changes associated with O2PC were evaluated by means of fluorescence microscopy and electron microscopy in 14 rats that were exposed to the same O2 or control conditions as the MCAO rats but without MCAO. Astrocytes were also obtained from 8 rat pups and cultured; levels of AQP4 and VEGF were detected by Western blot and ELISA in cells with and without O2 treatment.
RESULTS
A significant increase in PaO2 was seen after O2PC. The neurological score was significantly increased in the O2PC groups (10.6 ± 0.6 in the 3-day O2PC group, p < 0.05; 12 ± 0.84 in the 7-day O2PC group, p < 0.05) compared with the control group (7 ± 0.55). The ratio of cerebral infarct volume to contralateral cerebral hemisphere volume was significantly lower in the O2PC group than in the control group (0.204 ± 0.03 vs 0.48 ± 0.05, p < 0.05). The amount of leaked EB in the ischemic cerebral hemisphere was also lower in the O2-treated rats than in controls (7.53 ± 1.4 vs 11.79 ± 3.3 μg EB/g brain weight, p < 0.05). However, fluorescence microscopy showed significantly greater BBB permeability in the nonischemic areas in the O2PC group than in controls (p < 0.05). More red fluorescence could be observed in the nonischemic areas in both the ipsilateral and contralateral sides of the ischemic brain in the O2PC animals than in the nonischemic areas in the corresponding sides of the controls. Further investigation of the effect of the O2PC itself on the BBB of rats that were not subjected to MCAO showed that there was no EB leakage in the brain parenchyma in the rats exposed to room air, but some red fluorescence patches were noticed in the normal brain from the rats in the O2PC group. Astrocytes, including those from areas around the BBB, were activated in the O2PC group. Levels of both aquaporin 4 (AQP4) and vascular endothelial growth factor (VEGF) were significantly increased in cultured astrocytes after O2PC.
CONCLUSIONS
These findings suggest that O2PC is able to induce IT, which makes it a strong candidate for clinical use. Moreover, O2PC can also promote BBB opening, which may contribute to the induction of IT as well as representing a possible strategy for promoting drug transportation into the CNS. Activated astrocytes are likely to be involved in these processes through astrocyte-derived factors, such as AQP4 and VEGF.
Collapse
Affiliation(s)
- Xi Wang
- 1Institute of Neurosciences, Fourth Military Medical University
| | - Kai Kang
- 2Department of Anesthesiology and
- 3Hospital of PLA 451, Xi'an, China
| | | | | | - Xijing Zhang
- 2Department of Anesthesiology and
- 4ICU Center, Xijing Hospital and Fourth Military Medical University; and
| |
Collapse
|
13
|
Ota A, Ikeda T, Xia XY, Xia YX, Ikenoue T. Hypoxic-Ischemic Tolerance Induced by Hyperthermic Pretreatment in Newborn Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760000700204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Arturo Ota
- Department of Obstetrics and Gynecology, Miyazaki Medical College, Miyazaki, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Miyazaki Medical College, Miyazaki Japan
| | | | | | - Tsuyomu Ikenoue
- Department of Obstetrics and Gynecology, Miyazaki Medical College, Miyazaki, Japan
| |
Collapse
|
14
|
Thushara Vijayakumar N, Sangwan A, Sharma B, Majid A, Rajanikant GK. Cerebral Ischemic Preconditioning: the Road So Far…. Mol Neurobiol 2015; 53:2579-93. [PMID: 26081149 DOI: 10.1007/s12035-015-9278-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/02/2015] [Indexed: 12/25/2022]
Abstract
Cerebral preconditioning constitutes the brain's adaptation to lethal ischemia when first exposed to mild doses of a subtoxic stressor. The phenomenon of preconditioning has been largely studied in the heart, and data from in vivo and in vitro models from past 2-3 decades have provided sufficient evidence that similar machinery exists in the brain as well. Since preconditioning results in a transient protective phenotype labeled as ischemic tolerance, it can open many doors in the medical warfare against stroke, a debilitating cerebrovascular disorder that kills or cripples thousands of people worldwide every year. Preconditioning can be induced by a variety of stimuli from hypoxia to pharmacological anesthetics, and each, in turn, induces tolerance by activating a multitude of proteins, enzymes, receptors, transcription factors, and other biomolecules eventually leading to genomic reprogramming. The intracellular signaling pathways and molecular cascades behind preconditioning are extensively being investigated, and several first-rate papers have come out in the last few years centered on the topic of cerebral ischemic tolerance. However, translating the experimental knowledge into the clinical scaffold still evades practicality and faces several challenges. Of the various preconditioning strategies, remote ischemic preconditioning and pharmacological preconditioning appears to be more clinically relevant for the management of ischemic stroke. In this review, we discuss current developments in the field of cerebral preconditioning and then examine the potential of various preconditioning agents to confer neuroprotection in the brain.
Collapse
Affiliation(s)
- N Thushara Vijayakumar
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Amit Sangwan
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Bhargy Sharma
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Arshad Majid
- Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - G K Rajanikant
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India.
| |
Collapse
|
15
|
Chen CM, Tseng CN, Cho JJ, Lee YZ, Kao CL, Cheng YB, Hong YR, Cho CL. Heat shock induces expression of OSTC/DC2, a novel subunit of oligosaccharyltransferase, in vitro and in vivo. Kaohsiung J Med Sci 2014; 30:219-23. [PMID: 24751383 DOI: 10.1016/j.kjms.2014.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/13/2013] [Indexed: 11/24/2022] Open
Abstract
Mammalian oligosaccharyltransferase complex subunit OSTC/DC2 protein has recently been shown to be a new subunit of the oligosaccharyltransferase; however, its physiological role is still unclear. Here, we report the expression pattern of OSTC/DC2 protein in the context of heat shock stress. Its upregulation was detected both in cells treated with heat shock in vitro and in an animal model of heat shock in vivo. Northern blot analysis indicated that OSTC/DC2 mRNA is ubiquitously expressed in various human tissues, with abundant expression in the placenta and liver. The temporal changes of OSTC/DC2 protein expression following acute heat shock in human malignant glioblastoma cell line U87MG and mice were analyzed by Western blot assay. In general, expression of OSTC/DC2 protein was elevated after heat shock; however, the time courses of the change of OSTC/DC2 protein expression varied in different tissues. In the cerebellum, heat shock induction of OSTC/DC2 protein and activation of AKT, a key regulator of stress response, followed a similar time course. These results suggest that the upregulation of OSTC/DC2, a novel component of the oligosaccharyltransferase complex, is part of the mammalian heat shock response.
Collapse
Affiliation(s)
- Chien-Ming Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chao-Neng Tseng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jonathan J Cho
- Center for Immunology and Microbial Diseases, Albany Medical College, Albany, NY, USA
| | - Ya-Zhe Lee
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chiu-Li Kao
- Tzu Hui Institute of Technology, Pingtung County, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Lung Cho
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
The potential role of heat shock proteins in acute spinal cord injury. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1480-90. [DOI: 10.1007/s00586-014-3214-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/26/2013] [Accepted: 01/08/2014] [Indexed: 12/19/2022]
|
17
|
Nunes RR, Duval Neto GF, Garcia de Alencar JC, Franco SB, de Andrade NQ, Holanda Dumaresq DM, Cavalcante SL. Anesthetics, cerebral protection and preconditioning. Rev Bras Anestesiol 2014; 63:119-28. [PMID: 23438807 DOI: 10.1016/s0034-7094(13)70204-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 06/16/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Several studies demonstrate that cerebral preconditioning is a protective mechanism against a stressful situation. Preconditioning determinants are described, as well as the neuroprotection provided by anesthetic and non-anesthetics agents. CONTENT Review based on the main articles addressing the pathophysiology of ischemia-reperfusion and neuronal injury and pharmacological and non-pharmacological factors (inflammation, glycemia, and temperature) related to the change in response to ischemia-reperfusion, in addition to neuroprotection induced by anesthetic use. CONCLUSIONS The brain has the ability to protect itself against ischemia when stimulated. The elucidation of this mechanism enables the application of preconditioning inducing substances (some anesthetics), other drugs, and non-pharmacological measures, such as hypothermia, aimed at inducing tolerance to ischemic lesions.
Collapse
|
18
|
Nunes RR, Duval Neto GF, de Alencar JCG, Franco SB, de Andrade NQ, Dumaresq DMH, Cavalcante SL. Anesthetics, cerebral protection and preconditioning. Braz J Anesthesiol 2013; 63:119-28. [PMID: 24565096 DOI: 10.1016/j.bjane.2012.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 06/16/2012] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Several studies demonstrate that cerebral preconditioning is a protective mechanism against a stressful situation. Preconditioning determinants are described, as well as the neuroprotection provided by anesthetic and non-anesthetics agents. CONTENT Review based on the main articles addressing the pathophysiology of ischemia-reperfusion and neuronal injury and pharmacological and non-pharmacological factors (inflammation, glycemia, and temperature) related to the change in response to ischemia-reperfusion, in addition to neuroprotection induced by anesthetic use. CONCLUSIONS The brain has the ability to protect itself against ischemia when stimulated. The elucidation of this mechanism enables the application of preconditioning inducing substances (some anesthetics), other drugs, and non-pharmacological measures, such as hypothermia, aimed at inducing tolerance to ischemic lesions.
Collapse
Affiliation(s)
- Rogean Rodrigues Nunes
- TSA; MSc and PhD in Anesthetics; Postgraduate in Cardiology, Universidade Federal do Ceará (UFC); Jointly Responsible for the Center for Teaching and Training (CET) of Hospital Geral de Fortaleza (HGF); Medicine Professor of Fachristus; Postgraduate in Clinical Engineering, Universidade de Fortaleza (Unifor); Vice-Chair of the Research Ethics Committee, Hospital São Carlos, Fortaleza, Ceará.
| | | | | | | | | | - Danielle Maia Holanda Dumaresq
- TSA; MSc, UFC; Responsible for CET-IJF; Chairman of the Pediatric Anesthesia Committee, Sociedade Brasileira de Anestesiologia (SBA) - 2011; Medicine Professor of Fachristus, Fortaleza, Ceará
| | - Sara Lúcia Cavalcante
- PhD; Professor, Faculdade de Medicina, UFC; Corresponsible for the CET of the HGF from Hospital São Carlos, Fortaleza Ceara, Brazil
| |
Collapse
|
19
|
Kwon HM, Kim Y, Yang SI, Kim YJ, Lee SH, Yoon BW. Geldanamycin protects rat brain through overexpression of HSP70 and reducing brain edema after cerebral focal ischemia. Neurol Res 2013; 30:740-5. [DOI: 10.1179/174313208x289615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Sevoflurane and Isoflurane Preconditioning Provides Neuroprotection by Inhibition of Apoptosis-related mRNA Expression in a Rat Model of Focal Cerebral Ischemia. J Neurosurg Anesthesiol 2012; 24:336-44. [DOI: 10.1097/ana.0b013e318266791e] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Lu TS, Lim K, Molostvov G, Yang YC, Yiao SY, Zehnder D, Hsiao LL. Induction of intracellular heat-shock protein 72 prevents the development of vascular smooth muscle cell calcification. Cardiovasc Res 2012; 96:524-32. [PMID: 22933322 DOI: 10.1093/cvr/cvs278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Vascular calcification (VC) is a significant contributor to cardiovascular mortality in patients with chronic kidney disease (CKD) and coronary artery disease (CAD). Osteo/chondrocytic transformation and simultaneous dedifferentiation of smooth muscle cells (SMCs) are important in the pathogenesis of VC. Heat-shock protein 72 (HSP72) is a cardioprotective inducible heat-shock protein that functions as a molecular chaperone. However, its role in the development of accelerated vascular dysfunction and calcification is largely unexplored. METHODS AND RESULTS We describe for the first time marked reduction in HSP72 expression in arteries from patients with CKD and CAD, compared with healthy controls, in vivo. Induction of HSP72 by heat-shock treatment (HST) significantly prevented the development of calcification of human aortic smooth muscle cells (HA-SMCs), in vitro. These anti-calcific effects were abolished following treatment with both quercetin, an HST inhibitor, and HSP72 siRNA knockdown. Induction of HSP72 suppressed Cbfa-1-dependent osteo/chondrocytic transformation and stabilized SMC contractile phenotype through the myocardin-serum response factor (SRF) pathway. Co-immunoprecipitation studies demonstrated physical association between SRF and HSP72. Furthermore, organ culture of arteries from CKD and CAD patients showed that these arteries retained their ability to induce HSP72 following HST, despite initially reduced expression. CONCLUSION Our study shows for the first time that intracellular HSP72 may function as a central regulator of molecular pathways involved in the development of VC. We suggest treatment strategies that up-regulate HSP72 as a new approach to inhibit VC.
Collapse
Affiliation(s)
- Tzong-Shi Lu
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Room 120, 41 Ave Louis Pasteurb, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kitagawa K. Ischemic tolerance in the brain: endogenous adaptive machinery against ischemic stress. J Neurosci Res 2012; 90:1043-54. [PMID: 22302606 DOI: 10.1002/jnr.23005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 10/25/2011] [Accepted: 11/18/2011] [Indexed: 01/10/2023]
Abstract
Although more than 100 drugs have been examined clinically, tissue plasminogen activator remains the only drug approved for the treatment of acute ischemic stroke. Since the discovery of ischemic tolerance, it has been widely recognized that the brain possesses an endogenous protective machinery to protect against ischemic stress. Recent studies have clarified that both the upregulation of neuroprotective signaling and the downregulation of inflammatory or apoptotic pathways are involved equally in the acquisition of ischemic tolerance. The triggering stimuli for ischemic stresses are divided into hypoxic, oxidant/inflammatory, and glutamate stress. Glutamate stress, particularly the synaptic stimulation of the N-methyl-D-aspartate receptor, leads to activation of the cAMP response element-binding protein, which could subsequently induce gene expression of several neuroprotective molecules. Gene reprogramming and metabolic downregulation are intimately involved in ischemic tolerance as well as in hibernation and hypothermia. Micro-RNAs may be a key player for tuning the level of gene expression in ischemic tolerance. Future research should be performed to investigate the most effective combination for brain protection, enhancement of cell survival signaling, and inhibition of the inflammatory or apoptotic pathways.
Collapse
Affiliation(s)
- Kazuo Kitagawa
- Department of Neurology, Stroke Center, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
23
|
Cottrell JE, Hartung J. Developmental Disability in the Young and Postoperative Cognitive Dysfunction in the Elderly After Anesthesia and Surgery: Do Data Justify Changing Clinical Practice? ACTA ACUST UNITED AC 2012; 79:75-94. [DOI: 10.1002/msj.21283] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Hypoxic-preconditioning induces neuroprotection against hypoxia–ischemia in newborn piglet brain. Neurobiol Dis 2011; 43:473-85. [DOI: 10.1016/j.nbd.2011.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 11/20/2022] Open
|
25
|
Du F, Wu XM, Gong Q, He X, Ke Y. Hyperthermia conditioned astrocyte-cultured medium protects neurons from ischemic injury by the up-regulation of HIF-1 alpha and the increased anti-apoptotic ability. Eur J Pharmacol 2011; 666:19-25. [PMID: 21620821 DOI: 10.1016/j.ejphar.2011.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 01/08/2023]
Abstract
It has been demonstrated that conditioned medium from astrocytes challenged by in vitro ischemia (oxygen-glucose deprivation, OGD) improved neuronal survival. In addition, preconditioning stimuli can be cross-tolerant, safeguarding against other types of injury. We therefore hypothesized that hyperthermia-conditioned astrocyte-cultured medium (ACM) might also have protective effect on neurons against ischemic injury. The cultured-media, named 38ACM and 40ACM respectively, were collected after astrocytes had been incubated at 38 °C or 40 °C for 6h, followed by incubation at 37 °C for 24h. It was found that ischemia for 6h induced a significant reduction in the number of neuronal cells and cell-viability, and an increase in lactate dehydrogenase (LDH) release and the percentage of apoptotic nuclei in neurons. Pre-treatment with 38ACM or 40ACM for 24h significantly diminished ischemia injury, enhanced cell viability, reduced LDH release and reversed apoptosis. Western blot analysis showed that treatment with 38ACM or 40ACM for 24h led to a significant increase in hypoxia-inducible factor-1 (HIF-1) alpha expression. The EMSA demonstrated that the ACM increased the binding activity of HIF-1 in ischemic neurons. The data implied that hyperthermia-conditioned ACM protects neurons from ischemic injury by up-regulating HIF-1 alpha, and the increased binding activity of HIF-1 and anti-apoptotic ability.
Collapse
Affiliation(s)
- Fang Du
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
26
|
A Synergistic Role of Hyperthermic and Pharmacological Preconditioning to Protect Astrocytes Against Ischemia/Reperfusion Injury. Neurochem Res 2010; 36:312-8. [DOI: 10.1007/s11064-010-0327-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
|
27
|
Bhuiyan MIH, Kim YJ. Mechanisms and prospects of ischemic tolerance induced by cerebral preconditioning. Int Neurourol J 2010; 14:203-12. [PMID: 21253330 PMCID: PMC3021810 DOI: 10.5213/inj.2010.14.4.203] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022] Open
Abstract
In the brain, brief episodes of ischemia induce tolerance against a subsequent severe episode of ischemia. This phenomenon of endogenous neuroprotection is known as preconditioning-induced ischemic tolerance. The purpose of this review is to summarize the current state of knowledge about mechanisms and potential applications of cerebral preconditioning and ischemic tolerance. Articles related to the terms ischemic preconditioning and ischemic tolerance were systematically searched via MEDLINE/PubMed, and articles published in English related to the nervous system were selected and analyzed. The past two decades have provided interesting insights into the molecular mechanisms of this neuroprotective phenomenon. Although both rapid and delayed types of tolerance have been documented in experimental settings, the delayed type has been found to be more prominent in the case of neuronal ischemic tolerance. Many intracellular signaling pathways have been implicated regarding ischemic preconditioning. Most of these are associated with membrane receptors, kinase cascades, and transcription factors. Moreover, ischemic tolerance can be induced by exposing animals or cells to diverse types of endogenous and exogenous stimuli that are not necessarily hypoxic or ischemic in nature. These cross-tolerances raise the hope that, in the future, it will be possible to pharmacologically activate or mimic ischemic tolerance in the human brain. Another promising approach is remote preconditioning in which preconditioning of one organ or system leads to the protection of a different (remote) organ that is difficult to target, such as the brain. The preconditioning strategy and related interventions can confer neuroprotection in experimental ischemia, and, thus, have promise for practical applications in cases of vascular neurosurgery and endo-vascular therapy.
Collapse
Affiliation(s)
| | - Youn Jung Kim
- Kyung Hee University College of Nursing Science, Seoul, Korea
| |
Collapse
|
28
|
Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1048-53. [DOI: 10.1016/j.bbadis.2010.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/08/2010] [Accepted: 06/18/2010] [Indexed: 12/31/2022]
|
29
|
|
30
|
Lee DH, Lee YJ, Kwon KH. Neuroprotective Effects of Astaxanthin in Oxygen-Glucose Deprivation in SH-SY5Y Cells and Global Cerebral Ischemia in Rat. J Clin Biochem Nutr 2010; 47:121-9. [PMID: 20838567 PMCID: PMC2935152 DOI: 10.3164/jcbn.10-29] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/27/2010] [Indexed: 11/22/2022] Open
Abstract
Astaxanthin (ATX), a naturally occurring carotenoid pigment, is a powerful biological antioxidant. In the present study, we investigated whether ATX pharmacologically offers neuroprotection against oxidative stress by cerebral ischemia. We found that the neuroprotective efficacy of ATX at the dose of 30 mg/kg (n = 8) was 59.5% compared with the control group (n = 3). In order to make clear the mechanism of ATX neuroprotection, the up-regulation inducible nitric oxide synthase (iNOS) and heat shock proteins (HSPs) together with the oxygen glucose deprivation (OGD) in SH-SY5Y cells were also investigated. The induction of various factors involved in oxidative stress processes such as iNOS was suppressed by the treatment of ATX at 25 and 50 µM after OGD-induced oxidative stress. In addition, Western blots showed that ATX elevated of heme oxygenase-1 (HO-1; Hsp32) and Hsp70 protein levels in in vitro. These results suggest that the neuroprotective effects of ATX were related to anti-oxidant activities in global ischemia.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Departments of Surgery and Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
31
|
Collins MA, Neafsey EJ, Wang K, Achille NJ, Mitchell RM, Sivaswamy S. Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms. Mol Neurobiol 2010; 41:420-5. [PMID: 20422315 PMCID: PMC2908405 DOI: 10.1007/s12035-010-8138-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/12/2010] [Indexed: 12/18/2022]
Abstract
There is no question that chronic alcohol (ethanol) abuse, a leading worldwide problem, causes neuronal dysfunction and brain damage. However, various epidemiologic studies in recent years have indicated that in comparisons with abstainers or never-drinkers, light/moderate alcohol consumers have lower risks of age-dependent cognitive decline and/or dementia, including Alzheimer's disease (AD). Such reduced risks have been variously attributed to favorable circulatory and/or cerebrovascular effects of moderate ethanol intake, but they could also involve ethanol "preconditioning" phenomena in brain glia and neurons. Here we summarize our experimental studies showing that moderate ethanol preconditioning (MEP; 20-30 mM ethanol) of rat brain cultures prevents neurodegeneration due to beta-amyloid, an important protein implicated in AD, and to other neuroinflammatory proteins such as gp120, the human immunodeficiency virus 1 envelope protein linked to AIDS dementia. The MEP neuroprotection is associated with suppression of neurotoxic protein-evoked initial increases in [Ca(+2)](i) and proinflammatory mediators--e.g., superoxide anion, arachidonic acid, and glutamate. Applying a sensor --> transducer --> effector model to MEP, we find that onset of neuroprotection correlates temporally with elevations in "effector" heat shock proteins (HSP70, HSP27, and phospho-HSP27). The effector status of HSPs is supported by the fact that inhibiting HSP elevations due to MEP largely restores gp120-induced superoxide potentiation and subsequent neurotoxicity. As upstream mediators, synaptic N-methyl-d-aspartate receptors may be initial prosurvival sensors of ethanol, and protein kinase C epsilon and focal adhesion kinase are likely transducers during MEP that are essential for protective HSP elevations. Regarding human consumption, we speculate that moderate ethanol intake might counter incipient cognitive deterioration during advanced aging or AD by exerting preconditioning-like suppression of ongoing neuroinflammation related to amyloidogenic protein accumulation.
Collapse
Affiliation(s)
- Michael A Collins
- Biochemistry Division, Department of Pharmacology, Loyola University Medical School, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Bickler PE, Fahlman CS. Enhanced hypoxic preconditioning by isoflurane: signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors. Brain Res 2010; 1340:86-95. [PMID: 20434434 DOI: 10.1016/j.brainres.2010.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 01/15/2023]
Abstract
Neurons preconditioned with non-injurious hypoxia or the anesthetic isoflurane express different genes but are equally protected against severe hypoxia/ischemia. We hypothesized that neuroprotection would be augmented when preconditioning with isoflurane and hypoxic preconditioning are combined. We also tested if preconditioning requires intracellular Ca(2+) and the inositol triphosphate receptor, and if gene expression is similar in single agent and combined preconditioning. Hippocampal slice cultures prepared from 9 day old rats were preconditioned with hypoxia (95% N(2), 5% CO(2) for 15 min, HPC), 1% isoflurane for 15 min (APC) or their combination (CPC) for 15 min. A day later cultures were deprived of O(2) and glucose (OGD) to produce neuronal injury. Cell death was assessed 48 h after OGD. mRNA encoding 119 signal transduction genes was quantified with cDNA micro arrays. Intracellular Ca(2+) in CA1 region was measured with fura-2 during preconditioning. The cell-permeable Ca(2+) buffer BAPTA-AM, the IP(3) receptor antagonist Xestospongin C and RNA silencing were used to investigate preconditioning mechanisms. CPC decreased CA1, CA3 and dentate region death by 64-86% following OGD, more than HPC or APC alone (P<0.01). Gene expression following CPC was an amalgam of gene expression in HPC and APC, with simultaneous increases in growth/development and survival/apoptosis regulation genes. Intracellular Ca(2+) chelation and RNA silencing of IP(3) receptors prevented preconditioning neuroprotection and gene responses. We conclude that combined isoflurane-hypoxia preconditioning augments neuroprotection compared to single agents in immature rat hippocampal slice cultures. The mechanism involves genes for growth, development, apoptosis regulation and cell survival as well as IP(3) receptors and intracellular Ca(2+).
Collapse
Affiliation(s)
- Philip E Bickler
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA 94143-0542, USA.
| | | |
Collapse
|
33
|
Durukan A, Tatlisumak T. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2010; 2:2. [PMID: 20298534 PMCID: PMC2830184 DOI: 10.1186/2040-7378-2-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/21/2010] [Indexed: 12/31/2022]
Abstract
Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells.
Collapse
Affiliation(s)
- Aysan Durukan
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland.
| | | |
Collapse
|
34
|
Hansson MJ, Morota S, Teilum M, Mattiasson G, Uchino H, Elmér E. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume. J Biol Chem 2009; 285:741-50. [PMID: 19880514 DOI: 10.1074/jbc.m109.017731] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Modulation of K(+) conductance of the inner mitochondrial membrane has been proposed to mediate preconditioning in ischemia-reperfusion injury. The mechanism is not entirely understood, but it has been linked to a decreased activation of mitochondrial permeability transition (mPT). In the present study K(+) channel activity was mimicked by picomolar concentrations of valinomycin. Isolated brain mitochondria were exposed to continuous infusions of calcium. Monitoring of extramitochondrial Ca(2+) and mitochondrial respiration provided a quantitative assay for mPT sensitivity by determining calcium retention capacity (CRC). Valinomycin and cyclophilin D inhibition separately and additively increased CRC. Comparable degrees of respiratory uncoupling induced by increased K(+) or H(+) conductance had opposite effects on mPT sensitivity. Protonophores dose-dependently decreased CRC, demonstrating that so-called mild uncoupling was not beneficial per se. The putative mitoK(ATP) channel opener diazoxide did not mimic the effect of valinomycin. An alkaline matrix pH was required for mitochondria to retain calcium, but increased K(+) conductance did not result in augmented DeltapH. The beneficial effect of valinomycin on CRC was not mediated by H(2)O(2)-induced protein kinase Cepsilon activation. Rather, increased K(+) conductance reduced H(2)O(2) generation during calcium infusion. Lowering the osmolarity of the buffer induced an increase in mitochondrial volume and improved CRC similar to valinomycin without inducing uncoupling or otherwise affecting respiration. We propose that increased potassium conductance in brain mitochondria may cause a direct physiological effect on matrix volume inducing resistance to pathological calcium challenges.
Collapse
Affiliation(s)
- Magnus J Hansson
- Mitochondrial Pathophysiology Unit, Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
35
|
Mechírová E, Domoráková I, Danková M, Danielisová V, Burda J. Effect of noradrenalin and EGb 761 pretreatment on the ischemia-reperfusion injured spinal cord neurons in rabbits. Cell Mol Neurobiol 2009; 29:991-8. [PMID: 19291391 PMCID: PMC11505823 DOI: 10.1007/s10571-009-9386-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/27/2009] [Indexed: 01/07/2023]
Abstract
Short term sublethal ischemia or ischemic preconditioning gives protection to the neurons against subsequent lethal ischemic attack. This so-called ischemic tolerance can also be provided by certain drugs. We examined the effect of noradrenalin and EGb 761 on the spinal cord neurons injured by 30 min occlusion of abdominal aorta in rabbits. The animals survived 48 and 72 h. Degenerated neurons were visualized by Fluoro Jade B method, viable neurons were demonstrated immunohistochemically with NeuN and ubiquitin antibodies. The rabbits with noradrenalin administration 48 h before 30 min of ischemia and 48/72 h of reperfusion, showed significant increase of degenerated Fluoro Jade B labeled neurons. Animals of both groups were paraplegic. Rabbits pretreated 7 days with EGb 761 prior to 30 min of ischemia and with 48/72 h of reperfusion revealed significant decrease of Fluoro Jade B-positive neurons when compared with the groups with 30 min of ischemia followed by 48/72 h of reperfusion. In the NeuN sections, the number of viable neurons was moderately decreased. These animals showed no paraplegia. Ubiquitin aggregates occurred in the cytoplasm of degenerated neurons in the sections of rabbits preconditioned with noradrenalin 48 h prior to 30 min of ischemia and followed by 48 h of reperfusion while after 72 h of reperfusion, shrunk light shadows without ubiquitin reaction were visible. Our results indicate that EGb 761 could be involved in protection of spinal cord neurons against ischemic injury while effect of noradrenalin is not unambiguous.
Collapse
Affiliation(s)
- Eva Mechírová
- Department of Histology and Embryology, Faculty of Medicine, PJ Safárik University in Kosice, 04180 Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
36
|
Expression of signal transduction genes differs after hypoxic or isoflurane preconditioning of rat hippocampal slice cultures. Anesthesiology 2009; 111:258-66. [PMID: 19568165 DOI: 10.1097/aln.0b013e3181a8647f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preconditioning neurons with noninjurious hypoxia (hypoxic preconditioning, HPC) or the anesthetic isoflurane (APC) induces tolerance of severe ischemic stress. The mechanisms of both types of preconditioning in the hippocampus require moderate increases in intracellular Ca and activation of protein kinase signaling. The authors hypothesized that the expression of signal transduction genes would be similar after APC and HPC. METHODS Hippocampal slice cultures prepared from 9-day-old rats were preconditioned with hypoxia (5 min of 95% nitrogen/5% carbon dioxide) or 1% isoflurane in air/5% carbon dioxide for 1 h. A day later, cultures were subjected to 10 min oxygen and glucose deprivation (simulated ischemia). Intracellular Ca, measured in CA1 neurons at the completion of preconditioning, and cell death in CA1, CA3, and dentate regions was assessed 48 h after simulated ischemia. Message RNA encoding 119 signal transduction genes was quantified with rat complimentary DNA microarrays from pre-oxygen-glucose deprivation samples. RESULTS Both APC and HPC increased intracellular Ca approximately 50 nm and decreased CA1, CA3, and dentate neuron death by about 50% after simulated ischemia. Many signaling genes were increased after preconditioning, with hypoxia increasing more apoptosis/survival genes (8 of 10) than isoflurane (0 of 10). In contrast, isoflurane increased more cell cycle/development/growth genes than did hypoxia (8 of 14 genes, vs. 1 of 14). CONCLUSIONS Despite sharing similar upstream signaling and neuroprotective outcomes, the genomic response to APC and HPC is different. Increased expression of antiapoptosis genes after HPC and cell development genes after APC has implications both for neuroprotection and long-term effects of anesthetics.
Collapse
|
37
|
Neuronal plasticity after ischemic preconditioning and TIA-like preconditioning ischemic periods. Acta Neuropathol 2009; 117:511-23. [PMID: 19084975 DOI: 10.1007/s00401-008-0473-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 11/29/2008] [Accepted: 12/06/2008] [Indexed: 01/10/2023]
Abstract
Transient ischemic attacks (TIAs) have recently become the center of attention since they are thought to share some characteristics with experimental ischemic preconditioning (IPC). This phenomenon describes the situation that a brief, per se harmless, cerebral ischemic period renders the brain resistant to a subsequent severe and normally damaging ischemia. Preconditioning (PC) is not restricted to the brain but also occurs in other organs. Furthermore, apart from a short ischemia, the PC event may comprise nearly any noxious stimulus which, however, must not exceed the threshold to tissue damage. In the last two decades, our knowledge concerning the underlying molecular basis of PC has substantially grown and there is hope to potentially imitate the induction of an endogenous neuroprotective state in patients with a high risk of cerebral ischemia. While, at present, there is virtually no neuropathological data on changes after TIAs or TIA-like PC ischemic periods in human brains, the following review will briefly summarize the current knowledge of plastic neuronal changes after PC in animal models, still awaiting their detection in the human brain.
Collapse
|
38
|
Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 2009; 33:206-19. [PMID: 19032583 PMCID: PMC2908373 DOI: 10.1111/j.1530-0277.2008.00828.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions-pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, beta-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Cell Biology, Neurobiology & Anatomy, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Duszczyk M, Ziembowicz A, Gadamski R, Wieronska JM, Smialowska M, Lazarewicz JW. Changes in the NPY immunoreactivity in gerbil hippocampus after hypoxic and ischemic preconditioning. Neuropeptides 2009; 43:31-9. [PMID: 19012964 DOI: 10.1016/j.npep.2008.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/19/2008] [Accepted: 09/28/2008] [Indexed: 12/20/2022]
Abstract
Preconditioning with sublethal ischemia or hypoxia may reduce the high susceptibility of CA1 pyramidal neurons to ischemic injury. In this study, we tested the hypothesis that enhanced level of neuropeptide Y (NPY) might play a role in the mechanisms responsible for this induced tolerance. Changes in NPY immunoreactivity in the hippocampal formation of preconditioned Mongolian gerbils were compared with the level of tolerance to test ischemia. Tolerance was induced by preconditioning with 2-min of ischemia or with three trials of mild hypobaric hypoxia (360 Torr, 2 h), separated by 24 h, that were completed 48 h before the 3-min test ischemia. The number of NPY-positive neurons in the gerbil hippocampal formation was assessed 2, 4 and 7 days after preconditioning. Survival of the CA1 pyramidal neurons was examined 14 days after the insult. Our experiments demonstrated that ischemic and hypoxic preconditioning produced equal attenuation of the damage evoked by 3-min ischemia, although the pattern of NPY immunoreactivity in the hippocampus differed. Preconditioning ischemia resulted in a 20% rise in the number of NPY-positive neurons 2 days later that disappeared 4 days after the ischemic episode, while mild hypobaric hypoxia induced a twofold increase in the number of NPY-positive neurons that lasted for at least 7 days. Although induced tolerance to ischemia 2 days after ischemic or hypoxic preconditioning was accompanied by increased immunoreactivity of NPY, there was no correlation between its intensity and the level of neuroprotection.
Collapse
Affiliation(s)
- Malgorzata Duszczyk
- Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | | | | | | | | | | |
Collapse
|
40
|
STETLER RANNE, ZHANG FENG, LIU COLLIN, CHEN JUN. Ischemic tolerance as an active and intrinsic neuroprotective mechanism. HANDBOOK OF CLINICAL NEUROLOGY 2009; 92:171-95. [PMID: 18790275 PMCID: PMC2710312 DOI: 10.1016/s0072-9752(08)01909-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - FENG ZHANG
- University of Pittsburgh, Pittsburgh, PA, USA
| | - COLLIN LIU
- University of Pittsburgh, Pittsburgh, PA, USA
| | - JUN CHEN
- University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Zecher M, Guichard C, Velásquez MJ, Figueroa G, Rodrigo R. Implications of oxidative stress in the pathophysiology of obstructive uropathy. ACTA ACUST UNITED AC 2008; 37:19-26. [PMID: 19082822 DOI: 10.1007/s00240-008-0163-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 11/25/2008] [Indexed: 02/07/2023]
Abstract
Although the functional and clinical alterations occurring in patients with obstructive uropathy are not well understood, it has been suggested that oxidative stress could contribute in the mechanism responsible for the impairment of sodium and water balance. This study aimed to test the hypothesis that red wine administration causes an amelioration of both the renal damage and impairment of renal Na(+), K(+)-ATPase activity occurring after ureteral obstruction in the rat. Twenty-four male Wistar adult rats weighting 200-250 g were used. Half of them received a 10-week treatment with wine as the sole fluid source, while the other group received water. Both groups were subjected to 24-h unilateral ureteral obstruction (UUO). Kidney tissue was collected following the relief of the ligature to perform the biochemical assessments. Urine and blood samples were taken at baseline and after the relief. Results show that the treatment with red wine significantly enhances the activity of antioxidant enzymes, and thus reduces renal lipid peroxidation secondary to UUO, which correlated negatively with Na(+), K(+)-ATPase activity. Based on this and other previous data, it could be suggested that red wine administration may prevent renal damage secondary to UUO by inducing enhanced antioxidant potential.
Collapse
Affiliation(s)
- Martin Zecher
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
42
|
Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 2008. [PMID: 19032583 DOI: 10.1111/j.1530–0277.2008.00828.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions-pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, beta-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Cell Biology, Neurobiology & Anatomy, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Taleb M, Brandon CS, Lee FS, Lomax MI, Dillmann WH, Cunningham LL. Hsp70 inhibits aminoglycoside-induced hair cell death and is necessary for the protective effect of heat shock. J Assoc Res Otolaryngol 2008; 9:277-89. [PMID: 18512096 PMCID: PMC2538150 DOI: 10.1007/s10162-008-0122-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 04/17/2008] [Indexed: 01/14/2023] Open
Abstract
Sensory hair cells of the inner ear are sensitive to death from aging, noise trauma, and ototoxic drugs. Ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic agent cisplatin. Exposure to aminoglycosides results in hair cell death that is mediated by specific apoptotic proteins, including c-Jun N-terminal kinase (JNK) and caspases. Induction of heat shock proteins (Hsps) is a highly conserved stress response that can inhibit JNK- and caspase-dependent apoptosis in a variety of systems. We have previously shown that heat shock results in a robust upregulation of Hsps in the hair cells of the adult mouse utricle in vitro. In addition, heat shock results in significant inhibition of both cisplatin- and aminoglycoside-induced hair cell death. In our system, Hsp70 is the most strongly induced Hsp, which is upregulated over 250-fold at the level of mRNA 2 h after heat shock. Therefore, we have begun to examine the role of Hsp70 in mediating the protective effect of heat shock. To determine whether Hsp70 is necessary for the protective effect of heat shock against aminoglycoside-induced hair cell death, we utilized utricles from Hsp70.1/3 (-/-) mice. While heat shock inhibited gentamicin-induced hair cell death in wild-type utricles, utricles from Hsp70.1/3 (-/-) mice were not protected. In addition, we have examined the role of the major heat shock transcription factor, Hsf1, in mediating the protective effect of heat shock. Utricles from Hsf1 (-/-) mice and wild-type littermates were exposed to heat shock followed by gentamicin. The protective effect of heat shock on aminoglycoside-induced hair cell death was only observed in wild-type mice and not in Hsf1 (-/-) mice. To determine whether Hsp70 is sufficient to protect hair cells, we have utilized transgenic mice that constitutively overexpress Hsp70. Utricles from Hsp70-overexpressing mice and wild-type littermates were cultured in the presence of varying neomycin concentrations for 24 h. The Hsp70-overexpressing utricles were significantly protected against neomycin-induced hair cell death at moderate to high doses of neomycin. This protective effect was achieved without a heat shock. Taken together, these data indicate that Hsp70 and Hsf1 are each necessary for the protective effect of heat shock against aminoglycoside-induced death. Furthermore, overexpression of Hsp70 alone significantly inhibits aminoglycoside-induced hair cell death.
Collapse
Affiliation(s)
- Mona Taleb
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403 USA
| | - Carlene S. Brandon
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403 USA
| | - Fu-Shing Lee
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Margaret I. Lomax
- Kresge Hearing Research Institute and Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Wolfgang H. Dillmann
- Department of Endocrinology, School of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
| | - Lisa L. Cunningham
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403 USA
| |
Collapse
|
44
|
Kim SJ, Kim YJ, Park KH. Neuroprotective effect of transpupillary thermotherapy in the optic nerve crush model of the rat. Eye (Lond) 2008; 23:727-33. [DOI: 10.1038/eye.2008.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
45
|
Abstract
Ischemic brain damage can be prevented or at least significantly reduced when there is a preceding brief ischemic period that does not exceed the threshold for tissue damage--a phenomenon termed "ischemic preconditioning" (ischemic PC). Experimental PC in rodents is now considered to be a model for transient ischemic attacks in humans, and there is increasing hope for translating the knowledge of underlying mechanisms in the animal models into the clinic to enhance endogenous neuroprotective mechanisms in patients with stroke. However, although PC was originally defined as a subtoxic stimulus without any morphologic damage, there is a growing body of evidence from studies using sensitive techniques that postischemic structural alterations of brain tissue manifest not only after ischemia with prior PC but also after the PC stimulus itself. Furthermore, it has become evident over time that the primary shortcomings of many experimental studies on PC are the short observation intervals. The few studies with extended postischemic survival periods done to date provide clear evidence of considerable structural changes and even cell death, which may only be postponed by PC. Therefore, further studies are needed to elucidate structural long-term changes after PC and to validate the persistence of the neuroprotective effects.
Collapse
|
46
|
Wang C, Lee JJ, Jung HH, Zuo Z. Pretreatment with volatile anesthetics, but not with the nonimmobilizer 1,2-dichlorohexafluorocyclobutane, reduced cell injury in rat cerebellar slices after an in vitro simulated ischemia. Brain Res 2007; 1152:201-8. [PMID: 17434151 PMCID: PMC1950153 DOI: 10.1016/j.brainres.2007.03.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 11/17/2022]
Abstract
A prior exposure to the volatile anesthetic isoflurane has been shown to induce neuroprotection in rats. This phenomenon is called preconditioning. We designed this study to determine whether the potency of volatile anesthetics in inducing neuropreconditioning is related to their potency to induce anesthesia. Cerebellar slices of adult male Sprague-Dawley rats were exposed to various concentrations of isoflurane, halothane, sevoflurane, desflurane or the nonimmobilizer 1,2-dichlorohexafluorocyclobutane for 15 min, followed by a 15-min drug-free period, and then were subjected to oxygen-glucose deprivation for 10 min at 37 degrees C. After a 5-h recovery at 37 degrees C, brain slices were used for quantification of cell injury by spectrophotometric measurement of formazan produced from 2,3,5-triphenyltetrazolium chloride. All four volatile anesthetics induced a concentration-dependent preconditioning effect. The EC50 for this effect induced by isoflurane, halothane, sevoflurane or desflurane was 221, 173, 184 and 929 microM, respectively. This EC50 was linearly correlated with the aqueous concentration of one minimum alveolar concentration. The volatile anesthetic preconditioning-induced neuroprotection was abolished by DL-threo-beta-hydroxyaspartic acid, DL-threo-beta-benzyloxyaspartate or dihydrokainate, glutamate transporter inhibitors. The volatile nonimmobilizer 1,2-dichlorohexafluorocyclobutane at any concentrations tested in the study did not induce a significant preconditioning effect. Isoflurane preconditioning did not change the oxygen-glucose deprivation-induced glutamate accumulation. These results suggest that the preconditioning-induced neuroprotection by volatile anesthetics is not agent-specific. Mechanisms that are involved in inducing anesthesia may contribute to the induction of preconditioning effect by volatile anesthetics. Modification of glutamate transporter activity may be one of such mechanisms to induce these protective effects.
Collapse
Affiliation(s)
- Chengbin Wang
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia 22908-0710, USA
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital University of Medical Sciences, Beijing, China
| | - Jeong Jin Lee
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia 22908-0710, USA
- Department of Anesthesiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| | - Hae-Hyuk Jung
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia 22908-0710, USA
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University, Korea
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia 22908-0710, USA
| |
Collapse
|
47
|
Bigdeli MR, Hajizadeh S, Froozandeh M, Rasulian B, Heidarianpour A, Khoshbaten A. Prolonged and intermittent normobaric hyperoxia induce different degrees of ischemic tolerance in rat brain tissue. Brain Res 2007; 1152:228-33. [PMID: 17475225 DOI: 10.1016/j.brainres.2007.03.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 11/24/2022]
Abstract
Prior prolonged oxygen exposure is associated with some protection against ischemia-reperfusion (IR) injury to rat brain tissue, but also with toxic effects. We sought to compare the magnitude of protection offered by prolonged and intermittent oxygen pretreatments against IR injury to the rat brain. Rats were divided into four experimental groups, each of 21 animals. The first two were exposed to 95% inspired (normobaric hyperoxia, NBHO) for 4 h/day for 6 consecutive days (intermittent NBHO) or for 24 continuous hours (prolonged NBHO). The second two groups acted as controls were exposed to 21% oxygen. After 24 h, they were subjected to 60 min of right middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. The animals were sacrificed for assessment of infarct volume, brain edema, and blood-brain barrier (BBB) permeability, respectively. Prolonged and intermittent NBHO pretreatment reduced infarct volume by 63.3% and 73.7%, respectively, when compared to the respective NBNO groups. Intermittent NBHO (when compared to intermittent NBNO) also reduced the post-ischemic increment of brain water content significantly (81.53+/-0.8%, vs. 80.12+/-0.79%) and Evans Blue extravasation (7.49+/-2.89+/-g/g tissue vs. 3.9+/-0.79 microg/g tissue, P<0.001), while prolonged NBHO had no significant effect on brain water content (81.69+/-1.16% vs. 80.74+/-0.94%) and EB extravasations (6.48+/-2.42 microg/g tissue vs. 4.31+/-1.07 microg/g tissue). Intermittent hyperoxia had relatively more significant effects on brain edema and BBB protection. Although preconditioning with both prolonged and intermittent oxygen exposure protects rat brain tissue against IR injury, the intermittent hyperoxia could have relatively more protective effects in this regard.
Collapse
Affiliation(s)
- Mohammad Reza Bigdeli
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Many stressful, but not lethal, stimuli activate endogenous protective mechanisms that significantly decrease the degree of injury to subsequent injurious stimuli. This protective mechanism is termed preconditioning and tolerance. It occurs across organ systems including the brain and nervous system. Preconditioning has been investigated in cell and animal models and recently been shown to potentially occur in human brain. Learning more about these powerful endogenous neuroprotective mechanisms could help identify new approaches to treat patients with stroke and other central nervous system disorders or injury. Cell and animal models are helping us to better understand the network response of gene and protein expression that activates the neuroprotective response.
Collapse
Affiliation(s)
- V L Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA.
| | | |
Collapse
|
49
|
Duveau V, Arthaud S, Rougier A, Le Gal La Salle G. Polysialylation of NCAM is upregulated by hyperthermia and participates in heat shock preconditioning-induced neuroprotection. Neurobiol Dis 2007; 26:385-95. [PMID: 17336079 DOI: 10.1016/j.nbd.2007.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 01/16/2007] [Accepted: 01/22/2007] [Indexed: 11/23/2022] Open
Abstract
"Brain tolerance"--a phenomenon in which a subtoxic challenge confers resistance to subsequent brain injuries--provides an ideal opportunity for investigating endogenous neuroprotective mechanisms. We investigated the potential role of the polysialylated (PSA) form of neural cell adhesion molecule (NCAM), which is thought to play a key role in plasticity. In a model where prior exposure to heat shock protects against kainate-induced cell damage in the hippocampus, we show that hyperthermia upregulates PSA-NCAM expression for at least 1 week, without affecting neurogenesis. Pharmacological manipulation of heat shock protein (HSP) expression demonstrates a tight positive link between HSP70 and PSA-NCAM. Finally, the presence of PSA was functionally linked to brain tolerance, as protection against kainate-induced cell death by heat shock pre-exposure was abolished in the absence of NCAM polysialylation. The upregulation of PSA-NCAM by hyperthermia may have a significant impact on hippocampal plasticity, permitting induction of the complex molecular cascade responsible for neuroprotection.
Collapse
Affiliation(s)
- V Duveau
- Université Bordeaux 2, CNRS UMR 5227-Mouvement, Adaptation, Cognition, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
50
|
Hirata T, Cui YJ, Funakoshi T, Mizukami Y, Ishikawa YI, Shibasaki F, Matsumoto M, Sakabe T. The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Res 2006; 1130:214-22. [PMID: 17173873 DOI: 10.1016/j.brainres.2006.10.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/21/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
Repeated hyperbaric oxygen (HBO) exposure prior to ischemia has been reported to provide neuroprotection against ischemic brain injury. The present study examined the time course of neuroprotection of HBO (3.5 atmosphere absolute, 100% oxygen, 1 h for 5 consecutive days) and the changes of gene/protein expression in rats. First, at 6 h, 12 h, 24 h, and 72 h after HBO sessions, rats were subjected to forebrain ischemia (8 min). Histopathological examination of hippocampal CA1 neurons was done 7 days after ischemia. Second, temporal genomic responses and protein expression were examined at the same time points after HBO sessions without subjecting animals to ischemia. HBO significantly reduced loss of hippocampal CA1 neurons that normally follows transient forebrain ischemia when the last HBO session was 6 h, 12 h, or 24 h before ischemia (survived neurons 55%, 75%, and 53%, respectively), whereas if there was a 72-h delay before the ischemic insult, HBO was not protective (survived neurons only 6%). Statistical analysis on microarray data showed significant upregulation in 60 probe sets including 7 annotated genes (p75NTR, C/EBPdelta, CD74, Edg2, Trip10, Nrp1, and Igf2), whose time course expressions corresponded to HBO-induced neuroprotection. The protein levels of p75NTR, C/EBPdelta, and CD74 were significantly increased (maximum fold changes 2.9, 2.0, and 7.9, respectively). The results suggest that HBO-induced neuroprotection against ischemic injury has time window, protective at 6 h, 12 h and 24 h but not protective at 72 h. Although the precise interaction is to be determined, the genes/proteins relevant to neurotrophin and inflammatory-immune system may be involved in HBO-induced neuroprotection.
Collapse
Affiliation(s)
- Takao Hirata
- Department of Anesthesiology-Resuscitology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | | | | | | | | | | | | | | |
Collapse
|